
Improving Communication Through Overlay

Detours: Pipe Dream or Actionable Insight?

Stephen Brennan

EECS Department

Case Western Reserve University

Cleveland, USA

stephen.brennan@case.edu

Michael Rabinovich

EECS Department

Case Western Reserve University

Cleveland, USA

michael.rabinovich@case.edu

Abstract—It has been long observed that communication
between a client and a content server using overlay detours
may result in substantially better performance than a native
path offered by IP routing. Yet the use of detours has been
limited to distributed platforms such as Akamai. This paper
poses a question – how can clients practically take advantage of
overlay detours without modification to content servers (which
are obviously outside clients’ control)? We have posited elsewhere
that the emergence of gigabit-to-the-home access networks would
precipitate a new home network appliance, which would maintain
permanent presence on the Internet for the users and have
general computing and storage capabilities. Given such an appli-
ance, our vision is that Internet users may form cooperatives in
which members agree to serve as waypoints points to each other
to improve each other’s Internet experience. To make detours
transparent to the server, we leverage MPTCP, which normally
allows a device to communicate with the server on several
network interfaces in parallel but we use it to communicate
through external waypoint hosts. The waypoints then mimic
MPTCP’s subflows to the server, making the server oblivious
to the overlay detours as long as it supports MPTCP.

Index Terms—Download performance, overlay detours,
MPTCP

I. INTRODUCTION

Numerous studies have observed that communication be-

tween two Internet hosts can often be improved if the hosts

sent traffic via relay hosts, rather than directly on a native

path offered by IP routing [1]. The overlay detour paths

produced by the relay hosts traversal often have less packet

loss [2], lower latency [3], and higher bandwidth [4], due

to inefficiencies in native IP routes. Moreover, past studies

have shown that most performance benefits can be obtained

by using a single waypoint between the end-hosts [2], [5].

However, despite these insights being known for almost two

decades, the use of detours has been limited to communication

within distributed platforms, notably, Akamai, which adopted

detours as the foundation of their “SureRoute” technology [6].

At the same time, with emerging gigabit-to-the-home access

networks, the communication bottleneck will shift upstream

from the last mile, and likely into the core Internet. Utilizing

well-connected waypoints promises significant performance

benefits to Internet users in this environment, especially if

This work was supported in part by NSF through grant CNS-1647145.

users can utilize multiple detour paths in parallel to speed

up their content accesses.

This paper poses a question – how can clients practically

take advantage of overlay detours, when downloading content

from the Internet, without modification to content servers

(which are obviously outside clients’ control)? We propose

a framework to leverage overlay detours in an application-

transparent manner and demonstrate its operation using an

unmodified off-the-shelf networked application (iPerf). Our

vision rests on the assumption we posited elsewhere [7]

that to realize full potential of the emerging ultra-broadband

Internet, home networks would benefit from a new appliance,

potentially packaged within the wifi router form factor, which

would have general computing and storage capabilities. Given

such an appliance, we envision users forming cooperatives in

which members agree to serve as waypoints to each other to

improve each other’s Internet experience – in other words,

creating peer-to-peer systems where home appliances of some

users serve as detour waypoints for end devices of other users.

To make detours transparent to content servers, we leverage

MPTCP, which normally allows a device to communicate

with a server on several network interfaces in parallel, but

we use it to communicate through external waypoint hosts.

The waypoints then mimic MPTCP’s subflows to the server,

making the server oblivious to the overlay detours as long as

it supports MPTCP.

We recognize that very few content servers currently support

MPTCP. However, there are signs that this might be changing.

For instance, Apple has employed MPTCP for its Siri service

[8]. We assume that as compelling use cases such as the one

addressed in the present paper emerge, the deployment by

content servers will grow. In the meantime, IETF is working

on a proposal to deploy MPTCP proxies within the network,

which would allow MPTCP-adopting clients to benefit from

MPTCP even with interacting with a non-MPTCP server, by

proxying their communication through an MPTCP proxy in

server’s vicinity [9], [10]. Our approach can be used in this

deployment scenario as well, by establishing subflows with

the MPTCP proxy.

