)

Check for
updates

OpenACC Based GPU Parallelization
of Plane Sweep Algorithm for Geometric
Intersection

Anmol Paudel®) and Satish Puri

Department of Mathematics, Statistics and Computer Science,
Marquette University, Milwaukee, WI 53233, USA
{anmol.paudel,satish.puri}@marquette.edu

Abstract. Line segment intersection is one of the elementary operations
in computational geometry. Complex problems in Geographic Informa-
tion Systems (GIS) like finding map overlays or spatial joins using polyg-
onal data require solving segment intersections. Plane sweep paradigm
is used for finding geometric intersection in an efficient manner. How-
ever, it is difficult to parallelize due to its in-order processing of spatial
events. We present a new fine-grained parallel algorithm for geometric
intersection and its CPU and GPU implementation using OpenMP and
OpenACC. To the best of our knowledge, this is the first work demon-
strating an effective parallelization of plane sweep on GPUs.

We chose compiler directive based approach for implementation
because of its simplicity to parallelize sequential code. Using Nvidia Tesla
P100 GPU, our implementation achieves around 40X speedup for line
segment intersection problem on 40K and 80K data sets compared to
sequential CGAL library.

Keywords: Plane sweep * Line segment intersection -
Directive based programming + OpenMP - OpenACC

1 Introduction

Scalable spatial computation on high performance computing (HPC) environ-
ment has been a long-standing challenge in computational geometry. Spatial
analysis using two shapefiles (4 GB) takes around ten minutes to complete using
state-of-the art desktop ArcGIS software [15]. Harnessing the massive parallelism
of graphics accelerators helps to satisfy the time-critical nature of applications
involving spatial computation. Directives-based parallelization provides an easy-
to-use mechanism to develop parallel code that can potentially reduce execution
time. Many computational geometry algorithms exhibit irregular computation
and memory access patterns. As such, parallel algorithms need to be carefully
designed to effectively run on a GPU architecture.

Geometric intersection is a class of problems involving operations on shapes
represented as line segments, rectangles (MBR), and polygons. The operations

© Springer Nature Switzerland AG 2019
S. Chandrasekaran et al. (Eds.): WACCPD 2018 Workshop, LNCS 11381, pp. 114-135, 2019.
https://doi.org/10.1007/978-3-030-12274-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12274-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-12274-4_6

OpenACC Parallelization of Plane Sweep 115

can be cross, overlap, contains, union, etc. Domains like Geographic Information
Systems (GIS), VLSI CAD/CAM, spatial databases, etc. use geometric inter-
section as an elementary operation in their data analysis toolbox. Public and
private sector agencies rely on spatial data analysis and spatial data mining to
gain insights and produce an actionable plan [14]. We are experimenting with the
line segment intersection problem because it is one of the most basic problems
in spatial computing and all other operations for bigger problems like polygon
overlay or polygon clipping depends on results from it. The line segment inter-
section problem basically asks two questions - “are the line segments intersecting
or not?” and if they are intersecting “what are the points of intersection?” The
first one is called intersection detection problem and the second one is called
intersection reporting problem. In this paper, we present an algorithmic solution
for the latter.

Plane sweep is a fundamental technique to reduce O(n?) segment to segment
pair-wise computation into O(nlogn) work, impacting a class of geometric prob-
lems akin to the effectiveness of FFT-based algorithms. Effective parallelization
of the plane-sweep algorithm will lead to a breakthrough by enabling accelera-
tion of computational geometry algorithms that rely on plane-sweep for efficient
implementation. Examples include trapezoidal decomposition, construction of
the Voronoi diagram, Delaunay triangulation, etc.

To the best of our knowledge, this is the first work on parallelizing plane
sweep algorithm for geometric intersection problem on a GPU. The efficiency
of plane sweep comes from its ability to restrict the search space to the imme-
diate neighborhood of the sweepline. We have abstracted the neighbor finding
algorithm using directive based reduction operations. In sequential implementa-
tions, neighbor finding algorithm is implemented using a self-balancing binary
search tree which is not suitable for GPU architecture. Our multi-core and many-
core implementation uses directives-based programming approach to leverage
the device-specific hardware parallelism with the help of a compiler. As such
the resulting code is easy to maintain and modify. With appropriate pragmas
defined by OpenMP and OpenACC, the same source code will work for a CPU
as well as a GPU.

In short, the paper presents the following research contributions

1. Fine-grained Parallel Algorithm for Plane Sweep based intersection problem.

2. Directives-based implementation with reduction-based approach to find
neighbors in the sweeplines.

3. Performance results using OpenACC and OpenMP and comparison with
sequential CGAL library. We report upto 27x speedup with OpenMP and
49x speedup with OpenACC for 80K line segments.

The rest of the paper is structured as follows. Section 2 presents a general
technical background and related works to this paper. Section 3 describes our
parallel algorithm. Section 4 provides details on OpenMP and OpenACC imple-
mentations. Section 5 provides experimental results. Conclusion and future work
is presented in Sect. 6. Acknowledgements are in the last section.

116 A. Paudel and S. Puri

2 Background and Related Work

There are different approaches for finding geometric intersections. In addition
to the simple brute force method, there is a filter and refine method that uses a
heuristic to avoid unnecessary intersection computations. For a larger dataset,
filter and refine strategy is preferred over brute force. Plane sweep method works
best if the dataset can fit in memory. However, the plane sweep algorithm is not
amenable to parallelization due to the in-order sequential processing of events
stored in a binary tree and a priority queue data structure. In the existing
literature, the focus of parallel algorithms in theoretical computational geometry
has been in improving the asymptotic time bounds. However, on the practical
side, there has been only a few attempts to parallelize plane sweep on multi-cores.
Moreover, those algorithms are not suitable to fine-grained SIMD parallelism in
GPUs. This has led to the parallelization of brute force algorithms with O(n?)
complexity and parallelization of techniques like grid partitioning on GPUs. The
brute force algorithm that involves processing all segments against each other
is obviously embarrassingly parallel and has been implemented on GPU, but its
quadratic time complexity cannot compete even with the sequential plane sweep
for large data sets. The uniform grid technique does not perform well for skewed
data sets where segments span an arbitrary number of grid cells. Limitations in
the existing work is our motivation behind this work.

