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ABSTRACT
In recent times, geospatial datasets are growing in terms of size,
complexity and heterogeneity. High performance systems are needed
to analyze such data to produce actionable insights in an efficient
manner. For polygonal a.k.a vector datasets, operations such as
I/O, data partitioning, communication, and load balancing becomes
challenging in a cluster environment. In this work, we present
MPI-Vector-IO 1, a parallel I/O library that we have designed using
MPI-IO specifically for partitioning and reading irregular vector
data formats such as Well Known Text. It makes MPI aware of spa-
tial data, spatial primitives and provides support for spatial data
types embedded within collective computation and communication
using MPI message-passing library. These abstractions along with
parallel I/O support are useful for parallel Geographic Information
System (GIS) application development on HPC platforms.

Performance evaluation is done on Lustre and GPFS filesystems.
MPI-Vector-IO scales well with MPI processes and file size and
achieves bandwidth up to 22 GB/s for common spatial data ac-
cess patterns. We observed that independent file read functions
performed better than collective functions in MPI-IO for contiguous
access pattern on Lustre. In general, the I/O is improved by one to
two orders of magnitude over real-world datasets using up to 1152
CPU cores. Spatial Join query is used as an exemplar to demonstrate
an end-to-end application using MPI-Vector-IO.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Infor-
mation systems → Geographic information systems;
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1The project page with additional details, source code and datasets is at www.mscs.
mu.edu/~satish/mpigis.html
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1 INTRODUCTION
In Geo-spatial domain, there has been a recent explosion in the
amount of spatial data produced by satellites, medical and GPS
enabled devices [25]. For example, NASA satellite data archive ex-
ceeded 500 TB and is still growing [10]. OpenStreetMap (OSM) data
in a single XML file is about 800 GB [23]. However, the current soft-
ware stack in spatial computing is rather ill-suited to the emerging
realities of big data. In addition to “raster” format, polygonal spa-
tial data are stored in a variety of “vector” data formats including
ESRI Shapefiles, Well Known Text (WKT), OSM XML, CSV (New
York Taxi dataset), etc [11, 13, 20, 22]. In this work, we concentrate
on vector data where shapes are represented with points, lines
and polygons. The polygonal (vector) data are harder to process in
parallel due to non-uniform distribution and irregular shape.

Spatial computing tasks like spatial join is both data- and compute-
intensive. Spatial join is important in spatial data management sys-
tems to gain insights from large-scale geospatial data. Parallel I/O
and spatial partitioning of irregular vector data (as opposed to raster
data) is challenging and difficult to optimize. Real data distribution
is often skewed. Spatial operations involve non-uniform data access
and computation due to varying number of vertices in different
shapes with no well-defined communication pattern due to irregu-
lar spatial task distributions. Large polygons may have more than
100K coordinates. Optimizing such tasks in a heterogeneous paral-
lel environment requires focus on efficient I/O, communication and
computation. Many disaster response scenarios call for leveraging
high performance computing techniques to yield real-time results
e.g., in forest fire or hurricane simulation, where multiple layers of
spatial data needs to be joined and overlaid to predict the affected
areas and rescue shelters.

MPI-IO is a parallel I/O interface specified in the MPI-2 standard.
It is implemented and used on a wide range of platforms. MPI has
become the de facto parallel mechanism for I/O and communica-
tion on most high performance computing systems. It provides
contiguous and non-contiguous access patterns using independent
and collective functions (Level 0 to 3). However, MPI only provides
functions for unformatted binary file I/O. It does not provide func-
tions for formatted text based spatial data which is the case with
the vector data that we consider here in this paper [11, 22]. MPI-IO
integration into existing geo-spatial HPC systems allows them to
benefit from the optimizations built into the MPI-IO implementa-
tions.

www.mscs.mu.edu/~satish/mpigis.html
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An MPI based GIS system (MPI-GIS) to parallelize a spatial com-
putation requires file partitioning and spatial partitioning of data
among MPI processes. Using a parallel filesystem and I/O middle-
ware for geo-spatial vector data has not been explored before. The
I/O performance depends on file access patterns exhibited by an
application. Design space exploration is needed to answer questions
like how much throughput is achievable for irregular data access
patterns on a given parallel filesystem. For this requirement, we
have developed MPI-Vector-IO, a parallel I/O library using MPI-IO
on top of parallel filesystem that can efficiently partition spatial data
consisting of variable length geometries. The size of a geometry
varies from less than a KB to more than 10 MB. We have imple-
mented three levels of MPI-IO abstractions and evaluated them on
GPFS and Lustre. We also study contiguous and non-contiguous
access patterns and their ramifications on performance and spatial
partitioning. Spatial join is chosen as an exemplar application for
end-to-end evaluation.

We discuss the design and implementation of a user-friendly
I/O and partitioning library targeted to GIS community’s need to
run spatial analytics on an HPC platform. MPI-Vector-IO is not
tied to any specific format. This library improves the state of the
practice by enabling HPC based GIS systems to handle publicly
available datasets where a single file can be more than hundred GBs
in size. MPI-Vector-IO introduces spatial data aware abstractions for
collectives in MPI and provides communication interfaces required
for global spatial partitioning. It can perform I/O and parsing for a
variety of data types including polygon/polyline. Two approaches
have been designed for file partitioning in order to ensure that a
geometry does not get split among consecutive MPI ranks.

