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ABSTRACT 
This paper presents an explorative-based computational 

methodology to aid the analogical retrieval process in design-by-
analogy practice. The computational methodology, driven by Non-
negative Matrix Factorization (NMF), iteratively builds a hierarchical 
repositories of design solutions within which clusters of design 
analogies can be explored by designers. In the work, the methodology 
has been applied on a large repository of mechanical design related 
patents, processed to contain only component-, behavior-, or material-
based content, to demonstrate that unique and valuable attribute-based 
analogical inspiration can be discovered from different representations 
of patent data. For explorative purposes, the hierarchical repositories 
have been visualized with a three-dimensional hierarchical structure 
and two-dimensional bar graph structure, which can be used 
interchangeably for retrieving analogies. This paper demonstrates that 
the explorative-based computational methodology provides designers 
an enhanced control over design repositories, empowering them to 
retrieve analogical inspiration for design-by-analogy practice.   

1. INTRODUCTION
Designers often seek inspiration and direction during ideation and

the early stages of the design process.  Among various efforts to find 
such inspiration is design-by-analogy (DbA) [1]. Design-by-analogy 
involves the retrieval of analogies from a design repository, a 
“database” of existing design solutions (sometimes simply memory), 
and the transfer of knowledge from a “source” domain to a “target” 
domain. To facilitate design-by-analogy in practice, several 
researchers have studied and developed computational support to 
retrieve analogies from an electronic patent database [2, 3]. The patent 
database is deemed an ideal design repository for its innovative ideas 
of various application fields and sheer size that grows exponentially 
worldwide [4]. Unfortunately, our understanding of design-by-analogy 
practice is inadequate compared to the ever-increasing size of the 
patent database, restricting designers from being able utilize the 
database at its full capacity. To address this research gap, the work 
presented here uses a computational methodology to explore patents 
for analogical inspiration, with the goal of facilitating the design-by-
analogy practice. Specifically, the work presents following main 
contributions: 

1. The authors generate and visualize hierarchical repositories of
large-scale mechanical design related patents in which
designers can interactively explore for analogical inspiration.

2. The authors generate component-, behavior-, or material-
based hierarchical repositories to provide designers different
lenses to influence the way they search for analogies in patent
data.

1.1 Prior Studies in Design-by-Analogy 
Design-by-analogy has been an active research area [2, 5-8], 

among which studies have focused on understanding the effects of 
analogies on ideation and design outcomes. For instance, Linsey et al. 
explored how various types of representation of information affect 
designers’ ability to identify, retrieve, and map analogies to design 
solutions [9]. Tseng et al. studied how analogous information of 
different levels of applicability to the design problem affects ideation 
when the design problem has an open-goal [7]. Several studies also 
focused on methodologies to retrieve analogies including but not 
limited to: the WordTree method, which retrieves functional analogies 
by systematically integrating the knowledge of designers and design 
database [10]; a computational technique to recognize biological 
analogies using causally related functions derived from semantic 
information [11]; D-APPS, which provides functional analogies based 
on a design’s product requirements [12]; a number of different patent 
mining tools [3, 13-15]. Most DbA tools, including the prior work 
reviewed here, use query-based approach or straightforward input-
output method to retrieve analogies. In a case of WordTree method, 
designers input a word characterizing a design’s functionality and are 
returned only a set of functionally analogical words from various 
domains, compiled by the algorithm, as source of inspiration [10]. The 
work presented in this paper is differentiated from the prior work in 
that our methodology gives designers an entire structured design space 
for exploration where they can freely interact with the design solution 
and discover analogies from various potential sources. The emphasis 
on the exploration for analogical retrieval is discussed in the next 
section.  

1.2 Exploration for Expert Thinking in Design 
Expert designers exhibit several cognitive characteristics and 

abilities during design process. First, they have better spatial memory 
than novices, being able to process more information [16, 17]. In fact, 
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they gather more information than novices to ideate design solutions 
for a given problem [18]. Second, not only do they gather information 
and ideate more, they can cognitively organize the information and 
conceptualize abstract ideas by viewing the problems objectively [19, 
20]. Third, they have a systematic approach to design [19], being able 
to spontaneously adapt to the design constraints [21] and develop 
heuristics or “rules of thumb” to approach the problem [17, 22]. The 
dynamic, flexible, and systematic characteristics of the expert 
designers indicate that the explorative approach is better matched with 
their cognitive mechanisms. The explorative approach allows the 
designers to retrieve analogical inspiration by interactively exploring a 
design repository and autonomously recognizing analogical 
connections among potential design sources, which could have been 
ruled out by the query-based algorithm. In addition, the user-controlled 
explorative approach allows designers to personalize their search for 
analogies using various analogical properties, creating various 
representations of the design repository and/or design problem that 
could lead to diverse creative design output [23]. Some potential 
analogical properties that could be employed for the analogical 
exploration are introduced in Section 2.1.  
 

