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1 Introduction39

Linear sketching is the underlying technique behind many of the biggest algorithmic break-40

throughs of the past two decades. It has played a key role in the development of streaming41

algorithms since [3]and most recently has been the key to modern randomized algorithms for42

numerical linear algebra (see survey [52]), graph compression (see survey [38]), dimensionality43

reduction, etc. Linear sketching is robust to the choice of a computational model and can be44

applied in settings as seemingly diverse as streaming, MapReduce as well as various other45

distributed models of computation including the congested clique model [19, 12, 23], allowing46

to save computational time, space and reduce communication in distributed settings. This47

remarkable versatility is based on properties of linear sketches enabled by linearity: simple48

and fast updates and mergeability of sketches computed on distributed data. Compatibility49

with fast numerical linear algebra packages makes linear sketching particularly attractive for50

applications.51

Even more surprisingly linear sketching over the reals is known to be the best possible52

algorithmic approach (unconditionally) in certain settings. Most notably, under some mild53

conditions linear sketches are known to be almost space optimal for processing dynamic54

data streams [10, 32, 1]. Optimal bounds for streaming algorithms for a variety of computa-55

tional problems can be derived through this connection by analyzing linear sketches rather56

than general algorithms. Examples include approximate matchings [5, 4], additive norm57

approximation [1] and frequency moments [32, 51].58

In this paper we study the power of linear sketching over F2. 5 To the best of our59

knowledge no such systematic study currently exists as prior work focuses on sketching over60

the field of reals (or large finite fields as reals are represented as word-size bounded integers).61

Formally, for a random set S ⊆ [n] let χS =
⊕

i∈S
xi. Given a function f : F

n
2 → F2 that62

needs to be evaluated over an input x = (x1, . . . , xn) we are looking for a distribution over63

k subsets S1, . . . , Sk ⊆ [n] such that the following holds: for any input x given parities64

computed over these sets and denoted as χS1
(x), χS2

(x), . . . , χSk
(x), it should be possible65

to compute f(x) with probability 1 − δ. While the switch from reals to F2 might seem66

restrictive, we are unaware of any problem for which sketching over reals gives any advantage67

over F2. Furthermore, as shown very recently and subsequently to the early version of this68

work [24], almost all dynamic graph streaming algorithms6 can be seen as F2-sketches [26]69

without losing optimality in space7.70

In matrix form F2-sketching corresponds to multiplication over F2 of the row vector71

x ∈ F
n
2 by a random n × k matrix whose i-th column is a characteristic vector of the random72

parity χSi
:73

5 It is easy to see that sketching over finite fields can be significantly better than linear sketching over
integers for certain computations. As an example, consider a function (x mod 2) (for an integer input
x) which can be trivially sketched with 1 bit over the field of two elements while any linear sketch over
the integers requires word-size memory.

6 With the only exception being the work of [25] on spectral graph sparsification.
7 Technically [26] uses F3, but replacing F3 with F2 doesn’t change their results.
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This sketch alone should then be sufficient for computing f with high probability for any74

input x. This motivates us to define the randomized linear sketch complexity of a function f75

over F2 as the smallest k which allows one to satisfy the above guarantee.76

I Definition 1 (F2-sketching). For a function f : F
n
2 → F2 we define its randomized linear

sketch complexity8 over F2 with error δ (denoted as Rlin
δ (f)) as the smallest integer k such

that there exists a distribution χS1
, χS2

, . . . , χSk
over k linear functions over F2 and a

postprocessing function g : F
k
2 → F2

9 which satisfies:

∀x ∈ F
n
2 : Pr

S1,...,Sk

[f(x1, x2, . . . , xn) = g(χS1
(x), χS2

(x), . . . , χSk
(x))] ≥ 1 − δ.

We note that while the above definition requires that f is computed exactly, most of our77

structural results including Theorem 4 can be extended to allow approximate computation78

of real-valued functions f : F
n
2 → R as shown in [54].79

As we show in this paper the study of Rlin
δ (f) is closely related to a certain communication80

problem. For f : F
n
2 → F2 define the XOR-function f+ : F

n
2 ×F

n
2 → F2 as f+(x, y) = f(x + y)81

where x, y ∈ F
n
2 . Consider a communication game between two players Alice and Bob holding82

inputs x and y respectively. Given access to a shared source of random bits Alice has to send83

a single message to Bob so that he can compute f+(x, y). This is known as the one-way84

communication problem for XOR-functions.85

I Definition 2 (Randomized one-way communication complexity of XOR function). For a86

function f : F
n
2 → F2 the randomized one-way communication complexity with error δ87

(denoted as R→δ (f+)) of its XOR-function is defined as the smallest size10 (in bits) of the88

(randomized using public randomness) message M(x) from Alice to Bob which allows Bob to89

evaluate f+(x, y) for any x, y ∈ F
n
2 with error probability at most δ.90

Communication complexity of XOR-functions has been recently studied extensively in the91

context of the log-rank conjecture (see e.g. [45, 55, 39, 29, 31, 47, 33, 49, 35, 18]). However,92

such studies either mostly focus on deterministic communication complexity or are specific93

to the two-way communication model. We discuss implications of this line of work for our94

F2-sketching model in our discussion of prior work.95

It is easy to see that R→δ (f+) ≤ Rlin
δ (f) as using shared randomness for sampling96

S1, . . . , Sk Alice can just send k bits χS1
(x), χS2

(x), . . . , χSk
(x) to Bob who can for each97

8 In the language of decision trees this can be interpreted as randomized non-adaptive parity decision
tree complexity. We are unaware of any systematic study of this quantity either. Since heavy decision
tree terminology seems excessive for our applications (in particular, sketching is done in one shot so
there isn’t a decision tree involved) we prefer to use a shorter and more descriptive name.

9 Technically g can also depend on the sampled sets S1, . . . , Sk, but all sketches used in this paper are
oblivious to the choice of these sets.

