

Next-generation complex metal oxide nanomaterials negatively impact growth and development in the benthic invertebrate *Chironomus riparius* upon settling

Nicholas Niemuth, Becky Curtis, Mimi Ngoc Hang, Miranda J. Gallagher,
D. Howard Fairbrother, Robert J Hamers, and Rebecca D. Klaper

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.8b06804 • Publication Date (Web): 15 Mar 2019

Downloaded from <http://pubs.acs.org> on March 15, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

is published by the American Chemical Society, 1155 Sixteenth Street N.W.,
Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

1 **Title: Next-generation complex metal oxide nanomaterials negatively impact growth and**
2 **development in the benthic invertebrate *Chironomus riparius* upon settling**

3

4 Nicholas J. Niemuth¹, Becky J. Curtis¹, Mimi N. Hang², Miranda J. Gallagher³, D. Howard
5 Fairbrother³, Robert J. Hamers², Rebecca D. Klaper^{1*}

6

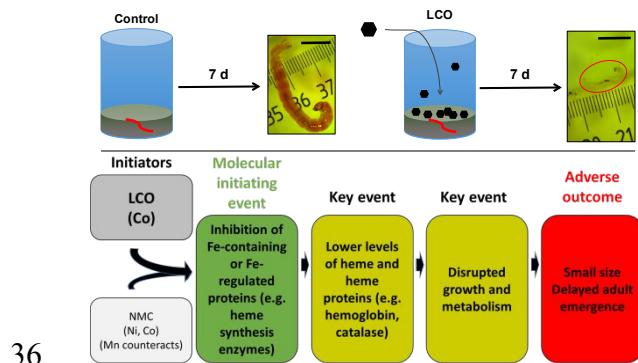
7 ¹ School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave.,
8 Milwaukee, WI 53204

9 ²Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison,
10 WI 53706

11 ³Department of Chemistry, Johns Hopkins University, 3400 North Charles St., Baltimore, MD
12 21218

13

14 *Corresponding Author


15 rklaper@uwm.edu, Phone: 414-382-1713, Fax: 414-382-1705

16

18 Abstract

19 Most studies of nanomaterial environmental impacts have focused on relatively simple first-
20 generation nanomaterials, including metals or metal oxides (e.g. Ag, ZnO) for which dissolution
21 largely accounts for toxicity. Few studies have considered nanomaterials with more complex
22 compositions, such as complex metal oxides, which represent an emerging class of next-
23 generation nanomaterials used in commercial products at large scales. In addition, many
24 nanomaterials are not colloidally stable in aqueous environments and will aggregate and settle,
25 yet most studies use pelagic rather than benthic-dwelling organisms. Here we show that lithium
26 cobalt oxide ($\text{Li}_x\text{Co}_{1-x}\text{O}_2$, LCO) and lithium nickel manganese cobalt oxide ($\text{Li}_x\text{Ni}_y\text{Mn}_z\text{Co}_{1-y-z}\text{O}_2$,
27 NMC) exposure of the model benthic species *Chironomus riparius* at 10 and 100 $\text{mg}\cdot\text{L}^{-1}$ caused
28 30-60% declines in larval growth, and a delay of 7-25 d in adult emergence. A correlated 41-
29 48% decline in larval hemoglobin concentration and related gene expression changes suggest a
30 potential adverse outcome pathway. Metal ions released from nanoparticles do not cause
31 equivalent impacts, indicating a nano-specific effect. Nanomaterials settled within 2 days and
32 indicate higher cumulative exposures to sediment organisms than those in the water column,
33 making this a potentially realistic environmental exposure. Differences in toxicity between NMC
34 and LCO indicate compositional tuning may reduce material impact.

35 TOC Art

37 **Introduction**

38 Standard aquatic toxicity assays using pelagic organisms (e.g *Daphnia magna*, *Danio rerio*) have
39 demonstrated a range of potential environmental impacts depending on the types of engineered
40 nanomaterials (ENMs) considered, with some being toxic at low concentrations when considered
41 over a chronic exposure but many not toxic until very high unrealistic concentrations.¹ However,
42 most pristine ENMs are not stable in aqueous exposure conditions,² and thus many studies on
43 pelagic organisms largely assume exposure to the stable fraction of ENMs left behind in the
44 water column after a majority settles out.^{2,3} Testing for impacts of ENMs on benthic organisms is
45 therefore extremely important, in certain cases perhaps more important than impacts on pelagic
46 organisms, as many ENMs are expected to settle and concentrate to higher exposure
47 concentrations in sediment.^{3,4} Despite this, the preponderance of aquatic nanotoxicology research
48 has focused on exposures to pelagic organisms.³

49

50 Most ENM toxicity studies have also focused on first-generation materials, including metal
51 nanoparticles, Au and Ag, and metal oxide nanoparticles, TiO₂, ZnO, and CeO₂,⁵ as they have
52 demonstrated potential for the highest use. For these materials, dissolution is often identified as
53 the main source of toxicity.⁶ However, we have comparatively little information on more
54 complex next-generation ENMs that are now coming to use in the marketplace. The complex
55 metal oxides lithium cobalt oxide (Li_xCo_{1-x}O₂, LCO) and lithium nickel manganese cobalt oxide
56 (Li_xNi_yMn_zCo_{1-y-z}O₂, NMC) and other related complex metal oxides are examples of next-
57 generation materials that are increasing dramatically in the marketplace due to their use as
58 electrode materials in lithium ion batteries (LIBs)⁷⁻¹⁰ and lower-volume applications such as
59 catalysts for solar fuel production.¹¹ NMC is an alternative to LCO that has the same crystal

60 structure, but partial substitution of Co with Ni and Mn lowers cost and can increase
61 performance.¹² A typical electric vehicle contains approximately 35-90 kg of metal oxide
62 particles, with rapid increases in electric vehicle production leading to predicted global
63 production of 300-800 kilotons of Co and Ni annually by 2025,¹³ and LIB waste by 2025
64 estimated to reach 200 kilotons from EVs alone.¹⁴ Present-generation batteries frequently use
65 particle sizes in the micron range, but smaller particles in the nanometer size regime achieve fast
66 recharge times and are also formed *in situ* by mechanical fracturing of larger particles during
67 use.¹² Because lithium-ion batteries are not generally recycled due to the low cost of Ni and
68 Mn,^{13,15} potential release of cathode materials in micron- and nano-particle form into the aquatic
69 environment from battery waste is a legitimate concern.^{16,17}

70

71 Previous research has demonstrated that the complex metal oxides NMC and LCO do not behave
72 or cause toxicity in the same manner as their simple metal oxide counterparts.^{18,19} For example,
73 density functional calculations and experimental measurements showed that NMC dissolves
74 incongruently, with Ni released more rapidly in aqueous media compared with Co and Mn.¹⁸
75 Material dissolution is also impacted by properties of the media such as pH.¹⁸ A consequence of
76 incongruent dissolution is that the ions released and ENM composition change over the course of
77 the exposure. Ni and Co are both toxic to pelagic and benthic organisms,²⁰⁻²³ while Mn is
78 relatively non-toxic.^{24,25} Our previous study showed that concentrations of LCO and NMC as
79 low as 0.25 mg·L⁻¹ have significant negative impacts on survival and reproduction in *Daphnia*
80 *magna* that are not accounted for by particle dissolution.¹⁹ This work also showed that NMC
81 exposure produced lower daphnid toxicity compared to LCO, indicating a difference due to
82 ENM composition¹⁹

83

84 Metal oxide nanoparticles including TiO₂, ZnO, and CeO₂ have been shown to settle over time in
85 aqueous media at ambient pH.^{26–28} We previously showed both LCO and NMC nanoparticles
86 settle substantially within 24 hours in aqueous media: 66 and 33% settling in 22.5 h
87 respectively.¹⁹ Thus, testing for impacts of these materials on benthic organisms is warranted.

88

89 For this study, impacts of ENMs entering the environment were investigated using freshwater
90 midge *Chironomus riparius*, a model species for testing effects of chemical exposures on benthic
91 organisms. This organism is a keystone species and an important food source in both aquatic and
92 terrestrial environments.²⁹ It has been shown to be sensitive to pollutants, and protocols for
93 exposure and culturing have been established by the American Society for Testing and Materials
94 and U.S. Environmental Protection Agency.³⁰ The *C. riparius* genome is sequenced,³¹ and large
95 mRNA and expressed sequence tag (EST) databases exist for *C. riparius*, including genes
96 relevant to stress and the response to chemical exposures. *C. riparius* have also been used rarely
97 but successfully in ENM toxicity exposures,^{32–36} though only one study (of fullerene ENMs) has
98 explicitly looked at impacts of material settling.³⁴ In the current study, *C. riparius* larvae were
99 exposed to LCO and NMC at 1, 10, and 100 mg·L⁻¹ as well as ion controls from 5 days post-
100 hatch until adult emergence and organisms were evaluated for changes in size, coloration, and
101 gene expression at 7 d and adult emergence up to 50 d. Results indicate significant negative
102 impacts on all of these endpoints from LCO and NMC exposure, which are not replicated by ion
103 controls. Implications of these effects in the context of the expected volume of LIB waste and
104 settling of these materials in the environment are discussed, with compositional tuning indicated
105 as a potential means of mitigating environmental impacts. This study demonstrates the

106 importance of using sediment species for testing environmental impacts, reveals, a nano-specific
107 impact of complex nanoparticles, and indicates a potential adverse outcome pathway for metal
108 oxide NPs.

