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Synopsis Animals go through different life history stages such as reproduction, moult, or migration, of which some are
more energy-demanding than others. Baseline concentrations of glucocorticoid hormones increase during moderate,
predictable challenges and thus are expected to be higher when seasonal energy demands increase, such as during
reproduction. By contrast, stress-induced glucocorticoids prioritize a survival mode that includes reproductive inhibition.
Thus, many species down-regulate stress-induced glucocorticoid concentrations during the breeding season. Interspecific
variation in glucocorticoid levels during reproduction has been successfully mapped onto reproductive investment, with
species investing strongly in current reproduction (fast pace of life) showing higher baseline and lower stress-induced
glucocorticoid concentrations than species that prioritize future reproduction over current attempts (slow pace of life).
Here we test the “glucocorticoid seasonal plasticity hypothesis”, in which we propose that interspecific variation in
seasonal changes in glucocorticoid concentrations from the non-breeding to the breeding season will be related to the
degree of reproductive investment (and thus pace of life). We extracted population means for baseline (for 54 species)
and stress-induced glucocorticoids (for 32 species) for the breeding and the non-breeding seasons from the database
“HormoneBase”, also calculating seasonal glucocorticoid changes. We focused on birds because this group offered the
largest sample size. Using phylogenetic comparative methods, we first showed that species differed consistently in both
average glucocorticoid concentrations and their changes between the two seasons, while controlling for sex, latitude,
and hemisphere. Second, as predicted seasonal changes in baseline glucocorticoids were explained by clutch size (our
proxy for reproductive investment), with species laying larger clutches showing a greater increase during the breeding
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season—especially in passerine species. In contrast, changes in seasonal stress-induced levels were not explained by clutch
size, but sample sizes were more limited. Our findings highlight that seasonal changes in baseline glucocorticoids are
associated with a species’ reproductive investment, representing an overlooked physiological trait that may underlie the

pace of life.

Introduction

Many animals go through resource-demanding
phases of parental care that are required to raise
their offspring successfully (Clutton-Brock 1991).
The fitness gain (in terms of reproduction) of such
an investment has to be balanced against the benefits
of allocating limited resources to self-maintenance
processes, promoting survival (Stearns 1992; Roff
2000; Harshman and Zera 2007; but see Santos and
Nakagawa 2012; Williams 2012). The trade-off be-
tween reproduction and survival is key to under-
standing the diversity of life-history strategies
observed at species, population, and individual levels
(Ricklefs and Wikelski 2002; Békony et al. 2009; Hau
et al. 2010; Reale et al. 2010; Santos and Nakagawa
2012; Zhang and Hood 2016). Life-history strategies
are viewed as a continuum along a single “pace-of-
life” axis, on which certain physiological and behav-
ioral traits covary (Ricklefs and Wikelski 2002; Roff
2002; Reale et al. 2010; Pap et al. 2015; Mathot and
Frankenhuis 2018). For example, species with a fast
pace of life exhibit high reproductive rates, low sur-
vival rates, and high mass-specific metabolic rates,
whereas species with a slow pace of life show the
opposite trait values (Wikelski et al. 2003; Wiersma
et al. 2007; Reale et al. 2010; Versteegh et al. 2012; Le
Galliard et al. 2013; Pap et al. 2015; Auer et al.
2018). The pace of life axis has a latitudinal compo-
nent, with tropical species tending to follow a slow
and higher latitude species often following a fast pace
of life (Wikelski et al. 2003; Wiersma et al. 2007;
Hau et al. 2010; Williams et al. 2010).
Glucocorticoids are major mediators of life-history
trade-offs, because they function as key metabolic
and behavioral regulators of organismal energy sup-
plies (Wingfield et al. 1998; McEwen and Wingfield
2003; Wingfield and Sapolsky 2003; Breuner et al.
2008; Romero et al. 2009; Cornelius et al. 2011;
Angelier and Wingfield 2013; Romero and
Wingfield 2016). At baseline levels, glucocorticoids
adjust basic processes like metabolism and behavior
to meet the energetic demands that an individual
faces during routine activities, for example during
reproductive effort (Romero 2002; Landys et al
2006; Romero et al. 2009; Lattin et al. 2016).
Stress-induced  glucocorticoid levels are secreted
within a few minutes after the onset of a major
unpredictable challenge to support an “emergency

life history stage” (Wingfield et al. 1998; Sapolsky
et al. 2000; Romero 2004; Landys et al. 2006).
Stress-induced glucocorticoids rapidly promote a
suite of processes that serve to reallocate energy
reserves to survival functions, which includes the in-
hibition of non-vital processes like reproduction
(McEwen and Wingfield 2003; Wingfield and
Sapolsky 2003; Crespi et al. 2013).