10 Formally the minimum here is taken over all possible protocols where for each protocol the size of the
message M(x) refers to the largest size (in bits) of such message taken over all inputs x ∈ F

n

2 . See [28]
for a formal definition.
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i ∈ [k] compute χSi
(x + y) = χSi

(x) + χSi
(y). This gives Bob an F2-sketch of f on x + y and98

hence suffices for computing f+(x, y) with probability 1 − δ. The main open question raised99

in our work is whether the reverse inequality holds (at least approximately), thus implying100

the equivalence of the two notions.101

I Conjecture 3. Is it true that R→δ (f+) = Θ̃
(
Rlin

δ (f)
)

for every f : F
n
2 → F2 and 0 < δ < 1/2?102

In fact all known one-way protocols for XOR-functions can be seen as F2-sketches so it is103

natural to ask whether this is always true. In this paper we further motivate this conjecture104

through a number of examples of classes of functions for which it holds. One important105

such example from the previous work is a function Ham≥k which evaluates to 1 if and only106

if the Hamming weight of the input string is at least k. The corresponding XOR-function107

Ham+
≥k can be seen to have one-way communication complexity of Θ(k log k) via the small108

set disjointness lower bound of [9] and a basic upper bound based on random parities [20].109

Conjecture 3 would imply that in order to prove a one-way disjointness lower bound it suffices110

to only consider F2-sketches.111

A deterministic analog of Definition 1 requires that f(x) = g(χα1
(x), χα2

(x), . . . , χαk
(x))112

for a fixed choice of α1, . . . , αk ∈ F
n
2 . The smallest value of k which satisfies this definition is113

known to be equal to the Fourier dimension of f denoted as dim(f). It corresponds to the114

smallest dimension of a linear subspace of F
n
2 that contains the entire spectrum of f (see115

Section 2.2 for a formal definition). In order to keep the notation uniform we also denote116

it as Dlin(f). Most importantly, as shown in [39] an analog of Conjecture 3 holds without117

any loss in the deterministic case, i.e. D→(f+) = dim(f) = Dlin(f), where D→ denotes the118

deterministic one-way communication complexity. This striking fact is one of the reasons119

why we suggest Conjecture 3 as an open problem.120

Previous work and our results121

In the discussion below using Yao’s principle we switch to the equivalent notion of distribu-122

tional complexity of the above problems denoted as D→δ and Dlin
δ respectively. For the formal123

definitions we refer to the reader to Section 2.1 and a standard textbook on communication124

complexity [28]. Equivalence between randomized and distributional complexities allows us125

to restate Conjecture 3 as D→δ = Θ̃(Dlin
δ ).126

For a fixed distribution µ over F
n
2 we define Dlin,µ

δ (f) to be the smallest dimension of an127

F2-sketch that correctly outputs f with probability 1 − δ over µ. Similarly for a distribution128

µ over (x, y) ∈ F
n
2 × F

n
2 we denote distributional one-way communication complexity of f129

with error δ as D→,µ
δ (f+) (See Section 2 for a formal definition). Our first main result is an130

analog of Conjecture 3 for the uniform distribution U over (x, y) that matches the statement131

of the conjecture up to constant factors:132

I Theorem 4. For any f : F
n
2 → F2 it holds that D→,U

1/9 (f+) ≥ 1
6 · Dlin,U

1/3 (f).133

In order to prove Theorem 4 we introduce the notion of an approximate Fourier dimension134

(Definition 13) that extends the definition of exact Fourier dimension to allow that only 1 − ε135

fraction of the total “energy” in f ’s spectrum should be contained in the linear subspace.136

The key ingredient in the proof is a structural theorem, Theorem 14, that characterizes both137

Dlin,U
δ (f) and D→,U

δ (f+) in terms of f ’s approximate Fourier dimension.138

Using Theorem 14 we confirm Conjecture 3 for several well-studied classes of functions in139

Section 4. It is important to note that while we could have stated these results for randomized140

one-way communication it is critical that all lower bounds in this section hold for uniform141

distribution in order to derive our results for random streams in Section 5.142
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Low-degree F2 polynomials143

Low-degree F2 polynomials have been extensively studied in theoretical computer science in144

various contexts: learning theory (Mossel, O’Donnell and Servedio [40]), property testing145

(Rubinfield and Sudan [42], Bhattacharyya et al. [6], Alon et al [2]), pseudorandomness146

(Bogdanov and Viola [8], Lovett [34], Viola [50]), communication complexity (Tsang et al.[49]),147

etc.148

Tsang et al. [49] studied deterministic two-way communication protocols for XOR-149

functions with low F2-degree. They gave an upper bound on deterministic communication150

complexity of f+ in terms of the spectral norm and the F2-degree of f . Their result was151

obtained by observing that the communication complexity of f+ is bounded above by the152

parity decision tree complexity of f , and then bounding the latter. In this work, we prove a153

lower bound on the randomized one-way communication complexity of f+ in terms of the154

Fourier dimension of f and the F2-degree of f , denoted as d. We prove the following result:155

Dlin(f) = O
(

R→1/3(f+) · d
)

.156

In the regime d = O(1), the above result implies that use of randomness does not enable157

us to design a better linear-sketching or a one-way communication protocol. Furthermore,158

since Rlin
1/3(f) ≤ Dlin(f), the above result implies Conjecture 3 for constant degree F2-159

polynomials. For F2 polynomials with bounded spectral norm this implies a new bound on160

Fourier dimension shown in Corollary 23: Dlin(f) = dim(f) = O(d‖f̂‖2
1) improving a result161

of Tsang et al. for d = ω
(

log1/3 ‖f̂‖1

)
.162

Address function and Fourier sparsity163

The number s of non-zero Fourier coefficients of f (known as Fourier sparsity) is one of164

the key quantities in the analysis of Boolean functions. It also plays an important role165

in the recent work on log-rank conjecture for XOR-functions [49, 46]. A recent result by166

