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Abstract— Positive interpersonal relationships require
shared understanding along with a sense of rapport. A key
facet of rapport is mirroring and convergence of facial
expression and body language, known as nonverbal
synchrony. We examined nonverbal synchrony in a study of
29 heterosexual romantic couples, in which audio, video, and
bracelet accelerometer were recorded during three
conversations. We extracted facial expression, body
movement, and acoustic-prosodic features to train neural
network models that predicted the nonverbal behaviors of
one partner from those of the other. Recurrent models
(LSTMs) outperformed feed-forward neural networks and
other chance baselines. The models learned behaviors
encompassing facial responses, speech-related facial
movements, and head movement. However, they did not
capture fleeting or periodic behaviors, such as nodding, head
turning, and hand gestures. Notably, a preliminary analysis
of clinical measures showed greater association with our
model outputs than correlation of raw signals. We discuss
potential uses of these generative models as a research tool to
complement current analytical methods along with real-
world applications (e.g., as a tool in therapy).

Keywords-close relationships; couples therapy; facial
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L INTRODUCTION

Close relationships require shared understanding and
rapport to achieve positive outcomes. A key aspect of
rapport is interpersonal synchrony, in which interlocutors
share behaviors, mannerisms, and common ground, which
aids social bonding [1], [2]. Interpersonal communication
operates over channels of speech and nonverbal behavior,
with the spoken channel conveying content and meaning
as well as prosodic qualities (i.e., how you've expressed
yourself) [3]. Nonverbal behavior provides insight into
momentary reactions, cognitive states, and feelings. We
can categorize outward manifestations of nonverbal
behavior into main channels of facial expressions [4], [5],
body movements [6], [7], and gestures [2], [8]. Here, we
focus on nonverbal synchrony, which encompasses the
moment-by-moment changes in nonverbal behavior
associated with interpersonal synchrony.

Nonverbal synchrony is intuitively expressed and
experienced in our daily lives. However, these outward
behavioral manifestations are overlaid on a complex
substrate of internal states (cognitive & affective),
knowledge and beliefs, and communicative goals. Modern
theories of emotion acknowledge the complex nature of
momentary affective responses, with many component
processes recruited to appraise a situation and arrive at a
response spanning multiple levels, such as neurobiological,
physiological, behavioral, cognitive, and meta-cognitive
[91, [10].
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This inherent complexity of nonverbal synchrony
belies the need to leverage multiple data channels.
Traditional analytical approaches provide a lens to focus
on a particular channel of nonverbal synchrony. For
instance, we may examine how head [7] or body [11]
movement change throughout a conversation. A particular
pair of interlocutors may experience greater or lesser
synchrony from moment to moment. However, focusing
on one channel at a time or one dyad at a time (and
averaging across multiple dyads) loses the larger picture.
Analyses of nonverbal synchrony stand to benefit from
multiple data channels (multimodality) jointly analyzed
across numerous interlocutors (generalizability).

One way to address the dual concerns of multimodality
and generalizability is to turn to data-driven, model-based
approaches. Generative models can be used to learn
patterns of nonverbal behavior that drive cross-modal
synchrony, predicting behavior of an interlocutor at any
given point of the conversation. By incorporating data
across numerous interactions, generalized patterns of
nonverbal synchrony that extend beyond any one dyad
may be inferred. Inspecting how and when behaviors are
produced should provide insight into proximal phenomena,
such as moment-to-moment cognitive and affective
processes or interpersonal dynamics. In other words, we
may construct models of nonverbal synchrony across
diverse settings and social relationships to identify how
and why interpersonal communication generalizes or
diverges.

Generative models can provide novel insight into
nonverbal synchrony. Rather than describing nonverbal
synchrony (as in analytical approaches) or predicting
discrete categories of behavior (as in classifier models),
generative models output the behaviors themselves, which
allows us to query the model to assess predicted behavior.
This capability has obvious applied implications (e.g., to
drive virtual agent expression) in addition to offering
insights on how nonverbal synchrony develops, fosters,
and contextualizes social interaction.