109

110 **Materials and methods**

111

112 ***Synthesis of LCO and NMC nanosheets***

113 Synthesis of LCO and NMC nanosheets was carried out using methods described in ^{37,38} and
114 consists of two steps. All reagents used for synthesis were purchased from Sigma Aldrich and
115 only ultrapure water was used. To specifically make LCO nanosheets, cobalt hydroxide
116 nanosheets were first synthesized using a precipitation method where in 1 M cobalt (II) nitrate
117 was added dropwise into a 0.1 M LiOH solution under magnetic stirring. The resulting
118 precipitate was then cleaned using repeated cycles (3X) of centrifugation and resuspension in
119 ultrapure water (18 MΩ cm resistivity) followed by repeated cycles (2X) of centrifugation and
120 resuspension in methanol. The precipitate (200 mg) was then dried under a continual flow of
121 nitrogen gas and subsequently was added to a 10 g mixture of molten lithium salt consisting of a
122 molar ratio of 6:4 LiOH: LiNO₃ (205 °C, under magnetic stirring) in a poly(tetrafluorethylene)
123 vessel. After 1 h, the reaction was carefully quenched with ultrapure water and the LCO
124 precipitate was purified using repeated cycles of centrifugation and resuspension in ultrapure
125 water (2X) and methanol (3X) before drying under a flow of nitrogen gas. All centrifugation was
126 completed using the Thermo Scientific Sorvall Legend X1R Centrifuge with a Thermo TX-400
127 rotor at 4696 g. To synthesize NMC nanosheet, an identical method was used with the exception
128 that in the precipitation step, a ratio of 1:1:1 of Ni:Co:Mn salts (0.1 M nickel (II) acetate, 0.1 M

129 cobalt (II) acetate, and 0.1 M manganese (II) acetate) were used instead. The degree of lithiation
130 was not directly controlled for using this synthetic method. Characterization of nanosheet
131 stoichiometry, crystal phase, and size and morphology from XRD, ICP-OES and SEM are
132 included in the Supporting Information.

133

134 ***C. riparius* larval exposure**

135 *ENM stock suspension*

136 Stock solutions of LCO and NMC ($200 \text{ mg}\cdot\text{L}^{-1}$) were prepared by adding 40 mg of ENM powder
137 to 200 mL of Milli-Q® water and sonicating at 100% power for 20 minutes in a Branson 2800
138 ultrasonic bath (Emerson Electric Co, St Louis, MO). Dilutions to 20 and $2 \text{ mg}\cdot\text{L}^{-1}$ were made in
139 Milli-Q® and sonicated for an additional 10 min immediately before dosing. Zeta potential of
140 ENMs at final concentrations in 1x Moderately Hard Reconstituted Water (MHRW)¹⁹ were
141 characterized using a Zetasizer Nano ZS (Malvern Instruments, Westborough, MA, USA).

142

143 *Exposure beaker preparation and maintenance*

144 Exposure beakers were prepared by adding 15 g of 140-270 mesh silica sand (AGSCO Corp) to
145 100 mL beakers and autoclaving to sterilize. Sand was then rinsed 3x with 80 mL Milli-Q®.
146 Control beakers were prepared by adding 20 mL of Milli-Q® and 20 mL of 2x MHRW.
147 Treatment beakers (1, 10, and $100 \text{ mg}\cdot\text{L}^{-1}$) were prepared by adding 20 mL of 2x MHRW and 20
148 mL of the appropriate 2x nanoparticle stock. Five *C. riparius* larvae (5 days post-hatch) were
149 added to each replicate control and exposure beaker.

150

151 Beakers were covered with plastic wrap and incubated at 20 °C with a 16:8 light:dark
152 photoperiod. A 50% water exchange was carried out three times per week. For exposure beakers,
153 new ENMs were not added, as ENMs had settled by this time. Animals were fed ground
154 TetraMin® flakes (20 g·L⁻¹ in Milli-Q®) daily, 125 uL per beaker.

155

156 *ENM exposures*

157 An initial LCO exposure was conducted with 10 replicate beakers per condition (5 larvae per
158 beaker) each for control, 1, 10 and 100 mg·L⁻¹. A second round of experiments was carried out
159 with 10 replicate beakers per condition to compare LCO to NMC, exposing larvae to LCO at 1,
160 10, and 100 mg·L⁻¹; NMC at 1, 10, and 100 mg·L⁻¹; and control. For both sets of experiments,
161 larvae were harvested from 5 beakers per condition on exposure day 7 and frozen for gene
162 expression analysis. The remaining 5 beakers per condition were maintained until exposure day
163 50 for adult fly emergence.

164

165 Having observed changes in size and coloration of ENM-exposed larvae, a third experiment was
166 conducted with 5 replicate beakers per condition, exposing larvae to LCO at 1, 10, and 100
167 mg·L⁻¹; NMC at 1, 10, and 100 mg·L⁻¹; and control. Larvae from all 5 beakers were harvested on
168 exposure day 7, flash frozen in liquid nitrogen, and stored at – 80 °C for imaging for size and
169 coloration analysis.

170

171 *Ion control exposures*

172 Data from ICP-MS analysis (see *ICP-MS analysis of released ions* below) were used to
173 determine the concentrations for 2x stocks of metal salts to yield exposure concentrations

174 reflective of ion concentrations found in the supernatants of 10 and 100 mg·L⁻¹ LCO and NMC
175 exposure media samples. We chose to test whether the ions observed released from the particles
176 were by themselves sufficient to cause any observed toxicity, as metal dissolution from NPs is
177 indicated as a major cause of toxicity in other studies. If not, then the portion of settled particles,
178 by concentrating material in the sand, are the cause of toxicity: either by direct nano-toxic effects
179 of the particles themselves or by acting as a vector to bring particles with high concentrations of
180 metals into the feeding environment of the larvae. Animals were dosed with Li, Ni, Mn, and Co
181 ions at the highest concentration observed over 7 d. For LCO, dosed ions were 1000 µg·L⁻¹ Li
182 and 400 µg·L⁻¹ Co for 10 mg·L⁻¹ and 4200 µg·L⁻¹ Li and 900 µg·L⁻¹ Co for 100 mg·L⁻¹. For
183 NMC, dosed ions were 710 µg·L⁻¹ Li, 360 µg·L⁻¹ Ni, 270 µg·L⁻¹ Mn, and 160 µg·L⁻¹ Co for 10
184 mg·L⁻¹ and 7000 µg·L⁻¹ Li, 2000 µg·L⁻¹ Ni, 300 µg·L⁻¹ Mn, and 600 µg·L⁻¹ Co for 100 mg·L⁻¹.
185 An ion control exposure was conducted with 10 replicate beakers per condition: control, LCO 10
186 and 100 mg·L⁻¹ ion equivalents, and NMC 10 and 100 mg·L⁻¹ ion equivalents. At water changes,
187 20 mL of exposure media was removed and replaced with 20 mL of 1x ion solution to maintain
188 ion concentrations throughout the exposure. Larvae were harvested from 6 beakers per condition
189 on exposure day 7: 3 beakers per condition for gene expression analysis were frozen and 3
190 beakers per condition for imaging and size measurement were preserved in 70% ethanol. The
191 remaining 4 beakers per condition were maintained until exposure day 50 for adult fly
192 emergence.

193

194 ***ICP-MS analysis of released ions***

195 Inductively coupled plasma mass spectrometry (ICP-MS) was conducted on exposure media at
196 all concentrations to determine the level of metal dissolution into exposure media after 2, 4, and

197 7 d, sampling exposure beakers before each water change over the first seven days of the
198 experiment. Supernatant of centrifuged samples were acidified to 2% wt nitric acid and analyzed
199 with an Elan DRC II ICP-MS (Perkin Elmer). 10 to 150-fold dilutions were carried out on
200 supernatants containing ions at concentrations above 100 ppb to ensure analyte concentrations
201 fell within the detection range of the instrument. The calibration curve was prepared from serial
202 dilutions of 1003 ± 5 ppb Ni, 1007 ± 4 ppb Mn, 996 ± 3 ppb Co, and 1006 ± 2 ppb Li NIST
203 Traceable standards (Inorganic Ventures). Full details for sampling and quantification are
204 included in the Supporting Information.

205

206 ***ENM sedimentation behavior***

207 We previously showed that LCO and NMC settle out in MHRW.¹⁹ To determine the extent of
208 particle settling in this study, we sampled exposure treatments of 1, 10, and 100 $\text{mg}\cdot\text{L}^{-1}$ of LCO
209 or NMC particles in 1x MHRW on exposure days 0, 2, 4, and 7. Absorbance values of sampled
210 supernatants were measured at 600 nm using a Synergy H4 plate reader (Biotek Instruments,
211 Winooski, VT).

212

213 ***Imaging and measurement***

214 ***Size***

215 Flash frozen and alcohol-preserved larvae were imaged using a Motic SMZ-168 TL
216 stereomicroscope with an attached Moticam 2, 2.0 MP CMOS camera (Motic, Hong Kong).
217 Images were recorded using Motic Images Plus 2.0 software, and the included measurement tool
218 used to determine animal size metrics. Measurements were calibrated with a Leica 50 mm metric
219 stage micrometer (Leica Camera AG, Wetzlar, Germany).

220

221 *Animal coloration (Hemoglobin absorbance)*

222 The green channel from an RGB (red-green-blue) image was isolated and pixel intensity used to
223 measure the absorbance of hemoglobin (Hb) in *C. riparius* larvae on day 7. Hb absorbance
224 analysis was only carried out on flash-frozen larvae, as those preserved in ethanol did not retain
225 intact Hb. Detailed information on image processing is included in the Supporting Information.

226

227 *Gene expression analysis*

228 Total RNA was extracted from flash-frozen 7 d exposure samples and 100 ng of total RNA
229 transcribed into complementary deoxyribonucleic acid (cDNA). Gene expression analysis was
230 carried out on a variety of genes associated with metal, oxidative, protein, and general stress
231 responses. The following were analyzed for gene expression: ribosomal protein *RPL13*
232 (housekeeping gene); metal stress gene metallothionein (*MTT*), as metal exposure is
233 hypothesized to be a major source of toxicity; oxidative stress genes: catalase (*CAT*), gamma-
234 glutamylcysteine synthase (*GCS*), glutathione s-transferase (*GST*), and two different superoxide
235 dismutases (*Cu-ZnSOD* and *MnSOD*), as oxidative stress is hypothesized to be a main cause of
236 damage by nanoparticle exposures; heat shock protein *HSP27*, important for protecting protein
237 folding after exposure to toxins; stress-responsive regulatory kinase *p38*; developmental
238 regulator ecdysone receptor (*EcR*), to measure changes in developmental pathways as a result of
239 exposure; and genes related to heme synthesis, added as we found an indication in the change of
240 heme production in exposed organisms: aminolevulinic acid synthase (*ALAS*), porphobilinogen
241 synthase (*PBGS*), and heme oxygenase (*HO*) (Table S1).

242

243 Relative gene expression was quantified using the iTaq Universal SYBR Green Supermix (Bio-
244 Rad, Hercules, CA) for 20 μ L reactions and the $2^{-\Delta\Delta C_t}$ method.³⁹ For detailed information on
245 extraction, cDNA creation, primer design, and qPCR, see the Supporting Methods.