The main contributions of this paper can be summarized as
follows:

(1) MPI-Vector-IO: Parallel I/O support for partitioning and read-
ing variable length geometries using MPI-IO. By using a
flexible interface, it allows user-defined methods to parse
coordinates to GEOS geometry objects. We provide bench-
marks for contiguous and non-contiguous access patterns
on Lustre and GPFS parallel filesystems.

(2) Evaluation of independent and collective MPI file read func-
tions. We show that independent functions provide better
performance than collectives for contiguous file read opera-
tions on vector data stored on Lustre.

(3) Spatial data aware MPI: Derived spatial data types, spatial
reduction operations and communication support for spatial
data using MPI. With these new spatial types, the efficiency
of built-in reduction operations can be leveraged.

(4) AnMPI framework to parallelize spatial computations on top
of MPI-Vector-IO (described in Section 4.3). The framework
enables parallel spatial indexing and join operations on an
order of magnitude larger datasets (indexing up to 700M
geometries in 137 GB single file in 90 seconds) [1–3, 5, 27,
28, 32].

The rest of the paper is structured as follows. Section 2 presents
general technical background related to this paper. Section 3 dis-
cusses the challenges and implementation issues. In Section 4, we

Level 0 Contiguous and Independent
Level 1 Contiguous and Collective
Level 3 Non-contiguous and Collective

Table 1: Three levels in MPI file read functions.

present the design and implementation details ofMPI-Vector-IO. Sec-
tion 5 presents the experiments and evaluation using real datasets.
Section 6 concludes this paper.

2 BACKGROUND CONCEPTS AND RELATED
WORK

Vector data: Well-Known Text (WKT) is a text markup language
for representing vector geometry objects on a map. A polygon
with 3 vertices is represented as POLYGON ((30 10, 40 40, 20 40,
30 10)) [31]. Its binary equivalent, known as Well-Known Binary,
is used to transfer and store the geometries in spatial databases.
These formats were originally defined by the Open Geospatial
Consortium.

Parallel I/O and MPI-IO: Parallel filesystems like GPFS and Lustre
store chunks of a file across multiple hard disks which make parallel
read/write possible. In Lustre, stripe count and stripe size can be
specified for a file and a directory. Stripe count means the number of
storage devices (OST) where the file blocks are striped. MPI provides
I/O routines for read/write operations by multiple processes to a
common file. Using parallel I/O can lead to improved performance
and provides a single file for storage and transfer purposes. File
access can be expressed in contiguous or non-contiguous fashion
(each process accesses multiple small chunks of data located non-
contiguously). Special functions like MPI_Type_contiguous and
MPI_Type_vector can be used for non-contiguous types. These
types allow for gaps such that elements are separated by multiples
of the extent of the input datatype. An example of non-contiguous
area is a column of a 2D array stored in a row major order. MPI
provides independent and collective functions for file read and
write operations as shown in Table 1.

In literature, there are several studies and software tools like
PnetCDF, HDF5, ADIOS, T3PIO, HieRO, etc. for optimizing I/O in an
HPC environment [8, 15, 18, 19, 21, 24]. These are geared towards
scientific and simulation applications reading/writing checkpoint
or visualization data and use specific file formats like NetCDF, HDF,
BP, etc. These formats are very different from spatial vector data
formats. Using the existing libraries mentioned earlier would re-
quire data format conversion and preprocessing to store file offsets
of the variable length geometries in order to allow random access
for partitioning. Our proposed method (Algorithm 1) uses inter-
process communication to partition the file on the fly and does
not require any preprocessing. Some file access patterns in GIS
are also different from scientific applications. Chou et al. discusses
in-memory system for spatial indexing and query without using
a parallel filesystem [8]. Our work is geared towards spatial data
analytics use cases where the data resides on a parallel filesystem.

Much of the research on big spatial data has been done on top of
HDFS filesystem using MapReduce paradigm [4, 12]. The default
design of HDFS/Hadoop cannot efficiently utilize the advanced
features of the available resources in HPC platforms. In our past
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project on polygon overlay computation, we found MPI-based sys-
tem to be faster than Hadoop based system [26]. With time-critical
and latency sensitive applications in mind, we are proposing HPC-
oriented solution to geo-spatial data problems based on MPI.

Geometry Engine OpenSource (GEOS) is a widely used C++ li-
brary that provides 1) spatial data structures including Quadtree
and R-tree, 2) computational geometry and GIS algorithms, and 3)
parsing WKT geometries. MPI-Vector-IO internally calls this library
for geometric algorithms. Due to this integration, it enables the
usage of GEOS in a shared-nothing MPI environment.

Filter and Refine technique: Spatial query e.g. searching for all
geometries overlapping with a polygon p is carried out in two
phases. In the filter phase, all of the spatial data is scanned and over-
lap test is carried out with rectangular approximation (bounding
rectangle) of the geometries. Using approximations produce some
false positives. Therefore, in the refine phase, actual geometries are
used for overlap test. This technique leads to better performance
because overlap test on rectangles is faster than with the larger
and complicated geometries. Moreover, a sizable chunk of the input
geometries are weeded out in the filter phase itself.

By combining the generality of filter and refine with the GEOS
library, a framework can be developed to handle a class of spatial
analytics use cases. We will show how to combine this framework
with MPI-Vector-IO for parallelization in Section 4.3 and show
spatial join as an exemplar.

