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ABSTRACT

Age of information (Aol) is a recently proposed metric for measur-
ing information freshness. Aol measures the time that elapsed since
the last received update was generated. We consider the problem
of minimizing average and peak Aol in wireless networks under
general interference constraints. When fresh information is always
available for transmission, we show that a stationary scheduling
policy is peak age optimal. We also prove that this policy achieves
average age that is within a factor of two of the optimal average age.
In the case where fresh information is not always available, and
packet/information generation rate has to be controlled along with
scheduling links for transmission, we prove an important separation
principle: the optimal scheduling policy can be designed assuming
fresh information, and independently, the packet generation rate
control can be done by ignoring interference. Peak and average
Aol for discrete time G/Ber/1 queue is analyzed for the first time,
which may be of independent interest.
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1 INTRODUCTION

Exchanging status updates, in a timely fashion, is an important
functionality in many network settings. In unmanned aerial vehic-
ular (UAV) networks, exchanging position, velocity, and control
information in real time is critical to safety and collision avoid-
ance [1, 24]. In internet of things (IoT) and cyber-physical systems,
information updates need to be sent to a common ground station in
a timely fashion for better system performance [18]. In cellular net-
works, timely feedback of the link state information to the mobile
nodes, by the base station, is necessary to perform opportunistic
scheduling and rate adaptation [7, 22].

Traditional performance measures, such as delay or throughput,
are inadequate to measure the timeliness of the updates, because
delay or throughput are packet centric measures that fail to capture
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Figure 1: Time evolution of age, A.(t), of a link e. Times ¢;
and t;. are instances of ith packet generation and reception,
respectively. Given the definition Ge(t;.) £ ¢, the age is reset
to t;. - Ge(t;) + 1 when the ith packet is received.

the timeliness of the information from an application perspective.
For example, a packet containing stale information is of little value
even if it is delivered promptly by the network. In contrast, a packet
containing freshly updated information may be of much greater
value to the application, even if it is slightly delayed.

A new measure, called Age of Information (Aol), was proposed
in [14, 15] that measures the time that elapsed since the last re-
ceived update was generated. Figure 1 shows evolution of Aol for a
destination node as a function of time. The Aol, upon reception of
a new update packet, drops to the time elapsed since generation of
this packet, and grows linearly otherwise. Aol being a destination-
node centric measure, rather than a packet centric measure like
throughput or delay, is more appropriate to measure timeliness of
updates.

In [14], Aol was first studied for a vehicular network using
simulations. Nodes generated fresh update packets periodically at a
certain rate, which were queued at the MAC layer first-in-first-out
(FIFO) queue for transmission. An optimal packet generation rate
was observed that minimized age. It was further observed that
the age could be improved by controlling the MAC layer queue,
namely, by limiting the buffer size or by changing the queueing
discipline to last-in-first-out (LIFO). However, the MAC layer queue
may not be controllable in practice. This lead to several works on
Aol under differing assumptions on the ability to control the MAC
layer queue.

Since [14], age of information has mostly been analyzed for a
single link case, by modeling the link as a queue. Age for M/M/1,
M/D/1, and D/M/1 queues, under FIFO service, was analyzed in [15]
while multiclass M/G/1 and G/G/1 queues, under FIFO service, were
studied in [11]. Age for a M/M/co was analyzed in [13], which
studied the impact of out-of-order delivery of packets on age, while
the effect of packet errors or packet drops on age was studied in [3].
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Age for LIFO queues was analyzed under various arrival and service
time distributions in [4, 17, 21].

Many of the applications where age is an important metric in-
volve wireless networks, and interference constraints are one of the
primary limitations to system performance. However, theoretical
understanding of age of information under interference constraints
has received little attention thus far. In [9], the problem of sched-
uling finite number of update packets under physical interference
constraint for age minimization was shown to be NP-hard. Age for
a broadcast network, where only a single link can be activated at
any time, was studied in [10, 12], and preliminary analysis of age
for a slotted ALOHA-like random access was done in [16].

In this paper, we consider the problem of minimizing age of
information in wireless networks under general interference con-
straints, and time-varying links. We consider average age, which is
the time average of the age curve in Figure 1, and peak age, which
is the average of all the peaks in the age curve in Figure 1, as the
metric of performance. We obtain simple scheduling policies that
are optimal, or nearly optimal.

We consider two types of sources: active sources and buffered
sources. Active sources can generate a new update packet for every
transmission, i.e., fresh information is always available for trans-
mission. Buffered sources, on the other hand, can only control the
rate of packet generation, while the generated packets are buffered
in the MAC layer FIFO queue for transmission.

For a network with active sources, we show that a stationary
scheduling policy, in which links are activated according to a sta-
tionary probability distribution, is peak age optimal. We also show
that this policy achieves average age that is within factor of two of
the optimal average age. We prove that this optimal policy can be
obtained as a solution to a convex optimization problem.

For a network with buffered sources that generate update packets
according to a Bernoulli process of a certain rate, we design a rate
control and scheduling policy to minimizes age. We show that if
rate control is performed assuming that there is no other link in
the network, and scheduling is done in the same way as in the
active source case, then this is close to the optimal age achieved
by jointly minimizing over stationary scheduling policies and rate
control. This separation principle provides an useful insight towards
the design of age optimal policies, as scheduling and rate control
are typically done at different layers of the protocol stack.

