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ABSTRACT

We study the problem of sampling a bandlimited graph signal in the
presence of noise, where the objective is to select a node subset of
prescribed cardinality that minimizes the signal reconstruction mean
squared error (MSE). To that end, we formulate the task at hand as
the minimization of MSE subject to binary constraints, and approx-
imate the resulting NP-hard problem via semidefinite programming
(SDP) relaxation. Moreover, we provide an alternative formula-
tion based on maximizing a monotone weak submodular function
and propose a randomized-greedy algorithm to find a sub-optimal
subset. We then derive a worst-case performance guarantee on
the MSE returned by the randomized greedy algorithm for general
non-stationary graph signals. The efficacy of the proposed methods
is illustrated through numerical simulations on synthetic and real-
world graphs. Notably, the randomized greedy algorithm yields an
order-of-magnitude speedup over state-of-the-art greedy sampling
schemes, while incurring only a marginal MSE performance loss.

Index Terms— graph signal processing, sampling, weak sub-
modularity, semidefinite programming, randomized algorithms

1. INTRODUCTION

Consider a network represented by a graph G consisting of a node set
N of cardinality N and a weighted adjacency matrix A ∈ RN×N

whose (i, j) entry, Aij , denotes weight of the edge connecting node
i to node j. A graph signal x ∈ RN can be viewed as a vertex-
valued network process that can be represented by a vector of size N
supported onN , where its i th component denotes the signal value at
node i. Under the assumption that properties of the network process
relate to the underlying graph, the goal of graph signal processing
(GSP) is to generalize traditional signal processing tasks and develop
algorithms that fruitfully exploit this relational structure [1, 2].

A keystone generalization which has drawn considerable at-
tention in recent years pertains to sampling and reconstruction of
graph signals [3–10]. The task of finding an exact sampling set to
perform reconstruction with minimal information loss is known to
be NP-hard. Conditions for exact reconstruction of graph signals
from noiseless samples were put forth in [3–6]. Sampling of noise-
corrupted signals using randomized schemes including uniform and
leverage score sampling is studied in [11], for which optimal sam-
pling distributions and performance bounds are derived. In [7, 10],
reconstruction of graph signals and their power spectrum density is
studied and greedy schemes are developed. However, the perfor-
mance guarantees in [10, 11] are restricted to the case of stationary
graph signals, i.e., the covariance matrix in the nodal or spectral
domains has certain structure (e.g., diagonal; see also [12–14]).

Work in this paper was supported by the NSF award CCF-1750428.

In this paper, we study the problem of sampling and reconstruc-
tion of graph signals and propose two algorithms that solve it ap-
proximately. First, we develop a semidefinite programming (SDP)
relaxation that finds a near-optimal sampling set in polynomial time.
Then, we formulate the sampling task as that of maximizing a mono-
tone weak submodular function and propose an efficient randomized
greedy algorithm motivated by [15]. We analyze the performance
of the randomized greedy algorithm and in doing so, we show that
the MSE associated with the selected sampling set is on expectation
a constant factor away from that of the optimal set. Moreover, we
prove that the randomized greedy algorithm achieves the derived ap-
proximation bound with high probability for every sampling task. In
contrast to prior work, our results do not require stationarity of the
signal. Finally, in simulation studies we illustrate the superiority of
the proposed schemes over state-of-the-art randomized and greedy
algorithms [10, 11] in terms of running time, accuracy, or both. 1

Notation. Aij denotes the (i, j) entry of matrix A, aj is the j th row
of A, AS,r (AS,c) is a submatrix of A that contains rows (columns)
indexed by the set S, and λmax(A) and λmin(A) represent the max-
imum and minimum eigenvalues of A, respectively. IN ∈ RN×N

denotes the identity matrix and [N ] := {1, 2, . . . , N}.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let x be a zero-mean, random graph signal which is k-bandlimited
in a given basis V ∈ RN×N . This means that the signal’s so-
called graph Fourier transform (GFT) x̄ = V>x is k-sparse. There
are several choices for V in the literature with most aiming to de-
compose a graph signal into different modes of variation with re-
spect to the graph topology. For instance, V = [v1, · · · ,vN ] can
be defined via the Jordan decomposition of the adjacency matrix
[16, 17], through the eigenvectors of the Laplacian when G is undi-
rected [1], or it can be obtained as the result of an optimization pro-
cedure [18, 19]. We also assume that the signal in not necessarily
stationary with respect to G, and that x̄ is a zero-mean random vector
with (generally non-diagonal) covariance matrix E[x̄x̄>] = P. Re-
call that since x is bandlimited, x̄ is sparse with at most k nonzero
entries. Let K be the support set of x̄, where |K| = k. Then, one
can write x = Ux̄K , where U = VK,c.