In the remaining subsections, we have provided background information
about segment intersection problem, different strategies used to solve the prob-
lem, existing work on the parallelization in this area and directive based pro-
gramming.

2.1 Segment Intersection Problem

Finding line intersection in computers is not as simple as solving two mathe-
matical equations. First of all, it has to do with how the lines are stored in the
computer — not in the y = maz + ¢ format, but rather as two endpoints like (x1,
yl, x2, y2). One reason for not storing lines in a equation format is because
most of the lines in computer applications are finite in nature, and need to have
a clear start and end points. Complex geometries like triangle, quadrilateral or
any n-vertices polygon are further stored as a bunch of points. For example a
quadrilateral would be stored like (x1, y1, x2, y2, x3, y3, x4, y4) and each sequen-
tial pair of points would form the vertices of that polygon. So, whenever we do
geometric operations using computers, we need to be aware of the datatypes
used to store the geometries, and use algorithms that can leverage them.

For non-finite lines, any two lines that are not parallel or collinear in 2D space
would eventually intersect. This is however not the case here since all the lines
we have are finite. So given two line segments we would first need to do a series
of calculation to ascertain whether they intersect or not. Since they are finite
lines, we can solve their mathematical equations to find the point of intersection
only if they intersect.

OpenACC Parallelization of Plane Sweep 117

In this way we can solve the segment intersection for two lines but what
if we are given a collection of line segments and are asked to find out which
of these segments intersect among themselves and what are the intersection
vertices. Since most complex geometries are stored as a collection of vertices
which results in a collection of line segments, segment intersection detection and
reporting the list of vertices of intersection are some of the most commonly solved
problems in many geometric operations. Geometric operations like finding the
map overlays and geometric unions all rely at their core on the results from the
segment intersection problem. Faster and more efficient approaches in segment
intersection will enable us to solve a wide variety of geometric operations faster
and in a more efficient manner.

2.2 Naive Brute Force Approach

Like with any computational problem, the easiest approach is foremost the brute
force approach. Algorithm 1 describes the brute force approach to find segment
intersection among multiple lines.

Algorithm 1. Naive Brute Force
1: Load all lines to L

2: for each line l; in L do

3: for each line /> in L. do

4 Test for intersection between {1 and I
5 if intersections exists then

6: calculate intersection point

7 store it in results
8

9
10:

end if
end for
end for

The brute force approach works very well compared to other algorithms for
the worst case scenario where all segments intersect among themselves. For N
line segments, its time complexity is O(N?). This is the reason we have paral-
lelized this algorithm here. However, if the intersections are sparse, then there
are heuristics and sophisticated algorithms available. The first method is to use
filter and refine heuristic which we have employed for joining two polygon layers
where the line segments are taken from polygons in a layer. The second method
is to apply Plane Sweep algorithm.

Filter and Refine Approach: Let us consider a geospatial operation where we
have to overlay a dataset consisting of N county boundaries (polygons) on top
of another dataset consisting of M lakes from USA in a Geographic Information
System (GIS) to produce a third dataset consisting of all the polygons from both
datasets. This operation requires O(NM) pairs of polygon intersections in the
worst case. However, not all county boundaries overlap with all lake boundaries.

118 A. Paudel and S. Puri

Filter Phase
Lakes
Boundaries
—_— Extract MBR Build intersection
and Line graphs using MBRs
_— Segments (R-tree)
Counties
Boundaries

Refine Phase

Segment Intersections

Output List of
Overlapping Polygons

Fig. 1. Polygon intersection using filter and refine approach

This observation lends itself to filter and refine strategy where using spatial data
structure like Rectangle tree (R-tree) built using bounding box approximation
(MBR) of the actual boundaries, we prune the number of cross layer polygon
intersections [1]. We have employed this approach while handling real spatial
data. Figure 1 shows the workflow for joining two real-world datasets. The output
consists of counties with lakes. The compute-intensive part here is the refine
phase. Our directive based parallelization is used in the refine phase only.

2.3 Plane Sweep Algorithm

Plane sweep is an efficient algorithmic approach used in finding geometric inter-
sections. Its time complexity is O((N 4+ K) log N) where N is the number of
line segments and K is the number of intersections found. In the worst case, K
is O(N?), which makes it an O(N? log N) algorithm. Parallelization of plane
sweep algorithm will impact many computational geometry algorithms that rely
on plane-sweep for efficient implementation e.g. spatial join, polygon overlay,
voronoi diagram, etc. The Bentley-Ottmann algorithm is a plane sweep algo-
rithm, that given a collection of lines, can find out whether there are intersect-
ing lines or not [5]. Computational geometry libraries typically use plane sweep
algorithm in their implementations.

Algorithm 2 describes plane sweep using a vertical sweepline. The procedures
for HandleStartEvent, HandleEndFEvent and HandlelntersectionEvent used in
Algorithm 2 are given in Algorithms4, 5, 6 respectively. For simplicity in pre-
sentation, following assumptions are made in Algorithm 2:

1. No segment is parallel to the vertical sweeplines.

2. No intersection occurs at endpoints.

3. No more than two segments intersect in the same point.
4. No overlapping segments.

OpenACC Parallelization of Plane Sweep 119

Algorithm 2. Plane Sweep

1: Load all lines to L
2: Initialize a priority queue (PQ) for sweeplines which retrieves items based on the
y-position of the item
3: Insert all start and end points from L to PQ
Initialize a sweepline
5: While PQ is not empty:
If the nextltem is startevent:
The segment is added to the sweepline
HandleStartEvent(AddedSegment)
If the nextltem is endevent:
The segment is removed from the sweepline
HandleEndEvent(RemovedSegment)
If the nextltem is intersection-event:
[Note that there will be two contributing lines at intersection point.
Let these two lines be 1 and l2.]
HandlelntersectionEvent(11,l2)
Record the intersecting pairs

e

The segments that do not adhere to our assumptions in our dataset are called
degenerate cases.

