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Abstract

Most studies of nanomaterial environmental impacts have focused on relatively simple first-
generation nanomaterials, including metals or metal oxides (e.g. Ag, ZnO) for which dissolution
largely accounts for toxicity. Few studies have considered nanomaterials with more complex
compositions, such as complex metal oxides, which represent an emerging class of next-
generation nanomaterials used in commercial products at large scales. In addition, many
nanomaterials are not colloidally stable in aqueous environments and will aggregate and settle,
yet most studies use pelagic rather than benthic-dwelling organisms. Here we show that lithium
cobalt oxide (LiyCo,4O,, LCO) and lithium nickel manganese cobalt oxide (LiyNiyMn,Co.,.,05,
NMC) exposure of the model benthic species Chironomus riparius at 10 and 100 mg-L-!' caused
30-60% declines in larval growth, and a delay of 7-25 d in adult emergence. A correlated 41-
48% decline in larval hemoglobin concentration and related gene expression changes suggest a
potential adverse outcome pathway. Metal ions released from nanoparticles do not cause
equivalent impacts, indicating a nano-specific effect. Nanomaterials settled within 2 days and
indicate higher cumulative exposures to sediment organisms than those in the water column,
making this a potentially realistic environmental exposure. Differences in toxicity between NMC
and LCO indicate compositional tuning may reduce material impact.
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Introduction

Standard aquatic toxicity assays using pelagic organisms (e.g Daphnia magna, Danio rerio) have
demonstrated a range of potential environmental impacts depending on the types of engineered
nanomaterials (ENMs) considered, with some being toxic at low concentrations when considered
over a chronic exposure but many not toxic until very high unrealistic concentrations.! However,
most pristine ENMs are not stable in aqueous exposure conditions,? and thus many studies on
pelagic organisms largely assume exposure to the stable fraction of ENMs left behind in the
water column after a majority settles out.>3 Testing for impacts of ENMs on benthic organisms is
therefore extremely important, in certain cases perhaps more important than impacts on pelagic
organisms, as many ENMs are expected to settle and concentrate to higher exposure
concentrations in sediment.3* Despite this, the preponderance of aquatic nanotoxicology research

has focused on exposures to pelagic organisms.>

Most ENM toxicity studies have also focused on first-generation materials, including metal
nanoparticles, Au and Ag, and metal oxide nanoparticles, TiO,, ZnO, and CeO,,’ as they have
demonstrated potential for the highest use. For these materials, dissolution is often identified as
the main source of toxicity. However, we have comparatively little information on more
complex next-generation ENMs that are now coming to use in the marketplace. The complex
metal oxides lithium cobalt oxide (LiyCo;.41O,, LCO) and lithium nickel manganese cobalt oxide
(LixNiyMn,Co;.,.,0, NMC) and other related complex metal oxides are examples of next-
generation materials that are increasing dramatically in the marketplace due to their use as
electrode materials in lithium ion batteries (LIBs)’"'° and lower-volume applications such as

catalysts for solar fuel production.!' NMC is an alternative to LCO that has the same crystal
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structure, but partial substitution of Co with Ni and Mn lowers cost and can increase
performance.!? A typical electric vehicle contains approximately 35-90 kg of metal oxide
particles, with rapid increases in electric vehicle production leading to predicted global
production of 300-800 kilotons of Co and Ni annually by 2025,3and LIB waste by 2025
estimated to reach 200 kilotons from EVs alone.!* Present-generation batteries frequently use
particle sizes in the micron range, but smaller particles in the nanometer size regime achieve fast
recharge times and are also formed in situ by mechanical fracturing of larger particles during
use.!? Because lithium-ion batteries are not generally recycled due to the low cost of Ni and

Mn, 1315 potential release of cathode materials in micron- and nano-particle form into the aquatic

environment from battery waste is a legitimate concern.!6!7

Previous research has demonstrated that the complex metal oxides NMC and LCO do not behave
or cause toxicity in the same manner as their simple metal oxide counterparts.'®!° For example,
density functional calculations and experimental measurements showed that NMC dissolves
incongruently, with Ni released more rapidly in aqueous media compared with Co and Mn. '8
Material dissolution is also impacted by properties of the media such as pH.'® A consequence of
incongruent dissolution is that the ions released and ENM composition change over the course of
the exposure. Ni and Co are both toxic to pelagic and benthic organisms,?%23 while Mn is
relatively non-toxic.?4> Our previous study showed that concentrations of LCO and NMC as
low as 0.25 mg-L-! have significant negative impacts on survival and reproduction in Daphnia
magna that are not accounted for by particle dissolution.!® This work also showed that NMC
exposure produced lower daphnid toxicity compared to LCO, indicating a difference due to