Because of their actions, stress-induced glucocor-
ticoids have already been considered mediators of
life-history trade-offs, with concentrations differing
across species that diverge in life-history strategies
(Breuner et al. 2003, 2008; Wingfield and Sapolsky
2003; Crespi et al. 2013). However, from a life his-
tory perspective, glucocorticoids may well play a dual
role: at baseline concentrations they are expected to
support energetic challenges such as investment into
reproduction (“cort-adaptation hypothesis”, Bonier
et al. 2009; Bonier et al. 2011), whereas at stress-
induced levels they should prioritize investment
into  self-maintenance processes and survival
(McEwen and Wingfield 2003; Wingfield and
Sapolsky 2003). Hence, fast pace-of-life species with
a high reproductive investment should exhibit higher
baseline, but lower stress-induced glucocorticoid
concentrations during the breeding season compared
with species following a slow pace of life (Bokony
et al. 2009; Hau et al. 2010). Indeed, comparative
studies have generally supported these predictions
for stress-induced glucocorticoids (Goymann et al.
2006; Lancaster et al. 2008; Bokony et al. 2009;
Hau et al. 2010; Palacios et al. 2012; Apfelbeck
et al. 2017); although the opposite has also been
reported (Breuner et al. 2003; Martin et al. 2005;
Versteegh et al. 2012). Likewise, baseline glucocorti-
coid concentrations are higher during the breeding
season in species that invest more in current versus
future reproduction (i.e., in fast pace of life species;
Bokony et al. 2009; Hau et al. 2010).

Until now, studies on interspecific variation in
glucocorticoids relative to pace of life only included
glucocorticoid traits measured during a single life
history stage, usually the breeding season
(Goymann et al. 2006; Bdokony et al. 2009; Hau
et al. 2010; Versteegh et al. 2012). However, it is
known that many species change glucocorticoids sea-
sonally and most taxa have increased baseline gluco-
corticoid concentrations during breeding compared
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with other seasonal stages (Romero 2002). Here, we
hypothesize that seasonal glucocorticoid plasticity,
i.e.,, the magnitude of change from the non-
breeding to the breeding season, is related to pace
of life, and in particular to the degree of reproduc-
tive investment of a species (“glucocorticoid seasonal
plasticity hypothesis”). For baseline glucocorticoids,
the hypothesis builds on the “energy mobilization
hypothesis” (Romero 2002), which states that gluco-
corticoid concentrations should be highest during
energetically demanding seasons (such as the repro-
ductive period) to mobilize energy stores. For stress-
induced glucocorticoids, the hypothesis is based on
findings that certain species down-regulate glucocor-
ticoid stress responses during the parental phase,
perhaps to avoid an associated reproductive disrup-
tion (O’Reilly and Wingfield 1995; Holberton and
Wingfield 2003; Wingfield and Sapolsky 2003). Our
hypothesis also emphasizes the fact that glucocorti-
coid concentrations of species are not static, and that
seasonal variations in glucocorticoid levels may be
as, or even more, meaningful than absolute concen-
trations at a single time of the year. Variations in a
trait along a gradient of environmental or internal
factors can be quantified through reaction norm
approaches (Nussey et al. 2007). Reaction norm
approaches quantify both the average trait value
(i.e., the intercept) and the degree of change in the
trait along a gradient (i.e., the slope of the relation-
ship; Williams 2008; Dingemanse et al. 2010; Hau
et al. 2016). In the context of our hypothesis, we
would expect species with divergent degrees of re-
productive investment to differ in their slope of sea-
sonal changes between the non-breeding and the
breeding season baseline glucocorticoid.

