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Abstract—This paper deals with the problem of blind identi-
fication of a graph filter and its sparse input signal, thus broad-
ening the scope of classical blind deconvolution of temporal and
spatial signals to irregular graph domains. While the observations
are bilinear functions of the unknowns, a mild requirement on
invertibility of the filter enables an efficient convex formulation,
without relying on matrix lifting that can hinder applicability
to large graphs. On top of scaling, it is argued that (non-cyclic)
permutation ambiguities may arise with some particular graphs.
Deterministic sufficient conditions under which the proposed
convex relaxation can exactly recover the unknowns are stated,
along with those guaranteeing identifiability under the Bernoulli-
Gaussian model for the inputs. Numerical tests with synthetic
and real-world networks illustrate the merits of the proposed
algorithm, as well as the benefits of leveraging multiple signals
to aid the (blind) localization of sources of diffusion.

Index Terms—Graph signal processing, network diffusion,
bilinear equations, blind deconvolution, convex optimization.

I. INTRODUCTION

Network processes such as neural activities at different

regions of the brain [9], [10], vehicle trajectories over road

networks [4], or spatial temperature profiles measured by

a wireless sensor network [19], can be represented as sig-

nals supported on the nodes of a graph. Under the natural

assumption that the signal properties are influenced by the

graph topology (e.g., in a network diffusion or percolation

process), the goal of graph signal processing (GSP) is to

develop algorithms that exploit this relational structure. Ac-

cordingly, generalizations of fundamental signal processing

tasks have been widely explored in recent work; see [14]

for a comprehensive tutorial treatment. Notably graph filters –

which generalize classical time-invariant systems – were con-

ceived as information-processing operators acting on graph-

valued signals [18]. Mathematically, graph filters are linear

transformations that can be expressed as polynomials of the

so-termed graph-shift operator (Section II). The graph shift

offers an alegbraic representation of network structure and

can be viewed as a local diffusion operator. For the directed

cycle graph representing e.g., periodic temporal signals, it

boils down to the classical time-shift operator [18]. Given a

shift, the polynomial coefficients fully determine the graph

filter and are referred to as filter coefficients.

Problem outline and envisioned applications. In this paper,

we revisit the blind identification of graph filters with sparse

inputs, with emphasis on modeling diffusion processes and
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localization of the sources of diffusion [22]. Specifically, given

P observations of graph signals {yi}Pi=1 that we model as

outputs of a diffusion filter (i.e., a polynomial in a known

graph-shift operator), we seek to jointly identify the filter

coefficients h and the input signals {xi}Pi=1 that gave rise to

the network observations. This inverse problem broadens the

scope of classical blind deconvolution of temporal or spatial

signals to graphs [1], [11]. Since the resulting bilinear inverse

problem is ill-posed, we assume that the inputs are sparse

– a well-motivated setting when few seeding nodes inject a

signal that is diffused throughout a network [22]. Accord-

ingly, envisioned application domains include environmental

monitoring (where are the heat or seismic sources?), opinion

formation in social networks (who started the rumor?), neural

signal processing (which brain regions were activated?), and

epidemiology (who is patient zero for the disease outbreak?).

Related work and contributions. Different from most exist-

ing works dealing with source localization on graphs, e.g.,

[16], [20], [25], like [15] the advocated GSP approach is

applicable even when a single snapshot of the diffused signal

is available. Often the models of diffusion are probabilistic in

nature, and resulting maximum-likelihood source estimators

can only be optimal for particular (e.g., tree) graphs [16],

or rendered scalable under restrictive dependency assump-

tions [5]. Relative to [9], [15], the proposed framework can

accommodate signals defined on general undirected graphs

and relies on a convex estimator of the sparse sources of

diffusion. Furthermore, the setup where multiple output signals

are observed (each one corresponding to a different sparse

input), has not been thoroughly explored in convex-relaxation

approaches to blind deconvolution of (non-graph) signals,

e.g., [1], [13]; see [23] for a recent and inspiring alternative

that we leverage here.