1.3 Patent Database as Design Repository  
The United States Patent database has several features that make it 

a suitable design repository for the design-by-analogy practice. The 
database contains prior design solutions that contain valuable 
knowledge and are deemed “patentable”. Patentable ideas can be 
further defined as ideas that are “useful”, meaning that the ideas are 
functional and operable, and “novel”, meaning that the ideas have not 
previously existed before [24]. The database size, already enormous at 
approximately 10 million patents in 2015 [25], grows continuously in 
various technical fields promising designers substantial opportunities 
to explore for design inspiration in multiple domains. The patent 
database uses classification systems, such as Cooperative Patent 
Classification (CPC), to categorize the patents into specific domains 
for efficient patent retrieval processes [24]. The characteristics of the 
patent database not only make it an ideal source of innovation, but also 
an efficient means for retrieving analogies.  

The vast size of the patent database offers a great opportunity for 
discovering analogies for design-by-analogy practice, but 
simultaneously presents a challenge for an effectively mining of 
patents. To address this challenge, various computational tools and 
methodologies have been studied. Song and Luo integrated the mining 
of patent texts, citation relationships, and inventor information to 
retrieve patents for assisting data-driven design [26]. Fu et al. used 
Latent Semantic Analysis (LSA), a computational text analysis tool, to 
extract contextual similarities within patent documents and structure 
them based on surface and functional features [2]. Murphy used a 
Vector Space Model algorithm to evaluate functional analogies within 
patents [3]. Although these works implement different computational 
approaches to retrieve analogies from the electronic patent database, 
they all exemplify the importance of computational support to access 
the patented knowledge in the design repository. 
 

1.4 Hierarchical Structure of Patent Data  
A structural form of data is essential for providing valuable 

insights into the data. For instance, Linnaeus’s tree structure for 
biological species and Mendeleev’s periodic table for chemical 
elements led to major scientific advancements in understanding nature 
[27]. Finding a structural form requires a clustering or categorization 
of data. In text mining and data mining fields, a popular computational 
technique used for data clustering is Non-negative Matrix 
Factorization (NMF) [28, 29]. NMF is a topic modeling technique that 
discovers semantically meaningful topics within a large corpus of 

documents to aid text mining [30, 31]. It has been an active research 
area in text mining for its practical advantages over other semantic 
techniques such as Latent Dirichlet Allocation (LDA) [32]. One 
advantage is that NMF generates consistent topic clustering results, 
assuring that users are returned similar results for multiple runs. Also, 
numerous matrix computation and optimization studies for the 
efficient NMF computation suggest its competency for the large 
corpus topic modeling [33-36].  

Similar to most semantic techniques, it starts with transforming a 
corpus into a word-document matrix, in which each row represents a 
word from an entire corpus, each column represents a patent, and each 
matrix element represents the frequency of word occurring in the 
patent document. Mathematically, the word-document matrix is 
represented by X∈ℝ!!×!, where m represents the number of words and 
n represents the number of documents in a corpus. Given k<<min (m, 
n) as a user-specified number of topics, NMF factorizes the input 
matrix, X, into two nonnegative matrices, namely W∈ℝ!!×!  and 
H∈ℝ!!×! such that X≅WH. Here, W is word-topic matrix whose ith 
topic column is represented by the weighted distribution of words. 
Similarly, H is topic-document matrix whose jth document column is 
represented by the weighted distribution of the respective topics. The 

matrix decomposition is illustrated in Figure 1. 
2. METHODOLOGY 

The patent data was processed to generate the cluster structures 
shown in Appendices A.1-3. First, word-document matrices of patents 
were prepared. Second, cluster structures of the patents were generated 
using Non-negative Matrix Factorization (NMF). Last, visual 
representations of the structures were generated to explore the cluster 
space. All computations were performed using MATLAB R2016b.  
Each of these steps is described in detail in the subsequent sections. 
 