Spatial Join: Spatial join is similar to join operation on two tables
in a database. In spatial join, the records have spatial attributes i.e.
2D objects and the join operation is defined on spatial properties.
An example of a spatial join is “Find all pairs of rivers and cities that
intersect.” Intersect operation for a given pair of polygons returns
true if and only if polygons share any portion of space. In general,
spatial join can be defined as follows: given two spatial datasets R
and S and a spatial join predicate θ (e.g., overlap, contain, intersect)
as input, spatial join returns the set of all pairs (r , s ) where r ∈ R,
s∈S, and θ is true for (r,s) [16]. Similar to spatial queries, spatial
join also follows filter and refine technique.

Existing MPI based approaches: There are fewHPC based research
studies focused on parallelizing spatial computations on CPU and
GPU without much attention to parallelize file I/O [3, 5, 32]. Our
earlier work on polygon overlay avoided file partitioning and it
was not designed to use any parallel filesystem [1, 28]. As such,
file I/O proved to be the bottleneck. Each process read a chunk
of input shapefile using a sequential library. This approach only
worked with a shapefile because it maintains an extra index file
to hold the offsets of the geometries in the main file. For other
XML data formats, we implemented redundant file reading by all
processes and master process distributing data to other workers.
These redundant and serial I/O strategies were slow, cumbersome,
and overwhelmed the memory capacity of individual nodes for
larger data. Other research projects do not study the parallel I/O
issues for variable length spatial data [5, 8].

3 CHALLENGES AND IMPLEMENTATION
ISSUES

Users in geo-spatial domain are tool constrained in HPC environ-
ment. For large geo-spatial files, data partitioning is one of the big
challenges. Following questions are addressed in this paper:

1)Data Partitioning: How to partition a file that contains irregular
and unstructured data (co-ordinates + attributes)? Simple partition-
ing by file-blocks fails due to geometries getting split across two
consecutive MPI ranks.

2) Expressing vector data I/O using MPI: MPI-IO functions are
for unformatted binary file access similar to POSIX read and write
functions [14]. Using these functions require reading the file, fol-
lowed by parsing phase to construct data types. MPI does not have
any functions for formatted text I/O equivalent to fprintf and fscanf
in C language. Formatted I/O functions are suitable for text-based
spatial data; for instance, parsing phase is not required for reading
points, lines and rectangles using fscanf. Given the fact that MPI-IO
functions are designed for binary unformatted data, how to use
them effectively for geo-spatial applications where the data is for-
matted and not necessarily in binary form? A variety of geometry
representations defined by Open Geospatial Consortium should be
supported and the nitty-gritty of file and data partitioning issues
should be abstracted away by the parallel library.

3)MPI-IO and ROMIO issues: MPI standard specifies that the count
parameter passed to MPI functions be a 32-bit integer. Using user-
defined derived data types, count can be reduced to a lower number
than what a 32-bit integer can hold. However, this creates problem
with ROMIO, a widely used MPI-IO implementation, where an
MPI process can not read/write more than 2 GB of data in a single
operation. It should be noted that this is a known limitation of
ROMIO. For MPI communication of large data, derived data types
are not sufficient for irregular MPI collectives. For instance, in
Alltoallv that allows processes to send messages of different sizes,
but have only one datatype parameter, a single derived data type
that will work for all processes needs to be defined at run-time.
This requires additional phase of communication to determine the
extent of the new data type a priori. With respect to the new data
type, the communication buffer needs to be padded accordingly,
which adds overhead during serialization and deserialization.

Figure 1: Local geometries read by MPI-Vector-IO is projected
to a grid by each process. Shaded area represents tasks as-
signed to P1. For spatial locality, P1 needs geometries over-
lapping with its area from other processes including P0 and
Pn−1.

4 MPI-VECTOR-IO
In this section, we will discuss data parallel MPI-Vector-IO archi-
tecture with respect to I/O, file and spatial partitioning using MPI.
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Figure 2: MPI-Vector-IO architecture and data flow diagrams.

For efficient and scalable partitioning of vector data, we need to
focus on all three aspects - I/O, computation, and communication.
In order to parallelize spatial computations,MPI-Vector-IO performs
data partitioning in two distinct phases - 1) file partitioning for data
parallelism and 2) cellular grid based partitioning to ensure spatial
locality.

Two access patterns are used depending on the size of the data
and application. For large files, a block size needs to be specified
with an upper bound of 2 GB per process due to ROMIO limita-
tion. Block size can be varied by user to control the granularity of
computation. If block size is not defined, then the file is logically
divided equally among the processes. After file partitioning, each
process reads the local geometries and projects them to a local
grid as shown in Figure 1. Inter-process exchange of geometries is
required to get a global partitioning of the overall data in order to
ensure that each cell of the grid contains all the geometries that
lies in it partially or completely. If a geometry spans multiple cells,
then it is simply replicated to these cells. Duplicate avoidance is
carried out later in the refinement phase. The data decomposition
is in terms of cell which is also an abstract type to represent a unit
task in our system. A subset of these cell-based tasks are assigned
to processes.

MPI-Vector-IO system carries out filter-and-refine on spatial data
stored on parallel filesystem in a distributed fashion. Figure 2 shows
the architecture and data flow in a cluster environment with high
performance interconnects and parallel filesystems. The general
architecture shown in this figure represents the data flow for a range
of applications like spatial query, join and overlay. The data flow
diagram shows distributed spatial computation and communication
using 3 compute nodes. The geometries in a file partition (P0 to
P11) are mapped to corresponding grid cells. For populating the
cells with geometries overlapping with its boundary, an R-tree is
first built by inserting the individual cell boundaries. Then, for
each geometry in the local file partition, the overlapping grid cells
are determined by querying with the geometry’s MBR against this
R-tree. An all-to-all personalized data exchange produces global
spatial partitioning.