MPTCP has been used for bandwidth aggregation over

available access links (most commonly, wifi and cellular) in

a mobile device, for communication within a datacenter [11]



and for Internet gateway aggregation [12] in a rural setting.

Our approach represents a novel use of MPTCP, namely, to

make overlay detours possible, so that a client can explore

alternative wide-area routes and aggregate multiple such routes

if possible.

II. VISION

We assume that ultra-broadband Internet home networks

would deploy a server-like appliance that would maintain

permanent Internet presence for the users at the residence and

help realize full potential of ultra-broadband – the appliance

we called “home point of presence” [7], or HPoP. With this

assumption, we envision that users form a detour cooperative

to improve each other’s Internet performance. By joining

the collective, they offer their HPoPs as waypoints which

other members may use. In return, they gain access to the

detouring services of the other members of the collective. In

effect, the collective forms an overlay peer-to-peer network

that unmodified TCP applications may use.

To join the cooperative, a member installs certain

application-level components, as well as our patched kernel

with modified network stack, on their client machine. In

principle, a client can engage another member as a waypoint

in its communication path with the server using an arbitrary

custom protocol, since all coop members install our custom

patch (we later discuss some particularly simple mechanisms

for this engagement). The waypoint, however, mimics the

behavior of an MPTCP subflow when communicating with

the server.

When the data mostly flows from the server to the client,

the client establishes subflows to the server through waypoints,

but it is still up to the server to split the flow among the

waypoint(s) and the original direct path to the client. The client

can still have indirect control over waypoint use by withdraw-

ing poorly performing waypoints and adding new waypoints

during the TCP session, as well as by other manipulations

(see Section VI). When the data flows mostly from the client

to the server (e.g, in video clip uploads, video-conferencing, or

other increasingly common cases of user-generated content),

the client can directly explore different waypoints by sending

a few data packets over new subflows and staying with whose

waypoints that perform well.

In both cases, our mechanism is able to explore different

waypoints to find efficient overlay detours, and further to

aggregate bandwidth of several available paths. Most im-

portantly, since MPTCP presents the same binary-compatible

OS level API as TCP, unmodified applications may use this

mechanism simply by using our patched kernel.

A. Security and Privacy

Inserting a waypoint into a communication path introduces

potential security and privacy concerns. However, modern

Internet applications increasingly use TLS. The client should

perform TLS handshake on the initial subflow, over the direct

path, before establishing any other subflows. Subflows through

detours will then be encrypted, so the waypoints will be

unable to read any communication. A waypoint still learns the

IP addresses with which the client is communicating. While

this information already flows openly through the Internet in

the unencrypted IP headers, our approach makes it readily

available to the waypoints involved. This is an inherent cost

of our approach.

A malicious waypoint could also disrupt its subflow in ar-

bitrary ways, but as long as TLS is negotiated before any aux-

iliary subflows are established, the application would notice,

and presumably withdraw this waypoint, while transparently

recovering (within TCP) the affected packets over remaining

subflows. Furthermore, the misbehaving peer can be expelled

from the collective to avoid affecting future communication of

any member.

III. RELATED WORK

Historically, the communication bottleneck has been most

commonly located at the last mile, and extensive effort has

been spent on alleviating this bottleneck, going back to chan-

nel bonding technology for ATM networks [13]. However,

with the emergence of gigabit access networks, the bottleneck

shifts upstream, and it has been shown the effective download

TCP throughput that gigabit users obtain is orders of magni-

tude lower than their access link capacity [14]. We are trying

to address this new reality.

