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ABSTRACT

We study the problem of sampling and reconstruction of bandlim-
ited graph signals where the objective is to select a node subset of
prescribed cardinality that ensures interpolation of the original signal
with the lowest reconstruction error. We propose an efficient iterative
selection sampling approach and show that in the noiseless case the
original signal is exactly recovered from the set of selected nodes. In
the case of noisy measurements, a bound on the reconstruction error
of the proposed algorithm is established. We further address the sup-
port identification of the bandlimited signal with unknown support
and show that under a pragmatic sufficient condition, the proposed
framework requires minimal number of samples to perfectly iden-
tify the support. The efficacy of the proposed methods is illustrated
through numerical simulations on synthetic and real-world graphs.

Index Terms— graph signal processing, sampling, reconstruc-
tion, iterative algorithms.

1. INTRODUCTION

Network data naturally supported on the vertices of a graph are be-
coming increasingly ubiquitous, with examples ranging from mea-
surements of neural activities at different regions of the brain [1],
to vehicle trajectories over road networks [2]. Under the assump-
tion that properties of the network process relate to the underlying
graph, the goal of graph signal processing (GSP) is to broaden the
scope of traditional signal processing tasks and develop algorithms
that fruitfully exploit this relational structure [3,4].

A cornerstone generalization of traditional signal processing ap-
proaches which has recently drawn considerable attention pertains
to sampling and reconstruction of graph signals [5—13]. The task of
finding an exact sampling set to perform reconstruction with mini-
mal information loss is known to be NP-hard and conditions for ex-
act reconstruction of graph signals from noiseless samples were put
forth in [5-7, 13]. Existing approaches for sampling and reconstruc-
tion of graph signals can typically be categorized to two main groups
of selection sampling [13] and aggregation sampling [9], where the
focus of this paper is on the former.

Sampling of noise-corrupted signals using randomized schemes
including uniform and leverage score sampling is studied in [13,14],
for which optimal selection sampling distributions and performance
bounds are derived. Reference [15] borrows the variable density
sampling strategy from compressed sensing to derive a random se-
lection sampling scheme with optimal distribution. State-of-the-art
random selection sampling schemes typically require sampling more
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than k nodes of a k-band-limited graph signal to achieve near per-
fect recovery and their performance deteriorates for reconstruction
of graph signals with relatively large bandwidth.

A main challenge in sampling and reconstruction is the problem
of identifying the support of bandlimited graph signals [7,9,16-18].
In [7, 18], support identification of smooth graph signals is studied.
However, Approaches in [7, 18] rely solely on a user-defined sam-
pling strategy and the graph Laplacian, and disregard the availability
of observations of the graph signal. A similar scheme is developed
in [9] for aggregation sampling where under established assumptions
on topology of the graph, conditions for exact support identification
from noiseless measurements are put forth. An alternating mini-
mization approach is proposed in [16] that jointly recovers the un-
known support of the signal and designs a sampling strategy in an it-
erative fashion. However, the convergence of the alternating scheme
in [16] is not guaranteed and the conditions for exact support identi-
fications are unknown [16].

In this work, we consider the task of selection sampling and
reconstruction of bandlimited graph signals with unknown support.
Following ideas from compressed sensing, we propose a novel
and efficient iterative selection sampling approach that exploits the
low-cost selection criterion of the orthogonal matching pursuit al-
gorithm [19] to recursively select a subset of nodes of the graph.
We theoretically demonstrate that in the noiseless case the original
k-bandlimited signal is exactly recovered from the set of selected
nodes with cardinality k. When the measurements are noisy, we es-
tablish a worst-case performance bound on the reconstruction error
of the proposed algorithm. We further extend our results to the case
of bandlimited signals with unknown supports, and demonstrate that
under a pragmatic SNR condition, the proposed framework still re-
quires k samples to ensure exact recovery of signals with unknown
supports from historical samples of the graph signal. Simulation
studies show the proposed sampling algorithm compares favorably
to competing random selection sampling alternatives.'