Suppose that only a few (possibly noisy) entries of x can be
observed, corresponding to taking measurements from a subset of
nodes in N . The goal of sampling is to select the subset that en-
ables reconstruction of the original signal with the smallest possible
distortion. Formally, let y = x + n be the noise-corrupted signal,
where n ∈ RN is the zero-mean noise vector with covariance matrix
E[nn>] = σ2IN . Let S ⊆ N be a sampling subset of nodes and let

1MATLAB implementations of the proposed algorithms are available at
https://github.com/realabolfazl/GS-sampling.

4179978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



x̂ be the reconstructed graph signal based on the measurements (i.e.,
the entries of y) indexed by S. Since the signal is k-bandlimited, x̄
has at most k nonzero entries. Therefore, we assume that the least
mean square estimator of x̄ has at most k nonzero entries. This in
turn imposes the constraint |S| ≤ k. Now, since x = Ux̄K , the
samples yS and the non-zero frequency components of x are related
via the Bayesian linear model

yS = US,rx̄K + nS . (1)

Hence, in order to find x̂ it suffices to estimate x̄K based on yS . The
least mean square estimator of x̄K , denoted by ˆ̄xKlms , satisfies the
Bayesian counterparts of the normal equations in the Gauss-Markov
theorem (see e.g., [20, Ch. 10]). Accordingly, it is given by

ˆ̄xKlms = σ−2Σ̄SU>
S,ryS , (2)

where
Σ̄S = P−1 + σ−2U>

S,rUS,r

−1

(3)

is the error covariance matrix of ˆ̄xKlms . Therefore, x̂ = Uˆ̄xKlms

and its error covariance matrix can be obtained as ΣS = UΣ̄SU>.
The problem of sampling for near-optimal reconstruction can

now be formulated as the task of choosing S so as to minimize the
mean square error (MSE) of the estimator x̂. Since the MSE is de-
fined as the trace of the error covariance matrix, we obtain the fol-
lowing optimization problem,

min
S

Tr (ΣS) s.t. S ⊆ N , |S| ≤ k. (4)

Using trace properties and the fact that U>U is a Hermitian positive
semidefinite matrix, (4) simplifies to

min
S

Tr Σ̄S s.t. S ⊆ N , |S| ≤ k. (5)

The optimization problem (5) is NP-hard and evaluating all N
k

pos-
sibilities to find an exact solution makes it intractable even for rela-
tively small graphs. In the next section we propose two alternatives
to find near-optimal solutions in polynomial time.

3. NEW SCHEMES FOR SAMPLING GRAPH SIGNALS
Here we resort to two approximation methods to find a near-optimal
solution S of (5). Our proposed algorithms are based on semidef-
inite and weak submodular optimization techniques that have re-
cently shown superior performance in applications such as sensor
selection [21], graph sketching [9], wireless sensor networks [22],
Kalman filtering [23], and sparse signal recovery [24, 25].

3.1. Sampling via SDP relaxation

We first develop an SDP relaxation for problem (5). Our pro-
posed scheme is motivated by the framework of [21] developed in
the context of sensor scheduling. However, our focus is on sam-
pling and reconstruction of graph signals which entails a different
objective function, i.e., MSE. Let zi ∈ {0, 1} indicate whether
the ith node of N is included in the sampling set S and define
z = [z1, z2, . . . , zN ]>. Then, (3) can alternatively be written as

Σ̄z =

 
P−1 + σ−2

nX
i=1

ziuiu
>
i

!−1

. (6)

Therefore, by relaxing the binary constraint zi ∈ {0, 1} one can
obtain a convex relaxation of (5),

min
z

Tr Σ̄z s.t. 0 ≤ zi ≤ 1,

NX
i=1

zi ≤ k. (7)

Algorithm 1 SDP Relaxation for Graph Sampling

1: Input: P, U, k.
2: Output: Subset S ⊆ N with |S| = k.
3: Find z, the minimizer of the SDP relaxation problem in (10)
4: Set S to contain nodes corresponding to top k entries of z
5: return S.