Our approach essentially builds one-hop overlay paths be-

tween clients and servers at the transport layer. Numerous

previously proposed overlay or peer-to-peer networks typically

operate at the application layer and are not transparent to the

application at both sides of the connection. Even when their

functionality is encapsulated within a runtime library, such

as in RON [15], applications still have to link to the custom

library and thus undergo a change. The same holds for mTCP

[16], a pre-MPTCP multipath variant of TCP built in user

space on top of RON. Gummadi et al. describe a system

for single-hop source routing (SOSR) [2] that is transparent

to websites. Unlike our approach, it is unable to aggregate

bandwidth across multiple paths or switch paths in the middle

of a TCP session.

Some applications provide means for parallelizing commu-

nication at the application level. For example, a client could

use members of the collective we envision as proxies for

parallel download of a static HTTP object using HTTP range

requests. By enabling detours at the transport layer, we allow

our framework to be used by any application. Even in HTTP,

accesses to dynamic resources are often non-idempotent, mak-

ing these resource not amenable to parallelization via range

requests.

IP source routing [17] allows path exploration at the IP

layer. However, due to security concerns, it is recommended

that routers and firewalls drop packets with source-routing

options [18], and many routers on the Internet do.

IV. ARCHITECTURAL FRAMEWORK

DCol involves three types of hosts:







mechanism adds no extra bytes to a packet. Further, VPN

tunneling provides a built-in mechanism for mutually authenti-

cating the client and waypoint. The NAT implementation offers

no such protection. In fact a naı̈ve signaling protocol consisting

of a simple exchange of UDP request/response messages that

we use in our DCol prototype would expose a number of

obvious security vulnerabilities. Our simple protocol suffices

to assess the efficacy of the NAT-based approach, but a more

secure signalling mechanism would be needed in a realistic

implementation. We discuss this issue further in Section VI.

B. DCol Client

A DCol client consists of a modified MPTCP path manager

(a kernel module) and a client daemon (a user-space com-

ponent). The two components communicate over a generic

netlink, a commonly used Linux facility for communication

between the kernel and user space [21]. Our implementation

allows a given DCol collective to mix and match VPN and

NAT tunnels, depending on waypoint preferences.

The DCol path manager performs the following basic func-

tions:

• It maintains two lists of available waypoints, one

for waypoints reachable through NAT tunnels and the

other through VPN tunnels. As explained earlier (Sec-

tion IV-A), NAT tunnels are specific for a given MPTCP

connection and VPN tunnels are generic, good for any

connection detouring via the corresponding waypoint.

• It requests new detours from the client daemon as needed.

In our current prototype, the path manager requests new

detours any time a new MPTCP connection is established;

a real implementation would use a more flexible policy,

which could request new detours whenever the available

detours become scarce.

• It selects and adds detour subflows to MPTCP connec-

tions, as well as withdraws existing subflows according

to a detour exploration strategy5.

The client daemon receives requests for detours from the

path manager, negotiates tunnels with the waypoints, and

reports successfully established tunnels back to the path man-

ager. In a real implementation, the client daemon would need

to discover available waypoints in the collective and choose

the ones to set up tunnels with.

Since the same VPN tunnel can be (re)used for any

connection to any server, the client daemon can establish

it either in response to request from the path manager or

proactively, and inform the path manager of its availability

ahead of the need. In contrast, a NAT tunnel can only be

used for a particular destination’s IP address and port number,

which must be communicated to the waypoint during the

tunnel establishment. Thus, NAT tunnels are established on

an explicit request from the path manager.

The above considerations may lead to intricate policies for

detour selection and tunnel establishment. With our focus on

5This strategy is a major direction for future work. Our prototype imple-
ments a trivial policy where the path manager attempts to create and maintain
two subflows for each connection.

the basic groundwork, our prototype uses the following simple

setup. The daemon has a configuration file which lists the IP

addresses of waypoints to use for both types of detours.

On startup, the daemon creates a netlink socket to communi-

cate with the path manager, starts an instance of the OpenVPN

client process for each available VPN waypoint, and waits for

all VPN tunnels to fully initialize. A new thread is used to

monitor each OpenVPN client, logging any relevant messages.

Next, the daemon opens a UDP socket corresponding to

each NAT waypoint in its configuration file. These sockets

will be used to negotiate tunnels upon a request from the path

manager.