2. PRELIMINARIES

Consider a network represented by a graph G consisting of a node set
N of cardinality N and a weighted adjacency matrix A € RV <
whose (i, j) entry, A,;, denotes weight of the edge connecting node
itonode j. A graph signal x € RY is a vertex-valued network pro-
cess that can be represented by a vector of size N supported on N,
where its i™ component denotes the signal value at node i. Let x be
a graph signal which is k-bandlimited in a given basis V. € RV X,
This means that the signal’s so-called graph Fourier transform (GFT)
% = V™ !x is k-sparse. There are several choices for V in the lit-

1Proofs of the theoretical results in this paper are omitted for brevity and
stated in the extended manuscript [20].
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erature with most aiming to decompose a graph signal into different
modes of variation with respect to the graph topology. For instance,
V = [vy1,--+,vn] can be defined via the Jordan decomposition of
the adjacency matrix [21,22], through the eigenvectors of the Lapla-
cian when G is undirected [3], or it can be obtained as the result of
an optimization procedure [23,24]. In this paper, we assume the ad-
jacency matrix A = VAV ! is normal which in turn implies V is
unitary and V"1 = VT,

Recall that since x is bandlimited, X is sparse with at most k
nonzero entries. Let I be the support set of X, where || = k.
Then, one can write x = UXx, where U = Vi . and Vi ¢ (xx) is
a submatrix (subvector) of V (x) that contains columns (elements)
indexed by the set K. Also, notation Vi, will represent the subma-
trix that contains rows indexed by K. In the sequel, we first assume
that the support set C is known. In section 4, we discuss how to
tackle sampling scenarios where K is unknown.

3. PROPOSED FRAMEWORK

In this section, we consider sampling of bandlimited signals with
known support. Specifically, we assume that a graph signal x is
sparse given a basis V. Let A = VAV be the normal decom-
position of A, the adjacency matrix of the undirected graph G. we
first consider the noise-free scenario and then extend our results to
the case of sampling and reconstruction from noisy measurements.

3.1. Sampling bandlimited graph signals

In selection sampling (see, e.g. [13]), sampling a graph signal
amounts to finding a sampling matrix C € {0,1}**¥ such that
%X = Cx, where X is the sampled graph signal. Since x is bandlim-
ited with support /C, and x = UX, it holds that x = CUXx. The
original signal can then be reconstructed according to

% = Uzx = U(CU) 'x. (1)
According to (1), a necessary and sufficient condition for perfect
reconstruction, i.e. X = x is invertibility of matrix CU. However,
as argued in [5, 9] (see, e.g., Section III-A in [9]), current selection
sampling approaches cannot construct a sampling matrix to ensure
CU is invertible for an arbitrary graph, and invertibility of CU is
checked by inspection which requires intensive computational costs
for large graphs. To overcome this issue, motivated by the well-
known OMP algorithm in compressed sensing [19], we propose a
simple iterative scheme with complexity O(Nk?) that guarantees
perfect recovery of x from the sampled signal x.

The proposed approach (see Algorithm 1) works as follows.
First, the algorithm chooses an arbitrary node of the graph with
index ¢ for some £ € [N] as a residual node. Then, in i" iteration,
the algorithm identifies a node with index js to be included in the
sampling set S according to

\rz’T—luJ‘F

[la;13

Js = arg max
JEN\S

@

I

where u; is the j™ row of U, r; = P2 uy is a residual vector ini-
tialized at ro = uy, P3In — U:gr,,«(U:'.;—’T)Jr is the projection op-
erator onto the orthogonal complement of the subspace spanned by
the rows of Ugs,.., and U;T = (U§,Us,) ! U, denotes the
Moore-Penrose pseudo-inverse of Us ;- . This procedure is repeated
for k iterations to construct S. Theorem 1 demonstrates that Al-
gorithm 1 returns a sampling set that ensure perfect recovery of the
graph signal x under noise-free scenario.
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Algorithm 1 Iterative Selection Sampling

1: Input: U, k, number of samples m > k.
2: Output: Subset S C N with S| = m.
3: Initialize S = ), ro = u for some £ € [N],i = 0.
4: while |S| < k
5: 11+ 1
6: s = argmax; Ied_1uy1”
s FEN\S w13

7. SetS + SU{is}
8: ri = Péuz
9: end while

10: return S.

Theorem 1. Let S be the sampling set constructed by Algorithm 1
and let C be the corresponding sampling matrix such that |S| = k.
Then, the matrix CU is invertible.

Theorem 1 states that as long as the adjacency matrix A is
normal and the basis V exists, the proposed selection sampling
scheme guarantees perfect reconstruction of the original signal from
its noiseless samples. This condition guarantees recovery for a wide
class of graph structures in compared to, for example, the aggre-
gation sampling scheme [9] that requires eigenvalues of A that are
indexed by K to be distinct.