A. Related Work

A survey of prior approaches to measure nonverbal
synchrony is beyond the scope of this paper. For a concise
overview of prior techniques, we refer the reader to a
recent article by Delaherche and colleagues [1]. However,
we will contrast the present generative model-based
approach to prior analytical and model-based techniques.

Prior analytical approaches to measure nonverbal
synchrony have included techniques to measure synchrony
at fixed lags (or leads), visualize synchrony dynamics, and
adopt dynamical systems modeling approaches (e.g., cross-
recurrence quantification analyses, coupled nonlinear
oscillators). In the case of lagged correlations, it is possible
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Figure 1. Model-based approach to nonverbal synchrony

to identify how a discrete behavior follows another (e.g.,
head movements of dyads) [7], [12]. Visualizations of
synchrony may provide labeled co-occurrence of behavior
across a conversation, showing how synchrony occurs at
different lags across a conversation [2], [11]. Finally,
dynamical systems approaches acknowledge the
complexity of nonverbal behavior, quantifying how
deterministic or random patterns of behavior are [13], [14].
However, these analytical techniques have usually been
limited to specific modalities (vs. combined modeling of
face, head, and body movement in the current work) and/or
behaviors of individual dyads (vs. cross-validation across
dyads as in the present approach).

Prior model-based classification approaches have
focused on specific phenomena associated with nonverbal
synchrony, such as discrete behaviors (e.g., turn-taking,
backchannels) [15], [16] and inferring interaction states
(e.g., clusters of behavior) [17], [18]. Models that predict
dialogic phenomena may benefit applications such as
intelligent virtual agents, robotics, and natural language
interaction [15], [16]. Models of interaction states have
revealed patterns of discrete synchrony behaviors across
varied contexts [17], [18]. In contrast to these classification
approaches that focused on discrete behaviors, we seek to
produce continuous, generative models to identify and
measure generalizable, multimodal patterns of nonverbal
synchrony.

In very recent work, a generative model of nonverbal
synchrony was created to produce facial expressions. Feng
and colleagues trained feed-forward neural networks using
over two hundred Skype conversations posted to YouTube
[4]. The researchers focused on modeling facial keypoints
(i.e., landmarks) to drive the behaviors of facial expression
avatars. Their model was found to produce believable
facial behaviors when presented to human raters. Whereas
their model focused on expression synthesis, our present
approach seeks to generatively model continuous
nonverbal behaviors in order to measure and understand
patterns of synchrony. In turn, our model-based measures
of synchrony may be applied in clinical practices.

B. Contribution & Novelty

We constructed recurrent neural network models of
nonverbal synchrony from facial expression, body
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movement, and speech in conversations of romantic
couples (Figure 1). These models offer insight into patterns
of synchrony across multiple modalities of nonverbal
behavior and generalized across romantic dyads. Our
analyses show that the model predictions perform
significantly above chance baselines and simpler feed-
forward neural networks. Our models learned behaviors
encompassing facial responses, speech-related facial
movements, and head movements.

To our knowledge, ours is the first attempt to produce
data-driven, multimodal, generalizable models of
nonverbal synchrony. As generative models of nonverbal
synchrony account for the multiple modalities of
interpersonal communication at ever increasing degrees of
accuracy and realism, they may both offer generalizable
insights into human behavior and drive humanlike
interactive systems.

II. METHOD

A. Participants

A total of 54 heterosexual couples (108 individuals)
from the Southwestern region of the United States were
recruited through advertisements posted on professional
and university listservs, Craigslist, and Facebook.
Inclusion criteria required individuals to be at least 18
years of age, the couples to be romantically involved for at
least three months, and both partners willing to participate.
Compensation for participation was set at $35 for each
partner. Of those initially recruited, 10 couples did not
complete all portions of the study, and 15 couples had
incomplete data for one or more of the recorded data
channels (e.g., video, speech, or physiology). For the final
set of 29 couples (N = 58 individuals), men’s average age
was 29.5 years (SD = 5.67), and women’s average age was
30.0 years (SD = 6.33). The couples had been together for
an average of 4.89 years (SD = 3.51); 15 were married and
9 had children. The majority of participants identified as
White (N = 40), followed by Hispanic (N = 12), Asian
American (N = 2), African American (N = 1), and three
identified as other ethnicities. The majority of participants
also reported completing an undergraduate or post-
graduate degree (N =20 men, 27 women).