Sanyal [44] shows that for Boolean functions dim(f) = O(
√

s log s), namely all non-zero167

Fourier coefficients are contained in a subspace of a polynomially smaller dimension. This168

bound is almost tight as the address function (see Section 4.2 for a definition) exhibits a169

quadratic gap. A direct implication of Sanyal’s result is a deterministic F2-sketching upper170

bound of O(
√

s log s) for any f with Fourier sparsity s. As we show in Section 4.2 this171

dependence on sparsity can’t be improved even if randomization is allowed.172

Symmetric functions173

A function f is symmetric if it only depends on the Hamming weight of its input. In174

Section 4.3 we show that Conjecture 3 holds for all symmetric functions which are not too175

close to a constant function or the parity function
∑

i xi, where the sum is taken over F2.176

Composition theorem for recursive majority177

As an example of a composition theorem we give such a theorem for recursive majority.178

For an odd integer n the majority function Majn is defined to be 1 if and only if the179

Hamming weight of the input is greater than n/2. Of particular interest is the recursive180

majority function Maj◦k3 that corresponds to k-fold composition of Maj3 for k = log3 n.181

This function was introduced by Boppana [43] and serves as an important example of various182

properties of Boolean functions, most importantly in randomized decision tree complexity183
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([43, 22, 37, 30, 36]), deterministic parity decision tree complexity [7] and communication184

complexity [22, 13].185

In Section 4.4 we use Theorem 14 to obtain the following result:186

I Theorem 5. For any ε ∈ [0, 1
2 ], ξ > 4ε2 and k = log3 n it holds that:

D→,U
1−ξ

6

(Maj◦k3

+
) = Ω(ε2n).

Applications to streaming and distributed computing187

In the turnstile streaming model of computation a vector x of dimension n is updated through188

a sequence of additive updates applied to its coordinates and the goal of the algorithm is to189

be able to output f(x) at any point during the stream while using space that is sublinear190

in n. In the real-valued case we have either x ∈ [0, m]n or x ∈ [−m, m]n for some universal191

upper bound m and updates can be increments or decrements to x’s coordinates of arbitrary192

magnitude.193

For x ∈ F
n
2 additive updates have a particularly simple form as they always flip the194

corresponding coordinate of x. In the streaming literature this model is referred to as the195

XOR update model (see e.g. [48]) Note that XOR updates can’t be handled using standard196

turnstile streaming algorithms as only the coordinate but not the sign of the update is given.197

As we show in Section 5.2 it is easy to see based on the recent work of [10, 32, 1] that in198

the adversarial streaming setting the space complexity of turnstile streaming algorithms199

over F2 is determined by the F2-sketch complexity of the function of interest. However, this200

proof technique only works for very long streams which are unrealistic in practice – the201

length of the adversarial stream has to be triply exponential in n in order to enforce linear202

behavior. Large stream length requirement is inherent in the proof structure in this line of203

work and while one might expect to improve triply exponential dependence on n at least an204

exponential dependence appears necessary, which is a major limitation of this approach.205

As we show in Section 5.1 it follows directly from our Theorem 4 that turnstile streaming206

algorithms that achieve low error probability under random F2 updates might as well be207

F2-sketches. For two natural choices of the random update model short streams of length208

either O(n) or O(n log n) suffice for our reduction. We stress that our lower bounds are also209

stronger than the worst-case adversarial lower bounds as they hold under an average-case210

scenario. Furthermore, our Conjecture 3 would imply that space optimal turnstile streaming211

algorithms over F2 have to be linear sketches for adversarial streams of length only 2n. We212

believe that such result will also help show an analogous statement for real-valued linear213

sketches thus removing the triply exponential in n stream length assumption of [32, 1].214

By linearity all F2-sketching upper bounds are also applicable in the distributed setting215

where two parties Alice and Bob need to send messages to the coordinator who is required216

to output f+. This is also known as the Simultaneous Message Passing (SMP) model and217

all our one-way lower bounds hold in this model as well.218

Other previous work219

Closely related to ours is work on communication protocols for XOR-functions [45, 39, 49, 18].220

In particular [39] presents two basic one-way communication protocols based on random221

parities. The first one, stated as Fact 20 generalizes the classic communication protocol for222

equality. The second one uses the result of Grolmusz [17] and implies that `1-sampling of223

Fourier characters gives a randomized F2-sketch of size O(‖f̂‖2
1) (for constant error).224
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In [18] structural results about deterministic two-way communication protocols for225

XOR-functions have been obtained. In particular, they show that the parity decision tree226

complexity of f is O(D(f+)6). The key difference between our work and [18] lies in our focus227

on randomized protocols. In [18] it is left as the main open problem whether randomized228

parity decision tree complexity can be bounded by poly(R(f+)). Our results can be seen as a229

step towards resolving this open problem in one-way communication setting. Full resolution230

of Conjecture 3 would show that the conjecture of [18] holds even without polynomial loss231

for one-way communication as we show for all the classes considered in Section 4.232

Another line of work that is closely related to ours is the study of the two-player233

simultaneous message passing model (SMP). This model can also allow to prove lower bounds234

on F2-sketching complexity. Since our results hold for one-way communication they also hold235

in the SMP model. Moreover, in the context of our work there is no substantial difference as236

for product distributions the two models are essentially equivalent. Recent results in the237

SMP model include [39, 31, 33].238

While decision tree literature is not directly relevant to us since our model doesn’t239

allow adaptivity we remark that there has been interest recently in the study of (adaptive)240

deterministic parity decision trees [7] and non-adaptive deterministic parity decision trees [46,241

44]. As mentioned above, our model can be interpreted as non-adaptive randomized parity242

decision trees and to the best of our knowledge it hasn’t been studied explicitly before.243

Another related model is that of parity kill numbers. In this model a composition theorem244

has recently been shown by [41] but the key difference is again adaptivity.245

Finally recent developements in the line of work on lifting theorems such as [15, 14] might246

suggest that such results might be applied in our context. However for our purposes we247

would need a lifting theorem for the XOR gadget and to the best of our knowledge no such248

result is known for randomized one-way communication.249

Organization250

The rest of this paper is organized as follows. In Section 2 we introduce the required251

background from communication complexity and Fourier analysis of Boolean functions. In252