3.2. Sampling in the presence of noise

We now provide an extended analysis of the proposed Algorithm 1
for scenarios where only noisy samples of the graph signal are avail-
able. Note that because of the noise, a perfect reconstruction is not
possible. Nonetheless, we provide an upperbound on the reconstruc-
tion error of the proposed sampling scheme as a function of the noise
covariance and the sampling matrix C. Another different aspect of
sampling and reconstruction under noise is that it might be desirable
to select m > k nodes as the sampling set to achieve better recon-
struction accuracy. This is in contrast to the noiseless case where
only m = k is sufficient for perfect reconstruction if the sampling
set is constructed by Algorithm 1 as stated in Theorem 1.

To further understand, let y = x + n be the noise-corrupted
signal, where n € R” is the zero-mean noise vector with covariance
matrix IE[nnT] = Q. Therefore, since x = UXx, the samples
X and the non-zero frequency components of x are related via the
linear model
(3)
where Us, = CU, ys = Cy, and ns = Cn. The recon-
structed signal in the Fourier domain (denoted by X) satisfies the
normal equation [25],

T —1 ES T —1
Us,Qs Us,rx=Us . Qg

x =ys = Us Xk + ns,

X,

“)

where Qs = CQC is the covariance of ns. A necessary condi-
tion for recovery is invertibility of the matrix UE,TleUs,T. In-
deed, as stated in the following theorem, if S is selected using Algo-
rithm 1, U;TQ;US,T is invertible and we can recover the original
graph signal, up to an error term.

Proposition 1. Let S be the sampling set constructed by Algorithm
1, C be the corresponding sampling matrix and denote Us , =
CU. Then, matrix UE’TQEIUSW is invertible and if ||nl|j2 < e€n,
then reconstruction error of the signal reconstructed from S satisfies

% = xl2 < omax(U$,,Qs ' Us.r) 'US, Q5 )en,  (5)

where omax (.) outputs the maximum singular value of a matrix.



Proposition 1 states an explicit bound on the reconstruction er-
ror of the proposed sampling scheme for general noise models with
bounded ¢2-norm. Also, the proposed selection sampling scheme
preserves the structural properties of noise’s statistics. More specif-
ically, if n is white with Q 21y, the effective noise remains
unchanged and hence white which is in contrast to, for example, ag-
gregation sampling that the effective noise becomes correlated; see
Section IV-A in [9].

4. SUPPORT RECOVERY FROM HISTORICAL SIGNALS

So far, we have assumed that the support of the bandlimited graph
signal x is known. However, in many practical applications the sup-
port of the signal might be unknown and one needs to recover the
support prior to or concurrent with the sampling step. In this sec-
tion, we address the problem of identifying the support of bandlim-
ited graph signals from a minimal number of (fully) observed signals
at all nodes prior to sampling. Note that cost of evaluating the signal
value at all nodes of the graph stems from accommodating identifica-
tion of unknown supports without making any specific assumptions
on the structure of the graph.

To that end, for a given graph and its Fourier basis V, suppose
that we observe P signals collected ina matrix Y = [y*, - -+ y¥ | €
RY*P The goal is to perform support recovery of the underlying
bandlimited signals collected in X = [x',--- ,x"] € RV*" which
amounts to estimating sparse GFTs X = [z!,--- ,x"] = VTX.
Pragmatically, we assume that 'V has full rank and the GFTs X’
share a common support. The latter assumption specifies matrix X
in a block-sparse model which has entire rows as zeros or nonzeros.
Recall that K is the support set of GFTs X° with |K| = k. Then,
upon defining

U ={X =[x",--,x"] € RY*" such that

[ ©
X =0 fori ¢ K,K C [N],|K| =k},

the bandlimited signal recovery (thus support K) boils down to solv-

ing

min [|X-Y|%F st X € U,
X

@)

where Y = V7TY. Note that support recovery is a byproduct of
finding the optimum in (7). Inspired by [26], we propose to use
(2, 0) mixed norm to reformulate (7) as

min XY} st K]z <k, ®)
where the (p, ¢) mixed norm of matrix X is defined as
X[pa = (D% N7) 9
i=1

Note that (2, 0) norm counts the number of nonzero rows in X.