B.  Study Protocol

The study was divided into two phases. For the initial
phase, each participant was sent an electronic survey that
contained questions about basic demographics and
relationship-focused issues. The survey was to be
completed at home and couples were asked to avoid
discussing answers with each other. The second phase
required the couples to visit a local university campus,
where they would engage in a sequence of six-minute
conversations. During these conversations, their video,
audio, movement, and bracelet accelerometer were
recorded (see Figure 2). Video was recorded with high
definition camcorders (30 frames per second at 1920x1080
resolution), audio via lapel mics, and accelerometer with
Empatica E3 bracelets.

The three conversations focused on: 1) a source of
stress specific to one partner outside the relationship
(external stressor), 2) mutual source of stress within the
relationship (internal stressor), and 3) a mutual topic of
enjoyment. The most prominent external stressors were
work, finances, and school. The decision of whose external
stressor to select (male or female) was counterbalanced
based on the order in which they were recruited. The most
prominent internal stressors were disturbing habits,
difference of opinion, and insufficient behavior. The most
popular enjoyment topics were good past experiences,
children, and family pet. As in prior research, the order of
topics was fixed to ensure consistent experiences across
couples, ending with a positive conversation [19].

The couples also self-reported on multiple clinical
measures. These included relationship duration (taken
before the conversations) and multi-item post-conversation
rating scales which encompassed aspects of rapport,
conversational style, and affective outcomes focusing on
oneself and one’s partner (TABLE I).

III. MODEL DESIGN AND TRAINING

A. Feature Processing

Facial expressions were extracted from the video
recordings (separate videos of female and male partners)
using Emotient SDK, a commercial computer vision tool
that identifies specific facial muscle movements. These
facial movements correspond to a subset of those
described in the Facial Action Coding System [21], which
enumerates all possible facial muscle movements of the
human face as facial action units (AUs). Additionally, the
Emotient SDK provides information on head pitch
(nodding), yaw (shaking side-to-side), and roll (tilting to
the side). The video recordings were also processed for
gross body movements by extracting binary frame to frame
pixel differences, which were averaged to obtain a
percentage of change per frame.

We used the openSMILE toolkit [22] (version 2.3.0
with eGeMAPSvOla.conf) to measure fundamental
characteristics of speech in the separate audio channels of
female and male partners. These included fundamental
frequency, loudness, formant frequencies F1-F3, jitter and
shimmer. Using this minimal set of speech features, we
accounted for the acoustic-prosodic features of speech
without representing the spoken content.

Physiological recordings in natural interactions can be
problematic as interlocutors make gestures and move
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Figure 2. Overview and example of study recordings

TABLE L RELATIONSHIP VARIABLES AND RATINGS
When Self-report Description
taken
Pre- Relationship | Single item.
conversation | duration Relationship duration in months.
Pre-conv. Rel. quality Multi-item survey [20]
Post- Partner- Multi-item survey.
conversation | induced Specific positive and negative
affect emotions caused by partner.

Post- Conversation | Multi-item survey.

conversation | style Ratings of partner's perceived
conversation style (e.g., warmth, in-
depth responses).

Post- General Multi-item survey.

conversation | rapport Ratings of closeness, understanding,
and self-agency in the conversation.

Post- Adjective Multi-item survey.

conversation | pairs Dichotomous adjective pairs rating

partner (e.g., dishonesty vs. honesty,
coldness vs. warmth).

during conversations. Although the Empatica E3 enabled
recording of electrodermal activity and heart rate, we
observed significant physiological signal disruptions
corresponding to these movements, so we did not use the
physiological recordings in the present analyses. However,
the three-axis accelerometer in the E3 physiological
bracelet provided information regarding the couples' wrist
and arm movements. We used the accelerometer to
measure gross wrist and arm movement (i.e., gestural
motion), computed as the Euclidean distance of
accelerometer values (x,y,z) from second to second.

