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Hormones are central regulators of organismal function and flexibility that mediate a diversity of
phenotypic traits from early development through senescence. Yet despite these important roles, basic
questions about how and why hormone systems vary within and across species remain unanswered. Here
we describe HormoneBase, a database of circulating steroid hormone levels and their variation across
vertebrates. This database aims to provide all available data on the mean, variation, and range of plasma
glucocorticoids (both baseline and stress-induced) and androgens in free-living and un-manipulated adult
vertebrates. HormoneBase (www.HormoneBase.org) currently includes >6,580 entries from 476 species,
reported in 648 publications from 1967 to 2015, and unpublished datasets. Entries are associated with data
on the species and population, sex, year and month of study, geographic coordinates, life history stage,
method and latency of hormone sampling, and analysis technique. This novel resource could be used for
analyses of the function and evolution of hormone systems, and the relationships between hormonal
variation and a variety of processes including phenotypic variation, fitness, and species distributions.

Design Type(s) data integration objective e species comparison design
Measurement Type(s) blood steroid hormone level
Technology Type(s) data item extraction from journal article

Factor Type(s)

Sample Characteristic(s) Vertebrata e blood plasma

*Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. “Department of
Biology, Trinity University, San Antonio, TX 78212, USA. 3Coates Library, Trinity University, San Antonio, TX
78212, USA. “Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407,
USA. *Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA. ®Max Planck Institute for
Ornithology, Seewiesen 82319, Germany. ’Department of Biology, University of St. Thomas, St. Paul, MN 55105,
USA. ®Department of Biology, University of Florida, Gainesville, FL 32608, USA. °Department of Biology,
University of Oklahoma, Norman, OK 73019, USA. *°Department of Global Health, University of South Florida,
Tampa, FL 33620, USA. 'Cornell Lab of Ornithology, Ithaca, NY 14850, USA. **Department of Biological
Sciences, Simon Fraser University, Burnaby, BC V5A 156, Canada. *These authors contributed equally to this
work. Correspondence and requests for materials should be addressed to M.N.V. (email: mnv6é@cornell.edu) or to
M.A.J. (email: michele.johnson@trinity.edu).

SCIENTIFIC DATA | 5:180097 | DOI: 10.1038/sdata.2018.97


www.HormoneBase.org
mailto:mnv6@cornell.edu
mailto:michele.johnson@trinity.edu

www.nature.com/sdata/

Baseline

Androgens

ticoids

Background & Summary

Hormones are central regulators of phenotype, whose effects span multiple fields of research, from
molecular biology to population biology' ™. Because of their role in regulating organismal function
and flexibility, selection might be expected to constrain hormone levels or their context-dependent
flexibility around one or more fitness optima®’. Nevertheless, endocrine responses vary markedly
both within and among populations®'°""2, Why do some individuals mount a hormonal response
that is two or more orders of magnitude greater than others, when faced with the same stimulus?
Similarly, why have some species evolved to express plasma testosterone levels that are an order
of magnitude greater than others during reproduction, when testosterone mediates the same
basic reproductive processes?

A particularly promising approach to answering such questions - and many others of broad interest to
animal behaviour and organismal biology - lies in large-scale comparative analyses of the multitude of
endocrine data that have been collected over the past several decades. Such analyses, conducted within a
rigorous phylogenetic, environmental, and life-history framework, have the potential to illuminate the
factors driving divergence in the hormonal mechanisms of behaviour, physiology, and morphology'*"*.
To date, most analyses have focused on relatively small taxonomic scales, and on comparing mean trait
values across populations and species'”™'®. However, resources are rapidly becoming available to
aggregate and analyse decades of available data on circulating hormone levels and their variation within
free-living populations, across taxonomic groups. Identifying and characterizing the variation in
endocrine traits, and their links with environment, life history, and fitness, could provide insight into how
endocrine systems evolve, and how selection on these phenotypic integrators may influence the dynamics
and distribution of populations®* 2>,

In this context, we present HormoneBase, a resource of compiled endocrine data across vertebrates.
Included in this dataset are >6,580 measures of mean and within-population variation in glucocorticoids
and androgens from 476 species (Figs 1,2; Table 1) that were reported in 648 publications - and
additional unpublished resources - between 1967 and 2015. Additional information on geographic
location (Fig. 3), life history, study design, and time period accompanies each entry. By making
HormoneBase publicly available we aim to encourage data sharing across the scientific community and
facilitate research into the function and evolution of physiological traits.