246

247 **Statistical analysis**

248 Statistical analyses were performed using SPSS version 22 for Mac (IBM). Statistical tests for
249 each dataset were chosen based on data normality determined by the Shapiro-Wilk test and
250 equality of variance using Levene's test. Normally distributed data with equal variance (width,
251 Hb concentration) were compared using a one-way ANOVA with Tukey post-hoc comparisons.
252 Data with normal distributions but unequal variances (gene expression) were compared using a
253 Welch one-way ANOVA with Dunn's T3 post-hoc comparisons. Non-normal data were
254 compared using Kruskal-Wallis (length, head capsule length) or Kaplan-Meier (time to
255 emergence) non-parametric tests. Significance for all statistics was set at $p < 0.05$. Datasets with
256 a nested design (size, Hb, emergence) were tested for any replicate effect; no replicate effects
257 were detected for any dataset ($p > 0.05$).

258

259 **Results and Discussion**

260 Our results show that next-generation complex metal oxide ENMs LCO and NMC settle in
261 aqueous media and cause significant, negative, nano-specific effects on the keystone benthic
262 species *C. riparius*, impacting their size, time to emergence, Hb levels, and expression of stress
263 and heme-metabolism genes. Impacts of these ENMs are nano-specific, as the effects of ENM
264 exposure exceed or are absent in equivalent ion exposures. Effects are much greater for LCO
265 than the alternative NMC materials providing an indication that using NMC may cause less

266 environmental impact. Impacts on Hb levels and gene expression may point to the molecular
267 mechanism underlying these effects in chironomids.

268

269 ***LCO and NMC aggregate and settle***

270 LCO and NMC both settled substantially over the course of the experiment: more than 90% of
271 material within 2 d for 100 mg·L⁻¹ exposures, and more than 70% of material within 2 d at 10
272 mg·L⁻¹ (Fig S3). Settling is more rapid for higher concentrations, as has been observed for other
273 ENMs including CeO₂, TiO₂, and iron oxides.⁴⁰⁻⁴² Zeta-potential data point to an explanation for
274 this concentration-dependent settling. Zeta-potential values for LCO and NMC at their moment
275 of addition are highly negatively charged in 1 mg·L⁻¹ exposures (-16.33 and -17.73 mV
276 respectively), while 10 mg·L⁻¹ exposures are slightly less negative (-7.74 and -6.07 mV), and
277 values approach neutral to slightly positive at 100 mg·L⁻¹ (0.52 and 1.59 mV) (Table S2).
278 Electrostatic repulsion is one of the primary sources of ENM stability in aqueous media.⁴³ Thus,
279 increased settling at higher LCO and NMC exposure concentrations is likely due to an increased
280 propensity for particles to aggregate due to lower electrostatic repulsion.

281

282 Aggregation of LCO and NMC at higher concentrations likely underlies observed concentration-
283 dependent declines in material dissolution. For both materials all intercalated Li left the material
284 by the 2 d time point, but even at high concentrations lithium is not considered toxic to these
285 organisms (Fig S4d).¹⁹ For LCO, ICP-MS results showed that dissolution of Co ions from the
286 material did not scale linearly with exposure concentration, but rather proportionally to the log₁₀
287 of the exposure concentration. That is, dissolved Co for 100 mg·L⁻¹ LCO was only 2-3x the
288 dissolved Co for 10 mg·L⁻¹, which was only 2-3x the dissolved Co for 1 mg·L⁻¹, rather than the

289 10x that might be expected (Fig S4c). Only a portion of Co from the material dissolved over the
290 course of 7 d, although relatively more Co dissolved as ions at $1 \text{ mg}\cdot\text{L}^{-1}$ (39%) than at $10 \text{ mg}\cdot\text{L}^{-1}$
291 (14%) or $100 \text{ mg}\cdot\text{L}^{-1}$ (5%) (Fig S5c). For NMC particles, ICP-MS results indicated dissolution of
292 Ni, Mn, and Co from the material over the course of 7 d, with most dissolution for these metals
293 occurring by day 2 for 1 and $10 \text{ mg}\cdot\text{L}^{-1}$ exposures (Fig S4). Dissolved ion concentration for Ni,
294 Mn, and Co was proportional to the \log_{10} of exposure concentration over 7 d, similar to Co for
295 LCO (Fig S4). Only a fraction of Ni, Mn, or Co dissolved from the material over 7 d, with
296 relatively more metal dissolving as ions at lower exposure concentrations: $1 \text{ mg}\cdot\text{L}^{-1}$ – 67% of Ni,
297 55% of Mn, and 49% of Co; $10 \text{ mg}\cdot\text{L}^{-1}$ – 30, 24, and 25% respectively; $100 \text{ mg}\cdot\text{L}^{-1}$ – 9, 6, and
298 12% respectively (Fig S5).

299
300 Thus, more metal as a percent of total material mass dissolved at lower concentrations than at
301 higher concentrations: about 50% at $1 \text{ mg}\cdot\text{L}^{-1}$, about 25% at $10 \text{ mg}\cdot\text{L}^{-1}$, and only about 10% at
302 $100 \text{ mg}\cdot\text{L}^{-1}$ (Fig S5). The lower surface-area-to-volume ratio of aggregated particles formed at
303 high concentrations likely reduces ion dissolution from the material, as has been shown for NMC
304 with different surface-area-to-volume ratios.¹² Since only a small percentage of ions dissolve
305 from the material, particularly at higher concentrations, particle exposures, by concentrating
306 large amounts of settled material in surface sand, have impacts of a much higher degree than —
307 or are unobservable in — ion exposures.

308
309 ***LCO and NMC impact *C. riparius* growth and adult emergence***
310 Particle exposure causes significant, dose-dependent effects on the development of *C. riparius*
311 larvae not explicable by ion dissolution into the media, retarding growth and delaying emergence

312 of adult flies. Larvae in exposures were 30% (LCO and NMC $10 \text{ mg}\cdot\text{L}^{-1}$) to 60% ($100 \text{ mg}\cdot\text{L}^{-1}$
313 LCO) smaller than controls (Fig 1a, c, and e; e.g. lengths of $3.2 \pm 0.8 \text{ mm}$ for LCO $10 \text{ mg}\cdot\text{L}^{-1}$
314 and $1.8 \pm 0.2 \text{ mm}$ for LCO $100 \text{ mg}\cdot\text{L}^{-1}$ versus $4.5 \pm 0.2 \text{ mm}$ for control). Ion exposures only
315 caused a 20% decrease in size and at the highest concentration, representative of $100 \text{ mg}\cdot\text{L}^{-1}$
316 NMC (Fig 1b and d). Emergence was also significantly delayed for particle-exposed animals at
317 $10 \text{ mg}\cdot\text{L}^{-1}$ and $100 \text{ mg}\cdot\text{L}^{-1}$ for LCO and at $100 \text{ mg}\cdot\text{L}^{-1}$ for NMC (Fig 2a). Ion exposures showed no
318 impact on emergence (Fig 2b), demonstrating the importance of settled nanomaterials for these
319 impacts. Toxicity of Ni to *C. riparius* has been fairly well studied in the literature. Accounting
320 for the amount of Co and Ni in added LCO and NMC, impacts on *C. riparius* larval growth were
321 seen at concentrations 10-30 fold lower than that seen in the literature for Ni-spiked sediment:
322 $11\text{-}16 \text{ mg}\cdot\text{kg}^{-1}$ for $10 \text{ mg}\cdot\text{L}^{-1}$ NMC and LCO, respectively, versus $146\text{-}358 \text{ mg}\cdot\text{kg}^{-1}$ in Ni-spiked
323 sediment.^{21,44} No impacts were seen on emergence from Ni-spiked sediments even up to 7990
324 $\text{mg}\cdot\text{kg}^{-1}$,²¹ whereas impacts were observed from LCO at $16 \text{ mg}\cdot\text{kg}^{-1}$ ($10 \text{ mg}\cdot\text{L}^{-1}$ exposure) and
325 NMC at 112 mg kg^{-1} ($100 \text{ mg}\cdot\text{L}^{-1}$ exposure). Thus, toxicity from settled ENM exceeds that
326 expected from sediment-spiked ions based on the literature. The concentration of metal particles
327 at the sediment surface and *C. riparius* feeding behavior may account for increased toxicity from
328 ENMs, as discussed below.

329

330 ***Metal-specific differences in ENM toxicity***

331 Importantly, LCO $10 \text{ mg}\cdot\text{L}^{-1}$ exposures caused a significant delay in emergence at a
332 concentration an order of magnitude lower than seen in NMC ($100 \text{ mg}\cdot\text{L}^{-1}$). Larvae from 100
333 $\text{mg}\cdot\text{L}^{-1}$ LCO exposures did not emerge even up to exposure day 50, more than double the
334 emergence time of controls, despite being visible in disturbed sand.

335

336 Differences in response between NMC and LCO may be related to compositional differences
337 between the two ENMs. While the amount of settled material was similar for both materials, not
338 all metals in these materials are expected to elicit the same toxicity. Ni and Co are both toxic
339 metals. On a per mass basis, LCO has 50% more toxic metal than NMC, as it contains only
340 cobalt, while NMC includes Mn in addition to Ni. Cobalt has been shown to cause oxidative
341 stress by depleting reduced thiols from cells.⁴⁵ Nickel is also known to cause oxidative stress,⁴⁶
342 and may cause oxidative damage that would elicit a response similar to Co. Both Co_3O_4 and NiO
343 ENMs have been shown to cause oxidative stress *in vitro*.^{47,48} Manganese, however, has been
344 shown to have antioxidant properties in rats, counteracting the oxidative impacts of other heavy
345 metals,⁴⁹ and MnO_2 ENMs have been shown to scavenge ROS *in vitro*.⁵⁰

346

347 Differing gene expression patterns between LCO and NMC may be related to these
348 compositional differences. *MTT* gene expression, related to metal ion exposure and toxicity,
349 declined significantly and in a dose-dependent manner with increasing LCO exposure while
350 NMC had no impact on its expression (Fig 3c). For *CAT* and *HSP27*, 1 $\text{mg}\cdot\text{L}^{-1}$ NMC had the
351 opposite effect of LCO at 100 $\text{mg}\cdot\text{L}^{-1}$, with expression moving in parallel as dose increased (Fig
352 3a and b). Manganese has been shown to decrease expression of *EcR* in the amphipod *T.*
353 *japonicas*,⁵¹ which may explain reduced *EcR* expression in NMC-exposed larvae (Fig 3d). The
354 antioxidant properties of Mn, and the overwhelming of this antioxidant effect with increasing Co
355 and Ni, may explain observed gene expression patterns and account for the lower observed
356 impact of NMC compared to LCO in this study and in our previous work.¹⁹ Thus, tuning of
357 material composition may be a means of mitigating material impact.