2.4 Existing Work on Parallelizing Segment Intersection Algorithms

Methods for finding intersections can be categorized into two classes: (i) algo-
rithms which rely on a partitioning of the underlying space, and (ii) algorithms
exploiting a spatial order defined on the segments. Plane sweep algorithm and
theoretical algorithms developed around 80’s and 90’s fall under the second cat-
egory [3,7,8]. These theoretical PRAM algorithms attain near-optimal poly-
logarithmic time complexity [3,7,17]. These algorithms focus on improving the
asymptotic time bounds and are not practical for implementation purposes.
These parallel algorithms are harder to implement because of their usage of
complex tree-based data structures like parallel segment tree and hierarchical
plane-sweep tree (array of trees) [4]. Moreover, tree-based algorithms may not
be suitable for memory coalescing and vectorization on a GPU.

Multi-core and many-core implementation work in literature fall under the
first category where the input space is partitioned for spatial data locality. The
basic idea is to process different cells in parallel among threads. Based on the data
distribution, existing parallel implementations of geometric intersection algo-
rithm use uniform or adaptive grid to do domain decomposition of the input
space and data [2,4,6]. Ideal grid dimension for optimal run-time is hard to
determine as it depends not only on spatial data distribution, but also on hard-
ware characteristics of the target device. Moreover, the approach of dividing the
underlying space has the unfortunate consequence of effectively increasing the
size of the input dataset. For instance, if an input line segment spans multiple
grid cells, then the segment is simply replicated in each cell. Hence, the problem

120 A. Paudel and S. Puri

size increases considerably for finer grid resolutions. In addition to redundant
computations for replicated data, in GPU with limited global memory, mem-
ory allocation for intermediate data structure to store replicated data is not
space-efficient. Plane sweep does not suffer from this problem because it is an
event-based algorithm.

The brute force algorithm that involves processing all line segments against
each other is obviously embarrassingly parallel and has been implemented on
GPU [11], but its quadratic time complexity cannot compete even with the
sequential plane sweep for large data sets. Our current work is motivated by the
limitations of the existing approaches which cannot guarantee efficient treatment
of all possible input configurations.

Parallel algorithm developed by McKenney et al. and their OpenMP imple-
mentation is targeted towards multi-core CPUs and it is not fine-grained
to exploit the SIMT parallelism in GPUs [9,10,12]. Contrary to the above-
mentioned parallel algorithm, our algorithm is targeted to GPU and achieves
higher speedup. In the context of massively parallel GPU platform, we have
sacrificed algorithmic optimality by not using logarithmic data structures like
priority queue, self-balancing binary tree and segment tree. Qur approach is
geared towards exploiting the concurrency available in the sequential plane sweep
algorithm by adding a preprocessing step that removes the dependency among
successive events.

2.5 OpenMP and OpenACC

When using compiler directives, we need to take care of data dependencies and
race conditions among threads. OpenMP provides critical sections to avoid race
conditions. Programmers need to remove any inter-thread dependencies from the
program.

Parallelizing code for GPUs has significant differences because GPUs are sep-
arate physical devices with their numerous cores and their own separate physical
memory. So, we need to first copy the spatial data from CPU to GPU to do any
data processing on a GPU. Here, the CPU is regarded as the host and the GPU
is regarded as the device. After processing on GPU is finished, we need to again
copy back all the results from the GPU to the CPU. In GPU processing, this
transfer of memory has overheads and these overheads can be large if we do
multiple transfers or if the amount of memory moved is large. Also, each sin-
gle GPU has its own physical memory limitations and if we have a very large
dataset, then we might have to copy it to multiple GPUs or do data processing
in chunks. Furthermore, the functions written for the host may not work in the
GPUs and will require writing new routines. Any library modules loaded on the
host device is also not available on a GPU device.

The way we achieve parallelization with OpenACC is by doing loop paral-
lelization. In this approach each iteration of the loop can run in parallel. This
can only be done if the loops have no inter-loop dependencies. Another app-
roach we use is called vectorization. In the implementation process, we have to
remove any inter-loop dependencies so that the loops can run in parallel without

OpenACC Parallelization of Plane Sweep 121

any side-effects. Side-effects are encountered if the threads try to write-write or
write-read at the same memory location resulting in race conditions.

3 Parallel Plane Sweep Algorithm

We have taken the vertical sweep version of the Bentley-Ottmann algorithm
and modified it. Instead of handling event points strictly in the increasing y-
order as they are encountered in bottom-up vertical sweep, we process all the
startpoints first, then all the endpoints and at last we keep on processing until
there aren’t any unprocessed intersection points left. During processing of each
intersection event, multiple new intersection events can be found. So, the last
phase of processing intersection events is iterative. Hence, the sequence of event
processing is different than sequential algorithm.

Algorithm 3 describes our modified version of plane sweep using a vertical
sweepline. Figure2 shows the startevent processing for a vertical bottom up
sweep. Algorithm 3 also has the same simplifying assumptions like Algorithm 2.
Step 2, step 3 and the for-loop in step 4 of Algorithm 3 can be parallelized using
directives.