The motion features of head movement, gross body
movement, and gestural motion are relative measures that
depend on where a partner was seated, how much of the
video frame a partner occupied, and how much a partner
gestured during a conversation. We applied an individual
z-score per partner per conversation to bring them to
standard units that accounted for idiosyncratic variations in
body movement.



Because the face, speech, and motion features were
recorded at different time scales, we averaged the values of
each feature at each second of conversation. If a feature
had no data across an entire second (i.e., no average could
be calculated), it was treated as a missing value. Only
facial expression and head movement had missing data,
though most video frames were tracked (M = 87% frames
tracked, SD = 16%). We removed the first 10 seconds of
each conversation to ignore the first moments as the
discussion was being initiated.

B. Neural Network Modeling

We constructed neural networks to model nonverbal
synchrony using the Keras toolkit with TensorFlow [23].
Our models were designed to use speech (both partners),
facial expression (one partner), and motion features (one
partner) as input in order to predict facial expression and
motion of the other partner. By including both partners’
speech as input, the design accounts for variations in
nonverbal behavior due to speech production and turn
taking dynamics (e.g., mouth movements occur during
speech and facial expressions often accentuate utterances).

We used two model structures: feed-forward and
recurrent. The feed-forward neural network (FFNN)
transforms the input through a single fully-connected
activation layer (i.e., dense hidden layer). The FFNN
model is trained on individual one-second inputs, with no
notion of history across these data instances. Our recurrent
neural network (RNN) contained a single long short-term
memory (LSTM) activation layer [24]. The LSTM layer
implements mechanisms of forgetting and retaining
information across input sequences. The RNN model was
trained on sequences of 10 one-second inputs (i.e., the
prior nine seconds and the current second), with the notion
that momentary responses associated with nonverbal
synchrony occur within a time period of seconds [1]. Our
models used rectified linear units (ReLU) as activation
function, which enabled computationally efficient training.

The three conversation types were independently
modeled so as to minimize cross-over and other
confounding effects. We trained our models via 10-fold
couple-independent cross-validation (using scikit-learn
[25]). Within each fold, data from 60% of couples were
used as the training set, 30% as the validation set, and 10%
as the test set. To ensure that no individual feature
dominated the model, we z-scored each feature per
conversation to bring all features to standard units. We
further normalized the values to within a [-3, 3] range.
Both z-scoring and normalization were performed using
only the training data. That is, descriptive statistics (mean,
standard deviation, max, min) needed for the
transformations were computed from the training data and
then applied to validation and testing sets. This prevents
'peeking' into the validation or testing sets which would
result in overly optimistic model performance. Finally, we
replaced missing values with zeroes — this enabled
multimodal machine learning across all data points.

198

Neural networks are trained via model updates through
successive complete passes on the training data (known as
an epoch). At each epoch, mean squared error was used to
compute the loss of the model on both the training set
(training loss) and validation set (validation loss). We
trained until 20 epochs passed without improvement on
validation loss — there was otherwise no upper limit on
epochs. We explored different numbers of neurons at the
activation layer (8, 32, and 128) and found 32 neurons
achieved sufficient fit with diminishing returns at greater
complexity (based on training and validation loss).

The weight updates of the neurons were guided by an
adaptive learning rate algorithm: Adam [26] with Nesterov
momentum (Nadam) [27]. Adaptive learning rate
algorithms change the magnitude of training updates on
the fly, which removes the burden of fine-tuning learning
rates. Finally, we used dropout (a recent regularization
technique that removes neurons from a layer of the neural
network at random) to prevent overfitting of our models
[28]. We used dropout at both the input and activation
layer with identical settings. We evaluated the effects of
dropout on training and validation loss at 0% (no dropout),
20%, 50%, 80%, and 95%. Ideally, training and validation
loss should converge across training epochs — this was
achieved in our data at 80% dropout.

Figure 3 illustrates input data and model predictions
with facial expression and body movement from the
conversation on internal stress.