ENM composition!®
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Metal oxide nanoparticles including TiO,, ZnO, and CeO, have been shown to settle over time in
aqueous media at ambient pH.?6-28 We previously showed both LCO and NMC nanoparticles
settle substantially within 24 hours in aqueous media: 66 and 33% settling in 22.5 h

respectively.!® Thus, testing for impacts of these materials on benthic organisms is warranted.

For this study, impacts of ENMs entering the environment were investigated using freshwater
midge Chironomus riparius, a model species for testing effects of chemical exposures on benthic
organisms. This organism is a keystone species and an important food source in both aquatic and
terrestrial environments.?’ It has been shown to be sensitive to pollutants, and protocols for
exposure and culturing have been established by the American Society for Testing and Materials
and U.S. Environmental Protection Agency.?? The C. riparius genome is sequenced,’! and large
mRNA and expressed sequence tag (EST) databases exist for C. riparius, including genes
relevant to stress and the response to chemical exposures. C. riparius have also been used rarely
but successfully in ENM toxicity exposures,*?-3¢ though only one study (of fullerene ENMs) has
explicitly looked at impacts of material settling.>* In the current study, C. riparius larvae were
exposed to LCO and NMC at 1, 10, and 100 mg-L-! as well as ion controls from 5 days post-
hatch until adult emergence and organisms were evaluated for changes in size, coloration, and
gene expression at 7 d and adult emergence up to 50 d. Results indicate significant negative
impacts on all of these endpoints from LCO and NMC exposure, which are not replicated by ion
controls. Implications of these effects in the context of the expected volume of LIB waste and
settling of these materials in the environment are discussed, with compositional tuning indicated

as a potential means of mitigating environmental impacts. This study demonstrates the
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importance of using sediment species for testing environmental impacts, reveals,a nano-specific
impact of complex nanoparticles, and indicates a potential adverse outcome pathway for metal

oxide NPs.

Materials and methods

Synthesis of LCO and NMC nanosheets

Synthesis of LCO and NMC nanosheets was carried out using methods described in 378 and
consists of two steps. All reagents used for synthesis were purchased from Sigma Aldrich and
only ultrapure water was used. To specifically make LCO nanosheets, cobalt hydroxide
nanosheets were first synthesized using a precipitation method where in 1 M cobalt (II) nitrate
was added dropwise into a 0.1 M LiOH solution under magnetic stirring. The resulting
precipitate was then cleaned using repeated cycles (3X) of centrifugation and resuspension in
ultrapure water (18 M cm resistivity) followed by repeated cycles (2X) of centrifugation and
resuspension in methanol. The precipitate (200 mg) was then dried under a continual flow of
nitrogen gas and subsequently was added to a 10 g mixture of molten lithium salt consisting of a
molar ratio of 6:4 LiOH: LiNOj3 (205 °C, under magnetic stirring) in a poly(tetrafluorethylene)
vessel. After 1 h, the reaction was carefully quenched with ultrapure water and the LCO

precipitate was purified using repeated cycles of centrifugation and resuspension in ultrapure

water (2X) and methanol (3X) before drying under a flow of nitrogen gas. All centrifugation was

completed using the Thermo Scientific Sorvall Legend X1R Centrifuge with a Thermo TX-400
rotor at 4696 g. To synthesize NMC nanosheet, an identical method was used with the exception

that in the precipitation step, a ratio of 1:1:1 of Ni:Co:Mn salts (0.1 M nickel (II) acetate, 0.1 M

ACS Paragon Plus Environment
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cobalt (II) acetate, and 0.1 M manganese (II) acetate) were used instead. The degree of lithiation
was not directly controlled for using this synthetic method. Characterization of nanosheet
stoichiometry, crystal phase, and size and morphology from XRD, ICP-OES and SEM are

included in the Supporting Information.