Section 3 we prove Theorem 4. In Section 4 we give applications of this theorem for recursive253

majority (Theorem 5), address function, low-degree F2 polynomials and symmetric functions.254

In Section 5 we describe applications to streaming.255

In Appendix B we give some basic results about deterministic F2-sketching (or Fourier256

dimension) of composition and convolution of functions. We also present a basic lower257

bound argument based on affine dispersers. In Appendix C we give some basic results about258

randomized F2-sketching including a lower bound based on extractors and a classic protocol259

based on random parities which we use as a building block in our sketch for LTFs. We also260

present evidence for why an analog of Theorem 14 doesn’t hold for arbitrary distributions. In261

Appendix D we show a lower bound for one-bit protocols making progress towards resolving262

Conjecture 3.263

2 Preliminaries264

For an integer n we use notation [n] = {1, . . . , n}. For integers n ≤ m we use notation265

[n, m] = {n, . . . , m}. For an arbitrary domain D we denote the uniform distribution over266

this domain as U(D). We use the notation x, x′ ∼ U(D) to denote that x and x′ are sampled267

uniformly at random and independently from D. The variance of a random variable X is268
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8:8 Linear Sketching over F2

denoted by Var[X]. For a vector x and p ≥ 1 we denote the p-norm of x as ‖x‖p and reserve269

the notation ‖x‖0 for the Hamming weight.270

2.1 Communication complexity271

Consider a function f : F
n
2 × F

n
2 → F2 and a distribution µ over F

n
2 × F

n
2 . The one-way272

distributional complexity of f with respect to µ, denoted as D→,µ
δ (f) is the smallest commu-273

nication cost of a one-way deterministic protocol that outputs f(x, y) with probability at274

least 1 − δ over the inputs (x, y) drawn from the distribution µ. The one-way distributional275

complexity of f denoted as D→δ (f) is defined as D→δ (f) = supµ D→,µ
δ (f). By Yao’s minimax276

theorem [53] it follows that R→δ (f) = D→δ (f). One-way communication complexity over277

product distributions is defined as D→,×
δ (f) = supµ=µx×µy

D→,µ
δ (f) where µx and µy are278

distributions over F
n
2 .279

With every two-party function f : F
n
2 × F

n
2 we associate a communication matrix Mf ∈280

F
2n×2n

2 with entries Mf
x,y = f(x, y). We say that a deterministic protocol M(x) with length t281

of the message that Alice sends to Bob partitions the rows of this matrix into 2t combinatorial282

rectangles where each rectangle contains all rows of Mf corresponding to the same fixed283

message y ∈ {0, 1}t.284

2.2 Fourier analysis285

We consider functions11 from F
n
2 to R. For any fixed n ≥ 1, the space of these functions forms286

an inner product space with the inner product 〈f, g〉 = Ex∈F
n
2
[f(x)g(x)] = 1

2n

∑
x∈F

n
2

f(x)g(x).287

The `2 norm of f : F
n
2 → R is ‖f‖2 =

√
〈f, f〉 =

√
Ex[f(x)2] and the `2 distance between288

two functions f, g : F
n
2 → R is the `2 norm of the function f − g. In other words, ‖f − g‖2 =289 √

〈f − g, f − g〉 =
√

1
2n

∑
x∈F

n
2
(f(x) − g(x))2.290

For α ∈ F
n
2 , the character χα : F

n
2 → {+1, −1} is the function defined by χα(x) = (−1)α·x.291

Characters form an orthonormal basis as 〈χα, χβ〉 = δαβ where δ is the Kronecker symbol.292

The Fourier coefficient of f : F
n
2 → R corresponding to α is f̂(α) = Ex[f(x)χα(x)]. The293

Fourier transform of f is the function f̂ : F
n
2 → R that returns the value of each Fourier294

coefficient of f . We use notation Spec(f) = {α ∈ F
n
2 : f̂(α) 6= 0} to denote the set of all295

non-zero Fourier coefficients of f . The Fourier `1 norm, or the spectral norm of f , is defined296

as ‖f̂‖1 :=
∑

α∈F
n
2

|f̂(α)|.297

I Fact 6 (Parseval’s identity). For any f : F
n
2 → R it holds that298

‖f‖2 = ‖f̂‖2 =

√∑

α∈F
n
2

f̂(α)2.299

Moreover, if f : F
n
2 → {+1, −1} then ‖f‖2 = ‖f̂‖2 = 1.300

We use notation A ≤ F
n
2 to denote the fact that A is a linear subspace of F

n
2 .301

I Definition 7 (Fourier dimension). The Fourier dimension of f : F
n
2 → {+1, −1} denoted302

as dim(f) is the smallest integer k such that there exists A ≤ F
n
2 of dimension k for which303

Spec(f) ⊆ A.304

11 In all Fourier-analytic arguments Boolean functions are treated as functions of the form f : F
n

2 →
{+1, −1} where 0 is mapped to 1 and 1 is mapped to −1. Otherwise we use these two notations
interchangeably.
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We say that A ≤ F
n
2 is a standard subspace if it has a basis v1, . . . , vd where each vi has305