C. Fit and Synchrony Measures

Our primary metric to measure model performance was
bivariate correlation (i.e., Pearson product-moment
correlation coefficient). This metric measures covariance
in time series data (i.e., whether our model predictions
capture patterns of change in the data). We computed
correlations where the raw data were not missing (as
opposed to the model predictions, which were never
missing). For instance, if the male partner had missing
facial expression data during a 15-second time period,
these 15 seconds were removed when computing the
correlation for facial expression data. This ensures that the
results were not biased by missing values, while making
use of all available data during training. Correlations were
performed using the pandas library in Python [29] and
statistical comparisons were conducted in R [30].

We refer to correlations of model predictions with
target partner’s data as model fit. For example, we
correlated the model predictions of female partners’
smiling (Lip Corner Puller — AU12) with the actual sensor
data of female partners across one-second intervals. We
describe correlations of female/male (e.g., male AUI2
with female AUI12) raw data as naive synchrony and
correlations of female/male model predictions as model
synchrony. We calculated all three measures for each
feature, couple, and conversation.
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Figure 3. Example of data and model predictions from the internal stress conversation.

IV. RESULTS was calculated. A paired #-test showed that model fit (M =

.09, SD = .03) was indeed greater than random shuffling

RQI. How accurate are our generative models of (M < .01, SD = .03), #«(28) = 10.57, p < .0001, which
nonverbal behaviors and do results vary by gender? produced chance-level estimates.

Our first analysis examined whether the recurrent RQ?2. Is model-based nonverbal synchrony comparable or

neural network performed better at predicting nonverbal
behavior than the feed-forward neural network. For this
analysis, we averaged across gender (M—F, F—M),
features, and conversations, to obtain one model fit value
per couple for each network type. A two-tailed (for this

d all sub t | ired- les t-test -
?I?dica?ed fﬁatse?ﬁl: nrecil;feifes()M pilre.();’ arerPDes_ '535) female/male model predictions are correlated to measure

better than naive synchrony?

significantly outperformed the feed-forward net (M = .06, } .
SD = .02), #28) = 6.45, p < .0001. Hence, further analyses  cOrrelating the raw female/male signals.
focused exclusively on the recurrent models.

Prior research on interpersonal synchrony suggests that
females drive interaction in dyadic conversations [6], [31].
Accordingly, a paired #test indicated that models
predicting the female partner's data (M = .11, SD = .04)
had significantly higher model fit than models predicting

tg(e)onllale s behavior (M =.07, SD = .04), #(28) = 5.00, p < absent across body motion and head movements.

are shown under “Naive Synchrony” in TABLE III).

Whereas the previous analyses averaged over features,
the third analysis of RQ1 compared model fit to chance
(i.e., zero correlation) for individual features averaged
across conversations and gender (conversation effects were
analyzed in RQ3). We performed two-tailed one-sample ¢
tests to identify which features had significantly non-zero
model fit. Bonferroni correction was applied on these tests
(and all other feature-level analyses) to correct for multiple
comparisons. The correction resulted in a significance . . ..
threshold of .002 (.05/25 for 25 output features). The head yaw showed patterns of anti-correlation for naive
recurrent models predicted 15 out of 25 features synchrony.
significantly above chance. These features are shown
under “Model Fit” in TABLE III. We found that the models
best predicted facial movements of the nasolabial region,
eyes, mouth & chin, Cheek Raiser (AU6), and head roll.
Altogether, these nonverbal behaviors encompassed a
broad range of momentary facial responses, speech-related
facial movements, smiling, and head movement.

We also examined whether model fit was robust to
random shuffling of partners. Each partner was paired with
a random surrogate from another couple and then model fit

brow lowering, and outer brow raising.

greater for Cheek Raiser (AU6), #(28) = —3.44, p = .002.
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We calculated model synchrony for each feature,
couple, and conversation, and then averaged across
conversations. In effect, this represents the generalized
patterns of behavior learned by our models, since the

model synchrony. We also computed naive synchrony by

We performed one-sample #-tests to identify which
features had significantly non-zero correlations. Our
models produced nonverbal synchrony across 10 features -
see “Model Synchrony” in TABLE III, whereas naive
synchrony was significantly non-zero for 12 features (these