C. riparius larval exposure

ENM stock suspension

Stock solutions of LCO and NMC (200 mg-L-!) were prepared by adding 40 mg of ENM powder
to 200 mL of Milli-Q® water and sonicating at 100% power for 20 minutes in a Branson 2800
ultrasonic bath (Emerson Electric Co, St Louis, MO). Dilutions to 20 and 2 mg-L-! were made in
Milli-Q® and sonicated for an additional 10 min immediately before dosing. Zeta potential of
ENMs at final concentrations in 1x Moderately Hard Reconstituted Water (MHRW)!® were

characterized using a Zetasizer Nano ZS (Malvern Instruments, Westborough, MA, USA).

Exposure beaker preparation and maintenance

Exposure beakers were prepared by adding 15 g of 140-270 mesh silica sand (AGSCO Corp) to
100 mL beakers and autoclaving to sterilize. Sand was then rinsed 3x with 80 mL Milli-Q®.
Control beakers were prepared by adding 20 mL of Milli-Q® and 20 mL of 2x MHRW.
Treatment beakers (1, 10, and 100 mg-L-!) were prepared by adding 20 mL of 2x MHRW and 20
mL of the appropriate 2x nanoparticle stock. Five C. riparius larvae (5 days post-hatch) were

added to each replicate control and exposure beaker.

ACS Paragon Plus Environment



151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Environmental Science & Technology Page 8 of 37

Beakers were covered with plastic wrap and incubated at 20 °C with a 16:8 light:dark
photoperiod. A 50% water exchange was carried out three times per week. For exposure beakers,
new ENMs were not added, as ENMs had settled by this time. Animals were fed ground

TetraMin® flakes (20 g-L-! in Milli-Q®) daily, 125 uL per beaker.

ENM exposures

An initial LCO exposure was conducted with 10 replicate beakers per condition (5 larvae per
beaker) each for control, 1, 10 and 100 mg-L-!. A second round of experiments was carried out
with 10 replicate beakers per condition to compare LCO to NMC, exposing larvae to LCO at 1,
10, and 100 mg-L-'; NMC at 1, 10, and 100 mg-L-!; and control. For both sets of experiments,
larvae were harvested from 5 beakers per condition on exposure day 7 and frozen for gene
expression analysis. The remaining 5 beakers per condition were maintained until exposure day

50 for adult fly emergence.

Having observed changes in size and coloration of ENM-exposed larvae, a third experiment was
conducted with 5 replicate beakers per condition, exposing larvae to LCO at 1, 10, and 100
mg-L'; NMC at 1, 10, and 100 mg-L-!; and control. Larvae from all 5 beakers were harvested on
exposure day 7, flash frozen in liquid nitrogen, and stored at — 80 °C for imaging for size and

coloration analysis.

lon control exposures

Data from ICP-MS analysis (see ICP-MS analysis of released ions below) were used to

determine the concentrations for 2x stocks of metal salts to yield exposure concentrations

ACS Paragon Plus Environment



Page 9 of 37

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196

Environmental Science & Technology

reflective of ion concentrations found in the supernatants of 10 and 100 mg-L-! LCO and NMC
exposure media samples. We chose to test whether the ions observed released from the particles
were by themselves sufficient to cause any observed toxicity, as metal dissolution from NPs is
indicated as a major cause of toxicity in other studies. If not, then the portion of settled particles,
by concentrating material in the sand, are the cause of toxicity: either by direct nano-toxic effects
of the particles themselves or by acting as a vector to bring particles with high concentrations of
metals into the feeding environment of the larvae. Animals were dosed with Li, Ni, Mn, and Co
ions at the highest concentration observed over 7 d. For LCO, dosed ions were 1000 pg-L! Li
and 400 ug-L! Co for 10 mg-L! and 4200 pg-L-! Li and 900 ug-L-! Co for 100 mg-L-!. For
NMC, dosed ions were 710 pg-L-' Li, 360 pg-L-'Ni, 270 ug-L-! Mn, and 160 ug-L! Co for 10
mg-L-!' and 7000 ug-L-! Li, 2000 pg-L-'Ni, 300 pg-L-' Mn, and 600 ug-L-! Co for 100 mg-L-!.
An ion control exposure was conducted with 10 replicate beakers per condition: control, LCO 10
and 100 mg-L! ion equivalents, and NMC 10 and 100 mg-L-!' ion equivalents. At water changes,
20 mL of exposure media was removed and replaced with 20 mL of 1x ion solution to maintain
ion concentrations throughout the exposure. Larvae were harvested from 6 beakers per condition
on exposure day 7: 3 beakers per condition for gene expression analysis were frozen and 3
beakers per condition for imaging and size measurement were preserved in 70% ethanol. The
remaining 4 beakers per condition were maintained until exposure day 50 for adult fly

emergence.