Here, we test the glucocorticoid seasonal plasticity
hypothesis using data from a new and comprehen-
sive database on hormones and life history traits of
free-living vertebrates (“HormoneBase”, hormoneba-
se.org, M. N. Vitousek et al., submitted for pub-
lication). Our study aims to analyze the variation
within and among bird species in both baseline
and stress-induced concentrations of corticosterone
measured during non-breeding and breeding. We fo-
cus on birds, firstly because they are the taxon for
which  the largest dataset is available in
HormoneBase and secondly, because they exhibit
substantial variation in clutch sizes (Jetz et al.
2008) and thus degree of parental investment from
a life-history theory perspective (Saether 1988;
Horrocks et al. 2015). Irrespective of life history
strategy, we expect the change in (1) baseline corti-
costerone (the major glucocorticoid of birds) and
stress-induced corticosterone from non-breeding to
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breeding to be species-specific. Further (2), the mag-
nitude of the seasonal change in baseline glucocorti-
coids should be related to the reproductive
investment, i.e., species with larger clutch sizes
(and a fast pace of life) should increase baseline cor-
ticosterone from non-breeding to breeding more
strongly than species with smaller clutches. With re-
gard to stress-induced corticosterone concentrations,
(3) fast pace-of-life species with larger clutches
should show a larger decrease in stress-induced cor-
ticosterone from non-breeding to breeding than slow
pace-of-life species with smaller clutches.

Methods

Baseline and stress-induced corticosterone concen-
trations were obtained from the HormoneBase data-
set (M. N. Vitousek et al., submitted for publication;
M. A. Johnson et al., 2018, in preparation), which
has assembled steroid hormone concentrations mea-
sured in diverse life history stages for all five verte-
brate classes. We assumed that parental effort
represents investment into breeding (Daan et al
1990), therefore our “breeding season” category in-
cluded the phases of active parental care ranging
from egg-laying to offspring independence. In our
“non-breeding” category, we included the stages
ranging from post-breeding (after the independence
of offspring) to mating. Thus we grouped the court-
ship and nest building phases into the non-breeding
season. Even though both stages are costly, we de-
cided on this approach because the intensity (or de-
gree of investment) especially of courtship should
primarily depend on mating system but be indepen-
dent of clutch size, our proxy for pace of life.

For each species, glucocorticoid concentrations
that were extracted at a population level as multiple
entries for different populations, or the same popu-
lations sampled in different seasons, were available
for many species. Likewise, we kept the data sepa-
rated by sex as provided by HormoneBase. All base-
line glucocorticoid concentrations considered for this
study were taken within 3 min from any disturbance,
while stress-induced concentrations were used when
taken after 30 min from the onset of a capture-
restraint protocol (e.g., Hau et al. 2015). We addi-
tionally compiled life-history traits on a species level
(i.e., only one entry for life-history traits per species).
Life history variables such as egg mass, age at fledg-
ing, mass at fledging, life expectancy, maximal lon-
gevity, survival rate, basal metabolic rate, body mass,
and clutch size have been obtained from the life
history trait data compiled by the HormoneBase
Consortium, and described in M. A. Johnson et al.
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(2018, in preparation, for this special issue). Because
we focused on degree of investment into each repro-
ductive event, our main proxy for this trait was
clutch size (with species following a fast pace-of-
life laying larger clutches; Horrocks et al. 2015).
We used latitude (absolute distance from equator)
as a predictor, to describe large-scale differences in
the environment (Jetz et al. 2008). To account for
any additional variability in the environment, we
also included hemisphere (North versus South) as
a predictor. We did not include mating system or
parental system because the majority of the species
considered in this study were quite uniform with
respect of mating and parental care systems as the
majority was monogamous (of 54 species only 7 spe-
cies were polygynous, 4 were polyandrous, and 3
showed cooperative breeding), and bi-parental
(only 2 species lacked male and another 2 lacked
female parental care), and we therefore lacked vari-
ance in these traits. We are confident that species
with rare mating systems have not confounded our
results because there is no statistical difference in
baseline corticosterone levels between monogamous
and non-monogamous species (r=0.74, P=0.48).
We were not able to perform similar comparisons
for stress induced traits because there were only 2
species out of 32 with non-monogamous mating sys-
tems. An exploratory analysis considered migratory
habits (migratory, non-migratory, partial migratory)
but since it was not related to any glucocorticoid
trait, we excluded this trait in subsequent analyses.