It is immediately apparent that the solution X* of (8) is obtained
by the row-wise I norm thresholding on Y. Specifically, upon cal-
culating the I2 norm of the rows of Y (i.e., | Y (i, :)]||2 for all i, where
Y (4, :) denotes the ith row of Y), let ¢ be the k*" largest I norm.
Then, the solution X* has rows given by

1Y (4, 9)[]2 > ¢
0.W.

10)

The running time of finding the solution of (8) according to (10) is
O(NP+NlogN). This comprises of finding the l2 norm of the rows
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in O(NP) and then performing an off-the-shelf sorting algorithm
(e.g., merge sort) in O(NlogN).

Analyzing support identifiability using the proposed scheme is
challenging in the presence of noise. To that end, we impose the en-
ergy constraint on the noise signals so not to exceed a threshold €.
Specifically, in the following theorem, we provide sufficient con-
ditions to exactly recover the support from the noisy observations
under the energy-constrained noise model.

Theorem 2. Consider support recovery of P bandlimited graph sig-
nals X = VX = V[x', ..., x"] € RV with unknown shared
support K with |[KC| = k; ie, X € k. Let Y = [y, ,y'] =
X + N denote the noisy measurements of graph signals X, where
N = [n!,--- ,n"] € RV models the corruption noise signals.
Assume 'V is orthogonal and n's have bounded I norm; in particu-
lar |n||2 < en for all i € [P). Then, GFTs X and, as a byproduct,
the support IC are identifiable in (7) if

min || X(i,:)||l2 > 2eaV/P.

e

1)

Inspection of (11) shows that in the noiseless scenario (i.e., €n =
0), the support is identifiable even for P = 1. Moreover, in the pres-
ence of noise, it is conceivable that as P grows, the chance of (11)
being satisfied increases and the support recovery problem is ren-
dered identifiable for more observations; see also the numerical tests
in Section 5. Naturally, another insightful identifiability result for
stochastic noise models would be valuable, but left as future work.

Compared to existing sampling schemes capable of support
identification in noiseless scenario, e.g. [9] that require twice as
many samples as the bandwidth of the graph signal (i.e., k) for per-
fect reconstruction of x and further conditions on the structure of the
graph — e.g., distinct nonzero eigenvalues of the graph shift operator
(adjacency A or the Laplacian L defined as L = diag(Alx) — A,
for example) — the proposed framework [cf. (10)] needs only k
samples of the nodes of the graph to achieve perfect recovery and
identification of XC. Additionally, the proposed framework is capable
of support identification for the broad range of graphs which have
normal graph shift operator. Adaptive sampling and reconstruction
of graph signals with unknown supports can be achieved as a result
of combining the proposed support identification framework with
the proposed sampling scheme outlined in Algorithm 1, and is left
as a subject of our future studies.

5. SIMULATION RESULTS

We study the recovery of signals supported on synthetic and real-
world graphs to assess performance of the proposed support recovery
and sampling algorithms. To this end, we first consider undirected
Erd6s-Rényi random graphs G of size N = 1000 and edge proba-
bility 0.15 or 0.25 [27]. Bandlimited graph signals x = UXg are
generated by taking U as the k£ randomly selected eigenvectors V of
the graph adjacency matrix, where £ = 150 or 300. The non-zero
frequency components X are drawn independently from a zero-
mean Gaussian distribution with standard deviation 100. We also
corrupt the signals (measurements) by additive Gaussian noise with
20dB power. We first start by observing P signals across all nodes
when the frequency support is unknown and try to recover the sup-
port using the proposed formulation in (8), (10). Fig. 1(a) depicts the
support recovery error as the ratio of number of elements common in
the ground truth and inferred frequency support to the bandwidth (k)
as a function of P, where the results are obtained by averaging over
100 Monte-Carlo simulations. We notice that as P increases, the re-
covery error decreases monotonically [cf. Theorem 2] for different
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Fig. 1: (a) Support recovery error of the proposed scheme versus number of observations for different degrees of connectivities (p) and bandwidths (k).
(b) Recovery error (top) and success rate (bottom) comparison of Algorithm 1 and different random selection sampling schemes versus bandwidth (k) for
undirected Erd&s-Rényi random graphs. (c) Top: Recovery error comparison of different selection sampling schemes as a function of sample size for the
economy network. Bottom: Recovered and true graph signal at different economic sectors using Algorithm 1.

degrees of connectivity (p) and bandwidths (k). As expected, the
recovery performance does not rely on the edge probabilities, since
we only need V to be full rank which is satisfied in all undirected
graphs considered in this simulation study. Moreover, since with
higher bandwidth the energy in GFT components and the chance of
satisfying (11) increases, the support recovery task becomes easier,
as predicted by the results of Theorem 2.