ICP-MS analysis of released ions

Inductively coupled plasma mass spectrometry (ICP-MS) was conducted on exposure media at

all concentrations to determine the level of metal dissolution into exposure media after 2, 4, and

ACS Paragon Plus Environment
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197 7 d, sampling exposure beakers before each water change over the first seven days of the

198  experiment. Supernatant of centrifuged samples were acidified to 2% wt nitric acid and analyzed
199  with an Elan DRC II ICP-MS (Perkin Elmer). 10 to 150-fold dilutions were carried out on

200  supernatants containing ions at concentrations above 100 ppb to ensure analyte concentrations
201  fell within the detection range of the instrument. The calibration curve was prepared from serial
202 dilutions of 1003 & 5ppb Ni, 1007 & 4ppb Mn, 996 + 3ppb Co, and 1006 £ 2ppb Li NIST

203  Traceable standards (Inorganic Ventures). Full details for sampling and quantification are

204  included in the Supporting Information.

205

206 ENM sedimentation behavior

207  We previously showed that LCO and NMC settle out in MHRW.!® To determine the extent of
208  particle settling in this study, we sampled exposure treatments of 1, 10, and 100 mg-L-! of LCO
209  or NMC particles in 1x MHRW on exposure days 0, 2, 4, and 7. Absorbance values of sampled
210  supernatants were measured at 600 nm using a Synergy H4 plate reader (Biotek Instruments,
211 Winooski, VT).

212

213 Imaging and measurement

214 Size

215  Flash frozen and alcohol-preserved larvae were imaged using a Motic SMZ-168 TL

216  stereomicroscope with an attached Moticam 2, 2.0 MP CMOS camera (Motic, Hong Kong).

217  Images were recorded using Motic Images Plus 2.0 software, and the included measurement tool
218  used to determine animal size metrics. Measurements were calibrated with a Leica 50 mm metric

219  stage micrometer (Leica Camera AG, Wetzlar, Germany).

10
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Animal coloration (Hemoglobin absorbance)

The green channel from an RGB (red-green-blue) image was isolated and pixel intensity used to
measure the absorbance of hemoglobin (Hb) in C. riparius larvae on day 7. Hb absorbance
analysis was only carried out on flash-frozen larvae, as those preserved in ethanol did not retain

intact Hb. Detailed information on image processing is included in the Supporting Information.

Gene expression analysis

Total RNA was extracted from flash-frozen 7 d exposure samples and 100 ng of total RNA
transcribed into complementary deoxyribonucleic acid (cDNA). Gene expression analysis was
carried out on a variety of genes associated with metal, oxidative, protein, and general stress
responses. The following were analyzed for gene expression: ribosomal protein RPL13
(housekeeping gene); metal stress gene metallothionein (M7T), as metal exposure is
hypothesized to be a major source of toxicity; oxidative stress genes: catalase (CAT), gamma-
glutamylcystein synthase (GCS), glutathione s-transferase (GST), and two different superoxide
dismutases (Cu-ZnSOD and MnSOD), as oxidative stress is hypothesized to be a main cause of
damage by nanoparticle exposures; heat shock protein HSP27, important for protecting protein
folding after exposure to toxins; stress-responsive regulatory kinase p38; developmental
regulator ecdysone receptor (EcR), to measure changes in developmental pathways as a result of
exposure; and genes related to heme synthesis, added as we found an indication in the change of
heme production in exposed organisms: aminolevulinic acid synthase (4LAS), porphobilinogen

synthase (PBGS), and heme oxygenase (HO) (Table S1).

11
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Relative gene expression was quantified using the iTaq Universal SYBR Green Supermix (Bio-
Rad, Hercules, CA) for 20 pL reactions and the 2-2A¢t method.?® For detailed information on

extraction, cDNA creation, primer design, and qPCR, see the Supporting Methods.