Peak and average age for the discrete time FIFO G/Ber/1 queue
is analyzed for the first time, which may be of independent interest.
Due to space constraints, some of the proofs are relegated to our
technical report [28]. Several extensions of this work are to appear
in [23, 26, 27]. In [26], we derive distributed policies for age mini-
mization, while in [27] and [23] we propose age-based and a virtual
queue based policy for age minimization. The case of multi-hop
flows was considered in [25].

The rest of this paper is organized as follows: We describe the
system model in Section 2. Age minimization for active sources is
considered in Section 3, where we also characterize the stationary
policy that minimizes peak age under a general interference model.
Age minimization for buffered sources is discussed in Section 4.
Numerical results are presented in Section 5, and we conclude in
Section 6.
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2 SYSTEM MODEL

We consider a wireless communication network as a graph G =
(V,E), where V is the set of nodes and E is the set of communica-
tion links between the nodes in the network. Time is slotted and
the duration of each slot is normalized to unity. Due to wireless
interference constraints, not all links can be activated simultane-
ously [20]. We call a set m C E to be a feasible activation set if all
links in m can be activated simultaneously without interference,
and denote by A the collection of all feasible activation sets. We
call this the general interference model.

A non-interfering transmission over link e does not always suc-
ceed due to channel errors. We let Re(t) € {1, 0} denote the channel
error process for link e, where R.(t) = 1 if a non-interfering trans-
mission over link e succeeds and R, (t) = 0 otherwise. We assume
Re(t) to be independent across links, and i.i.d. across time with
Ye = P[Re(t) = 1] > 0, for all e € E. We assume that the channel
error process Re(t) is not observable by the source nodes, but the
channel success probabilities y, are known, or can be measured
separately.

We consider two types of sources, namely, active source and
buffered source. An active source can generate a new update packet
at the beginning of each slot for transmission, while discarding
old update packets that were not transmitted. Thus, for an active
source, a transmitted packet always contains fresh information.
Packets generated by a buffered source, on the other hand, get
queued before transmission, and may contain ‘stale’ information.
The source cannot control this FIFO queue, and thus, the update
packets have to incur queueing delay. A buffered source, however,
can control the packet generation rate.

The age A () of a link e evolves as shown in Figure 1. When the
link e is activated successfully in a slot, the age of link e is reduced
to the time elapsed since the generation of the delivered packet.
Ae(t) grows linearly in absence of any communication over e. This
evolution can be simply described as

t —Ge(t) + 1 ifeisactivated at ¢
Ae(t+1) = {Ae(t)eﬂ(— 1

where G¢(t) is the generation time of the packet delivered over link
e at time ¢. In the active source case, for example, G(t) = t since a
new update packet is made available at the beginning of each slot.
Thus, in this case, the age of link e is equal to the time elapsed since
an update packet was transmitted over it, i.e., the last activation of
link e.

We define two metrics to measure long term age performance
over a network of interfering links. The weighted average age, given
by,

CY

if e is not activated at ¢

T
1
ave _ 1: -
A —hmsupT E E weAe(t), )

T—eo t=1e€cE

where w, are positive weights denoting the relative importance of
each link e € E, and the weighted peak age, given by,

N
1
AP = limsup — Z Z weAe (Te(i)), ®)
N—oeo N5

where T, (i) denotes the time at which link e was successfully acti-
vated for the ith time. Peak age is the average of age peaks, which
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happen just before link activations. Without loss of generality we
assume that we > 0 for all e.

2.1 Scheduling Policies

A scheduling policy is needed in order to decide which links to
activate at any time slot. It determines the set of links m(t) C E
that will be activated at each time t. The policy can make use of
the past history of link activations and age to make this decision,
i.e., at each time t the policy 7 will determine m(t) as a function of
the set

H(t) = {m(t),A(t)0 <t <t-1and0 < 7’ < t}, (4)

where A(t) = (Ae(t)).cg. Note that R(¢) ¢ H(2), i.e., the current
channel state R(t) is not observed before making decision at time
t. Furthermore, the information regarding past channel states is
available only through age evolution. We consider centralized
scheduling policies, in which this information is centrally available
to a scheduler, which is able to implement its scheduling decisions.
Given such a policy 7, define the link activation frequency fe(r),
for alink e, to be the fraction of times link e is successfully activated,
ie.,
> Lieem(t), m(r)eny
. , )
where m(t) is the set of links activated at time ¢. Note that f ()
is not the frequency of successful activations, as channel errors
can render an activation of a link unsuccessful. If fe(x) = 0 for a
certain link e then the average and peak age will be unbounded.
We, therefore, limit our attention to the set of policies IT for which
fe(rr) is well defined and strictly positive for all e € E:

few = Jim

II = {ﬂ’fe(ﬁ) exists and fe(7) > 0 Ve € E} . 6)

We define the set of all feasible link activation frequencies, for
policies described above:

F = {fERlEl | fe :fe(n)VeeEandsomen'eH}.
This set can be characterized by linear constraints as

T:{fER‘EHf:MX,ITXSlandXZO}, 7)

where x is a vector in RI¥! and M is a |E| x| A | matrix with elements

1 ifeem
Mem:{

>

0  otherwise ®
for all links e and feasible activation sets m € A.