Both model synchrony and naive synchrony were

Similarly, seven facial movements did not yield synchrony
when examined via model or naive synchrony: eye closing,
jaw dropping, frowning (AU1S5), lip stretching, dimpling,

Four facial movements showed patterns of model
synchrony but not naive synchrony: chin raising, lip
pressing, lip parting, and inner brow raising. In contrast,
three facial movements only showed naive synchrony: lip
tightening, lip sucking, and smiling (AU12). Head roll and

The remaining set of six facial movements were
sources of both model synchrony and naive synchrony. We
compared these using paired two-tailed #-tests with a
Bonferroni threshold of .0083 (.05/6). Upper Lip Raiser
(AU10; p = .01), Lid Tightener (AU7; p = .11), and Lip
Pucker (AU18; p = .97) were not significantly different.
However, model synchrony was greater for Nose Wrinkler
(AU9), #28) = 2.88, p = .007, and Upper Lid Raiser
(AUS), #28) = 5.28, p < .001. Naive synchrony was



We also compared model synchrony to random
shuffling. A paired #-test showed that model synchrony (M
= .11, SD = .06) was greater than this random baseline (M
<.01, SD =.05), #(28) = 7.83, p <.0001.

RQ3. Are there differences in nonverbal synchrony across
conversations?

Given the substantial differences in conversation
topics, we compared conversations on average model fit
and model synchrony in separate analyses. One-way
repeated measures ANOVA showed no significant
differences in model fit (F(2, 56) = 2.05, p = .14) or model
synchrony (F(2, 56) = 2.20, p = .12). Model fit and
synchrony of each conversation are shown in TABLE II.

TABLE II. MODEL FIT & SYNCHRONY BY CONVERSATION
Conversation Model fit Model synchrony

M SD M SD

External Stressor 07 .05 12 11

Internal Stressor .10 .06 12 .09

Enjoyment .09 .05 .08 .09

RQ4. Are model fit and synchrony associated with clinical
measures?

We performed a preliminary analysis of how our
measures of synchrony associated with clinical measures
reported by the couples (TABLE I). Each post-conversation
rating included multiple items so we computed means
across items and partners to produce a single value for
each clinical measure per couple and conversation (e.g.,
mean rapport of a couple for the internal stress topic).

The clinical measures were used to predict model fit,
model synchrony, and naive synchrony for each feature
using linear regression (i.e., 75 (3 outputs x 25 features)
regression models in all). We computed goodness of fit
(R?) for the individual models and averaged them across
features. We found that clinical measures were marginally
more strongly associated with model synchrony (M = .14,
SD = .06) compared to naive synchrony (M = .11, SD =
.05), #(24) = 1.93, p = .066. Model fit had a similar level of
association with clinical measures (M = .13; SD = .05)
compared to model synchrony (p = .49).

We also compared each measure with random
shuffling, which showed significantly greater association
for model synchrony (M = .14, SD = .06) vs. shuffled
model synchrony (M = .07, SD = .03), #(24) = 6.00, p <
.0001, and model fit (M = .13, SD = .05) vs. shuffled
model fit (M = .08, SD = .03), #(24) = 4.52, p = .0001.
However, naive synchrony (M = .11, SD = .05) was only
marginally significantly different from shuffled naive
synchrony (M = .08, SD = .05), #(24) = 1.82, p = .081.
These initial results demonstrate that our models produced
clinically relevant outputs that were notably better than
naive synchrony.

A. Impact of Speech Features and Sequence Length

We investigated the impact of excluding speech
features of the target partner in the model input. We
averaged model fit across couples for models with target
speech (M = .09, SD = .03) and without target speech (M =
.08, SD = .03) and found a significant difference, #(28) =
3.06, p = .005. Given that the magnitude of the difference
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seemed negligible, we performed #-tests to identify which
nonverbal behavior regions underlie this effect. The main
drivers were greater model fit of nasolabial region with
target speech (M = .24, SD = .10), #(28) = 5.98, p < .0001,
vs. without (M = .17, SD = .09); and the eyes with target
speech (M = .13, SD = .07), #(28) = 4.54, p < .0001, vs.
without (M = .07, SD = .04). However, model fit of the
smile region was significantly lower with target speech (M
=.10, SD = .05), #(28) = —6.95, p <.0001, vs. without (M =
.19, SD = .08). Thus, including or excluding target speech
has a tradeoff in performance across facial regions.