In order to obtain an SDP in standard form, let C be a positive
semidefinite matrix such that C Σ̄z . Then, (7) is equivalent to

min
z,C

Tr (B) s.t. 0 ≤ zi ≤ 1,

nX
i=1

zi ≤ k, C− Σ̄z 0.

(8)
The last constraint in (8), i.e., C − Σ̄z 0, can be thought of as
being the Schur complement [26] of the block matrix

B =
C I
I Σ̄−1

z
. (9)

Note that the Schur complement of B is positive semidefinite if and
only if B 0 [26]. Therefore, replacing the last constraint in (8)
with the positive semidefiniteness constraint on B results in the fol-
lowing SDP relaxation:

min
z,B

Tr (B) s.t. 0 ≤ zi ≤ 1,

nX
i=1

zi ≤ k, B 0. (10)

An exact solution to (10) can be obtained by means of existing SDP
solvers; see, e.g., [27, 28]. However, the solution ẑ contains real-
valued entries and hence a rounding procedure is needed to obtain a
binary solution. Here, we propose to use the rounding procedure in-
troduced in [21] and accordingly select the nodes of N correspond-
ing to the k zi’s with largest values. The proposed SDP relaxation
sampling scheme is summarized as Algorithm 1.

3.2. Sampling via a randomized greedy scheme

The computational complexity of the SDP approach developed in
Section 3.1 might be challenging in applications dealing with large
graphs. Hence, we now propose an iterative randomized greedy al-
gorithm for the task of sampling and reconstruction of graph signals
by formulating (5) as the problem of maximizing a monotone weak
submodular set function. First, we define the notion of monotonicity,
submodularity, and curvature that will be useful in the subsequent
analysis.

A set function f : 2X → R is submodular if

f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T ) (11)

for all subsets S ⊆ T ⊂ X and j ∈ X\T . The term fj(S) =
f(S ∪ {j}) − f(S) is the marginal value of adding element j to
set S. Moreover, the function is monotone if f(S) ≤ f(T ) for all
S ⊆ T ⊆ X .

The concept of submodularity can be generalized by the notion
of curvature or submodularity ratio [24] that quantifies how close
a set function is to being submodular. Specifically, the maximum
element-wise curvature of a set function f is defined as

Cmax = max
1≤l<n

max
(S,T,i)∈Xl

fi(T )/fi(S), (12)

withXl = {(S, T, i)|S ⊂ T ⊂ X, i ∈ X\T, |T\S| = l, |X| = n}.
Note that a set function is submodular if and only if Cmax ≤ 1. Set
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functions with Cmax > 1 are called weak or approximate submodu-
lar functions [24].

Next, similar to [10], we formulate (5) as a set function maxi-
mization task. Let f(S) = Tr(P− Σ̄S). Then, (5) can equivalently
be written as

max
S

f(S) s.t. S ⊆ N , |S| ≤ k. (13)

In Proposition 1 below, by applying the matrix inversion lemma
[29] we establish that f(S) is monotone and weakly submodular.
Moreover, we derive an efficient recursion to find the marginal gain
of adding a new node to the sampling set S.

Proposition 1. f(S) = Tr(P− Σ̄S) is a weak submodular, mono-
tonically increasing set function, f(∅) = 0, and for all j ∈ N\S

f(S ∪ {j})− f(S) =
u>
j Σ̄2

Suj

σ2 + u>
j Σ̄Suj

, and (14)

Σ̄S∪{j} = Σ̄S −
Σ̄Suju

>
j Σ̄S

σ2 + u>
j Σ̄Suj

. (15)

Proposition 1 enables efficient construction of the sampling set
in an iterative fashion. To further reduce the computational cost, we
propose a randomized greedy algorithm that performs the task of
sampling set selection in the following way. Starting with S = ∅,
at iteration (i + 1) of the algorithm, a subset R of size s is sam-
pled uniformly at random and without replacement from N\S. The
marginal gain of each node in R is found using (14), and the one
corresponding to the highest marginal gain is added to S. Then, the
algorithm employs the recursive relation (15) to update Σ̄S for the
subsequent iteration. This procedure is repeated until some stopping
criteria, such as condition on the cardinality of S is met. Regarding
s, we follow the suggestion in [15] and set s = N