358

359 ***Impact of cobalt on heme synthesis as a potential mechanism of toxicity and adverse outcome***
360 ***pathway***361 Larvae exposed to LCO and NMC showed significantly reduced levels of Hb beginning at 10
362 mg·L⁻¹ exposure (Fig 1g). This paralleled cobalt disruption of heme synthesis enzymes observed
363 in other organism such as avian and rat liver cells.^{52,53} Bacterial and animal studies suggest that
364 the mechanism of cobalt interference with heme biosynthesis is perhaps through substituting
365 cobalt for iron.⁵⁴

366

367 Increased expression of *ALAS* and decreased expression of *PBGS* observed in this study (Figs 3e
368 and f) are indicative of inhibition of heme synthesis by Co.⁵² *ALAS* expression was up
369 significantly at NMC 100 mg·L⁻¹ (Fig 3e). *PBGS* expression appeared to decline with dose,
370 particularly for LCO exposure, being significantly down-regulated for both LCO and NMC at
371 100 mg·L⁻¹ (Fig 3f). Dose-dependent reductions in expression of *CAT*, an oxidative stress gene
372 that requires heme, in LCO-exposed larvae at 10 and 100 mg·L⁻¹ (Fig 3a) may also point to
373 disruption of heme synthesis by Co as a mechanism of toxicity. Cobalt exposure has been shown
374 to have a strong negative impact on catalase expression in liver of rats⁵⁵ and goldfish.⁵⁶

375

376 Both Hb levels and *PBGS* expression correlated inversely with the log₁₀ of Co settled in LCO
377 and NMC (Hb: R² = 0.848, β = -2.25, p < 0.001; *PBGS*: R² = 0.681, β = -0.314, p < 0.05).
378 Inhibition of Hb in *Tanytarsus* chironomids by carbon-monoxide was previously shown to
379 reduce chironomid metabolism and increase larval mortality.⁵⁷ The importance of functional Hb
380 for normal chironomid metabolism thus suggests that inhibition of heme synthesis by cobalt may

381 underlie the developmental impacts of LCO and NMC exposure. A proposed adverse outcome
382 pathway summarizing this is presented in Fig 4.

383

384 ***Benthic organisms are susceptible to settled ENMs***

385 Settling in aqueous environments is characteristic of many ENMs.^{2,58} This settling will cause
386 their accumulation in the sediment and an increase in accumulation over time with continual
387 introduction, which may impact benthic organisms. ENMs in sediment could have a particular
388 impact on deposit feeders that uptake sediment particles like *C. riparius* larvae, which feed
389 primarily on detritus < 250 µm⁵⁹ and accumulate small silt particles in their gut.⁶⁰ Settled
390 fullerene nanoparticles pack the *C. riparius* larval gut after exposure.⁶¹ Thus, their mode of
391 feeding may create particularly high environmental exposures for *C. riparius* larvae and other
392 deposit feeders from settled ENMs. We posit that the nano-specific impacts observed in this
393 study are the result of the concentration of ENMs in surface sand due to settling, with the likely
394 mode of exposure being ingestion due to *C. riparius* deposit feeding. Whether observed impacts
395 are the result of LCO and NMC exposure directly or the result of material dissolution in the gut
396 or in cellular compartments such as the lysosome (where low pH would be predicted to enhance
397 dissolution)¹⁸ is beyond the scope of this study. Future studies using x-ray computed tomography
398 and x-ray fluorescence techniques to determine the distribution of particles and ions in the
399 organism^{62,63} could be informative.

400

401 Bioavailability of aggregated ENMs in the benthos may depend on their interaction with
402 sediment particles.⁶⁴ Most studies have examined interactions of ENMs with soils rather than
403 sediments,⁶⁴ but soil studies have observed that Ag ENMs bind more tightly to clay particles than

404 to sand.⁶⁵ Thus, our use of sand as a model sediment in this study may mean that settled LCO
405 and NMC are more bioavailable than they might be in sediments with high clay content.

406

407 Impacts on *C. riparius* development and emergence observed in this study would be expected to
408 negatively impact reproductive success,⁶⁶ which could impact higher trophic levels due to their
409 position as a keystone species in aquatic and terrestrial environments.⁶⁷ ENM ingestion could
410 also result in trophic transfer of ENMs as they are a primary food resource for many fish
411 species.⁶⁸ Bioaccumulation of ENMs in chironomids has been shown for Ag and CeO₂
412 ENMs.^{68,69} CeO₂ ENMs were shown to transfer from chironomids to amphibian larvae, where
413 they accumulated and caused genotoxicity.⁶⁸ Thus benthic organisms such as *C. riparius* may act
414 as important vectors for ENMs to enter the aquatic food chain, even when these particles are not
415 stable in the water column.

416

417 Modeling studies have shown that for large lakes with long residence times, upwards of 98% of
418 input ENMs can be anticipated to be retained within the lake system due to settling.⁷⁰ This means
419 that reaching the sediment concentration found to cause impacts in this study — 23 µg·cm⁻² for
420 10 mg·L⁻¹ exposures — would only require a detectable steady-state ENM concentration of 50
421 ng·L⁻¹ in surface water. TiO₂ ENMs were detectable in a European lake at 1.4 µg·L⁻¹.⁷¹ No study
422 has yet been done to model or measure amounts of LCO or NMC in the environment. The most
423 likely source of LCO or NMC in the environment would be as leachate from LIB waste in
424 landfills, as LIBs are generally not recycled.^{14,17} Co leached from LIBs in standard tests was
425 found to be on the order of 164,000 mg Co per kg of battery.¹⁴ Hendren et al. have proposed that
426 production volume may be an indicator of likely exposure risk,⁷² and production does correlate

427 to some degree with modeled and measured environmental concentrations of ENMs.⁷³ The total
428 mass of LIBs used globally in 2016 was estimated at 374,000 metric tons.¹⁴ Depending on
429 battery life expectancy, this same mass of batteries can be expected to be discarded as waste
430 within years.¹⁴ Given the amount of Co leached from batteries, 60,000 metric tons annually of
431 Co waste will be emitted from LIBs. In this case metal oxide battery waste will be on the same
432 order of magnitude as annual US production estimated for TiO₂ (38,000 tons).⁷² Given that TiO₂
433 has been modeled⁷⁴ and measured⁷¹ to be present in surface waters at around 1 $\mu\text{g}\cdot\text{L}^{-1}$, a
434 significant amount of LCO and NMC may be expected to be found in the environment based on
435 the expected mass of LIB waste. The 50 $\text{ng}\cdot\text{L}^{-1}$ steady-state estimate corresponding to our 10
436 $\text{mg}\cdot\text{L}^{-1}$ exposure may not be unrealistic in such a scenario.

437

438 ***Implications***

439 The expected increase in use of battery cathode materials such as LCO and NMC in the next
440 decade and the lack of material recycling means that environmental release due to disposal may
441 be expected.^{16,17} Exposure to LCO and NMC caused significant impacts on the growth and
442 development of *C. riparius* through stress pathways and inhibition of heme synthesis. Settling of
443 nanomaterials creates the potential for small amounts of complex metal oxides and other ENMs
444 to accumulate in the benthos of aquatic systems at concentrations that may cause adverse
445 impacts. Reduced impact of NMC versus LCO points to tuning of material composition as a
446 means of limiting environmental effects of material release.

447

448 **Acknowledgements**

449 This work was supported by National Science Foundation under the Center for Sustainable
450 Nanotechnology (CSN), CHE-1503408. The CSN is part of the Centers for Chemical Innovation
451 Program. Gene expression work was conducted at the Great Lakes Genomics Center at UW-
452 Milwaukee. The authors acknowledge Nicklaus Neureuther and Dylan Olson for help with
453 culture maintenance and exposure takedowns. Thank you to the Johns Hopkins Department of
454 Environmental Health and Engineering for use of their equipment.

455

456 **Disclosure of interests**

457 The authors declare no competing financial interest.

458

459 **Supporting Information Available**

460 Supporting Methods, Tables, and Figures.

461 This information is available free of charge via the Internet at <http://pubs.acs.org>.

462

463 **References**

- 464 (1) Lin, S.; Wang, H.; Yu, T. A Promising Trend for Nano-EHS Research — Integrating Fate
465 and Transport Analysis with Safety Assessment Using Model Organisms. *NanoImpact*
466 2017, 7, 1–6. <https://doi.org/10.1016/j.impact.2016.09.007>.
- 467 (2) Petosa, A. R.; Jaisi, D. P.; Quevedo, I. R.; Elimelech, M.; Tufenkji, N. Aggregation and
468 Deposition of Engineered Nanomaterials in Aquatic Environments: Role of
469 Physicochemical Interactions. *Environ. Sci. Technol.* 2010, 44 (17), 6532–6549.
470 <https://doi.org/10.1021/es100598h>.
- 471 (3) Koelmans, A. A.; Diepens, N. J.; Velzeboer, I.; Besseling, E.; Quik, J. T. K.; van de

472 Meent, D. Guidance for the Prognostic Risk Assessment of Nanomaterials in Aquatic
473 Ecosystems. *Sci. Total Environ.* **2015**, *535*, 141–149.
474 <https://doi.org/10.1016/j.scitotenv.2015.02.032>.

475 (4) Jennings, V.; Goodhead, R.; Tyler, C. R. Ecotoxicology of Nanomaterials in Aquatic
476 Systems. In *Characterization of Nanomaterials in Complex Environmental and Biological*
477 *Media*; Baalousha, M., Lead, J. R., Eds.; Elsevier, 2015; pp 25–32.