A simple sub-class of policies, which do not use any past history,
is the class of stationary policies. In it, links are activated indepen-
dently across time according to a stationary distribution. We define
a stationary policy as follows:

Definition 2.1 (Stationary Policies). Let B¢(t) = {e € m(t),m(t) €
A} be the event that link e was activated at time ¢. Then, the policy
7 is stationary if

(1) Be(t) is independent across ¢, and
(2) P[Be(t1)] = P[Be(tz)] forall t1, £ € {1,2,...},
foralle € E.

Mobihoc ’18, June 2018, USA

The following are two examples of stationary policies.

Example 1: Set pe € (0,1) for all e € E, and let a policy attempt
transmission over link e with probability p., independent of other
link’s attempts.

Example 2: Assign a probability distribution x € RI¥!l over the
collection of feasible activation sets, A. Then, in each slot, activate
the set m € A with probability x,,, independent across time. We
call this the stationary centralized policy. For this policy,

P[B.()] = ). p(m)=(Mp),, ©
m:eem
for all e € E and slots ¢.

We will see in the next section that in the active source case, a
stationary centralized policy is peak age optimal, and is within a
factor of 2 from the optimal average age, over the space II. Mo-
tivated by this, in Section 4.2, we will specifically consider only
stationary centralized policies for the buffered sources.

3 MINIMIZING AGE WITH ACTIVE SOURCES

We consider a network where all the sources are active. Since the
age metrics depend on the policy 7 € II used, we make this de-
pendence explicit by the notation A?V¢(rr) and AP (7). We use A*V¢*
and AP* to denote the minimum average and peak age, respectively,
over all policies in II.

We first characterize the peak age for any policy = € II, and
show that a stationary centralized policy is peak age optimal.

THEOREM 3.1. For any policy € I, the peak age is given
by

We
¢cE Yefe (1)
As a consequence, for every m € II there exists a stationary

policy g € 11 such that AP(rr) = AP(rg). Thus, a stationary
policy is peak age optimal.

AP(r) = (10)

Proof: Consider a stationary policy with link activation frequency
fe = P[Be(1)]. Since the channel process {R¢(t)}; is i.i.d. it follows
that the link e is successfully activated in a slot with probability
feve. This implies that the inter-(successful) activation time of link e
is geometrically distributed with mean ﬁ and therefore, the peak

ageis ) .ck }::_f: The same result extends to general non-stationary

policies in I, because the existence of the limit (5) for any & € IT
ensures that the link activation process Ue(t) = I{cem(s), m(r)ea}
is ergodic. The detailed arguments are presented in Appendix A. B

Theorem 3.1 implies that the peak age minimization problem can

be written as
Z -
Yefe

ecE
subjectto feF,

Minimize
f

(11)

where 7 - given in (7) - is the space of all link activation frequencies
for policies in IT. We discuss solutions to (11) under general, and
more specific, interference constraints in Section 3.1.

Theorem 3.1 implies that a stationary centralized policy is peak
age optimal. We will next show that a peak age optimal stationary
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policy is also within a factor of 2 from the optimal average age. We
first show an important relation between peak and average age for
any policy 7 € II.

THEOREM 3.2. For all & € II we have

AP(r) < 24%V¢(rr) — Z We. 12)
ecE

Proof: The result is a direct implication of Cauchy-Schwartz in-
equality. See Appendix B. |

Let AP* = min, ¢ AP() and A*Y®* = min <y A%V¢(r) be the
optimal peak and average age, respectively, over the space of all
policies in IT. Since the relation (12) holds for every policy 7 € II, it
is natural to expect it to hold at the optimality. This is indeed true.

CoROLLARY 3.3. The optimal peak age is bounded by

AP* < A%V _ Z We. 13)
ecE

Proof: Since AP* is the optimal peak age we have AP* < AP(r) for
any policy 7. Substituting this in (12) we get AP* < 2A%V¢(x) —
DecE We, for all 7 € II. Minimizing the right hand side over all
7 € II we obtain the result. |

We next show that for any stationary policy the average and
peak age are equal.

LEMMA 3.4. We have A*¢(xr) = AP(r) for any stationary
policy w € TI.

Proof: See Appendix C. |

An immediate implication of Corollary 3.3 and Lemma 3.4 is that
a stationary peak age optimal policy is also within a factor of 2
from the optimal average age.

THEOREM 3.5. If 7ic is a stationary policy that minimizes
peak age over the policy space I1 then the average age for nc is
within factor 2 of the optimal average age. Specifically,

AT < AT (o) < 2A — Z We. (14)
ecE

Proof: See Appendix D. |

Theorem 3.5 tells us that the stationary peak age optimal policy
obtained by solving (11) is within a factor of 2 of optimal aver-
age age. Motivated by this, we next characterize solutions to the
problem (11).
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3.1 Optimal Stationary Policy 7

The peak age minimization problem (11) over ¥ can be written as

w
Minimize Z —
xR feRIEl  Z Ve fe
subject to f =Mx (15)
1Tx<1,x20

Note that this is a convex optimization problem in standard form [2].
The solution to it is a vector x € R that defines a probability
distribution over link activation sets A, and determines a stationary
centralized policy that minimizes peak age. Average age for this
policy, by Theorem 3.5, is also within a factor of 2 from the optimal
average age. We denote this stationary centralized policy by 7c.