We start with our main contribution - parallel I/O and parti-
tioning for polygonal data. Then, we will show how to parallelize
spatial computations on top of MPI-Vector-IO.

4.1 Design and implementation of
MPI-Vector-IO

Depending on the type of spatial data, MPI-Vector-IO supports both
formatted as well as unformatted data. It takes advantage of the I/O
interface in MPI that supports features like collective and indepen-
dent I/O. The input layers are split into logical partitions among
MPI processes. For text-based data like WKT, each file partition is
treated as collection of strings and assigned to a single process. All
the strings in each partition gets parsed into geometries first and
then mapped to one or more grid cells based on its MBR’s spatial
overlap with the grid cells.

Figure 3: File partitioning among processes (contiguous
mode).

Contiguous File Access: In MPI-Vector-IO, the basic idea is to log-
ically partition the entire file among N processes. Each process
participates in reading a portion of a common file as shown in
Figure 3. For formatted text data, default file view is used for con-
tiguous file access. In order to handle data with co-ordinates and
text attributes, we have used buffer of MPI_CHAR data type in
MPI-IO functions. A user can select the I/O functions to be used
in independent (Level 0) or collective (Level 1) mode by each pro-
cess. If block size is not specified, then each process reads equal
chunks of the file as shown in Figure 3. Otherwise, each process
determines the file offsets based on the block size specified by the
user. The block size is defined for each process. In this case, there
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are multiple iterations of file access required to read the complete
file. As shown in Algorithm 1, all iterations except the last one read
(N*blockSize) bytes. The last iteration requires special handling.
Depending on the portion of file remaining in the last iteration, a
subset of processes call the file read function.

Handling variable-length geometries: Due to file partitioning, a
polygon vertex list can potentially get split across file partition read
by a process. This is undesirable since a shape needs to be read
by one process in its entirety. To prevent this splitting, a process
needs to read slightly more than (FileSize/N ) bytes. The exact
number of bytes is determined by the maximum size of a shape in
our current data sets which is 11 MB to handle the largest polygon.
One way to resolve this issue is to allow the file access by two
consecutive processes to overlap with each other near the block
boundaries. This overlap area is similar to a halo region and its
length can be specified if the upper bound on the size of a geometry
is known a priori. Among the two contending processes, one of
them needs to take the ownership of the geometry spanning a
block boundary. This approach requires O (N ) bytes of redundant
file reading because of overlapping read accesses. This problem is
further exacerbated when multiple iterations are required to read
the file completely because the block size read by each process is
small.

Dynamic file partitioning: Another approach is to read fixed-size
blocks with no overlaps by each MPI process and use send and recv
communication in a ring fashion where an MPI process passes the
incomplete geometry’s co-ordinates to its neighboring process as
shown in Algorithm 1. MPI communication is used instead of MPI
processes reading overlapped file blocks. In Line 12 of Algorithm
1, the processes are partitioned into two groups to avoid deadlock
conditions. One group consists of even-numbered processes and
the other of the odd-numbered processes. The even-numbered pro-
cesses perform a send followed by receive, and the odd-numbered
processes perform a receive followed by a send. Only three argu-
ments are shown in the send/receive function calls, namely buffer
address, buffer size and source/destination ranks. In Line 15 and 17,
the receive function’s max buffer size is fixed as 11 megabytes. To
get the actual number of data types received, MPI_Get_count func-
tion is used. If an upper bound on the message size is not easy to
calculate, MPI Probe and Get_Count functions are required to find
the message size for receive function’s buffer allocation. Dynamic
file partitioning solves the variable length geometries getting split
among processes. This approach does not require halo regions and
has the advantage of not doing redundant file reading. Moreover,
parallel file read access will be stripe aligned.

Figure 4: File partitioning (non-contiguous mode). Each pro-
cess reads file partitions in a round-robin fashion.

Non-Contiguous File Access for Spatial Data: In many GIS appli-
cations, the co-ordinate data is partitioned among grid cells and
the cells are distributed among MPI processes in a round-robin

Figure 5: Spatial partitioning as a result of file partitioning
among 6 processes with a) default file view (Figure 3) and b)
non-contiguous file view (Figure 4).

Algorithm 1 Iterative File Reading - Message based
1: Input variables: fileSize, blockSize, N, rank
2: MPI_Offset globalOffset← 0
3: MPI_Offset fileChunkSize← N * blockSize
4: iterations← ⌈fileSize/fileChunkSize⌉
5: for (i=0; i <(iterations-1); i++) do
6: globalOffset← i * fileChunkSize
7: start← globalOffset + rank * blockSize
8: MPI_File_read_at_all(file, start, fileBuffer, blockSize)
9: lastDelimPos← blockSize-1
10: while (fileBuffer[lastDelimPos] != DELIMITER) do
11: lastDelimPos--
12: if (rank%2 == 0) then
13: MPI_Send((fileBuffer+lastDelimPos),
14: (blockSize-lastDelimPos), (rank+1)%N)
15: MPI_Recv(recvBuffer, maxBufferSize, (rank-1+N)%N)
16: else
17: MPI_Recv(recvBuffer, maxBufferSize, (rank-1+N)%N)
18: MPI_Send((fileBuffer+lastDelimPos),
19: (blockSize-lastDelimPos), (rank+1)%N)
20: handleLastIteration()

fashion for load-balancing. For example, in a grid-based polygon
overlay operation, the output needs to be written to a single file
in which the storage order corresponds to that of the global grid
data layout in row-major order. Since the spatial data is distributed
among processes, this requires non-contiguous file writing (shown
in Figure 4). This ensures that the output file is same as if produced
sequentially.