478 (5) Maynard, A. D.; Warheit, D. B.; Philbert, M. A. The New Toxicology of Sophisticated
479 Materials: Nanotoxicology and Beyond. *Toxicol. Sci.* **2011**, *120* (Supplement 1), S109–
480 S129. <https://doi.org/10.1093/toxsci/kfq372>.

481 (6) Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity
482 of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms
483 and Mammalian Cells in Vitro: A Critical Review. *Arch. Toxicol.* **2013**, *87* (7), 1181–
484 1200. <https://doi.org/10.1007/s00204-013-1079-4>.

485 (7) Brodd, R. J. *Batteries for Sustainability : Selected Entries from the Encyclopedia of*
486 *Sustainability Science and Technology*; Springer, 2012.

487 (8) Grey, C. P.; Ceder, G.; Kang, K.; Meng, Y. S.; Bre, J. Electrodes with High Power and
488 High Capacity for Rechargeable Lithium Batteries. *Science*. **2005**, *311* (December), 1–5.
489 <https://doi.org/10.1126/science.1122152>.

490 (9) Pollet, B. G.; Staffell, I.; Shang, J. L. Current Status of Hybrid, Battery and Fuel Cell
491 Electric Vehicles: From Electrochemistry to Market Prospects. *Electrochim. Acta* **2012**,
492 *84*, 235–249. <https://doi.org/10.1016/j.electacta.2012.03.172>.

493 (10) Wang, Y.; Yu, Y.; Huang, K.; Chen, B.; Deng, W.; Yao, Y. Quantifying the
494 Environmental Impact of a Li-Rich High-Capacity Cathode Material in Electric Vehicles

495 via Life Cycle Assessment. *Environ. Sci. Pollut. Res.* **2017**, *24* (2), 1251–1260.
496 <https://doi.org/10.1007/s11356-016-7849-9>.

497 (11) Liu, H.; Zhou, Y.; Moré, R.; Müller, R.; Fox, T.; Patzke, G. R. Correlations among
498 Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on
499 Lithium Cobalt Oxides. *ACS Catal.* **2015**, *5* (6), 3791–3800.
500 <https://doi.org/10.1021/acscatal.5b00078>.

501 (12) Hang, M. N.; Hudson-Smith, N. V.; Clement, P. L.; Zhang, Y.; Wang, C.; Haynes, C. L.;
502 Hamers, R. J. Influence of Nanoparticle Morphology on Ion Release and Biological
503 Impact of Nickel Manganese Cobalt Oxide (NMC) Complex Oxide Nanomaterials. *ACS*
504 *Appl. Nano Mater.* **2018**, *1* (4), 1721–1730. <https://doi.org/10.1021/acsanm.8b00187>.

505 (13) Olivetti, E. A.; Ceder, G.; Gaustad, G. G.; Fu, X. Lithium-Ion Battery Supply Chain
506 Considerations: Analysis of Potential Bottlenecks in Critical Metals. *Joule* **2017**, *1* (2),
507 229–243. <https://doi.org/10.1016/j.joule.2017.08.019>.

508 (14) Winslow, K. M.; Laux, S. J.; Townsend, T. G. A Review on the Growing Concern and
509 Potential Management Strategies of Waste Lithium-Ion Batteries. *Resources,*
510 *Conservation and Recycling*. Elsevier 2018, pp 263–277.
511 <https://doi.org/10.1016/j.resconrec.2017.11.001>.

512 (15) Zou, H.; Gratz, E.; Apelian, D.; Wang, Y. A Novel Method to Recycle Mixed Cathode
513 Materials for Lithium Ion Batteries. *Green Chem.* **2013**, *15* (5), 1183.
514 <https://doi.org/10.1039/c3gc40182k>.

515 (16) Kang, D. H. P.; Chen, M.; Ogunseitan, O. A. Potential Environmental and Human Health
516 Impacts of Rechargeable Lithium Batteries in Electronic Waste. *Environ. Sci. Technol.*
517 **2013**, *47* (10), 5495–5503. <https://doi.org/10.1021/es400614y>.

518 (17) Hamers, R. J. Nanomaterials and Global Sustainability. *Acc. Chem. Res.* **2017**, *50* (3),
519 633–637. <https://doi.org/10.1021/acs.accounts.6b00634>.

520 (18) Bennett, J. W.; Jones, D.; Huang, X.; Hamers, R. J.; Mason, S. E. Dissolution of Complex
521 Metal Oxides from First-Principles and Thermodynamics: Cation Removal from the (001)
522 Surface of Li(Ni 1/3 Mn 1/3 Co 1/3)O 2. *Environ. Sci. Technol.* **2018**, *52* (10), 5792–
523 5802. <https://doi.org/10.1021/acs.est.8b00054>.

524 (19) Bozich, J.; Hang, M.; Hamers, R.; Klaper, R. Core Chemistry Influences the Toxicity of
525 Multicomponent Metal Oxide Nanomaterials, Lithium Nickel Manganese Cobalt Oxide,
526 and Lithium Cobalt Oxide to *Daphnia Magna*. *Environ. Toxicol. Chem.* **2017**, *36* (9),
527 2493–2502. <https://doi.org/10.1002/etc.3791>.

528 (20) Béchard, K. M.; Gillis, P. L.; Wood, C. M. Acute Toxicity of Waterborne Cd, Cu, Pb, Ni,
529 and Zn to First-Instar *Chironomus Riparius* Larvae. *Arch. Environ. Contam. Toxicol.*
530 **2008**, *54* (3), 454–459. <https://doi.org/10.1007/s00244-007-9048-7>.

531 (21) Besser, J. M.; Brumbaugh, W. G.; Ingersoll, C. G.; Ivey, C. D.; Kunz, J. L.; Kemble, N.
532 E.; Schlekat, C. E.; Garman, E. R. Chronic Toxicity of Nickel-Spiked Freshwater
533 Sediments: Variation in Toxicity among Eight Invertebrate Taxa and Eight Sediments.
534 *Environ. Toxicol. Chem.* **2013**, *32* (11), n/a-n/a. <https://doi.org/10.1002/etc.2271>.

535 (22) Khangarot, B. S.; Ray, P. K. Sensitivity of Midge Larvae Of *Chironomus Tentans*
536 Fabricius (Diptera Chironomidae) to Heavy Metals. *Bull. Environ. Contam. Toxicol.* **1989**,
537 *42* (3), 325–330. <https://doi.org/10.1007/BF01699956>.

538 (23) Münzinger, A. Effects of Nickel on *Daphnia Magna* during Chronic Exposure and
539 Alterations in the Toxicity to Generations Pre-Exposed to Nickel. *Water Res.* **1990**, *24* (7),
540 845–852. [https://doi.org/10.1016/0043-1354\(90\)90134-R](https://doi.org/10.1016/0043-1354(90)90134-R).

541 (24) Subba Rao, D.; Saxena, A. B. Research Report: Acute Toxicity of Mercury, Zinc, Lead,
542 Cadmium, Manganese to the Chironomus Sp. *Int. J. Environ. Stud.* **1981**, *16* (3–4), 225–
543 226. <https://doi.org/10.1080/00207238108709874>.

544 (25) Fjällborg, B.; Li, B.; Nilsson, E.; Dave, G. Toxicity Identification Evaluation of Five
545 Metals Performed with Two Organisms (Daphnia Magna and Lactuca Sativa). *Arch.*
546 *Environ. Contam. Toxicol.* **2006**, *50* (2), 196–204. <https://doi.org/10.1007/s00244-005-7017-6>.

547 (26) Van Koetsem, F.; Verstraete, S.; Van der Meeren, P.; Du Laing, G. Stability of
548 Engineered Nanomaterials in Complex Aqueous Matrices: Settling Behaviour of CeO₂
549 Nanoparticles in Natural Surface Waters. *Environ. Res.* **2015**, *142*, 207–214.
550 <https://doi.org/10.1016/j.envres.2015.06.028>.

551 (27) Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J. C. Stability of
552 Commercial Metal Oxide Nanoparticles in Water. *Water Res.* **2008**, *42* (8–9), 2204–2212.
553 <https://doi.org/10.1016/j.watres.2007.11.036>.

554 (28) Velzeboer, I.; Hendriks, A. J.; Ragas, A. M. J.; van de Meent, D. Aquatic Ecotoxicity
555 Test of Some Nanomaterials. *Environ. Toxicol. Chem.* **2008**, *27* (9), 1942.
556 <https://doi.org/10.1897/07-509.1>.

557 (29) Armitage, P. D.; Cranston, P. S.; Pinder, L. C. V. *The Chironomidae: Biology and*
558 *Ecology of Non-Biting Midges*, 1st ed.; Chapman & Hall, 1995.

559 (30) Besten, P. J. den.; Munawar, M. *Ecotoxicological Testing of Marine and Freshwater*
560 *Ecosystems: Emerging Techniques, Trends, and Strategies*; Taylor & Francis, 2005.

561 (31) Oppold, A. M.; Schmidt, H.; Rose, M.; Hellmann, S. L.; Dolze, F.; Ripp, F.; Weich, B.;
562 Schmidt-Ott, U.; Schmidt, E.; Kofler, R.; Hankeln, T.; Pfenninger, M. Chironomus
563

564 Riparius (Diptera) Genome Sequencing Reveals the Impact of Minisatellite Transposable
565 Elements on Population Divergence. *Mol. Ecol.* **2017**, *26* (12), 3256–3275.
566 <https://doi.org/10.1111/mec.14111>.

567 (32) Park, S.-Y.; Chung, J.; Colman, B. P.; Matson, C. W.; Kim, Y.; Lee, B.-C.; Kim, P.-J.;
568 Choi, K.; Choi, J. Ecotoxicity of Bare and Coated Silver Nanoparticles in the Aquatic
569 Midge, *Chironomus Riparius*. *Environ. Toxicol. Chem.* **2015**, *34* (9), 2023–2032.
570 <https://doi.org/10.1002/etc.3019>.

571 (33) Gopalakrishnan Nair, P. M.; Chung, I. M. Alteration in the Expression of Antioxidant and
572 Detoxification Genes in *Chironomus Riparius* Exposed to Zinc Oxide Nanoparticles.
573 *Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.* **2015**, *190*, 1–7.
574 <https://doi.org/10.1016/j.cbpb.2015.08.004>.