We first characterize the optimal solution to (15) for any A.
Givenx € R a probability distribution over the link activation
sets A, f = Mx € RIE! is the vector of induced link activation
frequencies. Now, define i, (x)-weight for every feasible link acti-
vation set m € A as

)= D S Ao 19

eeEm eeEm

Clearly, pm(x) > 0 for every m. We now characterize the optimal
solution to (15) in terms of yp, (x)-weights.

Treorem 3.6. x € R solves (15) if and only if there exists
a p > 0 such that
(1) Forallm € A such that x, > 0 we have iy, (x) = p
(2) xm = 0 implies pm(x) < p
(B) Xmeaxm=1landxy 20
Further, i1 is the optimal peak age AP*.

Proof: The problem (15) is convex and Slater’s conditions are triv-
ially satisfied as all constraints are affine [2]. Thus, the KKT condi-
tions are both necessary and sufficient. We use the KKT conditions
to derive the result. See Appendix E for a detailed proof. |

Theorem 3.6 implies that at the optimal distribution x, allm € A
with positive probability, x,,, > 0, have equal p,(x)-weights, while
all other m € A have smaller yp,(x)-weights.

Although the set A is very large, it is mostly the case that only
a small subset of it is assigned positive probability. In the following
we show that only the maximal sets in A are assigned positive
probability, thereby reducing the number of constraints in (15).

CoROLLARY 3.7. Ifx is the optimal solution to (15) then x, =
0 for all non-maximal setsm € A.

Proof: Let m € A be a non-maximal set. Thus, there exists a
m € A such that m” C m. By definition of yi,,,(x) we have ppy (x) <
L(x). Thus, if xp7 > 0 then we would have p = ppy (%) < p(x)
which is a contradiction. |
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The optimization problem (15), although convex, has a variable
space that is | A|-dimensional, and thus, its computational complex-
ity increases exponentially in |V| and |E|. It is, however, possible
to obtain the solution efficiently in certain specific cases.

3.1.1  Single-Hop Interference Network. Consider a network G =
(V,E) where links interfere with one another if they share a node,
i.e., if they are adjacent. For this network, every feasible activa-
tion set is a matching on G, and therefore, A is a collection of all
matchings in G. As a result, the constraint set in (15) is equal to
the matching polytope [19]. The problem of finding an optimal
schedule reduces to solving a convex optimization problem (15)
over a matching polytope. This can be efficiently solved (i.e., in
polynomial time) by using the Frank-Wolfe algorithm [6], and the
separation oracle for matching polytope developed in [8].

3.1.2  K-Link Activation Network. Consider a network G = (V, E)
in which at most K links can be activated at any given time; we
label links E = {0, 2, . .. |E| — 1}. Such interference constraints arise
in cellular systems where the K represents the number of OFDM
sub-channels or number of sub-frames available for transmission
in a cell [22].

The set A is a collection of all subsets of E of size at most K. This
forms a uniform matroid over E [19]. As a result, the constraint
set in (15) is the uniform matroid polytope. It is known that the
inequalities Y ,cp fe < Kand 0 < f, < 1, forall e € E, are
necessary and sufficient to describe this polytope [19]. Thus, the
peak age minimization problem (15) reduces to

Minimize Z e
fe[o1]El 4 Yefe an
17
subject to Z fe <K
ecE

Since the number of constraints is now linear in |E|, this problem
can be solved using standard convex optimization algorithms [2].

4 MINIMIZING AGE WITH BUFFERED
SOURCES

We now consider a network with buffered sources, where each
source generates update packets according to a Bernoulli process.
The generated packets get queued at the MAC layer FIFO queue for
transmission. We restrict our discussion to stationary policies.

Let 7 be a stationary policy with link activation frequency fe
for link e. Then the service of the link e’s MAC layer FIFO queue
is Bernoulli at rate y, fe. The buffered source (link e), in effect,
behaves as a discrete time FIFO G/Ber/1 queue, where the inter-
arrival times are generally distributed while a single packet is served
in a slot with probability i = ye fe, independent across slots. In the
following subsection, we derive peak and average age for a discrete
time G/Ber/1 queue. We use these results for the network case in
sub-sections 4.2.

4.1 Discrete Time G/Ber/1 Queue

Consider a discrete time FIFO queue with Bernoulli service of rate
1. Let the source generate update packets at epoches of a renewal
process. Let X denote the inter-arrival time random variable with
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general distribution Fx. Note that X takes values in {1,2,...}. We
assume A = E[X]! < p.

We derive peak and average age for this G/Ber/1 queue. Age
for continuous time FIFO M/M/1 and D/M/1 queues was analyzed
in [15]. We will see that the results for the discrete time FIFO
Ber/Ber/1 (and D/Ber/1), which can be obtained as special cases of
our G/Ber/1 results, differ from their continuous time counterparts,
namely M/M/1 (and D/M/1).

To help derive peak and average age, we first analyze the steady
state system time T, the time spent by a packet in the queue till its
service is completed.