To ensure spatial data locality, points and line segments are
often sorted in 2D using Z-order and Hilbert curve. Rectangles and
polygons are partitioned into grid cells for the same purpose. For
spatially sorted data, contiguous and non-contiguous file reading
results in different partitioning. A contiguous access may result
in coarse-grained and uneven spatial partitioning among different
processes as shown in Figure 5 a) with 6 processes. For skewed data,
this may lead to load-imbalance among processes. Non-contiguous
read creates fine-grained tasks and declustering of data as shown
in Figure 5 b). Heuristics like declustering geometries and round-
robin assignment to tasks has been shown to be effective for load-
balancing [30]. By defining custom file views using derived data
types, MPI-Vector-IO enables these techniques to be applied while
doing file read for point, line segment, and polygonal data.
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Unlike polygons that vary in length, spatial types like points,
lines, and MBRs have fixed length. Files containing these special
types are preprocessed and stored in binary as basic or struct type.
MPI-IO functions then directly read the data as MPI datatypes. In
case of spatial index files that need frequent access, the advantage
in doing so is that file access becomes regular and much faster.
Moreover, custom file views can be easily defined for these unfor-
matted files with fixed-size records. This makes non-contiguous file
access easier to implement. A file block size needs to be defined in
terms of number of datatypes to specify the areas in file accessible
per process.

Implementing non-contiguous file access for variable length
polygons and polylines requires preprocessing. Vertex count and
displacement arrays containing length of geometries and array-
offsets are populated as a preprocessing step. Using these auxiliary
arrays, MPI_type_indexed derived data type is created to specify
block layout in file views. Collective functions are used in all cases.

Table 2: Spatial data types and reduction operators.

Figure 6: Using new types and operators in MPI functions.

4.2 Collective Computation and
Communication for Spatial types

This subsection is motivated by the fact that user-defined data types
and operations not only enhance the abstraction and reusability
of a system, but also performance in case of MPI in the presence
of hardware support [6]. Using derived datatypes and functions
to specify the data layout, non-contiguous elements need not be
copied to additional buffer for send/recv and file access operations,
thereby, leading to optimized communication. In case of I/O, it may
lead to fewer system calls and physical disk I/O.

4.2.1 Spatial data types. MPI provides a rich set of predefined
datatypes. Using these, we have defined additional derived types
to represent spatial data that are supported by WKT and GEOS
library e.g., MPI_Point, MPI_Line, MPI_Rect, etc. These data types
are shown in Table 2. For instance, MPI_Rect is defined as a con-
tiguous type of 4 doubles. Additional compound types such as

multi-point, multi-line, and fixed-size polygon are defined by nest-
ing basic spatial types. With these new spatial types, the efficiency
of built-in MPI reduction operations can be leveraged, provided we
define new reduction operators for the corresponding data type
using MPI_Op_create and pass it to the user-defined function. An
example showing how to use it is given in Figure 6.

4.2.2 Collective Reduction Operators for Spatial types. With de-
rived data types, existing MPI reduction operators like MPI_MIN,
MPI_MAX, etc., do not work. So, we have redefined them for lines,
MBRs, etc. The min operator can be used to find the line or rec-
tangle with minimum size among processes. New MPI_UNION
operator on MBRs is also defined which has been used to find the
grid dimensions from the union of MBRs generated by individual
processes during spatial partitioning. To implement it, there is a
user-defined function linked to the union operator that performs
geometric union of rectangles. MPI uses this operator to carry out
the function in a optimized reduction tree fashion. An example us-
age is shown in Figure 6. These operators can be non-commutative,
but must be associative.

4.2.3 Communication buffer management. There are two inputs
to this module for each MPI process - 1) the spatial data read from
a file partition that is already mapped to a cellular grid and 2) rank-
to-cells mapping, for example, round-robin. Since a process may
have a geometry belonging to a cell mapped to a different process,
data exchange is required for global spatial partitioning. MPI buffer-
oriented communication requires serialization and deserialization
of geometries (grouped by cell) by each process. Each MPI process
serializes the coordinates and geometry related text data for all
MPI processes in its send character buffer for all-to-all exchange.
For vector data consisting of polygons, the number of vertices
vary considerably. MPI-Vector-IO provides collective communica-
tion functions to exchange spatial data of different types (including
polygons) among processes. Due to the variation in the number of
geometries and size of each geometry to be sent (received) to (from)
other processes, each MPI process needs to provide send (recv)
count and displacement arrays. As such, all-to-all collective commu-
nication is performed in at least two communication rounds. Before
actually sending the entire co-ordinate data using MPI_Alltoallv,
the processes exchange the buffer related information among them
using MPI_Alltoall which is then used to calculate the receiver side
count and displacement arrays of MPI_Alltoallv.

Handling large data exchange: For large data sets, it is often not
possible to perform data exchange in a single phase due to memory
limitations. As such, we have incorporated sliding window technique
where communication happens in distinct number of phases in an
iterative manner. In each phase, spatial data contained in a chunk
of cells are exchanged.