Methods

Hormonal Data

Endocrine data were obtained from publications, and from several unpublished datasets (Data
Citation 1). We searched for studies that conformed to our inclusion criteria using: (i) online academic
databases (e.g., Google Scholar, Web of Science), and (ii) cross-referencing from other published works.
Studies were selected for inclusion if they included data on circulating glucocorticoids (baseline or stress-
induced corticosterone/cortisol) or androgens (testosterone/11-ketotestosterone) that: (i) were from free-
living populations, (ii) were collected from adults that had not been subject to an experimental
manipulation prior to sampling (e.g., of hormones or the environment), (iii) measured plasma levels, (iv)
did not pool data across males and females, or across adults and juveniles, and (v) were reported in or
could be converted to a standard unit of measurement (ng/mL).

Published values were obtained from text, tables, or supplementary materials, or extracted
from published figures using the program Data Thief III (http://datathief.org). Entries include mean
circulating concentrations (ng/mL) for each population/group and time period; whenever possible,
data on within-population variation (coefficient of variation, standard error), range (maximum and
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Figure 1. Total data entries in HormoneBase for each steroid by measurement type and sex. Within each
category, counts are shown separately for mean, coefficient of variation, and range.
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Figure 2. The number of species with data on mean hormone concentrations in HormoneBase. Counts are

shown separately for males and females, and for androgens, baseline glucocorticoids, and stress-induced

glucocorticoids.
Birds Reptiles Amphibi M 1 Fish Total
M F M F M F M B M F M B
Androgens 1002 366 497 176 217 78 270 21 713 436 2699 1077
Baseline GCs 746 488 230 167 104 45 59 60 89 73 1228 833
Stress-induced GCs 352 212 26 28 29 7 20 27 23 20 450 294

Table 1. The taxonomic distribution of entries of mean circulating hormone levels in HormoneBase
for males (M) and females (F).

minimum values), and sample size are also included. When papers did not directly report the coefficient
of variation (CV), it was calculated from the standard deviation (SD) or standard error (SE) and sample
size (n), according to the following formulas: CV = -2+ 100 or CV = Sii;{f % 100. If papers reported
that outliers had been excluded we noted this for each hormone measure, and noted the criteria for
exclusion where provided.

When a single reference reported multiple means for different groups of individuals (e.g., populations
or life history stages), or from different time points, data were entered on separate lines. In cases where
papers reported a single hormonal mean from data collected across multiple populations, the location of
up to three of the sampled populations was noted in the entry. When stress-induced glucocorticoid levels
were measured at multiple time points during a standardized stress series, only the time period at which
mean glucocorticoid levels were highest was included.

The decision was made to focus HormoneBase on androgens and glucocorticoids because these are
currently the most widely sampled hormones across vertebrates. Because hormone concentrations are not
directly comparable across biological matrices, we included only plasma hormone concentrations.
Hormone levels are also increasingly being measured in other biological matrices (e.g., feces, feathers) but
these sample types are not very well-suited for large-scale comparative analyses because they use
hormone metabolites, which differ within and across species and assay/antibody types**.

Sample Collection and Assay Method Data

Because sampling method and assay technique may influence circulating hormone levels, we included
specific information about capture, sampling, and assay approach. The time of day (i.e., range of hours)
that samples were collected was recorded as provided. The specific method used to capture free-living
individuals was noted, and the capture/sampling method assigned to one of three categories. “Active”
sampling methods were those in which a blood sample was obtained rapidly and within a known period
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Figure 3. The geographical distribution of entries in HormoneBase. Points represent the location of
measurements of (a) androgens, (b) baseline glucocorticoids, and (c) stress-induced glucocorticoids.

