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Photoredox/Nickel-Catalyzed Single-Electron Tsuji—Trost Reaction:
Development and Mechanistic Insights
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Osvaldo Gutierrez,* and Gary A. Molander*

Abstract: A regioselective, nickel-catalyzed photoredox ally-
lation of secondary, benzyl, and a-alkoxy radical precursors is
disclosed. Through this manifold, a variety of linear allylic
alcohols and allylated monosaccharides are accessible in high
yields under mild reaction conditions. Quantum mechanical
calculations [DFT and DLPNO-CCSD(T)] support the mech-
anistic hypothesis of a Ni’ to Ni" oxidative addition pathway
followed by radical addition and inner-sphere allylation.

Over the course of the past 30years, the Tsuji—Trost
allylation has been a workhorse reaction within the field of
synthetic organic chemistry."! A particularly striking advant-
age of the Tsuji-Trost reaction is the ability to forge C(sp*)—
C(sp®) bonds under mild reaction conditions, typically using
palladium as the transition metal in conjunction with an
appropriate phosphine ligand.”) Although the breadth of
electrophilic allyl partners has been quite thoroughly
explored, nucleophilic partners have primarily been limited
to two-electron carbon- or nitrogen-centered moieties.”!
Specifically, for C—C bond formation, soft nucleophiles
(e.g., malonates) are frequently employed, wherein addition
occurs by an outer-sphere mechanism.

The choice of nucleophile in these transformations is
primarily limited by pK, constraints, because anions derived
from pronucleophiles with pK, values greater than 25 are not
appropriately tuned to react with the incipient m-allyl
transition-metal intermediate.! Recent reports by Walsh
and co-workers have reported the utility of diarylmethane
nucleophiles (pK, up to 32) in palladium-catalyzed allylic
substitution reactions, broadening the nucleophile window of
Tsuji-Trost reactions.”) Alternatively, Zn-®! Sn-"! B-[®
Mg-1 Si- "1 and Li-based"" enolates have been used
successfully as nucleophilic partners in related transforma-
tions.”™!?l However, a major limitation of enolate-based
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Scheme 1. Exploring radical-based Tsuji—Trost reactivity under photo-
redox conditions.

methods is the prerequisite for highly basic conditions. To
overcome these limitations, pioneering work by the group of
Tunge shifted efforts toward radical-based intramolecular
allylations by a palladium/photoredox cross-coupling, facili-
tating the decarboxylative allylation of a-amino carboxylic
acids. Unfortunately, when Tunge and co-workers moved to
intermolecular allylation chemistry, only unsubstituted allyl
groups were successfully coupled with alkyl carboxylic acid
partners.’!

Given the excellent precedent for merging photoredox
and nickel catalysis in alkylation reactions established by our
group and others," we sought to expand this paradigm to
radical-based Tsuji-Trost reactions (Scheme 1). In particular,
numerous radical precursors (e.g., alkyltrifluoroborates, car-
boxylates, alkylsilicates, and 1,4-dihydropyridines) derived
from diverse commodity chemicals have been developed.!'”
Although such reagents have been extensively utilized in
conjunction with photoredox/nickel dual cross-coupling with
aryl'® and alkenyl!”! electrophiles, we have also begun to
expand the scope of electrophilic partners for such trans-
formations (e.g., using isocyanate," acyl chloride," carbox-
ylic acid,” and acyl imide electrophiles®"). In a continuation
of that effort, the cost-effective nature of nickel-based
catalysts and the slow f-hydride elimination of alkylnickel
species, relative to that of palladium, was considered for
investigating how this approach could be applied to the Tsuji—
Trost reaction.”

Vinyl epoxides have been employed previously in palla-
dium-catalyzed allylations,* but to the best of our knowl-
edge, reports using a nickel-based catalyst—a nonprecious,
inexpensive catalyst—are scarce,?" with only a few examples
being reported involving cycloaddition reactions. At the
outset of substrate exploration, a variety of benzyltrifluor-
oborates were selected. Early results demonstrated a diversity
of electron-withdrawing and electron-donating groups were
accommodated (Table 1). Additionally, modestly sterically

Wiley Online Library

15847


http://dx.doi.org/10.1002/ange.201809919
http://dx.doi.org/10.1002/anie.201809919
http://orcid.org/0000-0002-9114-5584
http://orcid.org/0000-0002-9114-5584
https://doi.org/10.1002/anie.201809919
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fanie.201809919&domain=pdf&date_stamp=2018-11-07

GDCh
~—

15848

Table 1: Radical scope

@-BFSK Gé\/o

(1.0 equiv)

Ir photocatalyst (2 mol %)
Ni complex (3 mol %)