LEmMA 4.1. The system time, T, in a FIFO G/Ber/1 queue is
geometrically distributed with rate a*, where a* is the solution
to the equation

& = i - uMx (log(1 - @), (18)
where Mx (o) = E [eax] denotes the moment generating func-
tion of the inter-arrival time X.

Proof: Due to space limitation we provide the detailed proof in
our technical report [28]. |

Note that o depends on the distribution Fx. Using Lemma 4.1, we
can now compute peak and average age for the G/Ber/1 queue.

THEOREM 4.2. For G/Ber/1 queue with update packet genera-
tion rate A and service rate u the peak age is given by
1 1

AP = — + -, 19
a* A (19)
while the average age is given by
My (0) 1 11
X *
Ave — ) T + ;MX (log(l - )) + /_J + 5, (20)

where a* is given by (18), and Mx (a) = E [eax] is the moment
generating function of the inter-arrival time X.

Proof: The peak age is given by [11]
AP =E[T + X], (21)

where T is the steady state system time and X is the inter-arrival
time. Since E[X] = % and E[T] = % at steady state, form
Lemma 4.1, the result follows. The proof for A*V¢ is given in Ap-
pendix F. |

We now use this result to obtain optimal rate control and scheduling
policy for the buffered case. In the next sub-section, we primarily
consider Bernoulli packet generation. However, similar results hold
for periodic packet generation.

4.2 Bernoulli Generation of Update Packets

Using Theorem 4.2, we now derive peak and average age for Bernoulli
packet generation. Let A, be the packet generation rate for link e.
If link e is getting served at link activation frequency f, under a
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stationary policy =, then its peak age is given by

ifyefe <1
ifye=1fe=1
(22)

1 [4_+ 1 ]_ Pe
AIe)‘(fE’pe) = Yefe | Pe 11_/76 1-pe
Pe’

while its average age is given by

ifyefe <1

ifye=1,fe=1
(23)

where p, = Y/Z}e . For a detailed derivation see technical report [28].

In order to minimize Aol, unlike in the active source case, we
need to jointly optimize over packet generation rates A, or pe,
and scheduling policy 7. Using (22), the peak age minimization
problem is given by

1+

2
1 1 P P
ave _ F2 [1 * o0 T 155 ] 15
Ae (fe,pe) = Yele Pe Pe Pe
pe’

AI; = Minimize
f, pe[o,1]IEl

Z WEAI;(fL’? Pe)

ecE (24)
subjectto feF

Similarly, the average age minimization problem is given by
Z We AT (fe, pe)

ecE (25)
subjectto feF

AZ®" =Minimize
f, pelo,1]1El

We now derive an important separation principle which leads to a
simple and practical solution to these problems.

It can be trivially noticed from (22) and (23) that for y. fe < 1,
the peak and average age for link e can be upper bounded by

1 1 1
AL (fe,pe) < [— + ] 26
e(fe Pe) Yefe pe 1- pe ( )
and
AT(fo. pe) < [1+i+ pe ] 27)
esre) = .
¢ Yefe pe  1—pe

The upper bounds in (26) and (27) are, in fact, the peak age and
average age for the M/M/1 queue [11, 15]. It is easy to see that
the peak age upper bound is minimized with p, = % and the
average age upper bound is minimized with p, € [0, 1] that solves
p* —2p® + p?> — 2p + 1 = 0. This is approximately given by pe ~
0.53 [15].

We make the following observation:!

Result 1. Minimizing the upper-bound in (26) over p, which
occurs at p = % results in peak age that is within an additive
factor of 1 of the optimal peak age, i.e.,

1 .
Affeg)- min AGep st @

for all fe € (0,1). Similarly, if p minimizes the upper-bound
in (27), then

Ag (fe-p) = min A (fe.p) <1, (29)
pelo,1]

forall fe € (0,1).

The result is evident from Figure 2. The proof for (28) is in our technical report [28],
while we conjecture (29).
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Figure 2: Plot of age difference A = A¢(fe, p)—min,, Ae(fe, pe)
as a function of service rate y, f, for Bernoulli packet gener-
ation, where p minimizes the upper-bounds in (26) and (27)
for peak age and average age, respectively.

To see this, consider the age difference function
A :Ae(fe’ﬁ)_n;inAe(fe’Pe) (30)

for both peak and average age. Since it depends on f, and y, only
through the product y. fe, we can verify the result by plotting A
as a function of y fe, which is the service rate for link e. Figure 2
plots A, for both peak and average age, as a function of ye f.. We
see that the age difference A is always below 1, as expected from
Result 1.

Motivated by this we propose the following separation principle:

(1) Schedule links according to the stationary policy z¢ that
minimizes peak age in the active source case. Here, 7c is
obtained as a solution to problem (15).

(2) Choose pe = p, for all e € E, that minimizes the upper
bound in (26) for peak age and upper bound in (27) for
average age.

(3) Generate update packets according to a Bernoulli process
of rate A¢ = pye fe-

We call this the separation principle policy (SPP). Note that the rate
control p, = p is the same for all links. We now prove that the
SPP is close to the optimal peak and average age, namely, A}g and
Af%’e*, respectively.

THEOREM 4.3. Let f* be the link activation frequency vector
of the stationary policy 7c.