575 (34) Waissi-Leinonen, G. C.; Petersen, E. J.; Pakarinen, K.; Akkanen, J.; Leppänen, M. T.;
576 Kukkonen, J. V. K. Toxicity of Fullerene (C60) to Sediment-Dwelling Invertebrate
577 *Chironomus Riparius* Larvae. *Environ. Toxicol. Chem.* **2012**, *31* (9), 2108–2116.
578 <https://doi.org/10.1002/etc.1926>.

579 (35) Nair, P. M. G.; Park, S. Y.; Lee, S.-W.; Choi, J. Differential Expression of Ribosomal
580 Protein Gene, Gonadotrophin Releasing Hormone Gene and Balbiani Ring Protein Gene
581 in Silver Nanoparticles Exposed *Chironomus Riparius*. *Aquat. Toxicol.* **2011**, *101* (1), 31–
582 37. <https://doi.org/10.1016/j.aquatox.2010.08.013>.

583 (36) Lee, S.-W.; Kim, S.-M.; Choi, J. Genotoxicity and Ecotoxicity Assays Using the
584 Freshwater Crustacean *Daphnia Magna* and the Larva of the Aquatic Midge *Chironomus*
585 *Riparius* to Screen the Ecological Risks of Nanoparticle Exposure. *Environ. Toxicol.*
586 *Pharmacol.* **2009**, *28* (1), 86–91. <https://doi.org/10.1016/j.etap.2009.03.001>.

587 (37) Doğangün, M.; Hang, M. N.; Troiano, J. M.; McGeachy, A. C.; Melby, E. S.; Pedersen, J.
588 A.; Hamers, R. J.; Geiger, F. M. Alteration of Membrane Compositional Asymmetry by
589 LiCoO₂ Nanosheets. *ACS Nano* **2015**, 9 (9), 8755–8765.
590 <https://doi.org/10.1021/acsnano.5b01440>.

591 (38) Hang, M. N.; Gunsolus, I. L.; Wayland, H.; Melby, E. S.; Mensch, A. C.; Hurley, K. R.;
592 Pedersen, J. A.; Haynes, C. L.; Hamers, R. J. Impact of Nanoscale Lithium Nickel
593 Manganese Cobalt Oxide (NMC) on the Bacterium *Shewanella Oneidensis* MR-1. *Chem.*
594 *Mater.* **2016**, 28 (4), 1092–1100. <https://doi.org/10.1021/acs.chemmater.5b04505>.

595 (39) Livak, K. J.; Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-
596 Time Quantitative PCR and the 2 $-\Delta\Delta CT$ Method. *Methods* **2001**, 25 (4), 402–408.
597 <https://doi.org/10.1006/meth.2001.1262>.

598 (40) Markus, A. A.; Parsons, J. R.; Roex, E. W. M.; de Voogt, P.; Laane, R. W. P. M.
599 Modeling Aggregation and Sedimentation of Nanoparticles in the Aquatic Environment.
600 *Sci. Total Environ.* **2015**, 506–507, 323–329.
601 <https://doi.org/10.1016/J.SCITOTENV.2014.11.056>.

602 (41) Brunelli, A.; Pojana, G.; Callegaro, S.; Marcomini, A. Agglomeration and Sedimentation
603 of Titanium Dioxide Nanoparticles (n-TiO₂) in Synthetic and Real Waters. *J.*
604 *Nanoparticle Res.* **2013**, 15 (6), 1684. <https://doi.org/10.1007/s11051-013-1684-4>.

605 (42) Baalousha, M. Aggregation and Disaggregation of Iron Oxide Nanoparticles: Influence of
606 Particle Concentration, PH and Natural Organic Matter. *Sci. Total Environ.* **2009**, 407 (6),
607 2093–2101. <https://doi.org/10.1016/J.SCITOTENV.2008.11.022>.

608 (43) Baalousha, M. Effect of Nanomaterial and Media Physicochemical Properties on
609 Nanomaterial Aggregation Kinetics. *NanoImpact* **2017**, 6, 55–68.

610 https://doi.org/10.1016/J.IMPACT.2016.10.005.

611 (44) Milani, D.; Reynoldson, T. B.; Borgmann, U.; Kolasa, J. The Relative Sensitivity of Four
612 Benthic Invertebrates to Metals in Spiked-Sediment Exposures and Application to
613 Contaminated Field Sediment. In *Environmental Toxicology and Chemistry*; John Wiley
614 & Sons, Ltd, 2003; Vol. 22, pp 845–854. https://doi.org/10.1897/1551-
615 5028(2003)022<0845:TRSOFB>2.0.CO;2.

616 (45) Thorgersen, M. P.; Downs, D. M. Cobalt Targets Multiple Metabolic Processes in
617 *Salmonella Enterica*. *J. Bacteriol.* **2007**, *189* (21), 7774–7781.
618 https://doi.org/10.1128/JB.00962-07.

619 (46) Misra, M.; Rodriguez, R. E.; Kasprzak, K. S. Nickel Induced Lipid Peroxidation in the
620 Rat: Correlation with Nickel Effect on Antioxidant Defense Systems. *Toxicology* **1990**, *64*
621 (1), 1–17. https://doi.org/10.1016/0300-483X(90)90095-X.

622 (47) Alarifi, S.; Ali, D.; Y, A. O. S.; Ahamed, M.; Siddiqui, M. A.; Al-Khedhairy, A. A.
623 Oxidative Stress Contributes to Cobalt Oxide Nanoparticles-Induced Cytotoxicity and
624 DNA Damage in Human Hepatocarcinoma Cells. *Int. J. Nanomedicine* **2013**, *8*, 189–199.
625 https://doi.org/10.2147/IJN.S37924.

626 (48) Ahamed, M.; Ali, D.; Alhadlaq, H. A.; Akhtar, M. J. Nickel Oxide Nanoparticles Exert
627 Cytotoxicity via Oxidative Stress and Induce Apoptotic Response in Human Liver Cells
628 (HepG2). *Chemosphere* **2013**, *93* (10), 2514–2522.
629 https://doi.org/10.1016/j.chemosphere.2013.09.047.

630 (49) Casalino, E.; Calzaretti, G.; Sblano, C.; Landriscina, C. Molecular Inhibitory Mechanisms
631 of Antioxidant Enzymes in Rat Liver and Kidney by Cadmium. *Toxicology* **2002**, *179* (1–
632 2), 37–50. https://doi.org/10.1016/S0300-483X(02)00245-7.

633 (50) Covaliu, C. I.; Matei, C.; Litescu, S.; Eremia, S. A.-M.; Stanica, N.; Diamandescu, L.;
634 Ianculescu, A.; Jitaru, I.; Berger, D. Radical Scavenger Properties of Oxide Nanoparticles
635 Stabilized with Biopolymer Matrix. *Mater. Plast.* **2010**, *47* (1).

636 (51) Kim, B. M.; Choi, B. S.; Lee, K. W.; Ki, J. S.; Kim, I. C.; Choi, I. Y.; Rhee, J. S.; Lee, J.
637 S. Expression Profile Analysis of Antioxidative Stress and Developmental Pathway Genes
638 in the Manganese-Exposed Intertidal Copepod *Tigriopus Japonicus* with 6K Oligochip.
639 *Chemosphere* **2013**, *92* (9), 1214–1223.
640 <https://doi.org/10.1016/j.chemosphere.2013.04.047>.

641 (52) Maines, M. D. Evidence for the Catabolism of Polychlorinated Biphenyl-Induced
642 Cytochrome P-448 by Microsomal Heme Oxygenase, and the Inhibition of Delta-
643 Aminolevulinate Dehydratase by Polychlorinated Biphenyls. *J. Exp. Med.* **1976**, *144* (6),
644 1509–1519.

645 (53) Maines, M. D.; Sinclair, P. Cobalt Regulation of Heme Synthesis and Degradation in
646 Avian Embryo Liver Cell Culture. *J. Biol. Chem.* **1977**, *252* (1), 219–223.

647 (54) Ranquet, C.; Ollagnier-de-Choudens, S.; Loiseau, L.; Barras, F.; Fontecave, M. Cobalt
648 Stress in *Escherichia Coli*. The Effect on the Iron-Sulfur Proteins. *J. Biol. Chem.* **2007**,
649 *282* (42), 30442–30451. <https://doi.org/10.1074/jbc.M702519200>.

650 (55) Yasukochi, Y.; Nakamura, M.; Minakami, S. Effect of Cobalt on the Synthesis and
651 Degradation of Hepatic Catalase in Vivo. *Biochem. J.* **1974**, *144* (3), 455–464.

652 (56) Kubrak, O. I.; Husak, V. V.; Rovenko, B. M.; Storey, J. M.; Storey, K. B.; Lushchak, V. I.
653 Cobalt-Induced Oxidative Stress in Brain, Liver and Kidney of Goldfish *Carassius*
654 *Auratus*. *Chemosphere* **2011**, *85* (6), 983–989.
655 <https://doi.org/10.1016/j.chemosphere.2011.06.078>.

656 (57) Walshe, B. Y. B. M. THE FUNCTION OF HAEMOGLOBIN IN TANYTARSUS
657 (CHIRONOMIDAE). *J. Exp. Biol.* **1947**, *24* (3–4), 343–351.

658 (58) Peijnenburg, W. J. G. M.; Baalousha, M.; Chen, J.; Chaudry, Q.; Von Der Kammer, F.;
659 Kuhlbusch, T. A. J.; Lead, J.; Nickel, C.; Quik, J. T. K.; Renker, M.; et al. A Review of
660 the Properties and Processes Determining the Fate of Engineered Nanomaterials in the
661 Aquatic Environment. *Crit. Rev. Environ. Sci. Technol.* **2015**, *45* (19), 2084–2134.
662 <https://doi.org/10.1080/10643389.2015.1010430>.

663 (59) Ptatscheck, C.; Putzki, H.; Traunspurger, W. Impact of Deposit-Feeding Chironomid
664 Larvae (*Chironomus Riparius*) on Meiofauna and Protozoans. *Freshw. Sci.* **2017**, *36* (4),
665 796–804. <https://doi.org/10.1086/694461>.

666 (60) Rasmussen, J. B. Comparison of Gut Contents and Assimilation Efficiency of Fourth
667 Instar Larvae of Two Coexisting Chironomids, *Chironomus Riparius* Meigen and
668 *Glyptotendipes Paripes* (Edwards). *Can. J. Zool.* **1984**, *62* (6), 1022–1026.
669 <https://doi.org/10.1139/z84-145>.