Statistical analysis

The existence of multiple entries for different popu-
lations of the same species allowed us, as a first step,
to investigate whether corticosterone concentrations
in the non-breeding and breeding seasons, as well as
the differences between seasons, are species-specific.
If species had not systematically differed in cortico-
sterone traits, it would not have made sense to com-
pare seasonal changes with respect to reproductive
investment. For this purpose, we built phylogenetic
generalized linear mixed models (PGLMM; Hadfield
and Nakagawa 2010), in which population-specific
corticosterone traits were the response variables (sep-
arate models for baseline and stress-induced cortico-
sterone, both loglO-transformed). Wherever data
allowed (i.e., entries for several populations of a spe-
cies, for which sex and seasonal data were also avail-
able), we entered sex and season as well as absolute
latitude and hemisphere (North or South) as fixed
predictors. Season was treated as a centered continu-
ous predictor as required for random-slope modeling
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(see below). We also considered the interaction terms
between sex and season and between latitude and
hemisphere to allow seasonal responses to vary be-
tween sexes, and latitude effects to be different on the
two sides of the globe, respectively. When modeling
stress-induced corticosterone, the predictor variables
also contained baseline concentrations. The random
effects were species ID and phylogeny. Information
on the phylogenetic relationships of birds was taken
from Jetz et al. (2012), and was always pruned to
include only the species included in the model and
was converted into an inverted phylogenetic covari-
ance matrix. The null models included only random
intercepts, whereas the alternative models included
random slopes to allow for species-specific slopes
for seasonal effects. To compare models based on
relative fit we focused on the associated Deviance
Information Criterion (DIC) values under the prem-
ise that a lower DIC value offers a relatively better fit
to the data. We considered a given model to be sig-
nificantly supported against a null-model, if the for-
mer had a considerably (deltaDIC > 10) smaller value
than the latter. Significant evidence for the better fit
of the alternative model to the data signifies that
species differ remarkably in how they change their
hormonal profiles between the two seasons.

PGLMM analyses of both hormonal traits indeed
suggested that hormonal responses are species-
specific traits (see the “Results” section). Therefore,
in a second step to extract a proxy variable for the
seasonal change in corticosterone for each species for
use in further analyses, we built simple linear models
with season as predictor and the focal hormonal trait
as the response. Because the above repeated measure
models did not show strong evidence for sex effects
confounding the species-specific seasonal responses,
we did not include sex among the predictors of the
linear models to maximize sample size. From esti-
mated parameters of the fitted models, we extracted
a correlational “r” effect size, and the associated var-
iance (in the form of 1/(N—3), where N is the num-
ber of entries in the model), to describe the species-
specific seasonal responses in a standardized way
(Nakagawa and Cuthill 2007). These estimates, the
baseline and stress-induced reaction norm slopes (or
“seasonal changes”), were brought into the next level
of analyses. Higher values for these slopes indicate an
increase in corticosterone concentrations from the
non-breeding to the breeding season.

To investigate the interspecific determinants of
seasonal corticosterone changes, we entered the
species-specific effect sizes describing these slopes
into a PGLMM, which also accounted for differences
in the underlying sample sizes. In these phylogenetic
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meta-analyses, the calculated effect sizes of the slopes
were the response variable, absolute latitude, and
hemisphere (including their interaction if variability
in the data allowed doing so), as well as the mean
corticosterone levels during the breeding season as
predictors. The latter variable was included to inves-
tigate if seasonal glucocorticoid changes differed be-
tween species that inherently rely on different
hormone levels (exploratory analyses indicated that
including breeding season baseline levels as a predic-
tor variable improved the model fit over the inclu-
sion of the average baseline concentrations for the
two seasons). To investigate seasonal changes in the
light of reproductive investment, we introduced
clutch size (logl0-transformed) into the list of pre-
dictors. To examine possible allometric effects, we also
considered body mass (loglO-transformed). In cases
where these two variables were not strongly correlated
we included them simultaneously, otherwise we assessed
their effects sequentially in different models. We did not
include any other life history traits to avoid overfitting
our models. Furthermore, we would have run into issues
with collinearity as most of these traits were strongly
correlated with each other (Online Appendix). We first
performed models relying on data from all available
species, and subsequently by focusing on passerine birds
only to focus on a more homogeneous group. The latter
models also allowed us to control for the fact that non-
passerines differ heavily in life history strategies from
passerines, thereby mediating strong body size and
clutch size effects.