A noteworthy approach was put forth in [22], which casts

the (bilinear) blind graph-filter identification task as a linear

inverse problem in the “lifted” rank-one, row-sparse matrix

xhT . While the rank and sparsity minimization algorithms

in [17], [22] can successfully recover sparse inputs along

with low-order graph filters, reliance on matrix lifting can

hinder applicability to large graphs. Beyond this computational

consideration, the overarching assumption of [22] is that the

inputs {xi}Pi=1 share a common support. Here instead we show

how a mild requirement on invertibility of the graph filter

facilitates an efficient convex formulation for the multi-signal

case with arbitrary supports (Section III); see also [23] for a

time-domain precursor. In Section IV we take a closer look

at inherent scaling and (non-cyclic) permutation ambiguities
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arising with some particular graphs. We also briefly comment

on identifiability under the Bernoulli-Gaussian model for the

inputs [12], and state deterministic sufficient conditions under

which the proposed convex relaxation can exactly recover

the unknowns. Numerical tests with synthetic graphs and

a structural brain network corroborate the effectiveness of

the proposed approach in recovering the sparse input signals

(Section V). Concluding remarks are given in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a weighted and undirected network graph G =
(V,A), where V is the set of vertices with cardinality |V| =
N , and A ∈ R

N×N is the symmetric graph adjacency matrix

whose entry Aij denotes the edge weight between nodes i and

j. As a more general algebraic descriptor of network structure,

one can define a graph-shift operator S ∈ R
N×N as any

matrix having the same sparsity pattern as G [18]. Accordingly,

S can be viewed as a local diffusion (or averaging) operator.

Common choices are to set it to either A (and its normalized

counterparts) or variations of adjacency and Laplacian matri-

ces [6], [14]. Since S is real and symmetric, it is diagonalizable

so that S = VΛVT , with Λ = diag(λ1, . . . , λN ). Lastly, a

graph signal x : V 7→ R
N is an N -dimensional vector, where

entry xi represents the signal value at node i ∈ V .

A. Graph-filter models of network diffusion processes

Let y be a graph signal supported on G, which is generated

from an input graph signal x via linear network dynamics of

the form

y = α0

∏∞
l=1(I− αlS)x =

∑∞
l=0 βlS

lx. (1)

While S encodes only one-hop interactions, each successive

application of the shift in (1) diffuses x over G. Indeed, any

process that can be understood as the linear propagation of a

seed signal through a static graph can be written in the form

in (1), and subsumes heat diffusion, consensus and the classic

DeGroot model of opinion dynamics as special cases [3].

The diffusion expressions in (1) are polynomials on S

of possibly infinite degree, yet the Cayley-Hamilton theo-

rem asserts they are equivalent to polynomials of degree

smaller than N . Upon defining the vector of coefficients

h := [h0, . . . , hL−1]
T and the shift-invariant graph filter

H := h0IN+h1S+h2S
2+. . .+hL−1S

L−1 =
L−1∑

l=0

hlS
l, (2)

the signal model in (1) becomes y =
(∑L−1

l=0 hlS
l
)
x := Hx,

for some particular h and L ≤ N . Due to the local structure

of S, graph filters represent linear transformations that can

be implemented in a distributed fashion [21], e.g., via L − 1
successive exchanges of information among neighbors.

Leveraging the spectral decomposition of S, graph filters

and signals can be represented in the frequency domain.

Specifically, let us use the eigenvalues of S to define the

N × L Vandermonde matrix ΨL, where Ψij := λj−1
i . The

frequency representations of a signal x and filter h are defined

as x̃ := VTx and h̃ := ΨLh, respectively. The latter follows

since the output y=Hx in the frequency domain is given by

ỹ = diag
(
ΨLh

)
VTx = diag

(
h̃
)
x̃ = h̃ ◦ x̃. (3)

This identity can be seen as a counterpart of the convolution

theorem for temporal signals, where ỹ is the elementwise

product (◦) of x̃ and the filter’s frequency response h̃ := ΨLh.