k
log 1 , where

e−k ≤ < 1 is a predetermined parameter that controls trade-
off between the computational cost and MSE of the reconstructed
signal; randomized greedy algorithm with smaller produces sam-
pling solutions with lower MSE while the one with larger requires
lower computational costs. Note that if = e−k, the randomized
greedy algorithm in each iteration considers all the available nodes
and hence matches the greedy scheme proposed in [10]. However,
as we illustrate in our simulation studies, the proposed randomized
greedy algorithm is significantly faster than the method in [10] for
larger while returning essentially the same sampling solution. The
randomized greedy algorithm is formalized as Algorithm 2.
Performance guarantees. Here we analyze performance of the ran-
domized greedy algorithm. First, Theorem 1 below states that if
f(S) is characterized by a bounded maximum element-wise curva-
ture, Algorithm 2 returns a sampling subset yielding an MSE that is
on average within a multiplicative factor of the MSE associated with
the optimal sampling set.

Theorem 1. Let Cmax be the maximum element-wise curvature of
f(S) = Tr(P − Σ̄S), the objective function in problem (13). Let
α = (1 − e−

1
c −

β

c
), where c = max{1, Cmax}, e−k ≤ < 1,

and β = 1 + max{0, s
2N
− 1

2(N−s)
}. Let Srg be the sampling set

returned by the randomized greedy algorithm and let O denote the
optimal solution of (5). Then,

E Tr(Σ̄Srg ) ≤ αTr(Σ̄O) + (1− α)Tr(P). (16)

The proof of Theorem 1 relies on the argument that if s =
N
k

log 1 , then with high probability the random subset R in each
iteration of Algorithm 2 contains at least one node from O.

Algorithm 2 Randomized Greedy Algorithm for Graph Sampling

1: Input: P, U, k, .
2: Output: Subset S ⊆ N with |S| = k.
3: Initialize S = ∅, Σ̄S = P.
4: while |S| < k

5: Choose R by sampling s = N
k

log (1/ ) indices uniformly at
random fromN\S

6: js = argmaxj∈R
u>
j Σ̄2

Suj

σ2+u>
j Σ̄Suj

7: Σ̄S∪{js} = Σ̄S −
Σ̄Suju

>
j Σ̄S

σ2+u>
j Σ̄Suj

8: Set S ← S ∪ {js}
9: end while

10: return S.

Next, we study the performance of the randomized greedy algo-
rithm using the tools of probably approximately correct (PAC) learn-
ing theory [30, 31]. The randomization of Algorithm 2 can be inter-
preted as approximating the marginal gains of the nodes selected by
the greedy scheme proposed in [10]. More specifically, for the ith

iteration it holds that fjrg (Srg) = ηifjg (Sg), where subscripts rg
and g refer to the sampling sets and nodes selected by the random-
ized greedy (Algorithm 2) and greedy algorithm in [10], respectively,
and 0 < ηi ≤ 1 for all i ∈ [k] are random variables. In view of this
argument and by employing the Bernstein inequality [32], we ob-
tain Theorem 2 which states that the randomized greedy algorithm
selects a near-optimal sampling set with high probability.

Theorem 2. Instate the notation and hypotheses of Theorem 1. As-
sume {ηi}ki=1 are independent such that E[ηi] ≥ µ, for all i ∈ [k].
Then, for all 0 < q < 1 and for some C > 0, with probability at
least 1− e−Ck it holds that

Tr(Σ̄Srg ) ≤ (1− e−
(1−q)µ

c )Tr(Σ̄O) + e−
(1−q)µ

c Tr(P). (17)

Indeed, in simulation studies (see Section 4) we empirically ver-
ify the results of Theorems 1 and 2 and illustrate that Algorithm 2
performs favorably compared to the competing schemes both on av-
erage and for each individual sampling task. Before moving on to
these numerical studies, in Theorem 3 we show that the maximum
element-wise curvature of f(S) = Tr(P − Σ̄S) is bounded, even
for non-stationary graph signals.

Theorem 3. Let Cmax be the maximum element-wise curvature of
f(S) = Tr(P− Σ̄S). Then, it holds that

Cmax ≤
λ2

max(P)

λ2
min(P)

1 +
λmax(P)

σ2

3

. (18)

An implication of Theorem 3 is a generalization of a result in
[10] for stationary signals. There, it has been shown that if x is
stationary and P = σ2

xIN for some σ2
x > 0, then the curvature of the

MSE objective is bounded. However, Theorem 3 holds even in the
scenarios where the signal is non-stationary and P is non-diagonal.