Statistical analysis

Statistical analyses were performed using SPSS version 22 for Mac (IBM). Statistical tests for
each dataset were chosen based on data normality determined by the Shapiro-Wilk test and
equality of variance using Levene’s test. Normally distributed data with equal variance (width,
Hb concentration) were compared using a one-way ANOV A with Tukey post-hoc comparisons.
Data with normal distributions but unequal variances (gene expression) were compared using a
Welch one-way ANOVA with Dennett’s T3 post-hoc comparisons. Non-normal data were
compared using Kruskal-Wallis (length, head capsule length) or Kaplan-Meier (time to
emergence) non-parametric tests. Significance for all statistics was set at p < 0.05. Datasets with
a nested design (size, Hb, emergence) were tested for any replicate effect; no replicate effects

were detected for any dataset (p > 0.05).

Results and Discussion

Our results show that next-generation complex metal oxide ENMs LCO and NMC settle in
aqueous media and cause significant, negative, nano-specific effects on the keystone benthic
species C. riparius, impacting their size, time to emergence, Hb levels, and expression of stress
and heme-metabolism genes. Impacts of these ENMs are nano-specific, as the effects of ENM
exposure exceed or are absent in equivalent ion exposures. Effects are much greater for LCO

than the alternative NMC materials providing an indication that using NMC may cause less

12
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environmental impact. Impacts on Hb levels and gene expression may point to the molecular

mechanism underlying these effects in chironomids.

LCO and NMC aggregate and settle

LCO and NMC both settled substantially over the course of the experiment: more than 90% of
material within 2 d for 100 mg-L-! exposures, and more than 70% of material within 2 d at 10
mg-L-!' (Fig S3). Settling is more rapid for higher concentrations, as has been observed for other
ENM s including CeO,, TiO,, and iron oxides.**4? Zeta-potential data point to an explanation for
this concentration-dependent settling. Zeta-potential values for LCO and NMC at their moment
of addition are highly negatively charged in 1 mg-L-' exposures (-16.33 and -17.73 mV
respectively), while 10 mg-L-! exposures are slightly less negative (-7.74 and -6.07 mV), and
values approach neutral to slightly positive at 100 mg-L-! (0.52 and 1.59 mV) (Table S2).
Electrostatic repulsion is one of the primary sources of ENM stability in aqueous media.** Thus,
increased settling at higher LCO and NMC exposure concentrations is likely due to an increased

propensity for particles to aggregate due to lower electrostatic repulsion.

Aggregation of LCO and NMC at higher concentrations likely underlies observed concentration-
dependent declines in material dissolution. For both materials all intercalated Li left the material
by the 2 d time point, but even at high concentrations lithium is not considered toxic to these
organisms (Fig S4d).!” For LCO, ICP-MS results showed that dissolution of Co ions from the
material did not scale linearly with exposure concentration, but rather proportionally to the log;g
of the exposure concentration. That is, dissolved Co for 100 mg-L-! LCO was only 2-3x the

dissolved Co for 10 mg-L-!, which was only 2-3x the dissolved Co for 1 mg-L-!, rather than the

13
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10x that might be expected (Fig S4c). Only a portion of Co from the material dissolved over the
course of 7 d, although relatively more Co dissolved as ions at 1 mg-L-! (39%) than at 10 mg-L-!
(14%) or 100 mg-L-!' (5%) (Fig S5¢). For NMC particles, ICP-MS results indicated dissolution of
Ni, Mn, and Co from the material over the course of 7 d, with most dissolution for these metals
occurring by day 2 for 1 and 10 mg-L-! exposures (Fig S4). Dissolved ion concentration for Ni,
Mn, and Co was proportional to the log;, of exposure concentration over 7 d, similar to Co for
LCO (Fig S4). Only a fraction of Ni, Mn, or Co dissolved from the material over 7 d, with
relatively more metal dissolving as ions at lower exposure concentrations: 1 mg-L-! — 67% of Ni,
55% of Mn, and 49% of Co; 10 mg-L! - 30, 24, and 25% respectively; 100 mg-L-' -9, 6, and

12% respectively (Fig S5).

Thus, more metal as a percent of total material mass dissolved at lower concentrations than at
higher concentrations: about 50% at 1 mg-L-!, about 25% at 10 mg-L-!, and only about 10% at
100 mg-L -! (Fig S5). The lower surface-area-to-volume ratio of aggregated particles formed at
high concentrations likely reduces ion dissolution from the material, as has been shown for NMC
with different surface-area-to-volume ratios.!? Since only a small percentage of ions dissolve
from the material, particularly at higher concentrations, particle exposures, by concentrating
large amounts of settled material in surface sand, have impacts of a much higher degree than —

or are unobservable in — ion exposures.