B. Problem formulation

For given shift operator S and filter order L, suppose

we observe P output signals collected in a matrix Y =
[y1, . . . ,yP ] ∈ R

N×P such that Y = HX, where X =
[x1, . . . ,xP ] ∈ R

N×P is sparse having at most S � N
non-zero entries per column. The goal is to perform blind

identification of the graph filter (and its input signals), which

amounts to estimating sparse X and the filter coefficients

h up to scaling and (possibly) permutation ambiguities; see

Section IV. Sparsity is well motivated when the signals in Y

represent diffused versions of a few localized sources in G,

here indexed by supp(X) := {(i, j) | Xij 6= 0}. Moreover,

the non-sparse formulation is ill-posed, since the number of

unknowns NP + L in {X,h} exceeds the NP observations

in Y.

All in all, using (3) the diffused source localization task can

be stated as a feasibility problem of the form

find {X,h}s. to Y = Vdiag
(
ΨLh

)
VTX, ‖X‖0 ≤ PS, (4)

where the `0-(pseudo) norm ‖X‖0 := |supp(X)| counts the

non-zero entries in X. In words, the goal is to find the solution

to a system of bilinear equations subject to a sparsity constraint

in X; a hard problem due to the non-convex `0-norm as well as

the bilinear constraints. To deal with the latter, building on [23]

we will henceforth assume that the filter H is invertible.

III. CONVEX RELAXATION FOR INVERTIBLE FILTERS

Here we show how to efficiently tackle the blind graph

filter identification problem, through a convex relaxation of

(4) when the diffusion filter is invertible.

To that end, note from (3) that graph filter H is invertible

if and only if h̃i =
∑L−1

l=0 hlλ
l
i 6= 0, for all i = 1, . . . , N . In

words, the frequency response of the filter should not vanish

at the graph frequencies {λi}. In such case one can show

that the inverse operator G := H−1 is also a graph filter on

G, which can be uniquely represented as a polynomial in the

shift S of degree at most N − 1 [18, Theorem 4]. To be more

specific, let g ∈ R
N be the vector of inverse-filter coefficients,

i.e., G =
∑N−1

l=0 glS
l. Then one can equivalently rewrite the

generative model Y = HX for the observations as

X = GY = Vdiag(g̃)VTY, (5)

where g̃ := ΨNg ∈ R
N is the inverse filter’s frequency

response and ΨN ∈ R
N×N is Vandermonde. Naturally,

G = H−1 implies the condition g̃ ◦ h̃ = 1N on the frequency

responses, where 1N denotes the N × 1 vector of all ones.

Leveraging (5), one can recast (4) as a linear inverse problem

min
{X,g̃}

‖X‖0, s. to X = Vdiag(g̃)VTY, X 6= 0. (6)

This approach is markedly different from the matrix lifting

technique used in [22] to handle the bilinear equations in (4).

The `0 norm in (6) makes the problem NP-hard to optimize.

Over the last decade or so, convex-relaxation approaches to

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 122



Algorithm 1 Iteratively-reweighted `1 minimization for (7)

1: Input: Matrix YTV �V, δ > 0 and ε > 0.

2: Initialize t = 0, w(0) = 1NP and X(0) = 0.

3: repeat

4: Solve

g̃(t+1) =argmin
g̃

∥∥∥w(t) ◦
[
(YTV �V)g̃

]∥∥∥
1

s. to 1T
N g̃ = 1.

5: Form X(t+1) = (YTV �V)g̃(t+1).

6: Update w
(t+1)
i = 1

[vec(X(t+1))]i+δ
, i = 1, 2, ..., NP .

7: t← t+ 1.

8: until ‖X(t+1) −X(t)‖1/‖X(t)‖1 ≤ ε
9: return ˆ̃g := g̃(t+1) and X̂ := X(t+1)

tackle sparsity minimization problems have enjoyed remark-

able success, since they often entail no loss of optimality.

Accordingly, we instead: (i) seek to minimize the `1-norm

convex surrogate of the cardinality function, that is ‖X‖1 =∑
i,j |Xij |; and (ii) express the filter in the graph spectral

domain as in (5) to obtain the cost

‖X‖1 = ‖GY‖1 = ‖Vdiag(g̃)VTY‖1 = ‖(YTV �V)g̃‖1,

where � denotes the Khatri-Rao (i.e., columnwise Kronecker)

product. This suggests solving the convex `1-synthesis prob-

lem (in this case a linear program), e.g., [24], namely

̂̃g = argmin
g̃∈RN

‖(YTV �V)g̃‖1, s. to 1T
N g̃ = 1. (7)

While the linear constraint in (7) avoids ̂̃g = 0, it also serves

to fix the scale of the solution.