We also compared further models on 3-, 5-, 20-, and
30-second sequences. An ANOVA on average model fit
per couple showed significant differences (F(4, 112) =
34.30, p < .0001). Average model fit decreased from the
shortest sequences (3-seconds M = .11, SD = .17; 5-
seconds M = .10, SD = .17; 10-seconds M = .09, SD = .15)
to longest sequences (20-seconds M = .07, SD = .14; 30-
seconds M = .06, SD = .14). However, all models used 32
neurons, so greater fit may be due to lower complexity of
the shorter sequences. Further work may find that optimal
sequence length differs across nonverbal behaviors.

V.  DISCUSSION

In the present work, we created recurrent models of
nonverbal synchrony from a study of romantic couples
engaging in multiple conversations. Our recurrent models
(LSTMs) significantly predicted behavior above baselines
of feed-forward neural networks and random chance, with
models that predicted female data outperforming male
(RQ1). Examinations of model synchrony vs. naive
synchrony revealed patterns of nonverbal synchrony that
were uniquely learned by our models (RQ2). No
significant differences in model fit were found across
conversations, indicating that our models learned
generalized synchronous behavior not specific to
conversation topic (RQ3). Finally, our model-based fit and
synchrony were most associated with clinically relevant
measures when compared with naive synchrony (RQ4).

A. Sources of Nonverbal Synchrony

Our models exhibited multiple strong sources of
nonverbal synchrony. These covered facial movements of
different regions (nasolabial, smiling, eyes, mouth & chin,
and eyebrows), but not body movements. We will consider
each of these in turn.

The facial movements tracked in the nasolabial region
include Upper Lip Raiser (AU10) and Nose Wrinkler
(AU9). In past emotion literature, these were identified as
major components of the disgust facial prototype [32],
though both AU9 & 10 may occur as markers of
disagreeing or assessing. However, we did not observe
extreme negative affect in this study.

Smiling includes Lip Corner Puller (AU12), which
brings the lips to the sides, and Cheek Raiser (AUG6),
which elevates the cheeks while also raising the lower eye
region. Together, these form the basis of the Duchenne (or
genuine) smile [33]. Both facial movements were
significantly fit by our models, though the model failed to
detect the AU 12 synchrony pattern. Smiling promotes
positive social bonds, so modeling this pattern of
nonverbal synchrony is important.



TABLE IIL

MEAN CORRELATIONS OF MODEL FIT (PREDICTED, ACTUAL) AND NONVERBAL SYNCHRONY (FEMALE, MALE)