2.1 Preparing Word-by-Document Matrices 
The first part of the work involves retrieving patent data from a 

data storage system of United States Patent & Trademark Office 
(USPTO). The database consists of a bulk U.S. registered patents, each 
assigned to at least one classification term called Cooperative Patent 
Classification (CPC). All registered U.S. patents are categorized into 
one of 9 CPC sections and further assigned into a subsection, which 
provides a general overview of the patent’s design features and area(s) 
of application. To limit the scope of the study, only mechanical design 
related patents were used; Fifty-three CPC subsections were chosen by 
the researchers as shown in Appendix B. For each subsection, 20 
patents were selected using a random number generator, comprising a 
total of 1,060 patents. This overall sample size (>1000 patents) was 
chosen to capture and analyze various analogical structures in the 
patent space with a goal of addressing the research gap in 
implementing computational DbA tool in a larger-scale design 
repository. Prior work by the authors has been with sample sizes of 
100 patents.  In future work, the authors hope to continue to scale up 
the sample size by orders of magnitude. For each patent document, 

FIGURE 1. ILLUSTRATION OF NON-NEGATIVE MATRIX 
FACTORIZATION 
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only the words in the abstract, claims, and description sections were 
used, as they are the most representative of the patent’s design features.  

In addition to the patent documents, a design problem statement 
was also added to the corpus for generating the word-document matrix 
[37]. Its purpose was to provide a ‘starting point’ in the cluster space 
to facilitate data analysis and exploration. The design problem 
statement, which was used in the researcher’s prior study, was as 
following: 
 

Design a device to collect energy from human motion for use in 
developing and impoverished rural communities in places like India 
and many African countries. Our goal is to build a low-cost, easy to 
manufacture device targeted at individuals and small households to 
provide energy to be stored in a rechargeable battery with 
approximately 80% efficiency. The energy is intended to be used by 
small, low power draw electrical devices, such as a radio or lighting 
device, hopefully leading to an increase in the quality of life of the 
communities by increasing productivity, connection to the outside 
world, etc. The target energy production is 1 kWh per day, roughly 
enough to power eight 25 W compact fluorescent light bulbs for 5 h 
each per day, or enough to power a CB radio for the entire day. 
 

For reference, an average adult human can output about 200 W with 
full body physical activity for short periods of time, with a significant 
reduction for sustained power output. 
 

After the word-document matrix was generated, the matrix was 
further processed to characterize three design properties - components, 
behaviors, and materials. In the early stages of the design processes, 
designers often have diverse objectives and lenses through which they 
look when searching for inspiration or external information.  By 
allowing for these different lenses to influence the way the design 
space is structured and inter-related, we empower the designer to 
explore in a more tailored and efficient manner than before. The 
manipulation of the patent data set was done by manually compiling a 
list of words that characterize each analogical property, and then 
reducing the original matrix to contain only the rows of the listed 
words. The word lists were generated by first identifying what words 
appear in the patent corpora and picking those that apply to or describe 
any of the three properties. As a designer searches for analogical 
inspiration, he/she might, for example, ask the following questions 
when considering components, material, or behavioral content within 
their potential analogical sources.  

 

• Component: What specific components have been integrated to 
the system/artifact/technology?  

• Behavior: What are the attributes of the system/artifact/ 
technology that describe how it behaves?  

• Material: What materials does the system/artifact/ technology use? 
 

After a test run, words that appear too frequently were removed to 
distinguish one patent from another. As a result, word lists of 
component (709 words), behavior (262 words), and material (377 
words) were compiled. The refinement does not alter the matrix’s 
numerical element - the frequency of words occurring in each 
document - but rather removes any words that are considered to be 
‘noise’ within the given context.  This allows designers to explore the 
patent space using a particular priority, angle, or attribute. A similar 
practice was done in the author’s previous study, in which function 
and surface features of patents were explored using verbs-only and 
nouns-only data respectively [37]. This study is an extension of the 
prior study in that the components, behaviors, and materials of the 
patent data are explored to investigate their potential for facilitating 
design inspiration. For the final step, inverse entropy weighing was 

performed on the word-document matrices to assign higher weight for 
words that appear less frequently and vice versa.  