4. NUMERICAL SIMULATIONS
We study the recovery of simulated noisy signals supported on syn-
thetic and real-world graphs to assess performance of the proposed
sampling algorithms in terms of MSE and running time. To this
end, we first consider an undirected Erdős-Rényi random graph G
of size N = 100 and edge probability 0.2 [33]. Bandlimited graph
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Fig. 1: Erdős-Rényi graph. Comparison of different schemes in terms of (top)
MSE as a function of the size of the sampling set; and (bottom) histogram of
MSE values for 100 realizations and fixed sampling set size.

signals x = Ux̄K are generated by taking U as the first k = 30
eigenvectors of the graph adjacency matrix. The non-zero frequency
components x̄K are drawn from a zero-mean, multivariate Gaussian
distribution with covariance matrix P which is selected uniformly at
random from the set of positive semi-definite (PSD) matrices. Zero-
mean Gaussian noise n with covariance σ2 = 10−2IN is added to
x. Algorithms 1 and 2 are run to recover the signal for different sam-
pling set sizes. We compare the MSE performance of the proposed
schemes with the state-of-the-art greedy algorithm [10] and the ran-
dom sampling approaches in [11]. For the randomized greedy algo-
rithm we use = 0.1 and = 0.01. Fig. 1 (top) depicts the MSE
versus k (sample size), where the results are obtained by averaging
over 100 Monte-Carlo simulations. As the figure indicates, Algo-
rithms 1 and 2 outperform the random sampling schemes of [11]
and perform nearly as well as the greedy sampling algorithm [10].
While not shown here for the sake of clarity of the presentation, sim-
ilar patterns were also observed for other workhorse random graphs,
e.g., preferential attachment and Barbási–Albert models [33].

Next, we study the performance of the proposed schemes for
each individual sampling tasks (each Monte-Carlo realizations), for
the setting where N = 10 and k = 4. Bandlimited graph signals
are generated as before except that this time we take U as the first
4 eigenvectors of the adjacency matrix. Fig. 1 (bottom) depicts su-
perimposed MSE histograms of Algorithms 1 and 2 as well as the
greedy sampling scheme [10] for 100 realizations per method and
fixed |S| = 4. As the figure illustrates, the proposed SDP relaxation
and randomized greedy schemes perform well and are comparable
with the greedy approach.

Finally, we test Algorithm 2 on the Minnesota road network2

with N = 2642 nodes in order to showcase scalability of the pro-

2https://sparse.tamu.edu/Gleich/minnesota

500 1000 1500 2000 2500

10
0

10
1

10
2

10
3

10
4

10
5

10
6

500 1000 1500 2000 2500

10
-1

10
0

10
1

10
2

Fig. 2: Minnesota road network. (top) MSE and (bottom) running time com-
parison of different sampling schemes.

posed graph sampling method. To that end, Bandlimited graph sig-
nals are generated by taking the first k = 600 eigenvectors of the
graph Laplacian matrix, where the non-zero frequency components
are drawn from a zero-mean, multivariate Gaussian distribution with
randomly chosen PSD covariance matrix P. The signals are cor-
rupted with additive white Gaussian noise with σ2 = 10−2IN . As
expected, Figs. 2 (top) and (bottom) depict trends of decreasing MSE
and increasing running time versus |S|, respectively. The results are
averaged over 1000 Monte-Carlo simulations run on a commercial
laptop with an Intel Core i7 processor at 3.1 GHz. Remarkably,
the proposed randomized greedy procedure achieves an order-of-
magnitude speedup over the state-of-the-art algorithm in [10] while
showing only a marginal degradation in the MSE performance.

5. CONCLUSION
We considered the problem of sampling a bandlimited graph signal
in the presence of noise, where the goal is to select a subset of graph
nodes of prescribed cardinality to minimize the mean square signal
reconstruction error. First, we developed an SDP relaxation method
to find an approximate solution to the NP-hard sample-set selection
task. Then the problem was reformulated as the maximization of
a monotone weak submodular function, and a novel randomized-
greedy algorithm was proposed to find a near-optimal sample sub-
set. In addition, we analyzed the performance of the randomized
greedy algorithm, and showed that the resulting MSE is a constant
factor away from the optimal MSE. Unlike prior work, our guar-
antees do not require stationarity of the graph signal. Simulations
studies showed that the proposed sampling algorithms compare fa-
vorably to competing alternatives in terms of accuracy and runtime.
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