The PGLMMs were performed in R (R
Developmental Core Team, Vienna) using the
MCMCglmm package, which relies on a Markov
chain Monte Carlo algorithm (Hadfield 2010). We
defined priors necessary for the Bayesian modeling
with inverse-Wishart distribution for the variance
structure by using parameter settings for non-
informative priors (expected variance, V=1; degree
of belief, nu=0.002). The models were run for
130,000 iterations, with 30,000 samples being dis-
carded at the beginning (burn-in), which were sam-
pled at a thinning interval of 100. The trace and
distribution of all variables were checked visually,
as well as the autocorrelation between iterations.
Each model was run at least four times to check
for the consistency of the results (including param-
eter estimates and DICs). Similarly, we also checked
whether longer runs, different prior settings (i.e., flat
and improper priors), provided qualitatively differ-
ent model outputs. Our model diagnostics also in-
cluded the investigation of mixing and convergence
that were tested by Gelman—Rubin statistics (Gelman
and Rubin 1992).
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Results

Seasonal variation in baseline levels of
corticosterone

The comparison between the data fit of the random
intercept (DIC=363.84) and random slope
(DIC=321.49) models supported the latter, indicat-
ing that species differ in the slope of their baseline
corticosterone concentrations across the two seasons.

Random effects: There was a strong phylogenetic
signal of the variance in baseline corticosterone
(A=0.55; Table 1), indicating that closely related
species showed a similar seasonal response in base-
line concentrations. Species significantly differed in
both average baseline (intercept) and changes in
baseline corticosterone from the non-breeding to
the breeding stage (slope; Fig. 1). The interaction
between intercept and slope was not significant
showing that the change in baseline corticosterone
was not related to average levels. The repeatability
of baseline corticosterone was 0.32.

Fixed effects: Season did not explain a significant
amount of the variation in baseline corticosterone.

Lower latitude birds showed higher levels of baseline
corticosterone than higher latitude species (Table 1),
however, this was driven by the southern hemisphere
species while northern species exhibited the opposite
pattern (Table 1 and Fig. 2). Further, males had higher
baseline levels than females in both seasons.

Interspecific variation in seasonal changes (slopes) of
baseline corticosterone

As predicted, species with larger clutches tended
(P=0.052) to increase baseline corticosterone from
the non-breeding to the breeding season more than
species with smaller clutches (Table 2 and Fig. 3).
The magnitude of baseline corticosterone change was
not predicted by baseline concentrations measured
during the breeding season. Baseline corticosterone
changes did not vary with latitude, hemisphere, or
their interaction (Table 2). When running the same
model only for Passeriformes, we could include both
body mass and clutch size because they were not
collinear. Among passerines, we found a strong pos-
itive association between baseline corticosterone
slopes and clutch size (Table 2 and Fig. 3), indicating
that in this more homogeneous group of birds the
degree of reproductive investment was a strong pre-
dictor of seasonal changes in baseline corticosterone.
Likewise, body mass was positively associated with
the seasonal change in baseline concentrations
(Table 2) showing that larger species increased base-
line corticosterone more during the breeding season
than smaller species. Passerines with steeper baseline
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Table 1 Random and fixed effects of linear mixed models with random intercept and slopes to assess among-species variation and
effect of life-history stages, sex, and absolute latitude in (a) baseline corticosterone and (b) stress-induced corticosterone variation