 

 
 
2.2 Processing with Topic Clustering Algorithm  

The cluster structures of the three patent data sets were generated 
using NMF. As reviewed in Section 1.4, the computational algorithm 
requires a user-specified number of topics, k, to process the word-
document matrix. It is critical that an appropriate topic number is 
selected for the algorithm as overly or inadequately clustered data 
leads to an inaccurate clustering result. Unfortunately, computing an 
appropriate topic number is still an ongoing research [38] and thus 
questions the effectiveness of the topic clustering, especially for a 
large-scale data whose range of topics may vary exceedingly. To cope 
the challenge in this study, a computational method similar to Du et 
al.’s Divide-and-Conquer Non-negative Matrix Factorization (DC-
NMF) was used [33]. As illustrated by a hierarchy structure in Figure 
2, NMF with k=2, or rank-2 NMF, was performed recursively on an 
input word-document matrix. The rank-2 NMF, which has fast 
computational speed [39], divides the input matrix into two output 
matrices of clustered patents. These clusters are then used as inputs for 
the next iteration. The iteration continues until the processed output 
cluster contains less than or equal to 10 patents. The stopping criterion 
is an important factor for determining the clustering quality as it could 
result in overly or inadequately clustered structures. We acknowledge 
that the current stopping criterion was experimentally determined, and 
that it generates cluster structures whose qualities are sufficient for 
analyzing the analogical relationships among patents. However, the 
stopping criterion of the iterative method is an important area of 
improvement for an effective topic clustering in future studies.  

Throughout the process of generating structures, a label was 
generated for each cluster so that the analogical relationships among 
the clustered patents become more transparent and interpretable [37]. 
In each iteration of NMF, the algorithm outputs W, word-topic matrix, 
and H, topic-document matrix. Here, W represents the probabilistic 
distribution of words for each column of topic, implying that the word 
that has the highest probability score in the jth column in the matrix 
contributes the most to the jth topic’s description. In this study, the 
columns of words in W were sorted in descending order, and the top 
five words in the column were used to create the cluster label. 
 

2.3 Visualization 
The cluster structures of the three patent data sets were visualized 

using MATLAB’s graphing tool to enable the exploration and 
interpretation of the larger-scale cluster space. This section details two 
visualization methods used to analyze the clustered patent structures. 

2.3.1 Three-Dimensional Hierarchical Visualization Three-
dimensional (3D) hierarchical visualization was used to interactively 
explore the cluster space. The hierarchy structure is composed of 

FIGURE 2. ILLUSTRATION OF RANK-2 NMF ITERATIONS 
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nodes, or clusters of the patent documents, and lines, or the 
connections between the clusters. The structure contains the initial 
input data, or “root node” at the center. Starting from the root node, 
two child nodes branch out recursively outward until all clusters at the 
end, or “leaf nodes”, contain less than or equal to 10 patents. For 
exploration of the space, the user can rotate or zoom in the structure to 
search for a node and select the node to view its cluster label and 
cluster ID number, used for retrieving patent titles. The 3D structure, 
as shown in Appendices A1-3, was generated using MATLAB’s 
‘digraph’ function with ‘force3’ layout. ‘force3’ layout generates 3D 
force directed plot, where the coordinates of nodes and length of edges 
are determined based on the structure and size of the input graph.  

2.3.2 Two-Dimensional Bar Graph Visualization Figure 3 
illustrates the transformation of the three-dimensional hierarchy 
visualization into a two-dimensional (2D) bar graph visualization. 
Note that the 3D hierarchy structure in the figure is represented on a 
2D graphing space for an effective understanding of the transformation. 
In the 3D structure, the node of patents iteratively breaks down into 
two child nodes based on their topic similarity. This implies that the 
most similar patents in the entire data set would be clustered in a leaf 
node after a series of NMF iterations. In this manner, if that leaf node 
is “1.1.1.1” in Figure 2, the next similar set of patents would be 
clustered in a leaf node, “1.1.1.2”, derived from the same parent node, 
“1.1.1”. Accordingly, the least similar set of patents would be 
separated in the first iteration performed on the initial node, “1”. Once 
the set of patents is separated, it would go through another series of 
NMF iterations resulting in several leaf nodes on the other side of the 
hierarchy structure. This iterative concept was visualized in a two-
dimensional bar graph diagram. In the diagram, the horizontal axis 
represents the level of the hierarchy, equivalent to the series of nodes 
on the bolded path in Figure 3. On each level of the hierarchy is a set 
of leaf nodes with cluster labels that are generated with the separated 
set of patents at each level. This way, the leaf nodes are distributed 
across the level of the hierarchy in order of similarity from a starting 
leaf node (indicated with an * symbol) in Figure 3. For consistency of 
the study, the design problem node - or a leaf node that contains the 
design problem statement - was chosen as the starting point. 