Algorithm 3. Modified Plane Sweep Algorithm
1: Load all lines to L
2: For each line /1 in L:
Create a start-sweepline (SSL) at the lower point of I;
For each line I in L:
If l5 crosses SSL:
update left and right neighbors
HandleStartEvent(l;)
3: For each line /7 in L:
Create an end-sweepline (ESL) at the upper point of Iy
For each line I in L:
If l5 crosses ESL:
update left and right neighbors
HandleEndEvent(l1)
4: While intersection events is not empty, for each intersection event:
Create an intersection-sweepline (ISL) at the intersection point
For each line [in L:
If I crosses ISL:
update left and right neighbors
// let 11 and Iz are the lines at intersection event
HandleIntersectionEvent(l1, l2)
5: During intersection events, we record the intersecting pairs

Algorithm 3 describes a fine-grained approach where each event point can be
independently processed. Existing work for plane sweep focuses on coarse-grained
parallelization on multi-core CPUs only. Sequential Bentley-Ottmann algorithm

122 A. Paudel and S. Puri

Algorithm 4. StartEvent Processing

1: procedure HANDLESTARTEVENT((;)
Intersection is checked between
1 and its left neighbor
1 and its right neighbor
If any intersection is found
update intersection events
2: end procedure

Algorithm 5. EndEvent Processing

1: procedure HANDLEENDEVENT(I1)
Intersection is checked between
the left and right neighbors of [;
If intersection is found
update intersection events
2: end procedure

Algorithm 6. IntersectionEvent Processing

1: procedure HANDLEINTERSECTIONEVENT(1,l2)
Intersection is checked between
the left neighbor of the intersection point and [1
the right neighbor of the intersection point and [y
the left neighbor of the intersection point and Il
the right neighbor of the intersection point and I
if any intersection is found
update intersection events
2: end procedure

Fig. 2. Vertical plane sweep. Vertical plane sweep showing sweeplines (dotted lines)
corresponding to starting event points only. P1 to P4 are the intersection vertices found
by processing start event points only. L1, L2 and L3 are the active line segments on
the third sweepline from the bottom. Event processing of starting point of L3 requires
finding its immediate neighbor (L2) and checking doesIntersect (L2, L3) which results

in finding P2 as an intersection vertex.

OpenACC Parallelization of Plane Sweep 123

processes the event points as they are encountered while doing a vertical /hori-
zontal sweep. Our parallel plane sweep relaxes the strict increasing order of event
processing. Start and End point events can be processed in any order. As shown
in step 4 of Algorithm 3, intersection event point processing happens after start
and end point events are processed. An implementation of this algorithm either
needs more memory to store line segments intersecting the sweepline or needs
to compute them dynamically thereby performing more work. However, this is
a necessary overhead required to eliminate the sequential dependency inherent
in the original Bentley-Ottmann algorithm or its implementation. As we point
out in the results section, our OpenMP and OpenACC implementations perform
better than the existing work.

Degree of Concurrency: The amount of concurrency available to the algo-
rithm is limited by Step 4 due to the fact that intersection events produce more
intersection events dynamically. Hence, it results in a dependency graph where
computation on each level generates a new level. The critical path length of the
graph denoted by [is 0 < I < (Z) where n is the input size. In general, [is less
than the number of intersection points k. However, if [is comparable to k, then
the Step 4 may not benefit from parallelization.

3.1 Algorithm Correctness

The novelty in this parallel algorithm is our observation that any order of con-
current events processing will produce the same results as done sequentially, pro-
vided that we schedule intersection event handling in the last phase. In a parallel
implementation, this can be achieved at the expense of extra memory require-
ment to store the line segments per sweepline or extra computations to dynami-
cally find out those line segments. This observation lends itself to directive based
parallel programming because now we can add parallel for loop pragma in Steps
2, 3 and 4 so that we can leverage multi-core CPUs and many-core GPUs. The
proof that any sweepline event needs to only consider its immediate neighbors for
intersection detection is guaranteed to hold as shown by the original algorithm.

Bentley-Ottmann algorithm executes sequentially, processing each sweepline
in an increasing priority order with an invariant that all the intersection points
below the current sweepline has been found. However, since we process each
sweepline in parallel, this will no longer be the case. The invariant in our parallel
algorithm is that all line segments crossing a sweepline needs to be known a priori
before doing neighborhood computation. As we can see, this is an embarrassingly
parallel step.

Finally, we can show that Algorithm 3 terminates after finding all intersec-
tions. Whenever start-events are encountered they can add atmost two intersec-
tion events. End-events can add atmost one intersection event and intersection
events can add atmost 4 intersection events. Because of the order in which the
algorithm processes the sweeplines, all the intersection points below the current
sweepline will have been found and processed. The number of iterations for Step
2 and Step 3 can be statically determined and it is linear in the number of inputs.

124 A. Paudel and S. Puri

However, the number of iterations in Step 4 is dynamic and can be quadratic.
Intersection events produce new intersection events. However, even in the worst
case with (g) intersection points generated in Step 4, the algorithm is bound to
terminate.

3.2 Algorithmic Analysis

Time Complexity. For each of the N lines there will be two sweeplines, and
each sweepline will have to iterate over all N lines to check if they intersect or
not. So this results in 2N? comparison steps, and then each intersection event
will also produce a sweepline and if there are K intersection points this results
in K*N steps so the total is 2N2 + K * N steps. Assuming that K < N, the
time-complexity of this algorithm is O(N?).

Space Complexity. Since there will be 2NV sweeplines for N lines and for each
K intersection events there will be K sweeplines. The extra memory requirement
will be O(N + K) and assuming K < N, the space-complexity of the algorithm
is O(N).

4 Directive-Based Implementation Details

Although steps 2, 3 and 4 of Algorithm 3 could run concurrently, we implemented
it in such a way that each of the sweeplines within each step is processed in
parallel. Also, in step 4 the intersection events are handled in batch for the ease
of implementation. Furthermore, we had to make changes to the sequential code
so that it could be parallelized with directives. In the sequential algorithm, the
segments overlapping with a sweepline are usually stored in a data structure
like BST. However, when each of the sweeplines are needed to be processed in
parallel, using a data structure like the BST is not feasible so we need to apply
different techniques to achieve this. In OpenMP, we can find neighbors by sorting
lines in each sweepline and processing them on individual threads. Implementing
the same sorting based approach is again not feasible in OpenACC because we
cannot use the sorting libraries that are supported in OpenMP. So, we used
a reduction-based approach supported by the reduction operators provided by
OpenACC to achieve this without having to sort the lines in each sweepline.