2,6-lutidine, acetone/MeOH

(1.5 equiv) blue LEDs

OH
@9/\)
OH
o MeO. S -
@/\8/\) Cl \©/\S/\)
OMe

1a, 70% 1b, 55% 1c, 87%
E/Z =955 E/Z=177:23 E/Z =90:10
OH Me OH
N Ja S
o/\@/\)
R
1d, R = F, 95%, £/Z = 90:10 1f, 62% 1g, 73%*
1e, R = CO,Et, 67%, £/Z = >20:1 E/Z=85,15 E/Z=88:12

™ Me Me OH
OW Me>|\
o AU e ad
MeO o/\@/\)

1h, 64%°
E/Z=81:19

1i, 68%°
E/Z=84:16

1j, 62%°
E/Z = 53:47

Reactions were conducted on 0.50 mmol scale. Standard reaction
conditions employed butadiene monoxide (1.0 equiv), alkyltrifluorobo-
rate (1.5 equiv), Ir[dFCF;ppyl,(bpy) PFs (2 mol %), [Ni(dtbbpy) (H,0),]Cl,
(3 mol %), and 2,6-lutidine (3.5 equiv) in acetone/MeOH (9:1). See
Supporting Information for more details. [a] For a-alkoxyalkyltrifluoro-
borates, a solvent mixture of acetonitrile/tert-butanol (10:1) was used.

hindered substrates could also be used. For example, ortho
substitution afforded 62% of desired product 1f As the
radical-precursor search was expanded, a-alkoxytrifluorobo-
rates were next targeted. Generally, E/Z selectivity was high,
although the ratio was severely diminished to 53:47 when tert-
butyl ether moieties were explored (1j).

Moving forward, the breadth of carbon-centered radicals
was expanded by targeting unstabilized secondary alkyl
radical precursors. Under the standard and modified reaction
conditions, secondary alkyltrifluoroborates formed complex
mixtures (e.g., homocoupling, aldehydic side products).*!
Therefore, DHPs (1,4-dihydropyridines) were investigated
as alternative radical precursors®*?’ with 4CzIPN (2.4,5,6-
tetra(9H-carbazol-9-yl)isophthalonitrile) as an organophoto-
catalyst (Table 2). During the exploration of various DHPs,
heterocyclic (2a and 2e) and alkenyl moieties (2¢) were
successfully incorporated within the coupling partners under
the optimized reaction conditions. A desire to integrate
greater functional density within the radical precursor led to
the exploration of monosaccharide moieties that were
recently highlighted in publications from our group.”®! Pleas-
ingly, pyranose DHP afforded the allylated product 2i in high
E/Z ratios and diastereoselectivity.

Subsequently, substitution on the vinyl epoxide moiety
was probed, starting with methyl substitution on the requisite
epoxide (2f-h; Table 2). Notably, the stereochemical out-
come of the photoredox/nickel dual catalyzed alkylation is
complementary to that of the palladium-catalyzed trans-
formations. The latter provided net retention by double
inversion,” whereas in the present case 1,2-epoxy-3,4-cyclo-
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Table 2: Diversifying the vinyl epoxide backbone

photocatalyst (2 mol %)

R? Ni complex (3 mol %)

RZ OH
o ®
RP RY, X
o additive, solvent
blue LEDs R' R?
(&) OH OH OH

A A X

2a,91% 2b, 87% 2¢, 62%

E/Z =>20:1 E/Z=94:6 E/Z=86:14

from 1,4—dihydn-7pylidine from 1,4-dihydropyridine

Me
=z OH

2f, 49%°
E/Z=946
from trifluoroborate

Me
9_X(Me
Me ><o N° -
Me” 0" Ng A
2i, 76%

E/Z=89:11, dr=>20:1
from 1,4-dihydropyridine

O OH
A
Me
Me’

21, 49%
E/Z=84:16
from 1,4-dihydropyridine

from 1,4-dihydropyridine

o Me OH
<oj©\/ke/v

2d, 85%
E/Z=90:10
from 1,4-dihydropyridine

Me O Me OH
Z OH <
[¢] S
o, Me
2h, 85%

E/Z=90:10
from 1,4-dihydropyridine

Me OH
SAN
Me Me

2k, 85%
E/Z =90:10
from 1,4-dihydropyridine

Me OH
Me EtO,C.  Me
N
Me’ =
DHP= § NH

from 1,4-dihydropyridine

2j, 76%
E/Z =89:11, dr = >20:1
from 1,4-dihydropyridine

2m, 46%
dr=90:10
from trifluoroborate

2n, <5%
from 1,4-dihydropyridine Et0,C  Me

Reactions were conducted on 0.50 mmol scale. Standard reaction
conditions employed butadiene monoxide (1.0 equiv), 1,4-dihydropyr-
idine (1.5 equiv), 4CzIPN (2 mol %), and [Ni(dtbbpy) (H,0),]Cl,