As a result, under the pragmatic assumption that the diffu-

sion filter is invertible, one can readily use e.g., an off-the-shelf

interior-point method or a specialized sparsity-minimization

algorithm to solve (7) efficiently. Different from the solvers

in [17], [22], the aforementioned algorithmic alternatives are

free of expensive singular-value decompositions per iteration.

We have found that overall performance can be improved

via the iteratively-reweighted `1-norm minimization procedure

tabulated under Algorithm 1; see also [2] for a justification of

such refinement. In any case, notice that once the frequency

response ̂̃g of the inverse filter is recovered, one can readily

reconstruct the sources via X̂ = (YTV�V)g̃ as well as the

filter H, if desired.

In the next section we will take a closer look at the inherent

ambiguities associated with the bilinear model Y = HX,

some of which are unique to the network setting dealt with

here. These are of course important to delineate the scope of

identifiability (i.e., uniqueness) results. We will complete our

discussion with deterministic sufficient conditions under which

the convex relaxation (7) is tight.

IV. IDENTIFIABILITY AND EXACT RECOVERY

To establish further connections with blind deconvolution

of periodic discrete-time signals, recall these can be viewed

as graph signals supported on the directed cycle graph (whose

Fig. 1. Toy undirected graph (left) used to illustrate the symmetric permutation
ambiguity between nodes 2 and 4. The fourth eigenvector v4 of S = A

(center) has the problematic form. Then if {X0, h̃0} satisfies the bilinear

equations Y = Vdiag(h̃)VTX, so does {PX0, diag(p)h̃0} for the shown
permutation matrix P (right) and p = [1, 1, 1,−1, 1, 1, 1]T .

circulant adjacency matrix is diagonalized by the DFT ba-

sis) [18]. In this special case, the blind identification task is

known to suffer from unavoidable scaling and circulant-shift

ambiguities; see e.g., [1], [23]. Here we examine more general

symmetric permutation ambiguities arising with unweighted

graphs, and briefly outline a relevant identifiability result as

well as preliminary exact recovery conditions for (7).

A. Permutation ambiguities for some unweighted graphs

In solving the bilinear inverse problem formulated in Sec-

tion II, for some particular graphs in addition to scaling we

may also encounter (non-cyclic shift) permutation ambiguities.

We can resolve the scaling ambiguity by e.g., a fortiori setting

‖g̃0‖1 = 1 as in the experiments of Section V, where g̃0 is the

ground-truth frequency response of the inverse filter. Inspired

by the identifiability studies for sparsity-constrained bilinear

problems [12], here we examine said permutation ambiguities

for unweighted graphs with shift S = VΛVT .

Let {X0, h̃0} collect the ground-truth sparse input signals

and the filter’s frequency response, respectively. Let u(i,j) ∈
R

N be a unit-norm vector with zero entries except for u
(i,j)
i =

−u(i,j)
j = 1/

√
2. As we show next, a permutation ambiguity

arises if, say, the kth eigenvector of S (i.e., the kth column of

V) has the form u(i,j). Indeed, in that case one could introduce

a binary signed vector p ∈ {−1, 1}N with a single negative

entry pk = −1, to construct another solution of the form

X1 := PX0, h̃1 := diag(p)h̃0, (8)

where P = IN − 2u(i,j)(u(i,j))T = Vdiag(p)VT is a

symmetric permutation matrix that interchanges the signal

values at nodes i (xi) and j (xj) when applied to the graph

signal x. It is immediate that the pair in (8) satisfies the

generative model Y = HX = Vdiag(h̃)VTX. So, if u(i,j)

is an eigenvector of S then we can not distinguish the values

at nodes i and j and the problem remains non-identifiable.