Finally, the daemon reports all OpenVPN clients to the

manager, and begins waiting for requests. For each request

from the path manager, the client daemon sends a UDP

request to every NAT waypoint. For each received response,

the daemon sends the final NAT detour information (the IP

addresses and port numbers of the tunnel’s endpoints) over the

netlink socket to the path manager. Note that a client can use

the same NAT waypoint for multiple connections; however, a

separate tunnel negotiation is required for each connection.

In summary, our prototype implements a primitive client

daemon that makes available to the path manager all available

VPN detours on a startup, and sets up NAT tunnels to all NAT

waypoints on a first request from the path manager. For another

connection, the path manager will send another request, and

the daemon will set up another set of NAT tunnels to the same

waypoints.

C. DCol Waypoint

A DCol waypoint consists of a detour daemon that listens on

requests from clients and invokes local executables to perform

requested actions. The detour daemon can operate in two

modes - VPN or NAT. In the VPN mode, the detour server

simply starts an OpenVPN server. When a client wants to

establish a VPN tunnel with the waypoint, the client connects

to the VPN server running on this waypoint directly.

Establishing an OpenVPN tunnel requires the two parties

to authenticate each other. To this end, each member of a

DCol collective has a certificate signed by the a root certificate

authority common to the collective. All members store this

root certificate – which represents the shared trust among the

collective – so they are able to verify the certificates of each

other. Once both parties perform mutual authentication using

their certificates, the VPN is available for the client to tunnel

packets to any IP address.

In the NAT mode, the detour waits for client detour requests

on a UDP socket. A request contains the IP address and port

number of the end-server the client wishes to communicate

with. Upon receiving a request, the detour daemon allocates

a unique port to this tunnel, creates the corresponding NAT

mapping rule using IPTables, and sends a UDP response with

the allocated port back to the client. The client will use

this port and the waypoint’s IP address as the destination

address/port number for the corresponding subflow; in the











waypoints. Given the amount of work addressing similar issues

in peer to peer systems, this represents a significant but

technical challenge, with rather clear ways to implement the

required functionality.

VII. CONCLUSION

It has long been observed that communication between a

client and a content server using overlay detours may result

in substantially better performance than a native path offered

by IP routing. With the emerging gigabit-to-the-home access

networks, where the bottleneck is no longer at the last mile,

the potential benefits of detours are likely to only grow. This

paper presents our vision of how to achieve detour communi-

cation in a generic way, without requiring any changes to the

applications or content servers.

We envision gigabit Internet users to form cooperatives in

which members serve as detour waypoints to each other’s

Internet experience. To make detours transparent to the server,

we leverage MPTCP, which normally allows a device to

communicate with the server on several network interfaces

in parallel but we use it to communicate through external

waypoint hosts. The waypoints mimic MPTCPs subflows to

the server, making the server oblivious to the overlay detours

as long as it supports MPTCP. At the same time, because all

functionality concentrates within the transport layer, network

applications using TCP automatically benefit while being also

unaware of this change.

We present our architectural framework, DCol (for “Detour

Collective”), and a proof-of-concept prototype that shows

that key building blocks for DCol already exist and setting

up usch a collective involves mostly integration of existing

technologies . Given the groundwork described in this paper,

the main direction for future work is developing and imple-

menting strategies for exploring candidate waypoints and for

controlling how traffic is split among them.

REFERENCES

[1] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorian,
“Detour: Informed internet routing and transport,” Ieee Micro, vol. 19,
no. 1, pp. 50–59, 1999.

[2] P. K. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy,
D. Wetherall et al., “Improving the reliability of internet paths with
one-hop source routing.” in OSDI, vol. 4, 2004, pp. 13–13.

[3] H. Zheng, E. K. Lua, M. Pias, and T. G. Griffin, “Internet routing policies
and round-trip-times,” in PAM, 2005, pp. 236–250.