4.3 Parallelizing Spatial Computations using
MPI-Vector-IO

Many GIS applications involving query and join operations require
a filter-and-refine approach. As such, MPI-Vector-IO extends this
concept to be carried out in a distributed fashion. As a system,MPI-
Vector-IO is designed in an extensible manner to take care of file
splitting and spatial partitioning using object-oriented approaches
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to handle a variety of data formats with minimal change. Basic steps
required to parallelize spatial computations are shown in Figure 7.

Parsing module: Spatial data is parsed while reading the file from
disk and from the MPI communication buffer during deserialization.
Unlike PnetCDF, our implementation is not tied to any specific file
format. To handle a variety of file formats, our flexible interface
presents the geometric data in those files as a collection of strings,
thereby allowing user to define parsing method that returns a GEOS
geometry for each string. For reading WKT data format, the parse
interface is implemented byWKTParser class that extracts the co-
ordinates by parsing them into Geometry objects. This extensible
approach applies to other vector data as well e.g., XML and CSV-
based spatial data. Other feature data associated with the geometry
is stored in userdata field of GEOS Geometry class. Using GEOS
library internally allows our system to represent a wide variety of
shapes defined by OGC standard.

Figure 7: Main steps for performing spatial computation us-
ing MPI-Vector-IO.

For partitioned data, spatial computation can be carried out by
extending refine interface that receives two collection of geometries
in a cell. For spatial query workload, the second collection can be
treated as geometries from batch query. Refine tasks are scheduled
based on the task mapping across processes thereby carrying out
distributed spatial computations in different cells. More details on
the library with examples are provided on the project page 2.

5 EXPERIMENTAL RESULTS
This section provides an experimental study of the performance
of our system using a variety of large vector datasets. First, as our
contributions are about spatial data support in MPI, the experi-
ments are designed to show the performance of the various system
components. We have chosen spatial join as a representative ap-
plication. We have not compared MPI-Vector-IO with PnetCDF or
ADIOS. Using these tools would require cumbersome conversion of
the real vector datasets to tool-specific formats and preprocessing
to calculate the file offsets for each geometry in order to allow
random access.
2 www.mscs.mu.edu/~satish/mpigis.html

Table 3: Real-world datasets and Sequential parsing time.

Dataset Shape File Size Count I/O (sec)
1 Cemetery Polygon 56MB 193K 2.1
2 Lakes Polygon 9GB 8M 328
3 Roads Polyline 24GB 72M 786
4 All Objects Polygon 92GB 263M 4728
5 Road Network Line 137GB 717M 2873
6 All Nodes Point 96GB 2.7B 3782

Parsing large datasets: Spatial data sets are growing in size. Ta-
ble 3 shows the description of the datasets with different sizes,
types, and number of shapes extracted from OpenStreetMap which
represents map data from the whole world [22]. For spatial queries
on large spatial data files of 100 GBs, I/O and parsing phase itself
takes about an hour, as shown in the last column of the table.

Cluster Information: We have used COMET cluster with Lustre
filesystem [9]. The cluster has 2.5 GHz Intel Xeon E5-2680v3 pro-
cessors and 128 GB DDR4 DRAM. Each node has 24 cores. The
network topology is FDR InfiniBand with 56 Gb/s link bandwidth.
It has 6 petabytes of 100 GB/s durable storage. There are 96 OSTs
available for striping. Maximum compute nodes that are allowed
in a single job is 72. 16 MPI processes are run per node. We used
Open MPI version 1.8.4 and GCC 4.9.2.

We have used ROGER cluster [29] with GPFS parallel filesystem.
The compute nodes have two Intel Xeon E5-2660 v3 chips. Each
chip has 10 cores, each running at 2.6GHz. Each node has 256 GB
of physical RAM. The cluster is connected by a high-speed network
with 40Gb/s switches in the core and 10Gb/s uplinks to each node.
20 MPI processes are run per node. We used MPICH/3.1.4 and GCC
4.9.2 to build the system. GEOS library version 3.4.2 has been used
for local spatial indexing and join [17].

First, we evaluate MPI-Vector-IO on Lustre and GPFS. Then, in
subsection 5.2, we evaluate an end-to-end spatial join system built
on top of MPI-Vector-IO.

5.1 MPI-Vector-IO performance evaluation
The results shown here are average of at least three runs. First,
we discuss performance evaluation of file read operations (Level 0
and 1) on Lustre by varying stripe count (OST) and stripe size. On
GPFS, we did not have the permission to change those parameters.
Therefore, we used the default filesystem configuration on GPFS.

5.1.1 Lustre Experiments. The granularity of spatial compu-
tation can be controlled by varying block sizes to be read by each
process. A user can specify coarse-grained block size if the appli-
cation is less compute intensive e.g. range query. However, spatial
join requires fine-grained block decomposition since it is very com-
pute intensive. Moreover, grain size also impacts load balancing.
Therefore, here we show how much throughput is achievable for a
variety of block sizes.

In the following experiments, 16 cores per node is used with 1
MPI process for each core. A single file is striped using different
stripe count (upto 96 OST allowed) and stripe size to study the
performance variations. Block size read by each process is kept
same as the stripe size for file access alignment with the stripes.

www.mscs.mu.edu/~satish/mpigis.html
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Performance of Algorithm 1 depends on the number of iterations
of file access required to read a whole file in blocks. The number of
iterations depend on the number of processes, file size, and block
size read by each process (see steps 3 and 4 of Algorithm 1). For
instance, in case of Roads data set, using 256 processes and 32 MB
block size, 4 iterations are required to read the complete file. Using
16 MB block size, 7 iterations are required. However, if we use 128
processes and 32 MB block size, file read functions are invoked 7
times. Each time 4 GB file chunks are read and the file offset is
advanced accordingly. In the last iteration, only 168 MB needs to be
read. Therefore, the block size used for the last iteration is different
than 32 MB. It should be noted that fewer iterations also means less
send/recv messages to handle the geometries getting split among
consecutive MPI ranks.