670 (61) Waissi, G. C.; Bold, S.; Pakarinen, K.; Akkanen, J.; Leppänen, M. T.; Petersen, E. J.;
671 Kukkonen, J. V. K. Chironomus Riparius Exposure to Fullerene-Contaminated Sediment
672 Results in Oxidative Stress and May Impact Life Cycle Parameters. *J. Hazard. Mater.*
673 **2017**, *322*, 301–309. <https://doi.org/10.1016/j.jhazmat.2016.04.015>.

674 (62) Chaurand, P.; Liu, W.; Borschneck, D.; Levard, C.; Auffan, M.; Paul, E.; Collin, B.;
675 Kieffer, I.; Lanone, S.; Rose, J.; et al. Multi-Scale X-Ray Computed Tomography to
676 Detect and Localize Metal-Based Nanomaterials in Lung Tissues of in Vivo Exposed
677 Mice. *Sci. Rep.* **2018**, *8* (1), 4408. <https://doi.org/10.1038/s41598-018-21862-4>.

678 (63) Cagno, S.; Brede, D. A.; Nuyts, G.; Vanmeert, F.; Pacureanu, A.; Tucoulou, R.; Cloetens,

679 P.; Falkenberg, G.; Janssens, K.; Salbu, B.; et al. Combined Computed Nanotomography
680 and Nanoscopic X-Ray Fluorescence Imaging of Cobalt Nanoparticles in *Caenorhabditis*
681 *Elegans*. *Anal. Chem.* **2017**, *89* (21), 11435–11442.
682 <https://doi.org/10.1021/acs.analchem.7b02554>.

683 (64) Cross, R. K.; Tyler, C.; Galloway, T. S. Transformations That Affect Fate, Form and
684 Bioavailability of Inorganic Nanoparticles in Aquatic Sediments. *Environ. Chem.* **2015**, *12*
685 (6), 627. <https://doi.org/10.1071/EN14273>.

686 (65) Cornelis, G.; Pang, L.; Doolette, C.; Kirby, J. K.; McLaughlin, M. J. Transport of Silver
687 Nanoparticles in Saturated Columns of Natural Soils. *Sci. Total Environ.* **2013**, *463–464*,
688 120–130. <https://doi.org/10.1016/J.SCITOTENV.2013.05.089>.

689 (66) Péry, A. R. R.; Mons, R.; Flammarion, P.; Lagadic, L.; Garric, J. A Modeling Approach to
690 Link Food Availability, Growth, Emergence, and Reproduction for the Midge
691 *Chironomus Riparius*. *Environ. Toxicol. Chem.* **2002**, *21* (11), 2507–2513.
692 <https://doi.org/10.1002/etc.5620211133>.

693 (67) Azevedo-Pereira, H. M. V. S.; Soares, A. M. V. M. Effects of Mercury on Growth,
694 Emergence, and Behavior of *Chironomus Riparius* Meigen (Diptera: Chironomidae).
695 *Arch. Environ. Contam. Toxicol.* **2010**, *59* (2), 216–224. <https://doi.org/10.1007/s00244-010-9482-9>.

696 (68) Bour, A.; Mouchet, F.; Cadarsi, S.; Silvestre, J.; Baqué, D.; Gauthier, L.; Pinelli, E. CeO₂
697 Nanoparticle Fate in Environmental Conditions and Toxicity on a Freshwater Predator
698 Species: A Microcosm Study. *Environ. Sci. Pollut. Res.* **2017**, *24* (20), 17081–17089.
699 <https://doi.org/10.1007/s11356-017-9346-1>.

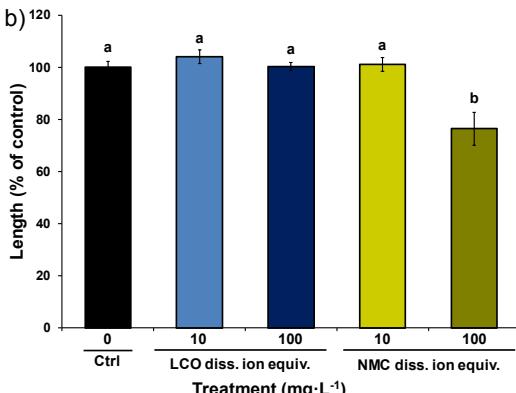
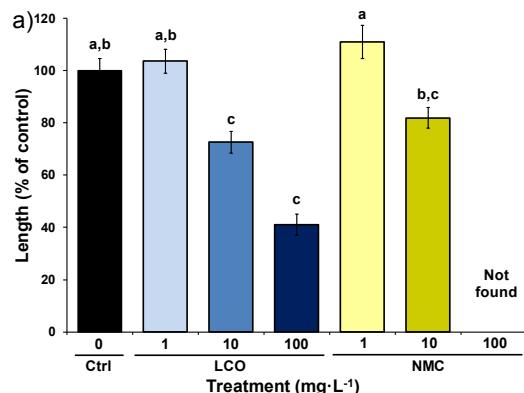
700 (69) Lowry, G. V.; Espinasse, B. P.; Badireddy, A. R.; Richardson, C. J.; Reinsch, B. C.;

702 Bryant, L. D.; Bone, A. J.; Deonarine, A.; Chae, S.; Therezien, M.; et al. Long-Term
703 Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale
704 Freshwater Emergent Wetland. *Environ. Sci. Technol.* **2012**, *46* (13), 7027–7036.
705 <https://doi.org/10.1021/es204608d>.

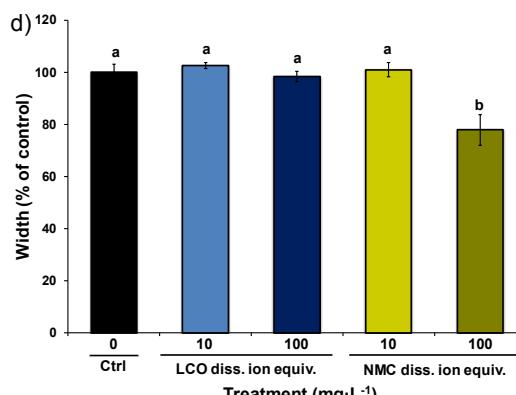
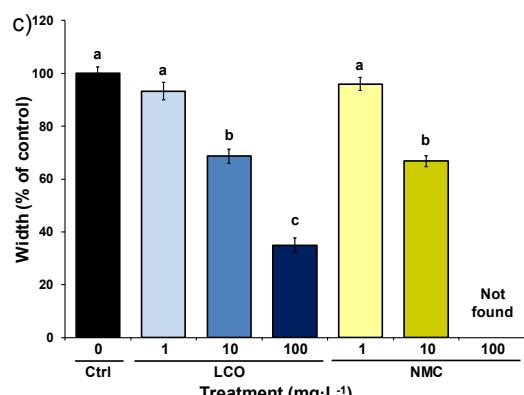
706 (70) Koelmans, A. A.; Quik, J. T. K.; Velzeboer, I. Lake Retention of Manufactured
707 Nanoparticles. *Environ. Pollut.* **2015**, *196*, 171–175.
708 <https://doi.org/10.1016/j.envpol.2014.09.025>.

709 (71) Gondikas, A. P.; Kammer, F. von der; Reed, R. B.; Wagner, S.; Ranville, J. F.; Hofmann,
710 T. Release of TiO₂ Nanoparticles from Sunscreens into Surface Waters: A One-Year
711 Survey at the Old Danube Recreational Lake. *Environ. Sci. Technol.* **2014**, *48* (10), 5415–
712 5422. <https://doi.org/10.1021/es405596y>.

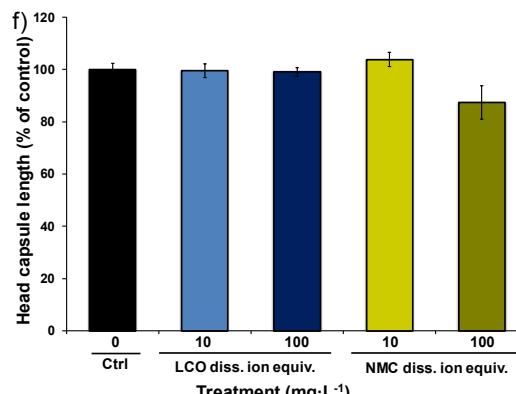
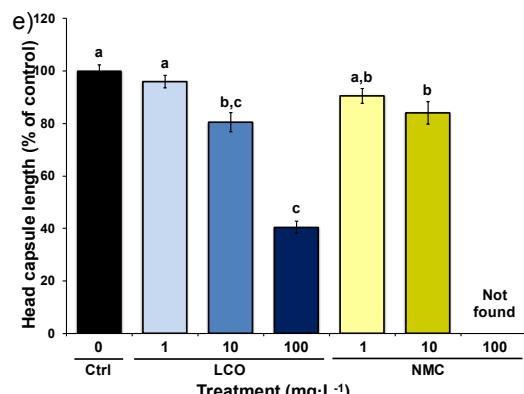
713 (72) Hendren, C. O.; Mesnard, X.; Dröge, J.; Wiesner, M. R. Estimating Production Data for
714 Five Engineered Nanomaterials as a Basis for Exposure Assessment. *Environ. Sci.
715 Technol.* **2011**, *45* (7), 2562–2569. <https://doi.org/10.1021/es103300g>.



716 (73) Gottschalk, F.; Sun, T.; Nowack, B. Environmental Concentrations of Engineered
717 Nanomaterials: Review of Modeling and Analytical Studies. *Environ. Pollut.* **2013**, *181*,
718 287–300. <https://doi.org/10.1016/j.envpol.2013.06.003>.

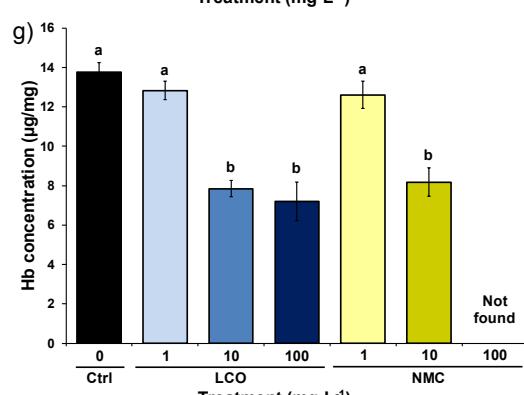
719 (74) Gottschalk, F.; Sun, T.; Nowack, B. Environmental Concentrations of Engineered
720 Nanomaterials: Review of Modeling and Analytical Studies. *Environ. Pollut.* **2013**, *181*,
721 287–300. <https://doi.org/10.1016/j.envpol.2013.06.003>.