(1) Peak age of the stationary policy ¢ with rate control
pe = 1/2 is bounded by

AP(E,1/2) < Ay + Z We. 31)
ecE

(2) Average age of the stationary policy mc with rate con-
trol pe = p is bounded by

ATE(E" 1) < AR+ D we, (32)

ecE
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Figure 3: Plot of Aol as a function of fraction of links, 6, with
bad channel. N = 50, K = 1, ygo0d4 = 0.9, and ypaq = 0.1 and
0.2.

where p € [0, 1] is the unique solution to

pt—2p3+p?—2p+1=0. (33)

Proof: Due to space limitations, we provide the proof in our tech-
nical report [28]. |

Theorem 4.3, therefore, says that when we restrict to stationary
policies, separation between rate control and scheduling is nearly
optimal. That is, if the rate control (choosing p) is performed
assuming that there are no other contending links, and link sched-
uling is done by assuming active sources then the resulting solution
is close to optimal. This is a significant observation for the design
of age optimal policies because the rate control and scheduling
policies are implemented at different layers of the protocol stack.

5 NUMERICAL RESULTS

We consider a K-link activation network with N links. A fraction
0 of the links have bad channel with ye = ypaq, while the rest have
Ye = Ygood > Ybad- We let we = 1 for all the links. Similar results
are observed for single-hop interference network.

5.1 Network with Active Sources

First, consider the case in which all the sources in the network are
active sources. We plot and compare the proposed peak age optimal
policy 7¢ (shown in red), a uniform stationary policy that schedules
maximal subsets in A randomly with uniform probability, and a
round robin policy (RR) that schedules K links at a time.

Figure 3 considers the simplest case with K = 1, and plots peak
and average age per-link, which is AP/N and A?V¢/N respectively,
as a function of 6. Here, the network has N = 50 links, yg504 = 0.9,
and two cases of yp,q = 0.1 and yp,,q = 0.2 are plotted. Note that
the peak age and average age coincide for stationary policies by
Theorem 3.4. We observe this in simulation. Thus, to reduce clutter,
we have plotted only one curve for the peak age optimal policy 7¢
and the uniform stationary policy.
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Figure 4: Plot of Aol as a function of fraction of links, 6, with
bad channel. N = 50, K = 10, Ygooq = 0.9, and ypaq = 0.1 and
0.2.

We observe in Figure 3 that both peak and average age increase as
the fraction of links with bad channel increase. This is to be expected
as with more error prone channels it takes more time for the source
to update the destination. For yp,q = 0.1, we observe in Figure 3,
that the peak age optimal policy 7¢ achieves the minimum peak
age. Furthermore, when the channel statistics are more asymmetric,
i.e. 0 not near 0 or 1, the average age performance of the peak
age optimal policy ¢ is better than the round robin and uniform
stationary policy. We also observe that the round robin policy and
uniform stationary policy achieve the same peak age, this validates
Theorem 3.1 which states that any two policies with same link
activation frequencies should have the same peak age.

In Figure 3, we see that when the channel statistics across links
is more symmetric (i.e., 8 closer to 0 or 1), the round robin policy
yields a slightly smaller average age than the peak age optimal
policy zc. In fact, when yy,4 is increased to 0.2, the round robin
policy performs better in average age for all §. However, the average
age optimal centralized scheduling policy is yet unknown even for
this simple network (with K = 1), and hence by Theorem 3.5, the
average age of the peak age optimal policy ¢ is at most factor
2 away from the optimal average age, which is consistent with
Figure 3.

This problem is exacerbated when we move to K > 1, in which
case it is difficult to intuit a ‘good’ policy that minimizes average
age. Figure 4 plots average and peak age per link as a function of
0. All the parameters are same as in Figure 3, except that we can
activate K = 10 links at a time. We observe that, other than ensuring
peak age optimality, the proposed policy 7 also far outperforms
other policies in terms of its average age. This observation is not
limited to the policies presented here, but in general, as it is difficult
to come up with average age optimal policies for a network with
general interference constraints.

5.2 Network with Buffered Sources

We next consider the sources in the network to be buffered sources.
We assume Bernoulli arrival of update packets. We plot three
cases to illustrate the near optimality of the separation principle
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Figure 5: Plot of peak age, for a network of buffered nodes,
as a function of K. Case 1: N = 50, Ygood = 0.9, Ypad = 0.1,
Npad = 7. Case 2: N = 10, Ygo0d = 0.9, Ypad = 0.1, npag = 7. Case
3: N =50 and y, = 1 for all links.

policy (SPP): In Case 1, we have N = 50, np,q = 7 links have
bad channel, i.e,, ye = ypad = 0.1 while the remaining have good
channel ye = ygo0d = 0.9. In Case 2, we have N = 10, npq = 7,
Ybad = 0.1, and ygooq = 0.9. In Case 3, we consider N = 50 and
Ye = 1 for all links e. We have w, = 1, for all e, in all the three
cases.

We compare the peak age SPP, which chooses p, = 1/2 for every
link and the link activation frequency f* that solves (17). In Figure 5,
we plot the peak age achieved by the peak age SPP and the optimal
A}g of (24), obtained numerically. We observe that the SPP nearly
attains the optimal peak age in (24) in all three cases.