Category Feature Model Fit Syll\:[c(l)::)lny Sy?calil.:(e)ny S)]f:;ctlt)::):y
M (SD) M (SD) M (SD)
Upper Lip Raiser (AU10) 28 (.11) 28 (.17) .19 (.12) M=N
Nasolabial
Nose Wrinkler (AU9) 20 (.11) .24 (.18) A2 (11) M>N
Upper Lid Raiser (AU5) 24 (.13) .26 (.20) .07 (.08) M>N
Eyes Lid Tightener (AU7) .14 (.09) .21 (.18) .16 (.11) M=N
Eyes Closed (AU43) .01 (.06) —.01(.15) .06 (.10)
Chin Raiser (AU17) .19 (.12) .29 (.19) —.01 (.09) M
Lip Pressor (AU24) 15 (.10) .26 (.18) .01 (.10) M
Lip Pucker (AU18) 12 (11) 25 (.15) .24 (.14) M=N
Lips Part (AU25) .11 (.10) .23 (.16) .07 (.15) M
Mouth & Chin |Jaw Drop (AU26) .09 (.08) .05 (.21) —.03 (.14) -
Lip Tightener (AU23) .09 (.06) =06 (.17) .07 (.09) N
Lip Corner Depressor (AU15) .06 (.06) —.03 (.15) —.01 (.09) -
Lip Stretcher (AU20) .06 (.07) 0(.18) .07 (.11) -
Lip Suck (AU28) .02 (.08) .10 (.20) .06 (.09) N
Cheek Raiser (AU6) 17 (.09) 23 (.18) 32 (.13) M<N
Smile Lip Corner Puller (AU12) .12 (.08) —.05(.17) 38 (.14) N
Dimpler (AU14) .03 (.08) 0(.18) .03 (.11) -
Inner Brow Raiser (AU1) .04 (.09) A3 (.17) .02 (.07) M
Eyebrows Brow Lowerer (AU4) .01 (.08) .06 (.15) .05 (.09) -
Outer Brow Raiser (AU2) —.02 (.10) A1 (21) .03 (.08) -
Head Roll .08 (.06) .06 (.16) —.05 (.08) N
Head Head Pitch .02 (.07) —.01 (.20) .02 (.10) -
Head Yaw 0(.07) .02 (.20) —.18 (.14) N
Gestural Motion .02 (.06) .01 (.10) —.01 (.05) -
Body
Gross Body Movement .01 (.07) .03 (.14) 11 (.14) -

Gray highlights indicate significantly non-zero correlations (after Bonferroni). For rightmost column, M = model synchrony was significantly greater than zero but naive synchrony was
not; vice versa for N. M > N = model synchrony was significantly greater than naive synchrony; vice versa for M < N. M = N denotes cases where both were significantly greater than
zero but statistically equivalent. Cases where neither were significant are denoted with -.

A variety of mouth movements were implicated in
patterns of nonverbal synchrony as detected by our
models, including Lip Pressor (AU24), Lip Pucker
(AU18), and Lips Part (AU25). These are related to
speech-related mouth opening and lip movements
coinciding with particular phonemes (e.g., an 'o' sound).
These may also express momentary responses, such as
pressing lips together in frustration.

There were a few upper face facial movements
learned by our models. Lid Tightener (AU7) is a
squinting facial movement that may co-occur with
skepticism or thought. Inner Brow Raiser (AU1) has
been linked to prototypical sadness in past literature
[34]. However, eyebrow raising often emphasizes what
is concurrently said. In more confrontational contexts,
one may expect these facial movements to arise out of
anger, fear, or disgust. Further work must reconcile these
different contextual interpretations.

Body movements were not identified as strong
sources of synchrony. Posture shifting is a key
component of social mirroring [6], so this is an
important pattern that our models do not yet capture.
Both head yaw and head roll produced naive anti-
correlations, which indicate behavior occurring out of
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sync or periodically. For instance, head yaw mainly
measures turning toward or away from one's partner in
our study environment, as the chairs were placed at an
angle. In a scenario with partners directly in front of
each other, head yaw would more likely signal shaking
of the head in disagreement [7]. These asynchronous
behaviors  highlight important phenomena in
interpersonal communication that are not well
represented by our present features.

B. Potential Application

We envision use of these models of nonverbal
synchrony as a research tool as well as a clinical tool in
couples therapy. A therapist may consult real-time
models of nonverbal synchrony to assess a couple's style
of interaction and provide targeted intervention. Such
technologies may eventually surpass our innate
capabilities (e.g., we may include face and body
microexpressions [5]).

VL

Generative models of nonverbal synchrony yield a
new approach to understand human behavior. In contrast
with prior analytical approaches, generative modeling

CONCLUSION



enables learning of patterns across modalities and
generalized across dyads. We have presented recurrent
neural network models of nonverbal synchrony
constructed from a study of romantic couples engaging
in conversations. We found that facial movements, such
as nasolabial, eye, and mouth movements were strong
sources of nonverbal synchrony learned by our models.
Further work in this vein offers a new platform to
understand human behavior, complementary to existing
approaches. As generative models of nonverbal
synchrony account for multiple modalities of
interpersonal communication at ever increasing degrees
of accuracy, they may enable us to bridge across diverse
social contexts to understand the patterns of behavior
that bring us closer together.
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