Post. mean Lower 95% CI Upper 95% CI P
a. Baseline corticosterone
Random effects
Intercept 0.07 0.002 0.14 *
Intercept (*) slope —0.097 —0.057 0.047
Slope 0.05 0.009 0.102 *
Phylogeny 0.08 0.043 0.118 *
Residuals 0.068 0.061 0.074 *
Fixed effects
Intercept 1.26 0.98 1.55 ek
Season (Breeding) 0.14 —0.11 0.34
Sex (M) 0.05 0.015 0.089 ok
Season (B) (*) Sex (M) —0.07 —0.14 0.009 *)
Abs. latitude —0.09 —0.01 —0.003 ok
Hemisphere (North) —0.34 —0.53 —0.14 ok
AbsLat (*) Hemisp (North) 0.008 0.002 0.013 *
b. Stress-induced corticosterone
Random effects
Intercept 0.026 0.003 0.055 *
Intercept (*) slope —0.035 —0.072 —0.002 *
Slope 0.074 0.026 0.14 *
Phylogeny 0.019 0.008 0.028 *
Residuals 0.07 0.015 0.020 *
Fixed effects
Intercept 1.18 0.93 1.44 ok
Mean BL 0.30 0.25 0.34 otk
Season (Breeding) —0.04 —0.33 0.23
Sex (M) 0.03 0.002 0.06 *
Season (B) (*) Sex (M) 0.040 —0.019 0.10
Abs. latitude 0.003 —0.001 0.007
Hemisphere (North) 0.21 —0.017 0.40
AbsLat (*) Hemisp (North) —0.04 —0.008 0.001

Notes: M, males; B, breeding; Abs. latitude, absolute latitude. Both random and fixed effects were considered significant when their 95% credible
intervals (Cl) did not overlap zero. Post. means stands for posterior means of the Bayesian analysis and indicates the effect size of the predictor.
We visualized significant results with asterisks in the right-most column (always *P < 0.05 for random effects, while for fixed effects *P < 0.05,

P < 0,01, and #P < 0.001; (¥)P = 0.074).

corticosterone slopes had also higher baseline corti-
costerone during the breeding season. Latitude,
hemisphere, and their interaction did not explain a
significant proportion of the variance in the slopes of
baseline corticosterone (Table 2).

Seasonal variation in stress-induced levels of
corticosterone

The comparison between random intercept (DIC=
—384.09) and random slope (DIC=—467.90)

models supported the latter, indicating that species
differed in the slopes of stress-induced corticosterone
along the two seasons (Fig. 1).

Random effects: Phylogeny significantly explained
the variation in stress-induced corticosterone, indi-
cating that closely related species changed stress-
induced corticosterone similarly across seasons.
Species significantly differed in both average stress-
induced corticosterone levels (intercept) and their
changes from the non-breeding to the breeding
stage (slope; Fig. 1). Species with lower average
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stress-induced corticosterone concentrations showed
a stronger increase during the breeding stage than
species with lower average stress-induced levels
(Table 1). The repeatability of stress-induced corti-
costerone concentrations was 0.42.

Fixed effects: Contrary to our predictions stress-
induced levels did not vary significantly with sea-
son, absolute latitude, or the interaction between
latitude and hemisphere (Table 1). Northern spe-
cies showed higher stress-induced corticosterone,

but the effect was marginally non-significant
(Table 1). Males showed higher stress-induced cor-
ticosterone than females in both life history stages
(Table 1).

Interspecific variation in seasonal changes (slopes) of
stress-induced corticosterone

For this model we did not consider hemisphere as a
predictor, because all but one species were from the

6102 YOJB|\ € UO JoSN BPLO| YINOS JO ANSISAIUN Aq G¥BSZ0S/6E L/P/8SGAOBISE-O[ILE/GOl/W0D dNO™dlWepeoe)/:Sd]jY WOJj pOPEOjUMOQ



746

S. Casagrande et al.

Table 2 Best models analyzing the effects of POL and environment on baseline levels (BL) of corticosterone and stress-induced levels
(SL) of corticosterone slopes (a) for all species and (b) only for passeriforms

(a) Overall species Post. mean Lower 95% CI Upper 95% ClI P
Baseline corticosterone slopes (n=54)
Intercept —-0.97 —0.88 0.78
Breeding BLs 0.33 —0.06 0.70
Clutch size 0.81 —0.004 1.64 *)
Abs. latitude —0.003 —0.02 0.01
Hemisphere (North) —0.30 —0.95 0.41
AbsLat * Hemisp (North) —0.0008 —0.017 0.015
Stress-induced corticosterone slopes (n=32)
Intercept —0.15 —2.53 232
Breeding BLs —0.03 —-1.02 1.00
Breeding SLs 0.58 —1.00 227
Clutch size 0.80 —0.86 2.59
Abs. latitude —0.01 —0.04 0.09
Hemisphere (North) —0.32 —1.76 0.97
AbsLat * Hemisp (North) —0.001 —0.03 0.03
(b) Passeriforms
Baseline corticosterone slopes (n=36)
Intercept -3.35 —6.06 —0.76 *
Breeding BLs 0.72 0.19 0.18 ok
Clutch size 293 0.96 5.02 ok
Body mass 0.91 0.27 1.55 ok
Abs. latitude 0.02 —0.18 0.22
Hemisphere (North) —0.12 —-1.72 1.64
AbsLat * Hemisp (North) —0.03 —0.22 0.17
Stress-induced corticosterone slopes (n=23)
Intercept —3.55 —9.99 2.04
Breeding BLs 0.78 —0.54 2.27
Breeding SLs 0.21 -2.10 2.00
Clutch size 3.44 —2.51 9.47
Body mass 1.10 —0.54 293
Abs. latitude —0.02 —0.05 0.003