Next, we consider the task of sampling and reconstruction of
noise-corrupted bandlimited graph signals with known support.
Specifically, we consider undirected Erdés-Rényi random graphs G
of size N = 100 and edge probability 0.2. We generate x = Uxx
by taking U the first k£ eigenvectors V of the graph adjacency
matrix, where we vary k linearly from 2 to 99. The non-zero fre-
quency components X i are drawn independently from a zero-mean
Gaussian distribution with standard deviation 100 and the signal
is corrupted with a Gaussian noise term with Q = 0.02%Iy. We
compare the recovery performance of the proposed scheme in Al-
gorithm 1 with the state-of-the-art uniform, leverage score, and
optimal random sampling schemes [13—15]. We define the recovery
error as the ratio of the error energy to the true signal’s energy.
Furthermore, success rate [13] is defined as the fraction of instances
where CU is invertible [cf. (1)]. The results, averaged over 100
independent instances, are illustrated in Fig 1(b). As we can see
from Fig 1(b)(top), the proposed scheme consistently achieves a
lower recovery error compared to competing schemes. Moreover, as
Fig 1(b)(bottom) illustrates, when the bandwidth increases success
rate of random sampling schemes decreases while the success rate
of proposed scheme is always one, as we proved in Theorem 1.

Finally, we use the data from Bureau of Economic Analysis of
the U.S. Department of Commerce which publicizes an annual table
of input and outputs organized by economic sectors >. Specifically,
we use 62 industrial sectors as defined by the North American Indus-
try Classification System as nodes and construct the weighted edges
and the graph signal similar to [9]. To that end, the (undirected) edge
weight between the two nodes represents the average total produc-
tion of the sectors, the first sector being used as the input of the other
sector, expressed in trillions of dollars per year. This edge weight is
averaged over the years 2008, 2009, and 2010. Also, two artificial
nodes are connected to all 62 nodes as the added value generated and
the level of production destined to the market of final users. Thus,
the final graph has N = 64 nodes. The weights lower than 0.01
are then thresholded to zero and the eigenvalue decomposition of the

2Dataset from https://www.bea.gov
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corresponding adjacency matrix A = VAV is obtained. A graph
signal x € R® can be regarded as a unidimensional total production
— in trillion of dollars — of each sector during the year 2011. Signal
x is shown to be approximately (low-pass) bandlimited in [9, Fig.
4(a)(top)] with a bandwidth of 4.

We try to interpolate sectors’ production by observing a few
nodes using Algorithm 1 assuming that the signal is low-pass (i.e.,
with smooth variations over the built network). Then, we vary the
sample size and compare the recovery performance of the proposed
scheme with the state-of-the-art uniform, leverage score, and opti-
mal random sampling schemes [13—15] averaged over 1000 Monte-
Carlo simulations as shown in Fig. 1(c)(top). As the figure indi-
cates, the proposed algorithm outperforms uniform, leverage score,
and optimal random sampling schemes [13—15]. However, we are
not experiencing perfect recovery for our proposed Algorithm 1 in
this noiseless scenario because the signal is not purely bandlimited.
Moreover, Fig. 1(c)(bottom) shows a realization of the graph signal
x superimposed with the reconstructed signal obtained using Algo-
rithm 1 with £ = 2 for all nodes excluding two artificial ones. The
recovery error of the reconstructed signal is approximately 1.32%
and as Fig. 1(c)(bottom) illustrates, X closely approximates x.
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7. CONCLUSION

We considered the task of sampling and reconstruction of k-
bandlimited graph signals. We proposed an efficient iterative sam-
pling approach that exploits the low-cost selection criterion of the
orthogonal matching pursuit algorithm to recursively select a subset
of nodes of the graph. We also theoretically showed that in the
noiseless case the original k-bandlimited signal is exactly recovered
from the set of selected nodes with cardinality k. In the case of noisy
measurements, we established a worst-case performance bound on
the reconstruction error of the proposed algorithm. We further ex-
tended our results to the case where the support of the bandlimited
signal is unknown and demonstrated under a mild SNR condition,
the proposed framework still requires k samples to ensure exact
recovery of signals with unknown supports from historical samples
of the graph signal. Simulation studies showed that the proposed
sampling algorithm compares favorably to competing alternatives.
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