Precipitation patterns reflect sums for December 2015 and were acquired from the CRU-TS 4.0 Climate

Database®.
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of time after targeting a previously undisturbed animal. “Passive” methods are those in which animals
were sampled after an unknown period of restraint (e.g., non-continuously monitored traps or nets).
“Attractant” methods are those in which animals were drawn to the site of capture using some type of
attractant (e.g., song playbacks, baited traps). The maximum sampling latency (interval from capture to
blood sampling) was recorded for androgens and baseline glucocorticoids, and the type of acute stressor
and the interval from initial capture to the collection of a stress-induced glucocorticoid sample were also
recorded.

To explore and control for potential differences in assay technique, we included information on the
assay method used to assess plasma hormone levels (e.g., radioimmunoassay, enzyme immunoassay),
and, where provided, the specific antibody or commercial kit that was used. Because laboratory identity
can also influence measured hormone levels”, we recorded the identity of the laboratory in which
hormone assays were conducted. For collaborative papers that did not identify where assays were
conducted, and were the product of multiple endocrine laboratories, we arbitrarily assigned one of the
collaborating laboratories as the assay location.

Taxonomic and Geographical Data

All endocrine data include associated taxonomic information, using common and scientific names.
Where relevant, scientific names were updated to reflect recent reclassifications. Taxonomy was
determined using major lineage-specific trees (ray-finned fishes®®, amphibians*”*, mammals®,
squamates’, turtles®', and birds™*).

The location name, geographic coordinates (latitude and longitude in degrees decimal), and elevation
(in meters) of the population from which the data were collected are also recorded for each entry. When
not provided in the original publication, approximate geographic coordinates and elevation were
determined by searching for the location name in Google Earth.

Temporal and Life History Data

To enable assessment of seasonal and life history patterns , we included information on the time
period of sampling as reported (the month and year in which data were collected) and the life history
stage of sampled individuals. Measurements were characterized as coming from breeding or non-
breeding individuals, or a combination of the two. Designations were based on author classifications
when provided. When life history stage was not provided in the original data source, samples were
classified as coming from a combination of breeding and non-breeding individuals, except in cases where
seasonally breeding populations were sampled only during months that did not overlap with the breeding
season.

When life history sub-stage was provided in the original data source, this information was also
included in the database. To provide some standardization across species, and widely varying
terminology, reported sub-stages were combined into fourteen categories: pre-breeding, courtship,
incubation, copulation, gravid/pregnant, non-gravid/pregnant, laying, young care, lactation, post-
breeding, migration, torpor, hibernation, pre-basic moult. When information about life history sub-stage
was not contained in the original data source, this field was left blank. An associated column provides
information about whether the sampled individuals were confirmed to be in a given life history stage
(e.g., incubating birds captured off their nests), or whether the life history stage reflected the typical stage
for individuals in that population at the time of sampling (e.g., birds sampled in mist nets during the
breeding season but not traced to a specific nest). For birds, information on moult status was also
recorded as provided®”.

17,33,34

Data Records

The HormoneBase dataset (Data Citation 1) is provided as two comma-separated values text files: a single
file that includes all data described above (HormoneBase_v1.csv), and a file that contains the reference
information for the source of each entry (HormoneBase_references_v1.csv). Variable names are provided
in the first row, with details of each variable and units measured summarized in Table 2 (available online
only). These files are accompanied by a metadata pdf file (HormoneBase_MetadataData.pdf).

Technical Validation

The data presented in HormoneBase are primarily from published, peer-reviewed sources, but also
contain unpublished data provided by authors. Data entry was initially proofed by each lab that entered
the data to confirm that the entries matched reported data. Upon submission to the central repository,
two members of the database entry team independently examined each entry to identify incomplete
entries or extreme values. All hormone measures were also mapped onto a phylogeny to reveal putative
taxonomic outliers. When such cases were identified, entries were confirmed or corrected by consulting
the original source.

Usage Notes
The data are available to access and download from Figshare repository (Data Citation 1). Three files are
provided:
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