To exemplify this situation, consider the toy graph illustrated

in Fig 1-(left). One can consider the adjacency matrix as the

shift (S = A) and denote the corresponding eigenvectors as

V = [v1, · · · ,v7]. Fig 1-(center) shows that v4 = u(2,4). Then

it follows that for the matrix P in Fig 1-(right) and the vector

p = [1, 1, 1,−1, 1, 1, 1]T , one can construct another solution

{X1, h̃1} 6= {X0, h̃0} using (8). In other words, nodes 2 and

4 are indistinguishable.

While it is challenging to obtain a formal characterization

of problematic graphs, in practice we have encountered issues

with dense networks as well as with some very sparse graphs.
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For (continuous-valued) weighted graphs such ambiguities

effectively disappear. Before moving on to issues of exact

recovery, a remark on identifiability of (4) for a simple but

widely adopted (random) sparsity model is in order.

Remark 1 (Identifiability for Bernoulli-Gaussian model)

Because of its analytical tractability, the Bernoulli-Gaussian

model is widely adopted to describe and generate random

sparse matrices such as X ∈ R
N×P (we also use it for

the simulations in Section V). Sparse matrices adhering to

the model are X = Ω ◦ R, where Ω ∈ R
N×P is an i.i.d.

Bernoulli matrix with parameter θ (i.e., P[Ωij = 1] = θ),

and R ∈ R
N×P is an independent random matrix with

i.i.d. symmetric random variables drawn from a standard

Gaussian distribution. Under the Bernoulli-Gaussian model,

[12, Proposition 40] asserts that problem (6) is identifiable

(up to scaling and symmetric permutation ambiguities) with

probability at least 1 − exp(−cθP ), for 1
N

< θ < 1
4 and

P > cN log(N), where c > 0 is a sufficiently large constant.

B. Exact recovery conditions

Suppose that (6) is identifiable and let {X0, g̃0} be the

solution. The following proposition (that relies heavily on

[24, Theorem 1]) offers sufficient conditions under which the

convex relaxation (7) succeeds in exactly recovering {X0, g̃0}.

Proposition 1 Let I := supp(vec(X0)) index the non-zero

entries of vectorized X0, and let Ic be the complement of I.

Moreover, define Z := YTV �V ∈ R
NP×N and let ZS be

the submatrix of Z with rows indexed by S ⊂ {1, 2, ..., NP}.
Then, the solution to (7) is unique and equal to g̃0 if the two

following conditions are satisfied:

C1) rank(ZIc) = N − 1; and

C2) There exists a vector f ∈ R
NP such that ZT f = γ1N for

some γ 6= 0, such that fI = sign(ZI g̃0) and ‖fIc‖∞ < 1.

Proof: As per [24, Theorem 1], g̃0 is the unique solution of

(7) if ker(ZIc) ∩ ker(1N ) = {0}. But since g̃0 ∈ ker(ZIc)
and g̃0 6∈ ker(1N ) because of the constraint in (7), then C1)

ensures said intersection is {0}. Optimality condition C2)

essentially requires 1N to belong to the set of subgradients

of ‖Zg̃‖1 at g̃0; see [24, Theorem 1] for further details. �

Naturally, a more insightful exact recovery and sample

complexity result along the lines of the one in Remark 1

would be most valuable [i.e., when are C1)-C2) satisfied for

the Bernoulli-Gaussian model?], but left as future work.

V. NUMERICAL RESULTS

We assess the performance of our proposed approach by

testing the iteratively-reweighted `1-norm minimization pro-

cedure in Algorithm 1. The per-iteration sparse recovery

problems are solved using CVX [7].

Simulation setup. In all cases we consider undirected graphs

with graph-shift operator chosen as the normalized adjacency

matrix S = D− 1
2AD− 1

2 , where D := diag(A1N ) is a

diagonal matrix of node degrees. The ground-truth sparse input

matrix X0 is drawn from a Bernoulli-Gaussian model as in

Remark 1, for varying parameters N , P , and sparsity level

(i.e., number of nonzero entries) S. Filter coefficients h0 are

generated according to h0 = (e1 + αb)/‖e1 + αb‖1, where

e1 = [1, 0, · · · , 0]T ∈ R
L is the first canonical basis vector and

entries of b ∈ R
L are drawn independently from a standard

Gaussian distribution. Such a model for h0 is inspired by

[23], and we later corroborate that the recovery performance

improves as α decreases. Also note that h0 is normalized to

unit `1-norm to fix the scale of the problem. Finally, given

X0 and H0 = Vdiag(ΨLh0)V
T , the N × P matrix of

observations is generated as Y = H0X0.