The two visualization methods were used interchangeably to 
evaluate the patent data’s cluster space. For instance, the 3D 
visualization was used to view the entire cluster space where 
individual clusters can be explored by their labels. 2D visualization 
was used to sort all clusters on the two-dimensional plane to view the 
leaf clusters by their similarity to the starting leaf cluster. The analysis 
results are presented in the next section.   
 
3. RESULTS AND DISCUSSION 

The screenshots of the cluster structures are shown in Appendices 
A.1-3. In the 3D visualizations, the design problem node was selected 
to display its cluster label and highlight its path from the root node in 
the center. In the 2D visualizations, all leaf nodes are plotted in the 
order of similarity to the design problem node on the first level. The 
clusters in component, behavior, and material analyses exhibit 

different characteristics. For the component result, the clusters consist 
of patents of similar functionality. The functions of the individual 
components correspond to the sub-functions of the integrated design. 
The patents in the behavior result are clustered by the design’s 
descriptive quality. The patents in the material result are clustered for 
two different aspects - one aspect is the material that the design is 
made of and the other is the raw material that the design uses.  

The three cluster results are visually unique, suggesting that 
different design insights can arise from a single patent data set [23]. To 
confirm this, the analogical relationships among the clustered patents 
were evaluated using the computer-generated cluster labels. Figure 4 
shows the simplified 2D visualization to analyze where three randomly 
chosen patents are assigned in the different cluster structures. For 
instance, the component result shows patent “Pocket tool” and patent 
“Electric toothbrush” in a cluster label of “switch, circuit, battery, 
house, port”, suggesting that they are composed of small electronic 
components. The behavior result shows the same patent “Pocket 
tool” and patent “Method for protecting electric line” in a cluster label 
of “electronic, electric, peripheral, mechanic, secure”, suggesting that 
they have a commonality of protecting and securing electronic 
components. Lastly, the material result shows the same patent “Pocket 
tool” and patent “Deburring knife with replaceable blade” in a cluster 
label of “arrow, metal, solid, waste, stem”, suggesting that they are 
either made of metal or use metal. Clearly, each cluster represents a 
unique analogical relationship, suggesting that it could be beneficial 
for a designer who is seeking potential analogies for a desired design 
feature.  

In a second example, the component result shows patent “Ice 
gripping sandal” and patents “Weight distributing knee pad” and 
“Balance assist for rotating recreational device” in a cluster label of 
“port, strap, case, mount, heel”. The behavior result shows the same 
patent “Ice gripping sandal” and patents “Abrasive tool” and 
“Hairpiece and fitting method therefor” in a cluster label of “secure, 
flex, light, sole, alternative”. Although the cluster labels of the 
component and behavior results are different, the patents, interestingly, 
share a common functionality of securing or fixing something to 
something else. This is an example of discovering patents of similar 
design attributes from various apparel domains using component and 
behavior data. For instance, patent “Ice gripping sandal” is from the 
footwear domain, “Weight distributing knee pad” is from wearing 
apparel domain, and “Hairpiece and fitting method therefor” is from 
headwear domain. 

In a third example, the component result shows patent “Shower 
bath apparatus and spray nozzle” and patent “Transmucosal hormone 
delivery system” in a cluster label of “nozzle, spray, bath, body, valve”, 
suggesting that they use spray to deliver fluids. The material result 
shows the same patent “Shower bath apparatus and spray nozzle” and 
patent “Humidifier” in a cluster label of “water, fluid, air, steam, 
carbon”, suggesting that they use water. Although the two cluster 
labels represent different analogical relationships, they all have a 
common functionality of delivering fluids. This finding demonstrates 
that patents of common functionality are discovered by a common 

FIGURE 3. TRANSFORMATION OF 3D VISUALIZATION TO 2D VISUALIZATION  
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material used, which is not deemed a functional characteristic of the 
patented artifact such as the functional component or functional 
behavior in the previous examples. This finding is exciting, as a 
designer can discover patents of similar design attributes even with 
different analogical perspectives implying that the designer could 
retrieve a wide variety of analogical sources to gain design inspiration.  