Notes: Predictors were considered significant when their 95% CI did not overlap zero. Abs. latitude, absolute latitude. We visualized significant
results with asterisks in the right column (always * random effects, while for fixed effects *P < 0.05, **P < 0.01, and ***P < 0.001, while the

asterisk in brackets indicates P=0.052).

northern hemisphere. None of the predictors
explained a significant proportion of the variance
in the data (Table 2).

Discussion

We tested the glucocorticoid seasonal plasticity hy-
pothesis, which proposes that seasonal changes in
glucocorticoid hormones from the non-breeding to
the breeding season are related to the degree of

reproductive investment in birds. Our first set of
analyses revealed that species consistently differed
in both average glucocorticoid concentrations (inter-
cepts of reaction norms) and in their glucocorticoid
changes when moving from a non-breeding to a
breeding stage (slopes). This is visualized in Fig. 1,
where the interspecific reaction norms across the two
seasons for baseline and stress-induced corticoste-
rone widely differ in intercept, steepness of slopes,
and direction. This interspecific variability in slopes
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may explain the lack of an overall effect of the pre-
dictor season in these analyses. Seasonal changes in
baseline corticosterone were not related to average
levels nor to breeding season concentrations of a spe-
cies. These results indicate that baseline corticosterone
concentrations measured in a single season, or aver-
aged across seasons, cannot predict seasonal variation.
Results differed for stress-induced corticosterone,
where species with lower mean values (corrected for
baseline levels) showed a stronger seasonal change.

Our main prediction was that species with a high
investment into each reproductive event (large clutch
size) would show a stronger increase in baseline and a
stronger decrease in stress-induced corticosterone
when changing from the non-breeding to the breed-
ing season than species with a lower investment. For
baseline corticosterone our prediction was supported,
especially when we limited our analyses to passerines.
Our findings thus partially corroborate the “energy
mobilization hypothesis” (Romero 2002) and are in
line with the view that baseline glucocorticoid con-
centrations serve to support energy demanding pro-
cesses (Landys et al. 2006; Patterson et al. 2011; Hau
et al. 2016; Jimeno et al. 2017). The present data do
not address whether these seasonal changes in baseline
glucocorticoids are evolved strategies or whether they
result from plastic responses to increased workload
during the reproductive season.

In contrast to our expectations, seasonal changes
in stress-induced corticosterone were not explained
by reproductive investment (i.e., clutch size), either
in all species or in passerines only. However, our
analyses of stress-induced level slopes were based
on a smaller sample size compared with the baseline
analyses and hence have a lower statistical power.
Thus, a larger sample size would be required to

more conclusively test whether the degree of repro-
ductive investment plays a role in determining
species-specific concentrations of stress-induced glu-
cocorticoids. Alternatively, one may speculate about
a scenario in which baseline and stress-induced glu-
cocorticoids may simply have divergent, non-
overlapping functions, with baseline levels promoting
reproductive investment and stress-induced levels
supporting primarily self-maintenance functions.
This view is inspired by the fact that at the two levels,
glucocorticoids bind at different receptors, the miner-
alocorticoid and the glucocorticoid receptor, respec-
tively (Proszkowiec-Weglarz and Porter 2010). Such a
scenario would unite the (lack of) findings from the
current study with those a previous study, which
found that stress-induced corticosterone concentra-
tions of male birds during the breeding season were
positively related to survival rate but not to breeding
season length (another proxy for investment into each
reproductive effort; Hau et al. 2010).