Hamming weight equal to 1. An orthogonal subspace A⊥ is defined as:306

A⊥ = {γ ∈ F
n
2 : ∀x ∈ A γ · x = 0}.307

308

An affine subspace (or coset) of F
n
2 of the form A = H + a for some H ≤ F

n
2 and a ∈ F

n
2 is309

defined as:310

A = {γ ∈ F
n
2 : ∀x ∈ H⊥ γ · x = a · x}.311

312

We now introduce notation for restrictions of functions to affine subspaces.313

I Definition 8. Let f : F
n
2 → R and z ∈ F

n
2 . We define f+z : F

n
2 → R as f+z(x) = f(x + z).314

I Fact 9. The Fourier coefficients of f+z are f̂+z(γ) = (−1)γ·z f̂(γ) and hence:315

f+z =
∑

S∈F
n
2

f̂(S)χS(z)χS .316

317

I Definition 10 (Coset restriction). For f : F
n
2 → R, z ∈ F

n
2 and H ≤ F

n
2 we write f+z

H : H → R318

for the restriction of f to H + z.319

I Definition 11 (Convolution). For two functions f, g : F
n
2 → R their convolution (f∗g) : F

n
2 →320

R is defined as (f ∗ g)(x) = Ey∼U(Fn
2

) [f(y)g(x + y)].321

For S ∈ F
n
2 the corresponding Fourier coefficient of convolution is given as f̂ ∗ g(S) =322

f̂(S)ĝ(S).323

3 F2-sketching over the uniform distribution324

We use the following definition of Fourier concentration that plays an important role in325

learning theory [27]. As mentioned above in all Fourier-analytic arguments we replace the326

range of the functions with {+1, −1}.327

I Definition 12 (Fourier concentration). The spectrum of a function f : F
n
2 → {+1, −1} is328

ε-concentrated on a collection of Fourier coefficients Z ⊆ F
n
2 if

∑
α∈Z f̂2(α) ≥ ε.329

We now introduce the notion of approximate Fourier dimension of a Boolean function.330

I Definition 13 (Approximate Fourier dimension). Let Ak be the set of all linear subspaces of

F
n
2 of dimension k. For f : F

n
2 → {+1, −1} and ε ∈ (0, 1] the ε-approximate Fourier dimension

dimε(f) is defined as:

dimε(f) = min

{
k : ∃A ∈ Ak :

∑

α∈A

f̂2(α) ≥ ε

}
.

The following theorem shows that for uniformly distributed inputs, both the one-way331

communication complexity of f+ and the linear sketch complexity of f are characterized332

by the approximate Fourier dimension of f . An immediate corollary is that, up to some333

slack in the dependence on the probability of error, the one-way communication complexity334

under the uniform distribution matches the linear sketch complexity. We note that the lower335

bounds given by this theorem are stronger than the basic extractor lower bound given in336

Appendix C.1. See Remark C.1 for further discussion.337

CCC 2018



8:10 Linear Sketching over F2

I Theorem 14. Let f : F
n
2 → {+1, −1} be a Boolean function. Let ξ ∈ [0, 1] and γ <

1−
√

ξ

2 .338

Let d = dimξ(f). Then,339

1. D→,U
(1−ξ)/2(f+) ≤ Dlin,U

(1−ξ)/2(f) ≤ d, 2. Dlin,U
γ (f) ≥ d, 3. D→,U

(1−ξ)/6 ≥ d

6
.340

341

Proof. Part 1
12

. Since d = dimξ(f), there exists a subspace A ≤ F
n
2 of dimension at most342

d which satisfies
∑

α∈A f̂2(α) ≥ ξ. Let g : F
n
2 → R be a function defined by its Fourier343

transform as follows:344

ĝ(α) =

{
f̂(α), if α ∈ A

0, otherwise.
345

346

Consider drawing a random variable θ from the distribution with p.d.f 1 − |θ| over [−1, 1].347

I Proposition 15. For all t such that −1 ≤ t ≤ 1 and z ∈ {+1, −1} random variable θ

satisfies:

Pr
θ

[sgn(t − θ) 6= z] ≤ 1

2
(z − t)2.

Proof. W.l.o.g we can assume z = 1 as the case z = −1 is symmetric. Then we have:

Pr
θ

[sgn(t − θ) 6= 1] =

∫ 1

t

(1 − |γ|)dγ ≤
∫ 1

t

(1 − γ)dγ =
1

2
(1 − t)2.

Define a family of functions gθ : F
n
2 → {+1, −1} as gθ(x) = sgn(g(x) − θ). Then we have:348

E
θ

[
Pr

x∼F
n
2

[gθ(x) 6= f(x)]

]
= E

x∼F
n
2

[
Pr
θ

[gθ(x) 6= f(x)]

]
349

= E
x∼F

n
2

[
Pr
θ

[sgn(g(x) − θ) 6= f(x)]

]
350

≤ E
x∼F

n
2

[
1

2
(f(x) − g(x))2

]
(by Proposition 15)351

=
1

2
‖f − g‖2

2.352

353

Using the definition of g and Parseval we have:354

1

2
‖f − g‖2

2 =
1

2
‖f̂ − g‖2

2 =
1

2
‖f̂ − ĝ‖2

2 =
1

2

∑

α/∈A

f̂2(α) ≤ 1 − ξ

2
.355

356

Thus, there exists a choice of θ such that gθ achieves error at most 1−ξ
2 . Clearly gθ can be357

computed based on the d parities forming a basis for A and hence Dlin,U
(1−ξ)/2(f) ≤ d.358

Part 2.359

Fix any deterministic sketch that uses d−1 parities χα1
, . . . , χαd−1

and let S = (α1, . . . , αd−1).360

For fixed values of these sketches b = (b1, . . . , bd−1) where bi = χαi
(x) we denote the resulting361

12 This argument is a refinement of the standard “sign trick” from learning theory which approximates a
Boolean function by taking a sign of its real-valued approximation under `2.
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affine restriction of f as f |(S,b). Using the standard expression for the Fourier coefficients of362

an affine restriction the constant Fourier coefficient of the restricted function is given as:363

f̂ |(S,b)(∅) =
∑

Z⊆[d−1]

(−1)
∑

i∈Z
bi f̂

(∑

i∈Z

αi

)
.364

365

Thus, we have:366

f̂ |(S,b)

2
(∅) =

∑

Z⊆[d−1]

f̂2(
∑

i∈Z

αi) +
∑

Z1 6=Z2⊆[d−1]

(−1)

∑
i∈Z1∆Z2

bi
f̂(
∑

i∈Z1

αi)f̂(
∑

i∈Z2

αi).367

368

Taking expectation over a uniformly random b ∼ U(Fd
2) we have:369

Eb∼U(Fd
2

)

[
f̂ |(S,b)

2
(∅)

]
370

=Eb∼U(Fd
2

)


 ∑

Z⊆[d−1]

f̂2

(∑

i∈Z

αi

)
+371

∑

Z1 6=Z2⊆[d−1]

(−1)

∑
i∈Z1∆Z2

bi
f̂

(∑

i∈Z1

αi

)
f̂

(∑

i∈Z2

αi

)
372

=
∑

Z⊆[d−1]

f̂2

(∑

i∈Z

αi

)
.373

374

The latter sum is the sum of squared Fourier coefficients over a linear subspace of

dimension d − 1 < dimξ(f), and hence is strictly less than ξ. Using Jensen’s inequality:

Eb∼U(Fd
2

)

[
|f̂ |(S,b)(∅)|

]
≤
√

Eb∼U(Fd
2

)

[
f̂ |(S,b)

2
(∅)

]
<
√

ξ.