The analogical relationships discussed earlier provide a basis for 
user-tailored retrieval of analogies from patent data. Given the human 
motion energy collection design problem provided earlier, a designer 
could specifically explore for patents with energy converting 
components, patents with electrical behavior, or patents that are made 
of affordable natural materials to formulate several concepts 
depending on his/her design objective. Alternatively, the designer 
could freely browse adjacent or even distant patent clusters to intake 
various sources of analogical inspiration to conceptualize ideas from 
unexpected domains. The hierarchical structure of the patent data 
could be promising for designers as they can spontaneously make 
decisions and tailor their searches for the effective retrieval of 
analogies.  
 
4. CONCLUSIONS 

The goal of this work is to provide designers a computational 
design-by-analogy tool to explore a design repository for analogical 
inspiration. The computational methodology utilizes a topic modeling 
technique called Non-negative Matrix Factorization (NMF) to generate 
a hierarchical cluster structure of the U.S. patent database where 
designers can visualize and evaluate analogies to solve given design 
problems. In the work, the user-controlled exploration technique has 
been implemented on the patent database, processed to contain only 
component-, behavior-, and material-based content, to demonstrate 
that different patent representations result in various analogical 
inspirations that are unique and valuable for ideation process. The 

interactive and multifaceted exploration tool empowers designers to 
effectively retrieve analogies from the design repository, facilitating 
the design-by-analogy practice. 
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APPENDIX A.1: 3D and 2D Visualizations for Component Representation of Patent Database 
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APPENDIX A.2: 3D and 2D Visualizations for Behavior Representation of Patent Database 
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APPENDIX A.3: 3D and 2D Visualizations for Material Representation of Patent Database 
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APPENDIX B: List of 53 CPC Sub-Sections 
 

Section Subsection Description 

Section A: 
Human Necessities 
 

1 Agriculture; forestry; animal husbandry; hunting; trapping; fishing 
41 Wearing apparel 
42 Headwear 
43 Footwear 
45 Hand or travelling articles 
46 Brushware 
47 Tables; desks; office furniture; cabinets; drawers; general details of furniture 
61 Medical or veterinary science; hygiene 
62 Life-saving; fire-fighting 
63 Sports; games; amusements  

Section B:  
Performing Operation; 
Transporting 
 

2 Crushing, pulverizing, or disintegrating; preparatory treatment of grain for milling 
3 Separation of solid materials using liquids or using pneumatic tables or jigs; magnetic or electrostatic separation of 

solid materials from solid materials from solid materials or fluids; separation by high-voltage electric fields 
5 Spraying or atomizing in general; applying liquids or other fluent materials to surfaces, in general 
6 Generating or transmitting mechanical vibrations in general 
7 Separating solids from solids; sorting 
8 Cleaning 
9 Disposal of solid waste; reclamation of contaminated soil 
21 mechanical metal-working without essentially removing material; punching metal 
22 Casting; powder metallurgy 
23 Machine tools; metal-working not otherwise provided for  
24 Grinding; polishing 
25 Hand tools; portable power-driven tools; manipulators 
26 Hand cutting tools; cutting; severing 
27 Working or preserving wood or similar material; nailing or stapling machines in general 
28 Working cement, clay, or stone 
29 Working of plastics; working of substances in a plastic state, in general  
41 Printing; lining machines; typewriters; stamps 
60 Vehicles in general  
61 Railways 
62 Land vehicles for traveling otherwise than on rails 
63 Ships or other waterborne vessels; related equipment 
64 Aircraft; aviation; cosmonautics 
65 Conveying; packing; storing; handling thin or filamentary material 
66 Hoisting; lifting; hauling 
67 Opening, closing (or cleaning) bottles, jars, or similar containers; liquid handling  

Section F:  
Mechanical 
Engineering; lighting; 
heating; weapons; 
blasting  
 

1 Machines or engines in general 
2 Combustion engine 
3 Machine or engines for liquids 
4 Positive displacement machine for liquids; pumps for liquids or elastic fluids 
5 Indexing schemes relating to engines or pumps in various subclasses of classes  
15 Fluid-pressure actuators ; hydraulic or pneumatics in general 
16 Engineering elements and units; general measures for producing and maintaining effective functioning of machines or 

installations; thermal insulation in general 
17 Storing of distributing gases or liquids 
21 Lighting 
22 Steam generation 
23 Combustion apparatus 
24 Heating; ranges; ventilating 
25 Refrigeration or cooling; combined heating and refrigeration systems; heat pump systems; manufacture or storage of 

ice; liquefaction solidification of gases 
26 Drying 
27 Furnaces; kilns; ovens; retorts 
28 Heat exchange in general 
41 Weapons 
42 Ammunition; blasting  
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