Listing 1.1. Data structure for point

struct Point {
var Xx,y;
Point (var x, var y);

OpenACC Parallelization of Plane Sweep 125

Listing 1.2. Data structure for line
struct Line {
Point pl, p2;
var m, c;

Line (Point pl, Point p2) {
m= ((p2.y — pl.y) / (p2.x — pl.x));
C (pl.y) — mx(pl.x);

Listing 1.3. Routine for intersection point
#pragma acc routine
Point intersectionPoint (Line 11, Line 12) {
var x = (12.¢ — 11.¢)/(11.m — 12.m);
var y = 11 .mxx + 11.c;
return Point(x,y);

}

Listing 1 shows the spatial data structures used in our implementations. The
keyword var in the listing is meant to be a placeholder for any numeric datatype.

Finding neighboring line segments corresponding to each event efficiently is
a key step in parallelizing plane sweep algorithm. In general, each sweepline has
a small subset of the input line segments crossing it in an arbitrary order. The
size of this subset varies across sweeplines. Finding neighbors per event would
amount to sorting these subsets that are already present in global memory indi-
vidually, which is not as efficient as global sorting of the overall input. Hence, we
have devised an algorithm to solve this problem using directive based reduction
operation. A reduction is necessary to avoid race conditions.

Algorithm 7 explains how neighbors are found using OpenACC. Each hori-
zontal sweepline has a x-location around which the neighbors are to be found. If
it is a sweepline corresponding to a startpoint or endpoint then the x-coordinate
of that point will be the x-location. For a sweepline corresponding to an intersec-
tion point, the x-coordinate of the intersection point will be the x-location. To
find the horizontal neighbors for the x-location, we need the x-coordinate of the
intersection point between each of the input lines and the horizontal sweepline.
Then a mazloc reduction is performed on all such intersection points that are
to the left of the x-location and a minloc reduction is performed on all such
intersection points that are to the right of the x-location to find the indices of
previous and next neighbors respectively. A mazloc reduction finds the index
of the maximum value and a minloc reduction finds the index of the minimum
value. OpenACC doesn’t directly support the mazloc and minloc operators so
a workaround was implemented. The workaround includes casting the data and
index combined to a larger numeric data structure for which max and min reduc-
tions are available and extracting the index from reduction results.

126 A. Paudel and S. Puri

Figure3 shows an example for finding two neighbors for an event with
x-location as 25. The numbers shown in boxes are the x-coordinates of the
intersection points of individual line segments with a sweepline (SL). We first
find the index of the neighbors and then use the index to find the actual
neighbors.

Algorithm 7. Reduction-based Neighbor Finding

Let SL be the sweepline
Let x be the x-coordinate in SL around which neighbors are needed
L « all lines
prev < MIN | nxt «— MAX
for each line [in L do-parallel reduction(maxloc:prev, minloc:nxt)
if intersects(l,SL) then
h « intersectionPt(l,SL)
if h < x then
9: prev = h
10: end if
11: if h > x then
12: nxt = h
13: end if
14: end if
15: end for

1:
2:
3:
4:
5:
6
7
8

Polygon Intersection Using Filter and Refine Approach: As discussed
earlier, joining two polygon layers to produce third layer as output requires a
filter phase where we find pairs of overlapping polygons from the two input layers.
The filter phase is data-intensive in nature and it is carried out in CPU. The next
refine phase carries out pair-wise polygon intersection. Typically, on a dataset of
a few gigabytes, there can be thousands to millions of such polygon pairs where
a polygon intersection routine can be invoked to process an individual pair.
First, we create a spatial index (R-tree) using minimum bounding rectangles
(MBRs) of polygons of one layer and then perform R-tree queries using MBRs
of another layer to find overlapping cross-layer polygons. We first tried a fine-
grained parallelization scheme with a pair of overlapping polygons as an OpenMP
task. But this approach did not perform well due to significantly large number of
tasks. A coarse-grained approach where a task is a pair consisting of a polygon
from one layer and a list of overlapping polygons from another layer performed
better. These tasks are independent and processed in parallel by OpenMP due
to typically large number of tasks to keep the multi-cores busy.

We used sequential Geometry Opensource (GEOS) library for R-tree con-
struction, MBR querying and polygon intersection functions. Here, intersection
function uses sequential plane-sweep algorithm to find segment intersections.
We tried naive all-to-all segment intersection algorithm with OpenMP but it is
slower than plane sweep based implementation. Our OpenMP implementation
is based on thread-safe C API provided by GEOS. We have used the Prepared-

OpenACC Parallelization of Plane Sweep 127

x=| 25
p=MIN

n=MAX x-cord in SL

hvaluesf 92 | 21 (45 | 532938 (62 |88 (14 | 76|23

index © 1 2 3 4 5 6 7 8 9 10

p=MIN p=21 p=MIN p=MIN p=MIN p=MIN p=MIN p=MIN p=14 p=MIN p=23
n=92 n=MAX n=45 n=53 n=29 n=38 n=62 n=88 n=MAX n=76 n=MAX

ploc = reduction(maxloc:p) = 10
nloc = reduction(minloc:n) = 4

prev = arr[ploc] = 23
nxt =arr[nloc] =29

Fig. 3. Reduction-based neighbor finding. Here the dotted lines are the parallel threads
and we find the left and right neighbor to the given x-cord (25) on the sweepline and
their corresponding indices. p and n are thread local variables that are initialized
as MIN and MAX respectively. As the threads execute concurrently their value gets
independently updated based on Algorithm 7.

Geometry class which is an optimized version of Geometry class designed for
filter-and-refine use cases.