For a fixed restriction (S, b) if |f̂ |(S,b)(∅)| < α then | Pr[f |(S,b) = 1] − Pr[f |(S,b) = −1]| < α375

and hence no algorithm can predict the value of the restricted function on this coset with376

probability at least 1+α
2 . Thus no algorithm can predict f |(α1,b1),...,(αd−1,bd−1) for a uniformly377

random choice of (b1, . . . , bd−1), and hence also on a uniformly at random chosen x, with378

probability at least
1+

√
ξ

2 .379

Part 3.380

We will need the following fact about entropy of a binary random variable. The proof is381

given in the appendix (Section A.1).382

I Fact 16. For any random variable X supported on {1, −1}, H(X) ≤ 1 − 1
2 (EX)2.383

We will need the following proposition that states that random variables taking value in384

{1, −1} that are highly biased have low variance. The proof of Proposition 17 can be found385

in the appendix (Section E.1).386

I Proposition 17. Let X be a random variable taking values in {1, −1}. Define p :=387

minb∈{1,−1} Pr[X = b]. Then Var[X] ∈ [2p, 4p].388

In the next two lemmas, we look into the structure of a one-way communication protocol389

for f+, and analyze its performance when the inputs are uniformly distributed. We give390
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8:12 Linear Sketching over F2

a lower bound on the number of bits of information that any correct randomized one-way391

protocol reveals about Alice’s input, in terms of the linear sketching complexity of f for392

uniform distribution13.393

The next lemma bounds the probability of error of a one-way protocol from below in394

terms of the Fourier coefficients of f , and the conditional distributions of different parities of395

Alice’s input conditioned on Alice’s random message.396

I Lemma 18. Let ε ∈ [0, 1
2 ). Let Π be a deterministic one-way protocol for f+ such that397

Prx,y∼U(Fn
2

)[Π(x, y) 6= f+(x, y)] ≤ ε. Let M denote the distribution of the random message398

sent by Alice to Bob in Π. For any fixed message m sent by Alice, let Dm denote the399

distribution of Alice’s input x conditioned on the event that M = m. Then,400

4ε ≥
∑

α∈F
n
2

f̂2(α) ·
(

1 − E
m∼M

(
E

x∼Dm

[χα(x)]

)2
)

.401

Proof. For any fixed input y of Bob, define ε
(y)
m := Prx∼Dm

[Π(x, y) 6= f+(x, y)]. Thus,402

ε ≥ E
m∼M

E
y∼U(Fn

2
)
[ε(y)

m ]. (1)403

404

Note that the output of the protocol is determined by Alice’s message and y. Hence for405

a fixed message and Bob’s input, if the restricted function is largely unbiased, then any406

protocol is forced to commit an error with high probability. Formally,407

ε(y)
m ≥ min

b∈{1,−1}
Pr

x∼Dm

[f+(x, y) = b] ≥ Varx∼Dm
[f+(x, y)]

4
. (2)408

409

Since f+(·, ·) takes values in {+1, −1}, the second inequality follows from Proposition 17.410

Now,411

Varx∼Dm
[f+(x, y)] = 1 −

(
E

x∼Dm

[f+(x, y)]

)2

(since f+(x, y) ∈ {1, −1})412

= 1 −


∑

α∈F
n
2

f̂(α)χα(y) E
x∼Dm

[χα(x)]




2

(by Fact 9 and linearity of expectation)413

= 1 −


∑

α∈F
n
2

f̂2(α)

(
E

x∼Dm

[χα(x)]

)2

414

+
∑

(α1,α2)∈F
n
2
×F

n
2

:α1 6=α2

f̂(α1)f̂(α2)χα1+α2
(y) E

x∼Dm

[χα1
(x)] E

x∼Dm

[χα2
(x)]


 .415

416

Taking expectation over y we have:417

E
y∼U(Fn

2
)

[
Varx∼Dm

[f+(x, y)]
]

= 1 −
∑

α∈F
n
2

f̂2(α)

(
E

x∼Dm

[χα(x)]

)2

. (3)418

419

13 We thus prove an information complexity lower bound. See, for example, [21] for an introduction to
information complexity.
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Taking expectation over messages it follows from (1), (2) and (3) that,420

4ε ≥ 1 −
∑

α∈F
n
2

f̂2(α) · E
m∼M

(
E

x∼Dm

[χα(x)]

)2

421

=
∑

α∈F
n
2

f̂2(α) ·
(

1 − E
m∼M

(
E

x∼Dm

[χα(x)]

)2
)

.422

(4)423
424

The second equality above follows from the Parseval’s identity (Fact 6). The lemma follows.425

426

Let ε := 1−ξ
6 . Let Π be a deterministic protocol such that Prx,y∼U(Fn

2
)[Π(x, y) 6= f+(x, y)] ≤ ε,427

with optimal cost cΠ := D→,U
ε (f+) = D→,U

1−ξ

6

(f+). Let M denote the distribution of the428

random message sent by Alice to Bob in Π. For any fixed message m sent by Alice, let Dm429

denote the distribution of Alice’s input x conditioned on the event that M = m. To prove430

Part 3 of Theorem 14 we use the protocol Π to come up with a subspace of F
n
2 . Next, in431