The relative recovery error eX = ‖X̂ − X0‖/‖X0‖ is

adopted as figure of merit to evaluate algorithmic performance.

We estimate the rate of successful recovery for synthetic and

real-world graphs under different parameters by defining a

successful recovery as one with eX < 0.01.

Random graphs. Consider Erdős-Rényi random graphs with

N = 50 nodes, where edges are formed independently

with probability p = 0.3. The rate of successful recovery

is estimated for realizations of random graphs which are

connected and do not give rise to permutation ambiguities (cf.

Section IV-A). Figures 2(a) and 2(b) depict the recovery rates

as a function of P and S for α = 0.1 and 0.3, respectively,

averaged over 100 realizations for (invertible) graph filters of

order L = 5. As expected, in both cases recovery is more

challenging for larger S and smaller P ; see the dark-gray area

of low-success probability around the top-left corner. More-

over, decreasing α makes successful recovery more likely.

For instance, for α = 0.1 [Fig. 2(a)] we can successfully

recover dense input signals with e.g., S ≈ N/2 = 25 and

only P = 10 observations. For (effectively) lower-order filters

resulting in more localized diffusion dynamics, one obtains

favorable recovery performance.

We also compare the proposed approach against its less-

scalable, matrix lifting-based precursor in [22]. Figures 2(c)

and 2(d) respectively show the recovery rates for both methods

as a function of sparsity S and filter order L, for N = 50,

p = 0.3, P = 10, and α = 0.5 averaged over 20 realiza-

tions. Apparently, Algorithm 1 [Fig. 2(c)] can be successful

over a larger range of values of L. Moreover, it uniformly

outperforms the algorithm in [22, Problem (9)]; see Fig. 2(d).

Brain graph. We also consider a structural brain graph with

N = 66 nodes or neural regions of interest (ROIs), and

edge weights given by the density of anatomical connections

between regions [8]. The level of activity of each ROI can be

represented by a graph signal x, thus successive applications

of S model a linear evolution of the brain activity pattern.

Supposing we observe a linear combination (filter) of the

evolving states of an originally sparse brain signal, then blind

identification amounts to jointly estimating which regions

were originally active, the activity in these regions and the

coefficients of the linear combination.

We repeat the recovery-rate analysis performed for Erdős-

Rényi graphs averaged over 20 realizations, and report the

results in Figs. 2(e)–(h). Figures 2(e) and 2(f) showcase

that our algorithm successfully identifies the initial excitation

regions as well as the diffusion coefficients over a broad

region in parameter space. By comparing Figs. 2(g) and 2(h),

it is apparent that also in this setting the proposed approach
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Fig. 2. Rate of recovery of X as a function of S (number non-zero entries in X) and P (number of observations) in N = 50-node Erdős-Rényi graphs with
p = 0.3 (edge existence probability) for (a) α = 0.1 and (b) α = 0.3, using Algorithm 1. Plots (e) and (f) are counterparts of (a) and (b), respectively, for
the structural brain network in [8]. Recovery rate in Erdős-Rényi graphs (N = 50, p = 0.3) as a function of S and L (filter order) using (c) Algorithm 1
and (d) the matrix-lifting approach of [22]. Plots (g) and (h) are counterparts of (c) and (d), respectively, for the aforementioned structural brain network.

outperforms the state-of-the-art method in [22], corroborating

the effectiveness of Algorithm 1.

VI. CONCLUSION

We studied the problem of blind graph filter identification,

which extends blind deconvolution of time (or spatial) domain

signals to graphs. By introducing a mild assumption on

invertibility of the graph filter, we obtained a computationally

simpler convex relaxation for (diffused) source localization in

the multi-signal case. Ongoing work includes deriving suitable

graph-dependent conditions under which exact (and stable)

recovery can be guaranteed, even when only a fraction of

nodes is observed. This is a challenging problem, since the

favorable (circulant) structure of time-domain filters is no

longer present in the network-centric setting dealt with here.
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