Our findings that seasonal changes in baseline
concentrations of corticosterone were positively as-
sociated with body mass in passerines (Table 2) are
puzzling. We would have predicted the inverse rela-
tionship, with smaller species that have higher-mass
specific metabolic rates and therefore might need to
mobilize more energy reserves to support this me-
tabolism showing stronger increases in baseline cor-
ticosterone from the non-breeding to the breeding
season than larger species. During the breeding sea-
son small-bodied birds have indeed higher levels of
baseline corticosterone than large-bodied species
(Bokony et al. 2009; Hau et al. 2010). One possible
explanation that could be tested by future studies is
that smaller species, which because of their smaller
size carry fewer energy stores than larger species,
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might be more limited in upregulating baseline cor-
ticosterone during the breeding season. Small species
may have to avoid increasing baseline corticosterone
too much during the breeding season to spare crucial
tissues (such as the flight muscle) from being metab-
olized to mobilize energy.

We found that males had overall higher levels of
both baseline and stress-induced corticosterone than
females. That we observed higher glucocorticoid levels
in males versus females in both seasons suggest that
they reflect sex differences that are unrelated to repro-
ductive investment and pace of life. Instead, our find-
ings suggest that males from a given species generally
have a more active hypothalamo—pituitary—adrenal
axis compared with females. Here it is important to
note, again, that studying seasonal variations in a trait
can provide better answers than studying a trait in a
single season. Had we analyzed glucocorticoid con-
centrations only during the breeding season we would
have reached an entirely different conclusion, namely
that sex difference was related to reproduction
(reviewed by Hau et al. 2016). Lower baseline levels
in females could have indicated that they were less
challenged by parental effort and lower stress-
induced concentrations in females could have been
taken as evidence that they decreased their endocrine
stress response to avoid disrupting nest attendance
(Wingfield et al. 1995).

Our first set of analyses revealed an interaction
between the two extrinsic factors latitude and hemi-
sphere, although only for baseline corticosterone
concentrations (Table 1). As Fig. 2 illustrates, species
from the Southern hemisphere increased baseline
corticosterone concentrations toward lower latitudes,
while species from the Northern hemisphere showed
the opposite expected trend. This finding suggests
that general extrinsic factors that vary across latitude,
for example average annual temperatures, are un-
likely to explain much of the interspecific variation
in baseline corticosterone, as effects differed for the
two hemispheres. However, these findings are not
conclusive because contrary to the Northern hemi-
sphere, southern species were represented by a lim-
ited sample size and mainly by non-passerines.
Neither latitude nor hemisphere explained any vari-
ation in the seasonal slopes of both glucocorticoid
traits.

Conclusions

Variation in both baseline and stress-induced corti-
costerone concentrations among different species of
birds is substantial, but species-specific.
Furthermore, interspecific variation in changes in

S. Casagrande et al.

baseline corticosterone from the non-breeding to
the breeding season was explained by clutch size, a
measure for the degree of investment into each
breeding attempt that is related to pace of life. On
the one hand, our study provides indirect support
for both the “energy mobilization” (Romero 2002)
and the “cort-adaptation” (Bonier et al. 2009, 2011;
Ouyang et al. 2011) hypotheses, which state that
glucocorticoids mediate physiological and behavioral
changes to support energetically demanding phases
like reproduction (Bonier et al. 2009). On the other
hand, our findings suggest why some species do not
show seasonal changes in baseline corticosterone
(which is true for 28% of all studies, Romero
2002), as we demonstrated the slope of seasonal
changes to be related to the degree of reproductive
investment, especially in passerines (Bonier et al.
2009; Crespi et al. 2013; Schoenle et al. 2017).
More research is needed to uncover why results
sometimes differed when all species were considered
versus passerines only. Likewise, it is currently
unclear why baseline corticosterone decreases toward
the pole in the Southern, but not the Northern
hemisphere. However, our analyses have demon-
strated that interspecific variation of seasonal
changes in glucocorticoids, in addition to their val-
ues in a single season is related to life history strat-
egies. Future research should address whether the
observed seasonal changes in baseline glucocorticoids
are the consequence of the degree of reproductive
investment shown during the breeding season (e.g.,
of the metabolic demands) or whether they are
evolved physiological strategies that underlie the
pace of life of species.
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