Lemma 19 (a) we prove, using Lemma 18, that f is ξ-concentrated on that subspace. In432

Lemma 19 (b) we upper bound the dimension of that subspace in terms of cΠ.433

I Lemma 19. Let A := {α ∈ F
n
2 : Em∼M (Ex∼Dm

χα(x))
2 ≥ 1

3 } ⊆ F
n
2 . Let ` = dim(span(A)).434

Then,435

(a) ` ≥ d.436

(b) ` ≤ 6cΠ.437

Proof. (a) We prove part (a) by showing that f is ξ-concentrated on span(A). By Lemma 18438

we have that439

4ε ≥
∑

α∈span(A)

f̂2(α) ·
(

1 − E
m∼M

(
E

x∼Dm

χα(x)

)2
)

+440

∑

α/∈span(A)

f̂2(α) ·
(

1 − E
m∼M

(
E

x∼Dm

χα(x)

)2
)

441

>
2

3
·

∑

α/∈span(A)

f̂2(α).442

443

Thus
∑

α/∈span(A) f̂2(α) < 6ε. Hence,
∑

α∈span(A) f̂2(α) ≥ 1 − 6ε = ξ. Hence we have444

` = dim(span(A)) ≥ dimξ(f) = d.445

446

(b) Notice that χα(x) is a unbiased random variable taking values in {1, −1}. For each α447

in the set A in Proposition 19, the value of Em∼M (Ex∼Dm
χα(x))

2
is bounded away from448

0. This suggests that for a typical message m drawn from M , the distribution of χα(x)449

conditioned on the event M = m is significantly biased. Fact 16 enables us to conclude450

that Alice’s message reveals Ω(1) bit of information about χα(x). However, since the total451

information content of Alice’s message is at most cΠ, there can be at most O(cΠ) independent452

vectors in A. Now we formalize this intuition.453
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Let T = {α1, . . . , α`} be a basis of span(A). Then,454

cΠ ≥ H(M) (by the third inequality of Fact 5 (1))455

≥ I(M ; χα1
(x), . . . , χα`

(x)) (by observation 7)456

= H(χα1
(x), . . . , χα`

(x)) − H(χα1
(x), . . . , χα`

(x) | M)457

= ` − H(χα1
(x), . . . , χα`

(x) | M)458

(by Fact 5 (3) as χαi
(x)’s are independent as random variables)459

≥ ` −
∑̀

i=1

H(χαi
(x) | M) (by Fact 5 (2))460

≥ ` − `

(
1 − 1

2
· 1

3

)
(by Fact 16)461

=
`

6
.462

463

464

Recall that cΠ = D→,U
1−ξ

6

(f+). Part 3 of Theorem 14 follows easily from Lemma 19:465

D→,U
1−ξ

6

(f+) = cΠ466

≥ `

6
(by Lemma 19 (b))467

≥ d

6
. (by Lemma 19 (a))468

469

470

The proof of Theorem 4 now follows directly from Part 1 and Part 3 of Theorem 14 by471

setting ξ = 1/3.472

4 Applications473

In this section using Theorem 14 we confirm Conjecture 3 for several funcion classes: low-474

degree F2 polynomials, functions with sparse Fourier spectrum and symmetric functions475

(which are not too imbalanced). We also give an example of a composition theorem using476

recursive majority function as an example.477

4.1 Low-degree F2 polynomials478

In this section we show that for Boolean functions with low F2-degree randomness does not479

help in the design of linear sketches or one-way communication protocols. We briefly review480

some basic definitions, facts and results below.481

I Fact 20. For every Boolean function f : F
n
2 → F2 there is a unique n-variate polynomial482

p ∈ F2[x1, . . . , xn] such that for every (x1, . . . , xn) ∈ F
n
2 , f(x1, . . . , xn) = p(x1, . . . , xn).483

The uniqueness of this representation in particular implies that the only F2 polynomial484

representing the constant 0 function is the polynomial 0. Taking the contrapositive, we have485

that for every non-constant F2 polynomial there is an assignment to its input variables on486

which the polynomial evaluates to 1.487

The degree of p is referred to as the F2-degree of f . We will need the following standard488

result which states that a function with low F2-degree cannot vanish on too many points in489

its domain. For the sake of completion, we add a proof of it in the appendix (Section E.2).490
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I Lemma 21. Let f be a Boolean function different than the constant 0 function with F2491

degree d. Then,492

Pr
x∼U(Fn

2
)
[f(x) = 1] ≥ 1

2d
.493

494

In this section we prove the following theorem.495

I Theorem 22. Let f : F
n
2 → F2 be a Boolean function, and let the F2-degree of f be d.496

Then,497

Dlin(f) = dim(f) = O
(

R→1/3(f+) · d
)

.498

499

Proof. Let ` = Dlin,U
1

4·2d

(f). This implies that there is a set P = {P1, . . . , P`} of at most `500

parities and a Boolean function g such that Prx∼U(Fn
2

)[f(x) 6= g(P1(x), . . . , P`(x))] ≤ 1
4·2d .501

We now prove that Dlin(f) (or equivalently Fourier dimension) of f is at most `. That will502

prove the theorem as:503

Dlin,U
1

4·2d

(f) = O

(
D→,U

1

12·2d

(f+)

)
,504

D→,U
1

12·2d

(f+) = O
(

R→1

12·2d
(f+)

)
,505

R→1

12·2d
(f+) = O

(
R→1/3(f+) · d

)
.506

507

where the first relation follows by invoking parts 1 and 3 of Theorem 14 with ξ = 1 − 1
2d+1 ,508

the second relation holds by fixing the randomness of a randomized one-way protocol509

appropriately, and the third relation is true because the error of a randomized one-way510

protocol can be reduced from 1/3 to 1
12·2d by taking the majority of O(d) independent parallel511

repetitions.512

It is left to prove that Dlin(f) ≤ `. We prove it by showing that evaluations of all the

parities in the set P determine the value of f . For each b = (b1, . . . , b`) ∈ F
`
2, let Vb denote

the affine subspace {x ∈ F
n
2 : P1(x) = b1, . . . , P`(x) = b`} and define:

pb := Pr
x∼U(Vb)

[f(x) 6= g(P1(x), . . . , P`(x))] = Pr
x∼U(Vb)

[f(x) 6= g(b1, . . . , b`)].