Hybrid CPU-GPU Parallelization: Only the refine phase is suitable for GPU
parallelization because it involves millions of segment intersections tests for large
datasets. Creating intersection graph to identify overlapping polygons is carried
out on CPU. The intersection graph is copied to the GPU using OpenACC data
directives. The segment intersection algorithm used in OpenACC is the brute
force algorithm. We cannot simply add pragmas to GEOS code. This is due
to the fact that OpenACC is not designed to run sophisticated plane sweep
algorithm efficiently. For efficiency, the code needs to be vectorized by the PGI
compiler and allow Single Instruction Multiple Thread (SIMT) parallelization.
Directive-based loop parallelism using OpenACC parallel for construct is used.
The segment intersection computation for the tasks generated by filter phase
are carried out in three nested loops. Outermost loop iterates over all the tasks.
Two inner for loops carry out naive all-to-all edge intersection tests for a polygon
pair.

128 A. Paudel and S. Puri

5 Experimental Results

5.1 Experimental Setup

Our code was run on the following 3 machines:

— Everest cluster at Marquette university: This machine was used to run the
OpenMP codes and contained the Intel Xeon E5 CPU v4 E5-2695 with 18
cores and 45 MB cache and base frequency of 2.10 GHz.

— Bridges cluster at the Pittsburgh Supercomputing Center: A single GPU node
of this cluster was used which contained the NVIDIA Tesla P100 containing
3584 cuda cores and GPU memory of 12 GB.

— Our sequential GEOS and OpenMP code was run on 2.6 GHz Intel Xeon
E5-2660v3 processor with 20 cores in the NCSA ROGER Supercomputer.
We carried out the GPU experiments using OpenACC on Nvidia Tesla P100
GPU which has 16 GB of main memory and 3, 584 CUDA cores operating
at 1480 MHz frequency. This GPU provides 5.3 TFLOPS of double precision
floating point calculations. Version 3.4.2 of GEOS library was used'.

Dataset Descriptions: We have used artificially generated and real spatial
datasets for performance evaluation.

Generated Dataset: Random lines were generated for performance measurement
and collecting timing information. Datasets vary in the number of lines gener-
ated. Sparsity of data was controlled during data set generation to have about
only 10% of intersections. Table 1 shows the datasets we generated and used and
the number of intersections in each dataset. The datasets are sparsely distributed
and number of intersections are only about 10% of the number of lines in the
dataset. Figure 4 depicts a randomly generated set of sparse lines.

Real-World Spatial Datasets: As real-world spatial data, we selected polygonal
data from Geographic Information System (GIS) domain?'® [13]. The details of
the datasets are provided in Table 2.

Table 1. Dataset and corresponding number of intersections

Lines | Intersections
10k | 1095
20k | 2068
40k | 4078
80k | 8062

! https://trac.osgeo.org/geos/.
2 http://www.naturalearthdata.com.
3 http://resources.arcgis.com.

https://trac.osgeo.org/geos/
http://www.naturalearthdata.com
http://resources.arcgis.com

OpenACC Parallelization of Plane Sweep 129

Fig. 4. Randomly generated sparse lines

Table 2. Description of real-world datasets.

Dataset Polygons | Edges | Size
1| Urban areas 11K 1,153K | 20 MB
2 | State provinces 4K 1,332K | 50 MB
3 | Sports areas 1,783K | 20,692K | 590 MB
4 | Postal code areas| 170K |65,269K | 1.4 GB
5 | Water bodies 463K | 24,201K | 520 MB
6 | Block boundaries | 219K | 60,046K | 1.3 GB

5.2 Performance of Brute Force Parallel Algorithm

Using Generated Dataset: Table3 shows execution time comparison of
CGAL, sequential brute-force (BF-Seq) and OpenACC augmented brute-force
(BF-ACC) implementations.

Key takeaway from the Table3 is that CGAL performs significantly better
than our naive code for sparse set of lines in sequential and the increase in
sequential time is not linear with the increase in data size. OpenACC however
drastically beats the sequential performance especially for larger data sizes.

Table 3. Execution time by CGAL, naive Sequential vs OpenACC on sparse lines

Lines | CGAL | BF-Seq | BF-ACC
10k 3.96s 8.19s 0.6s
20k 9.64s| 35.52s 1.52s
40k 17.23s|143.94 s 5.02s
80k 36.45s | 204.94 s 6.73s

130 A. Paudel and S. Puri

Using Real Polygonal Dataset: Here the line segments are taken from the
polygons. The polygon intersection tests are distributed among CPU threads in
static, dynamic and guided load-balancing modes supported by OpenMP. Table 4
shows the execution time for polygon intersection operation using three real-
world shapefiles listed in Table 2. The performance of GEOS-OpenMP depends
on number of threads, chunk size and thread scheduling. We varied these parame-
ters to get the best performance for comparison with GEOS. For the largest data
set, chunk size as 100 and dynamic loop scheduling yielded the best speedup for
20 threads. We see better performance using real datasets as well when compared
to optimized opensource GIS library.

For polygonal data, OpenACC version is about two to five times faster than
OpenMP version even though it is running brute force algorithm for the refine
phase. The timing includes data transfer time. When compared to the sequential
library, it is four to eight times faster.

Table 4. Performance comparison of polygon intersection operation using sequential
and parallel methods on real-world datasets.

Dataset Running time (s)

Sequential | Parallel

GEOS OpenMP | OpenACC
Urban-States 5.77 2.63 1.21
USA-Blocks-Water | 148.04 83.10 34.69
Sports-Postal-Areas | 267.34 173.51 31.82

5.3 Performance of Parallel Plane Sweep Algorithm

Table 5 shows the scalability of parallel plane sweep algorithm using OpenMP
on Intel Xeon E5. Table 6 is comparison of CGAL and parallel plane sweep (PS-
ACCQC). Key takeaway from the Table6 is that for the given size of datasets the
parallel plane sweep in OpenACC drastically beats the sequential performance
of CGAL or the other sequential method as shown in Table 3.