Independent Read (Level 0): In Figure 8, file read performance
in the order of GB/s is shown for the largest polygonal data. The
number of nodes is varied from 4 to 72 (maximum allowed). The
performance improves when the number of processes is increased
up to a certain extent due to the reduction in the number of file
access. For all stripe counts, there is a range of processes where
relatively high bandwidth is achieved. The maximum bandwidth
achieved is 22 GB/s using 48 compute nodes. In Figure 9, file read
bandwidth for Roads data is shown for different number of OSTs.
Roads is much smaller data set than All Objects. Therefore, we
have chosen a smaller stripe size (32 MB) to allow larger number
of processes in this experiment. Block size read impacts the I/O
performance and with smaller size, we can see up to 8-9 GB/s
bandwidth for different number of OSTs. In Lustre, performance for
a given number of processes generally increases with the number of
OSTs before reaching maximum value. The higher I/O requirement
for larger number of processes quickly saturates the link bandwidth.

Figure 8: File Read bandwith for All Objects (92 GB) with
stripe size 64 MB and128 MB. Stripe count 64 (Level 0).

Contiguous and Collective Read (Level 1): We compared the per-
formance of reading Lakes (9 GB) by employing two strategies -
1) overlapping file access by consecutive MPI ranks and 2) non-
overlapping file access with send-recv communication (referred to
as message based) to handle file partitioning for variable length
geometries. As shown in Figure 10, message based algorithm per-
forms better for a range of processes and stripe counts. Block size
was fixed to 32 MB. We repeated this experiment on NFS filesystem
as well with different block sizes and reached to the same conclu-
sion. The overhead of reading 11 MB halo region by each process
is greater than exchanging missing co-ordinates. Therefore, we

Figure 9: File Read bandwith for Roads (24 GB) for different
stripe counts and fixed stripe size 32 MB (Level 0).

Figure 10: Performance comparison betweenMessage vs Over-
lap access strategy for three different stripe counts (OST).

Figure 11: File Read time for Roads (24 GB) with stripe size
16 MB (Level 1).

have used message-based file partitioning for Level 0 and 1 access
patterns.

Figure 11 shows the read performance for Roads using three
stripe counts and 16 MB block size. The maximum bandwidth
achieved is 3.5 GB/s with 96 OSTs. For Lakes (9 GB), the maxi-
mum bandwidth achieved is about 3.6 GB/s with the same number
of OSTs. When we doubled the block size to 32 MB, up to 5 GB/s
bandwidth is achieved. For both datasets, performance improved
with using higher stripe counts (OST). In general, for a fixed block
size, disk access frequency and message passing overhead decreases
when the number of processes increase. However, in the figure, we
can see the performance drop for 24, 48, and 72 nodes. For instance,
performance using 48 nodes is worse than 32. Similarly, perfor-
mance using 24 nodes is worse than 16 nodes. This is due to the fact
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that on Lustre, the upper bound on the number of MPI processes
actually performing read operation (reader) is equal to the number
of nodes. The actual number of readers can be less than the number
of nodes as described in the next paragraph.

MPI hint with key cb_nodes can be provided by the user to set the
number of nodes performing I/O operations. However, on Lustre,
the actual number of readers is determined based on whether the
number of nodes is a multiple or a divisor of the stripe count [21].
We notice good performance when the number of readers selected
by ROMIO is equal to the number of nodes. This happens when
the stripe count (OST) is a multiple of the number of nodes. This is
shown in Figure 11 for 16, 32, and 64 nodes. The number of readers
selected by ROMIO is a function of number of nodes and stripe
count. When the stripe count is greater than the number of nodes,
then the number of readers selected is equal to the largest divisor
of stripe count that is less than or equal to the number of nodes. For
instance, only 16 readers are selected when 24 nodes are reading
from 64 OSTs3. When 48 nodes are reading from 64 OSTs, 32 readers
are selected4. This explains the performance drop for 24 and 48
nodes as shown in the Figure. So, for collective read functions to
performwell the combination of node count and stripe count should
be chosen appropriately such that the number of nodes should be a
multiple or divisor of the stripe count. This issue has been reported
for write performance on Lustre [21].

In general, independent functions performed better than col-
lective for our block-based contiguous file read use case due to
the overhead involved in collectives. For collective functions, I/O
happens in two distinct phases. Only a subset of MPI processes
(a.k.a. aggregators) perform I/O on behalf of the other processes.
Then the aggregators distribute the data to other processes using
MPI_Alltoallv. For larger block size, the two phase I/O algorithm
is split into multiple cycles due to buffer size constraints [7]. This
leads to sub-optimal performance. We tried different values for
cb_buffer_size and cb_block_size in order to tune collective buffering.
However, the difference caused by these hints was not noticeable.

5.1.2 GPFS Experiments. All the experiments in this subsec-
tion were performed on ROGER cluster. The last column in Table 3
shows the sequential I/O time for a variety of datasets. File I/O time
depends on size of the dataset. However, the parsing time depends
on the type of shape and the number of geometries in a dataset. For
instance, polygonal data (All Objects) takes more time for parsing
than line data (Road Network) as shown in the table, even though
Road Network is larger in size than All Objects.