In Figure 5, we also plot (in blue) peak age if the network had
active sources instead of buffered sources. We observe that optimal
peak age for the buffered case is about 4 times that in the active
source case. This shows that the cost of not being able to control
the MAC layer queue can be as large as a 4 fold increase in age.

6 CONCLUSION

We considered the problem of minimizing age of information in
wireless networks, under general interference constraints. For a
network with active source, i.e. when fresh updates are available
for every transmission, we showed that a stationary policy is peak
age optimal, and is within a factor of two of the optimal average
age. For a network with buffered sources, in which the generated
update packets are queued at the MAC layer queue for transmission,
we proved an important separation principle wherein it suffices to
design scheduling and rate control separately. Numerical evaluation
suggest that this proposed separation principle policy is nearly
indistinguishable from the optimal. We also derived peak age and
average age for discrete time FIFO G/Ber/1 queue, which may be of
independent interest.
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A PROOF OF THEOREM 3.1

Let 7 be a policy in II, and T.(i) be the time of ith successful
activation for link e. Then Se(i) = Te(i) — Te(i — 1), forall i > 1, is
the inter-(successful) activation time for link e, where T,(0) = 0.
Note that Se(i) = A¢(Te(i)) for all age update instances i. This
implies that the peak age is given by

1Y 1Y To(N)
lim sup N ZAe (Te (i) = li;]n sup Z Se(i) = lim sup eN R

N—ooo im1 im1 N—oox

(34)
Notice that the time T (N) — o0 as N — 0. We, therefore, have

1 N 1<

——— =liminf ——— = liminf = Ue(t)Re(t), (35
AB(1)  Now Te(N) Tooo T ; evte )
where Ue(t) = I{eem(s), m(r)es) and Re(?) is the channel process.
Now, notice that the process (Ue(t), Re(t)); ¢ is jointly Ergodic.
To see this, note that {U,(#)}; >0 is an Ergodic processes because
{Ue(t)}+>0 takes values only in {0, 1} and the limit in (5) exists
for € II. Moreover, since Re(t) is independent of Ue(t), they are
jointly Ergodic. We, therefore, have

s

T
1
lim inf — Ue(t)Re(t) = E
le_)lgoT; e (t)Re(t)

T

L 1

liminf ; Ue(t)Re(t)
1 T

= lim inf ; E[Ue()Re(t)],  (36)

T
. 1
= hTm_)lglof YeE T ; Ue(t)

= Yefe(n),
(37)

where the first equality follows due to Ergodicity, the second due
to the bounded convergence theorem [5], and the third because
Re(t) is ii.d. across time ¢t with ye = E[R¢(¢)] and is independent
of Ue(t). The last equality follows from (5). Weighted summation
over all links e € E gives the result.

To prove that the peak age AP(rr) can be achieved by a stationary
centralized policy nst € II, it suffices to show that a stationary
centralized policy 7s achieve the same link activation frequencies,
ie., f(r) = f(rst).

Let 7 € II be the policy that achieves link activation frequencies
f = (fele € E). Then, the policy 7 activates interference-free sets
in A also with a certain frequency. Let x,, be the frequency of
activation for a set m € A, i.e.,

T
. 1
Xm = h;n_i:p T Z H{m(t):m}’ (38)
t=1
where m(t) denotes the set of links activated at time ¢. Clearly, we

should have
Z Xm < 1. (39)

meA
Furthermore, we must have f(r) = Mx, where M is given by (38),
and f(rr) and x are column vectors of fe(x) and x,, respectively.
Now consider a stationary centralized policy st € II for which
m € A is activated in each slot with probability x,,, independent
across slots; we can do this because of the property (39). Then we
have f(75t) = Mx = f(ir). This proves the result.
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B PROOF OF THEOREM 3.2

The proof is a direct consequence of the Cauchy-Schwartz inequal-
ity. Consider a policy 7 € II and let T, (i) be the time of ith suc-
cessful activation for link e. Then Se (i) = Te(i) — Te(i — 1), for all
i > 1, is the inter-(successful) activation time for link e, where
T(0) = 0. Note that S¢(i) = Ae(Te(i)) for all age update instances i.
This implies that the peak age is given by

lim sup E Ae (Te (i) = hm sup — E Se(i). (40)
Nesco e e e
The average is given by
Se .
STk RN S

Aave
0=, >N se(z) NS »N Se(i)

1
+ 2 (41)
Cauchy-Schwartz inequality gives us (Zfil Se(i))2 <N Zﬁ\il S2(3i).
Therefore, we must have
11 05 SN Se(i)?
2N & SN Seli)
This with (40) and (41) yields 1Ap(yr) + 2 < A2¢(r). Note that

we can claim this because AP(r) is finite for 7 € II due to (10).
Weighted summation over e € E gives the desired result.

(42)

C PROOF OF LEMMA 3.4

For a stationary policy, let p be the probability that link e is suc-
cessfully activated in a time slot, i.e.,

p =Pleem(t), m(t)e A, (43)

where m(t) is the set of links activated at time ¢. Since the policy
is stationary, the inter-(successful) activation times S (i) would
be independent and geometrically distributed with rate 1/p given
by: P[Se(i)=k] = p(1—p)*~!, for all k € {1,2,...}. For this
distribution we know that B[S,(1)] = 3 and E[S4(1)] = zp
Using (41) we obtain the average age of link e to be

T 1¢2
1 58:() 1
lim —ZAe(t)z lim Zik 250 () + -, (44)
Too T = Nooo 3N Se(i) 2
1= 1 1
2 h2
= 4 5= (45)
» P

Using (40) we obtain the peak age of the link e to be

limsup — ZAe (Te (i) = hm sup — Z Se(i), (46)

N—-ooo
1
=E[Se(D)] = —. (47)
p
The result can be obtained from (45) and (47) by weighted-averaging.