LCO and NMC impact C. riparius growth and adult emergence
Particle exposure causes significant, dose-dependent effects on the development of C. riparius

larvae not explicable by ion dissolution into the media, retarding growth and delaying emergence

14
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of adult flies. Larvae in exposures were 30% (LCO and NMC 10 mg-L!) to 60% (100 mg-L!
LCO) smaller than controls (Fig 1a, ¢, and e; e.g. lengths of 3.2 + 0.8 mm for LCO 10 mg-L-!
and 1.8 = 0.2 mm for LCO 100 mg-L-! versus 4.5 + 0.2 mm for control). Ion exposures only
caused a 20% decrease in size and at the highest concentration, representative of 100 mg-L-!
NMC (Fig 1b and d). Emergence was also significantly delayed for particle-exposed animals at
10 and 100 mg-L-! for LCO and at 100 mg-L-! for NMC (Fig 2a). Ion exposures showed no
impact on emergence (Fig 2b), demonstrating the importance of settled nanomaterials for these
impacts. Toxicity of Ni to C. riparius has been fairly well studied in the literature. Accounting
for the amount of Co and Ni in added LCO and NMC, impacts on C. riparius larval growth were
seen at concentrations 10-30 fold lower than that seen in the literature for Ni-spiked sediment:
11-16 mg-kg! for 10 mg-L-' NMC and LCO, respectively, versus 146-358 mg-kg-! in Ni-spiked
sediment.?* No impacts were seen on emergence from Ni-spiked sediments even up to 7990
mg-kg'!,! whereas impacts were observed from LCO at 16 mg-kg! (10 mg-L-' exposure) and
NMC at 112 mg kg! (100 mg-L-! exposure). Thus, toxicity from settled ENM exceeds that
expected from sediment-spiked ions based on the literature. The concentration of metal particles
at the sediment surface and C. riparius feeding behavior may account for increased toxicity from

ENMs, as discussed below.

Metal-specific differences in ENM toxicity

Importantly, LCO 10 mg-L-! exposures caused a significant delay in emergence at a
concentration an order of magnitude lower than seen in NMC (100 mg-L!). Larvae from 100
mg-L-' LCO exposures did not emerge even up to exposure day 50, more than double the

emergence time of controls, despite being visible in disturbed sand.

15
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Differences in response between NMC and LCO may be related to compositional differences
between the two ENMs. While the amount of settled material was similar for both materials, not
all metals in these materials are expected to elicit the same toxicity. Ni and Co are both toxic
metals. On a per mass basis, LCO has 50% more toxic metal than NMC, as it contains only
cobalt, while NMC includes Mn in addition to Ni. Cobalt has been shown to cause oxidative
stress by depleting reduced thiols from cells.* Nickel is also known to cause oxidative stress,*
and may cause oxidative damage that would elicit a response similar to Co. Both Co;04 and NiO
ENMs have been shown to cause oxidative stress in vitro.4”-*® Manganese, however, has been
shown to have antioxidant properties in rats, counteracting the oxidative impacts of other heavy

metals,* and MnO, ENMs have been shown to scavenge ROS in vitro.>

Differing gene expression patterns between LCO and NMC may be related to these
compositional differences. MTT gene expression, related to metal ion exposure and toxicity,
declined significantly and in a dose-dependent manner with increasing LCO exposure while
NMC had no impact on its expression (Fig 3¢). For CAT and HSP27, 1 mg-L-! NMC had the
opposite effect of LCO at 100 mg-L-!, with expression moving in parallel as dose increased (Fig
3a and b). Manganese has been shown to decrease expression of EcR in the amphipod 7.
Jjaponicas,”' which may explain reduced EcR expression in NMC-exposed larvae (Fig 3d). The
antioxidant properties of Mn, and the overwhelming of this antioxidant effect with increasing Co
and Ni, may explain observed gene expression patterns and account for the lower observed
impact of NMC compared to LCO in this study and in our previous work.!® Thus, tuning of

material composition may be a means of mitigating material impact.
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Impact of cobalt on heme synthesis as a potential mechanism of toxicity and adverse outcome
pathway