(3 mol %) in acetone. For trifluoroborates, standard reaction conditions
employed butadiene monoxide (1.0 equiv), alkyltrifluoroborate

(1.5 equiv), Ir[dFCF;ppy],(bpy) PFs (2 mol %), [Ni(dtbbpy) (H,0).]Cl,

(3 mol %), and 2,6-lutidine (3.5 equiv) in acetone/MeOH (9:1). For a-
alkoxyalkyltrifluoroborates, a solvent mixture of acetonitrile/tert-butanol
(10:1) was used. See Supporting Information for more details.

hexene afforded primarily the trans isomer (2m), suggesting
the nickel coordinates the alkene and adds to the opposite
face of the epoxide, but then the resulting nickel complex
engages the radical and undergoes reductive elimination by
a stereoretentive, inner-sphere mechanism. This hypothesis
was further supported by both DFT and DLPNO-CCSD(T)
quantum mechanical calculations.

Finally, although the allylic alcohol products themselves
are versatile moieties,”” we aimed to make the protocol more
general by exploring electrophiles as m-allylnickel precursors
(Table 3). First, various leaving groups were surveyed (i.e.,
bromide, chloride, and carbonate), with allyl bromide afford-
ing the highest yield of product under the initial reaction
conditions.

Motivated by the advantageous biological properties
demonstrated by molecules containing alkyl-substituted car-
bohydrate substructures,*”) DHP monosaccharides were suc-
cessfully allylated under the dual catalytic conditions with
modest to high diastereoselectivities (Table 4). Pyranose and
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Table 3: Expanding the scope with respect to the allylic substrate.

X O,
OMe

DHP_ o
D—OMe

electrophilic partner (2.0 equiv)
4CzIPN (2 mol %)

0 i 5
)ro [Ni(dtbbpy)(H,0),]Cl, (5 mol %) °>ro
Me acetone, blue LEDs, 16 h Me'
Me Me
entry electrophilic partner % yield
1 gy 78
2 \/\CI <20
3 N 0co,Me 60

Yields are those of the isolated products.

Table 4: Allylation of monosaccharide DHPs

allyl bromide 1,4-dihydropyridine product % yield (dr)

DHP.

050 Me X 050 Me

4a, 70 (>20:1)

5 4b, 97 (>20:1)
o o
Me>\;e Me>g
e
DHP, i
O,
RF t}—om N 0
~ ﬁ OMe 4c, 94 (>20:1)
. X"
Me Me XO
Me' Me

All reactions were performed using 0.75 mmol of allyl bromide,

0.25 mmol of 1,4-dihydropyridine, 4CzIPN (2 mol %), and [Ni(dtbbpy)-
(H,0)4]Cl, (3 mol %) in acetone with blue LED irradiation for 24 h. See
Supporting Information for more details.

furanose backbones with benzyl, methoxy, and dioxolane
protecting groups were conserved. Further studies on sub-
stituent effects were conducted using difluoroallyl bromide.
Under the established reaction conditions, 4 ¢ was isolated as

AG (kcal/mol; 298 K)

== it
S—N., .
g’@f:p
Lo
Tl & et

O—|¢
000000 © X*
odowa ., Siach

n < VQ‘ b :
" P s
ﬁ\/ AN g' 'v;‘r. 5.8 (-11.1) [-5.7]

a single regioisomer. Presumably, oxidative addition to allyl
bromide followed by bromide expulsion generates the key -
allylnickel complex which, by an inner-sphere mechanism,
intercepts the a-alkoxy radical to undergo diastereoselective
reductive elimination, forming the allylated products.

Intrigued by the stereoselectivity of these processes and
questions regarding the order of reaction events, quantum
mechanical calculations were undertaken to gain insight into
the underlying mechanism of this transformation.! As
shown in Figure 1 (squares), complexation of Ni’ to vinyl
epoxide (A”) is energetically favored over that of complex-
ation to benzyl radical (A’; presumably formed from the
photocatalytic cycle, see the Supporting Information for
energetics) by 8.9 kcalmol ', Subsequently, this vinyl epox-
ide/Ni’ (A”) complex can quickly undergo an Sy2-like ring-
opening (via A”-TS; barrier is only 3.1 kcalmol ' from A”) to
form the m-allylnickel(IT) intermediate B”. As anticipated by
previous calculations,*” B” can quickly engage the benzyl
radical, generated by single-electron transfer (SET) oxidation
of BnBF;K by the photocatalyst (see the Supporting Infor-
mation for energetics), to form the Ni'! intermediate C (via
B”-C-TS). Overall, radical addition is facile (the barrier is ca.
1-3 kcalmol !, dependent on the method). Finally, inner-
sphere C(sp*)—C(sp’) bond formation via C-TS, (the barrier is
8.9 kcalmol™! from C) leads to formation of the linear
product (P;), 50.3 kcalmol ! downhill in energy.