Figure 12 shows performance impact of MPI data types on read-
ing binary file in contiguous mode. MPI_Type_struct performs
better than MPI_Type_contiguous. The difference is that in case of
the struct, MPI implementation internally creates the C struct based
on the data type definition whereas in the contiguous case, user
code creates a C struct using 4 contiguous floating point numbers.

Figure 13 shows the performance for new MPI_Op for geometric
Union using 100K, 200K and 400K rectangles. This operator is used
in our system to get the global spatial grid dimensions by the union
of local grid dimensions.

3Largest divisor of 64 that is less than or equal to 24 is 16
4Largest divisor of 64 that is less than or equal to 48 is 32

Figure 12: Binary file reading time using MPI derived data
types on GPFS (Level 1).

Figure 13: MPI Reduce and Scan for geometric Union.

Figure 14: I/O+Parsing performance for All Nodes (96 GB) and
All Objects (92 GB) on GPFS (Level 1).

Figure 14 shows the file reading performance for All Nodes and
All Objects using contiguous access mode. Both files are about the
same size but All Objects takes more time because parsing polygons
take more time than point data in All Nodes. The I/O performance
scales up to 80 processes for both files.

Non-contiguous and Collective Access (Level 3): Figure 15 shows bi-
nary unformatted file reading time for contiguous and non-contiguous
access modes. The block sizes show the number of MBRs where
an MBR consists of 4 floating point numbers. As we can see in the
figure, file access in contiguous mode is much faster. MPI-IO im-
plementation has to perform more work in case of non-contiguous
access in terms of interprocess communication involved in two-
phase I/O. For non-contiguous mode, larger block sizes perform
better due to less aggregation and communication overhead.
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Figure 15: Binary file (10 GB) reading time for non-
contiguous (NC) access modes on GPFS (Level 1 and 3).

Figure 16 shows file reading performance for polygonal data
using contiguous and non-contiguous access modes. In case of
irregular and formatted data as well, contiguous access mode per-
forms well and improves with increase in the number of processes
for both datasets. However, performance of non-contiguous access
is very sensitive to block-size and number of processes. The block
sizes are specified in terms of number of polygons in this figure.
Since polygons vary in length widely, the I/O request per process
is very irregular and can vary considerably with change in block
size and number of processes.

Figure 16: Non-Contiguous (NC) I/O for polygon data with
different block sizes on GPFS.

5.2 End-to-end performance evaluation
All the experiments in this subsection were performed on ROGER
cluster. Here, we will discuss the component-wise performance
breakdown with respect to partitioning, communication and com-
putation phases for spatial join workloads. The partitioning time in-
cludes the time taken to populate the grid cells with the geometries
read from a local file partition. The communication time includes
the buffer management overhead in serialization, deserialization
and exchange of geometry objects. The join time includes time
for spatial indexing and geometric intersection test. In the follow-
ing plots, we note the time taken by each process and take the
maximum time for each of the components.

The effect of grid-based spatial partitioning can be seen in Fig-
ure 17. As the number of grid cells increase, the overall execution
time decreases. The load in terms of number of geometries across
cells can vary. Moreover, the cell to process mapping also changes

Figure 17: Execution time breakdown for different number
of grid cells for Spatial Join (Lakes, Cemetery) using 80 MPI
processes.

as the number of grid cells and processes increase. This affects the
load per process which reflects in the communication time. The
total time is less than the sum of different phases because here we
report the maximum time among all processes for each phase.

Figure 18: Execution time breakdown for spatial join (#2, #1).

In Figure 18, the spatial join time dominates the overall execution
time. With increasing number of processes, the join time decreases
as well. In Figure 19, the communication cost dominates the overall
execution time. The execution time breakdown of different phases
for in-memory spatial indexing of Road Network (137 GB) is shown
in Figure 20. The performance of all the components improves with
increase in the number of processes. Using 320 processes, spatial
indexing of 717M edges takes only 90 seconds.

Figure 19: Execution time breakdown for spatial join (#3, #1).

Using end-to-end spatial join as an exemplar, we have shown
that MPI-Vector-IO can handle data and compute-intensive spatial
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Figure 20: Execution time breakdown for indexing 137 GB
(Road Network) among 2048 grid cells.

operation on an order of magnitude larger data sets. This has been
made possible by our proposed parallel I/O and data partitioning
approach. However, more work is required to improve the overall
scalability of the system by incorporating dynamic load balancing.
Data partitioning and communication can be further improved by
making it locality-aware. Previous work in this area have only used
few shapefiles where each file can only be 2 GBs [1, 5, 28, 32]. Hence,
the current work improves the state of the practice in HPC GIS
domain.

6 CONCLUSIONS
Analyzing large amounts of spatial data to guide decision making
has become essential to businesses as well as scientific discovery. A
spatial data framework for HPC environment needs parallel I/O and
partitioning support for large scale collection of variable length ge-
ometries. In this paper, we introduced MPI-Vector-IO which enables
HPC based GIS to handle large vector datasets of different formats
efficiently. Introduction of new derived types for spatial data and
reduction operators for spatial primitives make MPI spatial-aware.
Moreover, MPI-Vector-IO system takes care of file and space parti-
tioning along with data communication under the hood, thereby,
making it easy to use for spatial data computations in HPC envi-
ronment. Going forward, we intend to integrate our GPU based
work [3] with MPI-Vector-IO.
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