D PROOF OF THEOREM 3.5

Let 7c be the stationary policy that minimizes peak age. We, thus,
have

AP(rrc) = AP*, (48)
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Since ¢ is also a stationary policy, Lemma 3.4 implies

A () = AP(rC). (49)
Using (48), (49), and Corollary 3.3 we obtain
ARVe(10) = AP(rre) = AP* < 2A4%VE* Z We. (50)
ecE

This proves the result.

E PROOF OF THEOREM 3.6

Since dependence of y is only in the form we /ye, we assume y, = 1,
for all e, for clarity of presentation. The dependence on y, can be
re-constructed by substituting we /ye in place of w, in the following
proof.
The peak age minimization problem (15) can be re-written with
the objective
We

Zmeﬂ Me, mxm ’

(51)

ecE
over variables x,, for m € A, with constraints ), ,,c 4 xm < 1 and
Xm = 0 for all m € A. The Lagrangian function for this problem is

L(x, p,v) = Z Z ey(Memxm +,u(z xm—1)+ Z VmXm,
m

ecE meA meA

for p > 0 and vy, > 0 for all m € A. The KKT conditions then

imply
i =0, forallm e A, (52)
Oxm
p(z xm—l)zo, (53)
meA
VmXm = 0forallm e A, (54)

along with feasibility constraints for x, 4 > 0, and vy, > 0 for all
m € A. Now (52) implies
oL weM,
il e —— 4 p—vm =0, (55
*m ecE (Zm’E:ﬂ Me,m’xm’)

which reduces to

Hm(X) = p = v, (56)
for all m € A. Using (54) and (56) we get that if x,;, > 0 then
Vm = 0 which implies pn,(x) = p, while pp,(x) < pforallm € A.
This proves conditions 1 and 2 of Theorem 3.6.

Since x that satisfy the KKT conditions also solve (15) we should
have fe = Y\ ;ea Me,mXm > 0; otherwise the objective function
would be unbounded. Thus, pm(x) = g — vy > 0 which implies
p > 0forall m € A. Then (53) implies 3 ,,c 4 Xm = 1.

CoroLLARY E.1. The pi defined in Theorem 3.6 is the optimal peak
age AP*.

Proof: Given that x is the optimal solution to (15) and y be as
defined in Theorem 3.6, the optimal peak age is given by

;5 (Mx)e = ZE (Mx)e (Mx), . (57)
= EZE;E (Mx)ﬁ mze;ﬂ Me mXm- (58)
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Exchanging the two summations we get
weMe,m
=D Im ), ) am Y, (59)
meA ecE (M ) MEA, x>0 eem ( )

where the last equality follows from the definition of M,_,. Notice
that 3¢, =57 is in fact p(m) = p as x,, > 0. This gives

AP* = Z

meA, x>0

(M)

Xmpl =l (60)

where the last equality follows from condition 3 in Theorem 3.6. Bl

F PROOF OF THEOREM 4.2
The average age is given by [15]

AME = )| B [XZ] + B[TuXn] (61)

N | =

where T, is the system time for the nth update packet at steady
state, and X, is the inter-generation time between (n — 1)th and
nth update packets. It is clear that E [X2] = M;/((O). Therefore, it
suffices to show that

A * 1
AE[TuXn] = EMX (log(1 - a™)) + " (62)

at steady state, for a* given in Lemma 4.1.
We know that the system time follows the following recursive
equation [29]:
Ty = max{Ty—1 — Xp,0} + Sy, (63)

where Sy, is the service time of the nth update packet, and is geomet-
rically distributed over {1, 2, ...} with rate p. Therefore, E [T, X,,]
can be computed as

(o)
E[TpXn] = E[E[TnXnlXp]] = ). mE[Ta|Xn = m]P[X, = m].
m=1
(64)
Now, E [T,,|X,, = m] can be evaluated using the recursion in (63) as

E[Ty|Xn = m] = E[max{T,—1 — m,0} + 5p|X, = m],
= E [max{T,-1 — m,0}] + E[Sn],
where the last equality follows because the service time Sy, is in-

dependent of inter-generation time of update packets Xp. Since
E[Sn] = - 4 e get

1
E[Tn|Xn = m] = E[max{Tp-1 —m,0}] + —,
i
- a1
=Y ke (1-a) TS (65)
k=1 H
1 1
=—(1-a)"+-, (66)
@ H

where (65) follows because at steady state, T, is geometrically
distributed over {1, 2, ...} with rate a*, by Lemma 4.1. Substitut-
ing (66) in (64) we obtain

My (log(1 —a®)) + ll (67)

1
E[TnXn] = —
a Au
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where we have used M} (log(1 - a*)) = E [x (1 - a*)X ] which
can be derived using standard properties of moment generating
function. This proves (62), and therefore, the result follows.
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