Table 5. Parallel plane sweep on sparse lines with OpenMP

Lines | 1p 2p 4p 8p 16p 32p

10k 1.9s 1.22s| 0.65s| 0.37s| 0.21s| 0.13s
20k 5.76s| 3.24s| 1.78s| 1.08s| 0.66s| 0.37s
40k |20.98s|11.01s| 5.77s| 3.3s | 2.03s| 1.14s
80k |82.96s|42.3s |21.44s12.18s| 6.91s| 3.78s

OpenACC Parallelization of Plane Sweep 131

Table 6. CGAL vs OpenACC parallel plane sweep on sparse lines

Lines | CGAL | PS-ACC
10k 3.96s| 0.33s
20k 9.64s| 0.34s
40k | 17.23s| 0.41s
80k |36.45s| 0.74s

Table 7. Speedup with OpenACC when compared to CGAL for different datasets

10K | 20K | 40K |80K
BF-ACC 6.6 | 6.34| 3.43| 5.42
PS-ACC |12 |28.3542.02|49.26

5.4 Speedup and Efficiency Comparisons

Table 7 shows the speedup gained when comparing CGAL with the OpenACC
implementation of the brute force (BF-ACC) and plane sweep approaches (PS-
ACC) on NVIDIA Tesla P100. Figure5 shows the time taken for computing
intersection on sparse lines in comparison to OpenACC based implementations
with CGAL and sequential brute force. The results with directives are promising
because even the brute force approach gives around a 5x speedup for 80K lines.
Moreover, our parallel implementation of plane sweep gives a 49x speedup.
Figure 6 shows the speedup with varying number of threads and it validates
the parallelization of the parallel plane sweep approach. The speedup is consis-
tent with the increase in the number of threads. Figure 7 shows the efficiency
(speedup/threads) for the previous speedup graph. As we can see in the figure,

Intersection Time Comparison on Sparse Lines

256

64
) /
4

1

Time (s)

10k 20k 40k 80k

0.25 :
Number of Lines

=@==(CGAL ==@=BF_Seq BF_ACC PS_ACC

Fig.5. Time comparison for CGAL, sequential brute-force, OpenACC augmented
brute-force and plane sweep on sparse lines

132 A. Paudel and S. Puri

Speedup of Parallel Plane Sweep

2p 4p 8p 16p 32p
Number of OpenMP threads

=810k =®=20k =®=40k 80k

Fig. 6. Speedups for the parallel plane sweep with varying OpenMP threads on sparse
lines

Efficiency of Parallel Plane Sweep

2p 4p 8p 16p 32p
Number of OpenMP threads

=@=10k =@==20k 40k 80k

Fig. 7. Efficiency of the parallel plane sweep with varying OpenMP threads on sparse
lines

the efficiency is higher for larger datasets. There is diminishing return as the
number of threads increase due to the decrease in the amount of work available
per thread.

Also, doing a phase-wise comparison of the OpenACC plane sweep code
showed that most of the time was consumed in the start event processing (around
90% for datasets smaller than 80K and about 70% for the 80K dataset). Most of
the remaining time was consumed by end event processing with negligible time
spent on intersection events. The variation in time is due to the fact that the
number of intersections found by different events is not the same. Moreover, start
event processing has to do twice the amount of work in comparison to end event
processing as mentioned in Algorithms 4 and 5. There are fewer intersection
point events in comparison to the endpoint events.

OpenACC Parallelization of Plane Sweep 133

6 Conclusion and Future Work

In this work, we presented a fine-grained parallel algorithm targeted to GPU
architecture for a non-trivial computational geometry code. We also presented
an efficient implementation using OpenACC directives that leverages GPU par-
allelism. This has resulted in an order of magnitude speedup compared to the
sequential implementations. We have also shown our compiler directives based
parallelization method using real polygonal data. We are planning to integrate
the present work with our MPI-GIS software so that we can handle larger
datasets and utilize multiple GPUs [16].

Compiler directives prove to be a promising avenue to explore in the future
for parallelizing other spatial computations as well. Although in this paper we
have not handled the degenerate cases for plane sweep algorithm, they can be
dealt with the same way we would deal with degenerate cases in the sequential
plane sweep approach. Degenerate cases arise due to the assumptions that we
had made in the plansweep algorithm. However, it remains one of our future
work to explore parallel and directive based methods to handle such cases.

Acknowledgements. This work is partly supported by the National Science Foun-
dation CRII Grant No. 1756000. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan X Pascal GPU used for this research. We
also acknowledge XSEDE for providing access to NVidia Tesla P100 available in PSC
Bridges cluster.

Appendix A Artifact Description Appendix

A.1 Description
Check-List (Artifact Meta Information)

— Algorithm:
All algorithms are mentioned and described in the paper itself and can be
referred to in Algorithms 1 and 3.
— Program:
The Computational Geometry Algorithms Library (CGAL) and Geometry
Engine Open Source (GEOS) were external libraries that were used.
— Compilation:
Compilations were done using the g++ compiler and pgc++ compilers.
for OpenACC: pgc++ -acc -ta=tesla:cc60 -o prog prog.cpp
for OpenMP: g++ -fopenmp -o prog prog.cpp
for CGAL: g++ -lcgal -o prog prog.cpp
for GEOS: g++ -lgeos -0 prog prog.cpp
— Hardware:
Description of the machines used to run code can be found in Sect.5.1 for
further information.
— Publicly available:
CGAL, GEOS, OpenMP, OpenACC, gcc and pgec are all publicly available.

134 A. Paudel and S. Puri

How Software Can Be Obtained (if Available). All of the software and
code we used to build up our experiments were freely and publicly available.
However, our code implementation can be found in the website: https://www.
mscs.mu.edu/~satish/mpiaccgis.html.