[4] S.-J. Lee, S. Banerjee, P. Sharma, P. Yalagandula, and S. Basu,
“Bandwidth-aware routing in overlay networks,” in INFOCOM, 2008,
pp. 1732–1740.

[5] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee,
“Symbiotic relationships in internet routing overlays.” in NSDI, 2009,
pp. 467–480.

[6] Akamai, “SureRoute,” https://developer.akamai.com/learn/Optimiza-
tion/SureRoute.html.

[7] M. Allman and M. Rabinovich, “Rethinking home net-
working for the ultrabroadband era.” [Online]. Available:
https://www.nsf.gov/awardsearch/showAward?AWD ID=1647145

[8] O. Bonaventure and S. Seo, “Multipath tcp deployments,” IETF Journal,
vol. 12, no. 2, pp. 24–27, 2016.

[9] M. Boucadair, C. Jacquenet, D. Behaghel, stefano.secci@lip6.fr,
W. Henderickx, R. Skog, O. Bonaventure, S. Vinapamula,
S. Seo, W. Cloetens, U. Meyer, L. M. Contreras, and
B. Peirens, “Extensions for Network-Assisted MPTCP Deployment
Models,” Internet Engineering Task Force, Internet-Draft draft-
boucadair-mptcp-plain-mode-10, Mar. 2017, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-boucadair-
mptcp-plain-mode-10

[10] M. Boucadair and C. Jacquenet, “RADIUS Extensions for Network-
Assisted Multipath TCP (MPTCP),” IETF Draft, Tech. Rep., Oct.
2017. [Online]. Available: https://tools.ietf.org/id/draft-boucadair-mptcp-
radius-05.html

[11] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 266–277.

[12] L. Boccassi, M. M. Fayed, and M. K. Marina, “Binder: A system
to aggregate multiple internet gateways in community networks,” in
Proceedings of the 2013 ACM MobiCom Workshop on Lowest Cost

Denominator Networking for Universal Access, ser. LCDNet ’13.
New York, NY, USA: ACM, 2013, pp. 3–8. [Online]. Available:
http://doi.acm.org/10.1145/2502880.2502894

[13] J. Duncanson, “Inverse multiplexing,” IEEE Communications Magazine,
vol. 32, no. 4, pp. 34–41, April 1994.

[14] M. Sargent and M. Allman, “Performance within a fiber-to-the-home
network,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 22–30, 2014.

[15] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, Resilient

overlay networks. ACM, 2001, vol. 35, no. 5.
[16] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, and R. Y. Wang,

“A transport layer approach for improving end-to-end performance
and robustness using redundant paths.” in USENIX Annual Technical

Conference, General Track, 2004, pp. 99–112.
[17] J. Postel et al., “Internet Protocol,” RFC 791, Sep. 1981. [Online].

Available: https://rfc-editor.org/rfc/rfc791.txt
[18] F. Gont, R. Atkinson, and C. Pignataro, “Recommendations on Filtering

of IPv4 Packets Containing IPv4 Options,” RFC 7126, Feb. 2014.
[Online]. Available: https://rfc-editor.org/rfc/rfc7126.txt

[19] C. Paasch, S. Barré et al., “Multipath TCP in the Linux Kernel,”
http://www.multipath-tcp.org.

[20] J. Yonan et al., “OpenVPN,” http://openvpn.net.
[21] “generic netlink howto,” Linux Foundation

Wiki, Tech. Rep. [Online]. Available:
https://wiki.linuxfoundation.org/networking/generic netlink howto

[22] “Mininet: An instant virtual network on your laptop (or other pc),” 2012.
[23] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[24] J. Dugan, S. Elliott, B. A. Mah, and K. Prabhu, “Iperf3.” [Online].
Available: http://software.es.net/iperf/

[25] S. W. Ho, T. Haddow, J. Ledlie, M. Draief, and P. R. Pietzuch,
“Deconstructing internet paths: an approach for as-level detour route
discovery.” in IPTPS, 2009, p. 8.

[26] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” DTIC Document, Tech. Rep., 2004.