Larvae exposed to LCO and NMC showed significantly reduced levels of Hb beginning at 10
mg-L-! exposure (Fig 1g). This paralleled cobalt disruption of heme synthesis enzymes observed
in other organism such as avian and rat liver cells.’>>3 Bacterial and animal studies suggest that
the mechanism of cobalt interference with heme biosynthesis is perhaps through substituting

cobalt for iron.>*

Increased expression of ALAS and decreased expression of PBGS observed in this study (Figs 3e
and f) are indicative of inhibition of heme synthesis by Co.3> ALAS expression was up
significantly at NMC 100 mg-L-! (Fig 3¢). PBGS expression appeared to decline with dose,
particularly for LCO exposure, being significantly down-regulated for both LCO and NMC at
100 mg-L! (Fig 3f). Dose-dependent reductions in expression of CAT, an oxidative stress gene
that requires heme, in LCO-exposed larvae at 10 and 100 mg-L-! (Fig 3a) may also point to
disruption of heme synthesis by Co as a mechanism of toxicity. Cobalt exposure has been shown

to have a strong negative impact on catalase expression in liver of rats>> and goldfish.>°

Both Hb levels and PBGS expression correlated inversely with the logo of Co settled in LCO
and NMC (Hb: R?=0.848, B =-2.25, p <0.001; PBGS: R>=0.681, p=-0.314, p < 0.05).
Inhibition of Hb in Tanytarsus chironomids by carbon-monoxide was previously shown to
reduce chironomid metabolism and increase larval mortality.>” The importance of functional Hb

for normal chironomid metabolism thus suggests that inhibition of heme synthesis by cobalt may
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underlie the developmental impacts of LCO and NMC exposure. A proposed adverse outcome

pathway summarizing this is presented in Fig 4.

Benthic organisms are susceptible to settled ENMs

Settling in aqueous environments is characteristic of many ENMs 238 This settling will cause
their accumulation in the sediment and an increase in accumulation over time with continual
introduction, which may impact benthic organisms. ENMs in sediment could have a particular
impact on deposit feeders that uptake sediment particles like C. riparius larvae, which feed
primarily on detritus < 250 um>® and accumulate small silt particles in their gut.%? Settled
fullerene nanoparticles pack the C. riparius larval gut after exposure.®! Thus, their mode of
feeding may create particularly high environmental exposures for C. riparius larvae and other
deposit feeders from settled ENMs. We posit that the nano-specific impacts observed in this
study are the result of the concentration of ENMs in surface sand due to settling, with the likely
mode of exposure being ingestion due to C. riparius deposit feeding. Whether observed impacts
are the result of LCO and NMC exposure directly or the result of material dissolution in the gut
or in cellular compartments such as the lysosome (where low pH would be predicted to enhance
dissolution)'® is beyond the scope of this study. Future studies using x-ray computed tomography
and x-ray fluorescence techniques to determine the distribution of particles and ions in the

organism®>%3 could be informative.

Bioavailability of aggregated ENMs in the benthos may depend on their interaction with
sediment particles.®* Most studies have examined interactions of ENMs with soils rather than

sediments,** but soil studies have observed that Ag ENMs bind more tightly to clay particles than
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to sand.® Thus, our use of sand as a model sediment in this study may mean that settled LCO

and NMC are more bioavailable than they might be in sediments with high clay content.

Impacts on C. riparius development and emergence observed in this study would be expected to
negatively impact reproductive success,®® which could impact higher trophic levels due to their
position as a keystone species in aquatic and terrestrial environments.” ENM ingestion could
also result in trophic transfer of ENMs as they are a primary food resource for many fish
species.%® Bioaccumulation of ENMs in chironomids has been shown for Ag and CeO,
ENMs.%8:67 CeO, ENMs were shown to transfer from chironomids to amphibian larvae, where
they accumulated and caused genotoxicity.%® Thus benthic organisms such as C. riparius may act
as important vectors for ENMs to enter the aquatic food chain, even when these particles are not

stable in the water column.