A series of reductive elimination transition states leading
to formation of branched products (e.g., C-TSg) were also
located, but these were much higher in energy (>S5 kcal
mol ') than C-TS,;, presumably because of unfavorable
electronic repulsion and steric interactions between the
charged oxygen and the benzyl group (Figure 1). Moreover,
C(sp*)—C(sp®) bond formation by an outer-sphere pathway
(squares and triangles) was also found higher in energy.
Formation of C from a Ni’-Ni'-Ni"" pathway (Figure 1, circle)
is also overall higher in energy than the Ni’-Ni"-Ni"" pathway
(squares). Albeit low, the barrier for radical addition (A-TS)
from Ni' is still 7.3 kcalmol ' higher in energy than oxidative
addition to vinyl epoxide (via A”-TS). However, it is likely

= L
i ST
< S@
{3018 F19)
i :
¢

B"-TS_
20(76)[7.1]

; GISL
{7 (B39

/. BTS 5z b
A" .1‘ ; -7.5(-15. of - .
8.9 (-9.7) [-11.5] '~ / " )g = g 5/ ‘ .‘“‘ —485 .
‘~: \N’ _ o . . a y ! E '4(’ .6) [-55.1]
S 2 SN,
-135(85} [17.9 B"-C-TS
-15.6 (-20.8) [-8.9] . =
¥ -16.0 (-24.4) [20.7]
153(215)[127] —_—
UMO06/6-311+G(d,p)-SMD(water) @ P
UB3LYP-D3/6-311+G(d,p)-SMD(water) (parenthesis) -18.0 (-zz 4) [-27.9] oD -50.3 (-57.9) [-55.5]
DLPNO-CCSD(T)/def2- TZVPP-SMD(water) [brackets]
Figure 1. Competing Ni°/Ni'/Ni"" (circles), Ni°/Ni"/Ni"" (squares), Ni°/Ni" (squares and triangles), pathways leading to C(sp*)—C(sp’) bond

formation.
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that formation of C is highly dependent on the local
concentration of the benzyl radical and vinyl epoxide. Over-
all, DFT and DLPNO-CCSD(T) calculations support a Ni’-
Ni"-Ni"" reaction pathway and an inner-sphere reductive
elimination as the product-determining step, leading to
formation of the linear product as the major product.
This model is in accord with the stereochemical results
observed with cyclohexadiene monoxide (2m; Table 1,).
Further, although computational studies favored the linear
product, the branched pathway is only 5 kcalmol™" higher in
energy, suggesting branched products may be observed in
some cases (likely dependent on the nature of the substrate,
ligand, etc.). To test this hypothesis, we subjected sterically
hindered aryl-substituted vinyl epoxides to the standard
reaction conditions and indeed found a mixture of linear
and branched products, albeit in low yields (Scheme 2).

4CzIPN (2 mol %)
Ni(dtbbpy)Cl, (5 mol %)

MeO.
(¢]
BF 3K Ph

2,6-lutidine N\
MeCN/MeOH
= ©
< (¢} Ph
Nl —
; SN— Ni
!
MeO. HO. HO OMe \
Ve, oy inersph
inner-sphere
Eh <« radical addition
linear product branched product
5a, 41%, 9:1 E/Z 5b, 6%

Scheme 2. Observation of mixtures of linear and branched products.

In summary, a dual catalytic allylation reaction is reported
and demonstrates complementarity to traditional Tsuji—Trost
reactions. In juxtaposition with classical reactivity in the
palladium-catalyzed transformations (stabilized anionic
carbon nucleophiles), carbon-centered radicals were
employed, enabling the allylation of secondary, benzyl, and
a-alkoxy radical precursors. Additionally, net inversion of
stereochemistry is observed in the photoredox/nickel dual
catalyzed systems, as opposed to the net retention by double
inversion observed in the traditional palladium-catalyzed
processes.

To gain insight into the mechanistic pathway, studies
incorporating quantum mechanical calculations [using dis-
persion corrected (U)DFT and DLPNO-CCSD(T) methods]
were conducted to determine the energetic favorability of the
oxidative addition step. Here, a Ni’ to Ni" oxidative addition
step was calculated to occur before radical addition to the
nickel center. This proposal is a deviation from previous
mechanistic studies of photoredox/nickel dual cross-coupling
pathways where Ni’ to Ni' has been involved in the putative
pathway.”” Given the mild reaction conditions and availabil-
ity of numerous radical precursors, the disclosed method
provides a useful complement to the traditional, palladium-
catalyzed Tsuji-Trost reaction.
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