Hardware Dependencies. To be able to get the most out of OpenMP, a
multicore CPU would be needed. And to be able to run OpenACC kernels a
GPU would be needed.

Software Dependencies. CGAL, GEOS, OpenMP and OpenACC libraries
must be installed. Compilers like gcc and pgcec are also needed.

Datasets. Real world spatial data were used and datasets containing ran-
dom lines were generated. Please refer to Sect. 5.1 for more information. Gener-
ated datasets are also posted in the website: https://www.mscs.mu.edu/~satish/
mpiaccgis.html, however they can be generated on your own.

A.2 Installation

Configure the multicore CPUs and GPU to run on your system

Install the necessary libraries

Download or generate the necessary datasets

Download the code

Check that the datasets are in the proper directory pointed by the code, if
not then fix it

Compile the code

7. Execute the compiled executable

Gl o=

&

References

1. Agarwal, D., Puri, S., He, X., Prasad, S.K.: A system for GIS polygonal overlay
computation on linux cluster - an experience and performance report. In: 26th
IEEE International Parallel and Distributed Processing Symposium Workshops
& PhD Forum, IPDPS 2012, Shanghai, China, 21-25 May 2012, pp. 14331439
(2012). https://doi.org/10.1109/IPDPSW.2012.180

2. Aghajarian, D., Prasad, S.K.: A spatial join algorithm based on a non-uniform grid
technique over GPGPU. In: Proceedings of the 25th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, p. 56. ACM
(2017)

3. Atallah, M.J., Goodrich, M.T.: Efficient plane sweeping in parallel. In: Proceedings
of the Second Annual Symposium on Computational Geometry, pp. 216-225. ACM
(1986)

4. Audet, S., Albertsson, C., Murase, M., Asahara, A.: Robust and efficient polygon
overlay on parallel stream processors. In: Proceedings of the 21st ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
pp. 304-313. ACM (2013)

https://www.mscs.mu.edu/~satish/mpiaccgis.html
https://www.mscs.mu.edu/~satish/mpiaccgis.html
https://www.mscs.mu.edu/~satish/mpiaccgis.html
https://www.mscs.mu.edu/~satish/mpiaccgis.html
https://doi.org/10.1109/IPDPSW.2012.180

10.

11.

12.

13.

14.

15.

16.

17.

OpenACC Parallelization of Plane Sweep 135

Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. 9, 643-647 (1979)

Franklin, W.R.., Narayanaswami, C., Kankanhalli, M., Sun, D., Zhou, M.C., Wu,
P.Y.: Uniform grids: a technique for intersection detection on serial and parallel
machines. In: Proceedings of Auto Carto, vol. 9, pp. 100-109. Citeseer (1989)
Goodrich, M.T.: Intersecting line segments in parallel with an output-sensitive
number of processors. STAM J. Comput. 20(4), 737-755 (1991)

Goodrich, M.T.; Ghouse, M.R., Bright, J.: Sweep methods for parallel computa-
tional geometry. Algorithmica 15(2), 126-153 (1996)

Khlopotine, A.B., Jandhyala, V., Kirkpatrick, D.: A variant of parallel plane sweep
algorithm for multicore systems. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst. 32(6), 966-970 (2013)

McKenney, M., Frye, R., Dellamano, M., Anderson, K., Harris, J.: Multi-core par-
allelism for plane sweep algorithms as a foundation for GIS operations. Geolnfor-
matica 21(1), 151-174 (2017)

McKenney, M., De Luna, G., Hill, S., Lowell, L.: Geospatial overlay computation on
the GPU. In: Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp. 473-476. ACM (2011)
McKenney, M., McGuire, T.: A parallel plane sweep algorithm for multi-core sys-
tems. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 392-395. ACM (2009)

OSM: OpenStreet Map Data (2017). http://spatialhadoop.cs.umn.edu/datasets.
html

Prasad, S., et al.: Parallel processing over spatial-temporal datasets from geo, bio,
climate and social science communities: a research roadmap. In: 6th IEEE Inter-
national Congress on Big Data, Hawaii (2017)

Puri, S., Prasad, S.K.: A parallel algorithm for clipping polygons with improved
bounds and a distributed overlay processing system using MPI. In: 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid)(CCGRID), pp. 576-585, May 2015. https://doi.org/10.1109/CCGrid.
2015.43

Puri, S., Paudel, A., Prasad, S.K.: MPI-vector-10: parallel I/O and partitioning
for geospatial vector data. In: Proceedings of the 47th International Conference on
Parallel Processing, ICPP 2018, pp. 13:1-13:11. ACM, New York (2018). https://
doi.org/10.1145/3225058.3225105

Puri, S., Prasad, S.K.: Output-sensitive parallel algorithm for polygon clipping.
In: 43rd International Conference on Parallel Processing, ICPP 2014, Minneapolis,
MN, USA, 9-12 September 2014, pp. 241-250 (2014). https://doi.org/10.1109/
ICPP.2014.33

http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html
https://doi.org/10.1109/CCGrid.2015.43
https://doi.org/10.1109/CCGrid.2015.43
https://doi.org/10.1145/3225058.3225105
https://doi.org/10.1145/3225058.3225105
https://doi.org/10.1109/ICPP.2014.33
https://doi.org/10.1109/ICPP.2014.33

	OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection
	1 Introduction
	2 Background and Related Work
	2.1 Segment Intersection Problem
	2.2 Naive Brute Force Approach
	2.3 Plane Sweep Algorithm
	2.4 Existing Work on Parallelizing Segment Intersection Algorithms
	2.5 OpenMP and OpenACC

	3 Parallel Plane Sweep Algorithm
	3.1 Algorithm Correctness
	3.2 Algorithmic Analysis

	4 Directive-Based Implementation Details
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Performance of Brute Force Parallel Algorithm
	5.3 Performance of Parallel Plane Sweep Algorithm
	5.4 Speedup and Efficiency Comparisons

	6 Conclusion and Future Work
	References