Modeling studies have shown that for large lakes with long residence times, upwards of 98% of
input ENMs can be anticipated to be retained within the lake system due to settling.”® This means
that reaching the sediment concentration found to cause impacts in this study — 23 pg-cm for
10 mg-L-! exposures — would only require a detectable steady-state ENM concentration of 50
ng-L-!in surface water. TiO, ENMs were detectable in a European lake at 1.4 pug-L-'.7! No study
has yet been done to model or measure amounts of LCO or NMC in the environment. The most
likely source of LCO or NMC in the environment would be as leachate from LIB waste in
landfills, as LIBs are generally not recycled.!*!” Co leached from LIBs in standard tests was
found to be on the order of 164,000 mg Co per kg of battery.'* Hendren et al. have proposed that

production volume may be an indicator of likely exposure risk,’> and production does correlate
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to some degree with modeled and measured environmental concentrations of ENMs.”® The total
mass of LIBs used globally in 2016 was estimated at 374,000 metric tons.!# Depending on
battery life expectancy, this same mass of batteries can be expected to be discarded as waste
within years.!# Given the amount of Co leached from batteries, 60,000 metric tons annually of
Co waste will be emitted from LIBs. In this case metal oxide battery waste will be on the same
order of magnitude as annual US production estimated for TiO, (38,000 tons).”? Given that TiO,
has been modeled’* and measured”! to be present in surface waters at around 1 pg-L!, a
significant amount of LCO and NMC may be expected to be found in the environment based on
the expected mass of LIB waste. The 50 ng-L-! steady-state estimate corresponding to our 10

mg-L-! exposure may not be unrealistic in such a scenario.

Implications

The expected increase in use of battery cathode materials such as LCO and NMC in the next
decade and the lack of material recycling means that environmental release due to disposal may
be expected.!6!7 Exposure to LCO and NMC caused significant impacts on the growth and
development of C. riparius through stress pathways and inhibition of heme synthesis. Settling of
nanomaterials creates the potential for small amounts of complex metal oxides and other ENMs
to accumulate in the benthos of aquatic systems at concentrations that may cause adverse
impacts. Reduced impact of NMC versus LCO points to tuning of material composition as a

means of limiting environmental effects of material release.
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Figure 1. Differences in C. riparius larval size and Hb after 7 d exposure
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Figure 2. Differences in C. riparius time to emergence as adult flies
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Figure 3. Differences in C. riparius larval gene expression after 7 day exposure
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Figure 4. Proposed adverse outcome pathway for C. riparius LCO and NMC exposure
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Figure legends

Figure 1. Differences in C. riparius larval size and Hb after 7 d exposure. LCO and NMC
particle exposure induces significant impacts on larval size and Hb levels on exposure day 7.
Size data (percent of control) for particle and ion exposed larvae. a) Particle-exposed larvae
lengths, b) ion-exposed larvae lengths, c) particle-exposed larvae width, d) ion-exposed larvae
width, e) particle-exposed larvae head capsule length, f) ion-exposed larvae head capsule length.
Columns with different letters differ significantly (p < 0.05) by Kruskal-Wallis (panels a, b, e, f)
or one-way nested ANOVA with Tukey post-hoc tests (panels ¢ and d). g) Hb concentration
calculated from green absorbance for all larvae harvested a day 7. Columns with different letters
indicate a significant difference (p < 0.05) by one-way nested ANOVA with Tukey post-hoc

tests. Error bars represent SEM.

Figure 2. Differences in C. riparius time to emergence as adult flies. Time to emergence for a)

control and LCO and NMC particle-exposed and b) control and LCO and NMC ion exposed
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animals. Columns with different letters differ significantly (p < 0.05) by Kaplan-Meier non-

parametric analysis. Error bars represent SEM.

Figure 3. Differences in C. riparius larval gene expression after 7 d exposure. Log, fold
change values for LCO and NMC particle-exposed larvae harvested at day 7. Results are shown
for a) CAT, b) HSP27, c) MTT, d) EcR, ) ALAS, and f) PBGS. Results for ion-exposed animals
are also shown for g) MTT and h) PBGS. Columns with different letters differ significantly (p <
0.05) by one-way Welch ANOVA with Dunnett's T3 post-hoc comparisons. Error bars represent

SEM.

Figure 4. Proposed adverse outcome pathway for C. riparius LCO and NMC exposure. A
proposed adverse outcome pathway for C. riparius larval exposure to LCO and NMC showing
inhibition of iron-containing or iron-regulated proteins by cobalt as the molecular initiating
event, resulting in lowered levels of heme and heme proteins, which in turn causes disruption to
normal growth and metabolism, culminating in the adverse outcome of smaller size and delayed

emergence as adult flies.
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