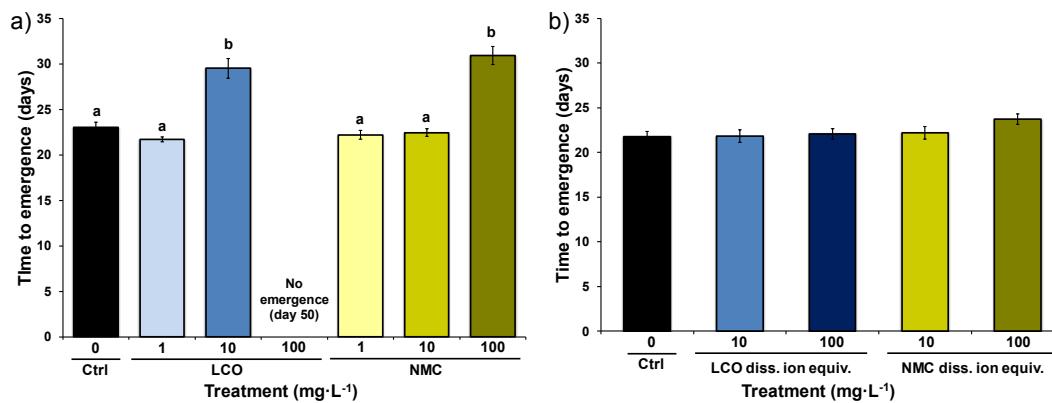


722

723



724 **Figures**

725 **Figure 1. Differences in *C. riparius* larval size and Hb after 7 d exposure**


726


727

728

729

730 **Figure 2. Differences in *C. riparius* time to emergence as adult flies**

731

732

733

734

735

736

737

738

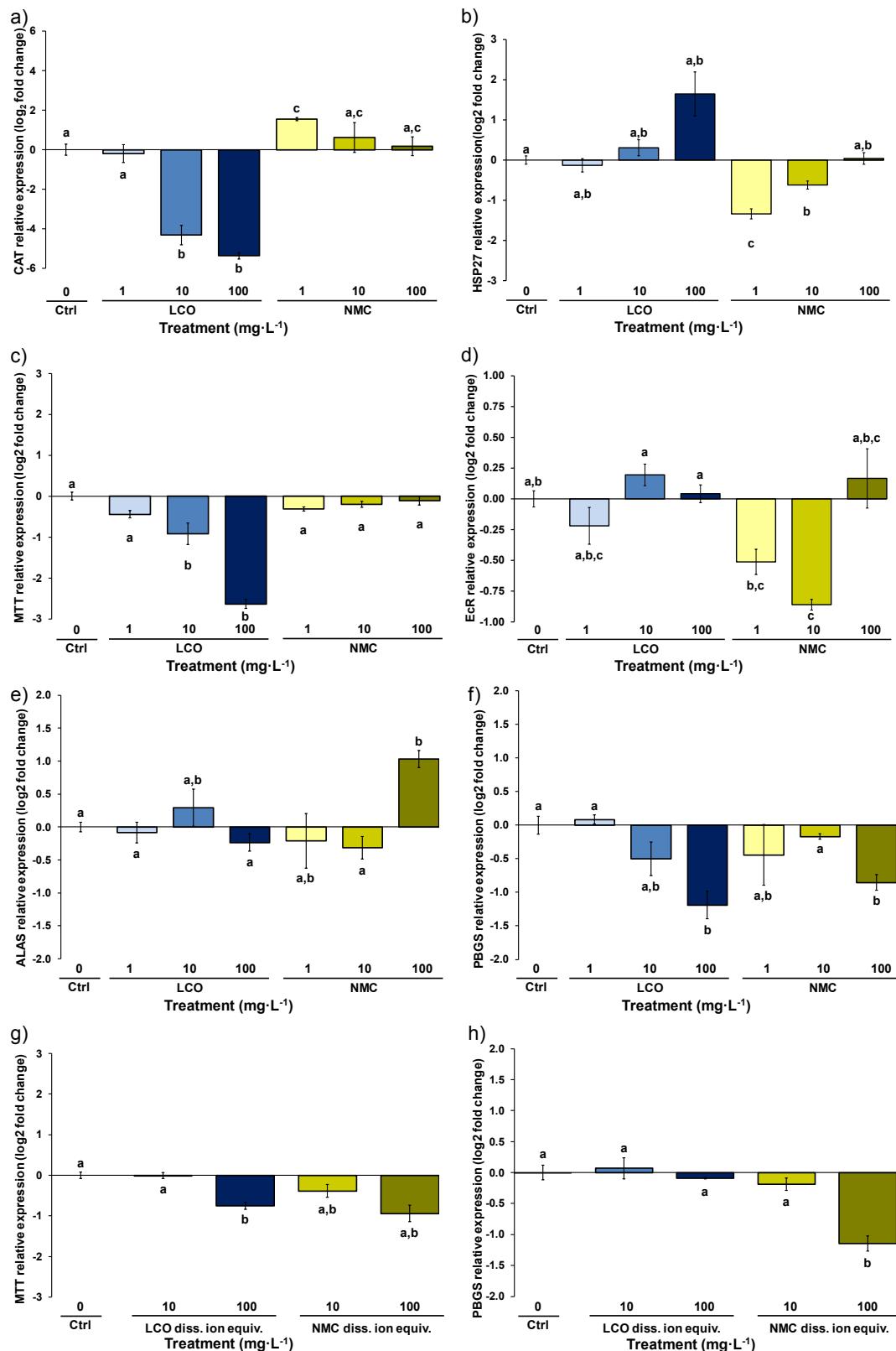
739

740

741

742

743

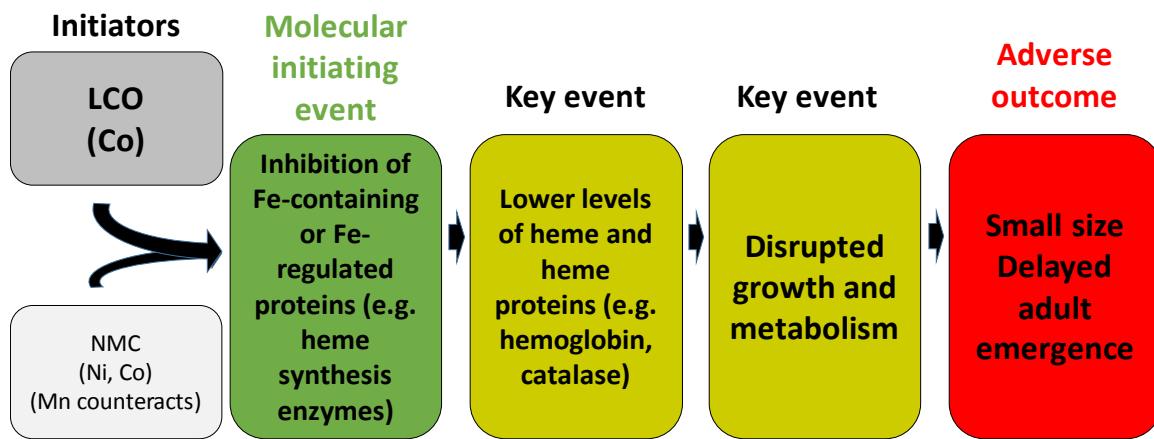

744

745

746

747

748


749 **Figure 3. Differences in *C. riparius* larval gene expression after 7 day exposure**

750

751

752

753

754 **Figure 4. Proposed adverse outcome pathway for *C. riparius* LCO and NMC exposure**757 **Figure legends**

758

759 **Figure 1. Differences in *C. riparius* larval size and Hb after 7 d exposure. LCO and NMC**

760 particle exposure induces significant impacts on larval size and Hb levels on exposure day 7.

761 Size data (percent of control) for particle and ion exposed larvae. a) Particle-exposed larvae

762 lengths, b) ion-exposed larvae lengths, c) particle-exposed larvae width, d) ion-exposed larvae

763 width, e) particle-exposed larvae head capsule length, f) ion-exposed larvae head capsule length.

764 Columns with different letters differ significantly ($p < 0.05$) by Kruskal-Wallis (panels a, b, e, f)

765 or one-way nested ANOVA with Tukey post-hoc tests (panels c and d). g) Hb concentration

766 calculated from green absorbance for all larvae harvested a day 7. Columns with different letters

767 indicate a significant difference ($p < 0.05$) by one-way nested ANOVA with Tukey post-hoc

768 tests. Error bars represent SEM.

769

770 **Figure 2. Differences in *C. riparius* time to emergence as adult flies. Time to emergence for a)**771 **control and LCO and NMC particle-exposed and b) control and LCO and NMC ion exposed**

772 animals. Columns with different letters differ significantly ($p < 0.05$) by Kaplan-Meier non-
773 parametric analysis. Error bars represent SEM.

774

775 **Figure 3. Differences in *C. riparius* larval gene expression after 7 d exposure.** Log₂ fold
776 change values for LCO and NMC particle-exposed larvae harvested at day 7. Results are shown
777 for a) *CAT*, b) *HSP27*, c) *MTT*, d) *EcR*, e) *ALAS*, and f) *PBGS*. Results for ion-exposed animals
778 are also shown for g) *MTT* and h) *PBGS*. Columns with different letters differ significantly ($p <$
779 0.05) by one-way Welch ANOVA with Dunnett's T3 post-hoc comparisons. Error bars represent
780 SEM.

781

782 **Figure 4. Proposed adverse outcome pathway for *C. riparius* LCO and NMC exposure.** A
783 proposed adverse outcome pathway for *C. riparius* larval exposure to LCO and NMC showing
784 inhibition of iron-containing or iron-regulated proteins by cobalt as the molecular initiating
785 event, resulting in lowered levels of heme and heme proteins, which in turn causes disruption to
786 normal growth and metabolism, culminating in the adverse outcome of smaller size and delayed
787 emergence as adult flies.