Note that:513

pb ≥ min{ Pr
x∼U(Vb)

[f(x) = 0], Pr
x∼U(Vb)

[f(x) = 1]} ≥ 1

2
Pr

x,x′∼U(Vb)
[f(x) 6= f(x′)]. (5)514

515

Given this observation, define F : F
n
2 × F

n
2 → F2 as follows. For x, x′ ∈ F

n
2 let:

F (x, x′) := 1f(x) 6=f(x′) = f(x) + f(x′) mod 2.
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Note that F2-degree of F is at most d. Now,516

Pr
x∼U(Fn

2
)
[f(x) 6= g(P1(x), . . . , P`(x))] ≤ 1

4 · 2d
517

⇒ Eb∼U(F`
2
)

[
Pr

x∼U(Vb)
[f(x) 6= g(b1, . . . , b`)]

]
≤ 1

4 · 2d
518

⇒ Eb∼U(F`
2
) [pb] ≤ 1

4 · 2d
519

⇒ Eb∼U(F`
2
)

[
Pr

x,x′∼U(Vb)
[f(x) 6= f(x′)]

]
≤ 1

2 · 2d
(From equation (5))520

⇒ Eb∼U(F`
2
)

[
Pr

x,x′∼U(Vb)
[F (x, x′) = 1]

]
≤ 1

2 · 2d
(6)521

522

Let V denote the subspace {(x, x′) ∈ F
n
2 × F

n
2 : P1(x) = P1(x′), . . . , P`(x) = P`(x

′)} of523

F
n
2 × F

n
2 . From 6 we have that524

Pr
(x,x′)∼U(V )

[F (x, x′) = 1] ≤ 1

2 · 2d
<

1

2d
. (7)525

526

Since F2-degree of F is at most d, restriction of F to V also has F2 degree at most d.527

Equation 7 and Fact 21 imply that F is the constant 0 function on V . Thus for each x, x′528

such that P1(x) = P1(x′), . . . , P`(x) = P`(x
′), f(x) = f(x′). Thus f(x) is a function of529

P1(x), . . . , P`(x). Hence, Fourier dimension of f is at most `.530

For low-degree polynomials with bounded spectral norm we obtain the following corollary.531

I Corollary 23. Let f : F
n
2 → F2 be a Boolean function of F2-degree d. Then

Dlin(f) = dim(f) = O
(

d · ‖f̂‖2
1

)
.

Proof. The proof follows from the result of Grolmusz [17, 39] that shows that R→1/3(f+) =532

O(‖f̂‖2
1) and Theorem 22.533

This result should be compared with Corollary 6 in Tsang et al. [49] who show that534

Dlin(f) = O(2d3/2 logd2 ‖f̂‖1). Corollary 23 gives a stronger bound for d = ω
(

log1/3 ‖f̂‖1

)
.535

4.2 Address function and Fourier sparsity536

Consider the addressing function Addn : {0, 1}log n+n → {0, 1} defined as follows14:537

Addn(x, y1, . . . , yn) = yx, where x ∈ {0, 1}log n, yi ∈ {0, 1},538
539

i.e. the value of Addn on an input (x, y) is given by the x-th bit of the vector y where540

x is treated as a binary representation of an integer number in between 1 and n. Here541

x is commonly referred to as the address block and y as the addressee block. Addressing542

function has only n2 non-zero Fourier coefficients. In fact, as shown by Sanyal [44] the Fourier543

dimension, and hence by Fact 8 also the deterministic sketch complexity, of any Boolean544

function with Fourier sparsity s is O(
√

s log s).545

Below using the addressing function we show that this relationship is tight (up to a546

logarithmic factor) even if randomization is allowed, i.e. even for a function with Fourier547

sparsity s an F2 sketch of size Ω(
√

s) might be required.548

14 In this section it will be more convenient to represent both domain and range of the function using
{0, 1} rather than F2.
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I Theorem 24. For the addressing function Addn and values 1 ≤ d ≤ n and ξ > d/n it

holds that:

Dlin,U
1−

√
ξ

2

(Add+
n ) > d, D→,U

1−ξ

6

(Addn) >
d

6
.

Proof. If we apply the standard Fourier notation switch where we replace 0 with 1 and 1549

with −1 in the domain and the range of the function then the addressing function Addn(x, y)550

can be expressed as the following multilinear polynomial:551

Addn(x, y) =
∑

i∈{0,1}log n

yi

∏

j : ij=1

(
1 − xj

2

) ∏

j : ij=0

(
1 + xj

2

)
,552

553

which makes it clear that the only non-zero Fourier coefficents correspond to the sets that554

contain a single variable from the addressee block and an arbitrary subset of variables555

from the address block. This expansion also shows that the absolute value of each Fourier556

coefficient is equal to 1
n .557

Fix any d-dimensional subspace Ad and consider the matrix M ∈ F
d×(log n+n)
2 composed558

of the basis vectors as rows. We add to M extra log n rows which contain an identity559

matrix in the first log n coordinates and zeros everywhere else. This gives us a new matrix560

M ′ ∈ F
(d+log n)×(log n+n)
2 . Applying Gaussian elimination to M ′ we can assume that it is of561

the following form:562

M ′ =




Ilog n 0 0

0 Id′ M ′′

0 0 0


 ,563

564

where d′ ≤ d. Thus, the total number of non-zero Fourier coefficients spanned by the rows of565

M ′ equals nd′. Hence, the total sum of squared Fourier coeffients in Ad is at most d′

n ≤ d
n ,566

i.e. dimξ(Addn) > d. By Part 2 and Part 3 of Theorem 14 the statement of the theorem567

follows.568

4.3 Symmetric functions569

A function f : F
n
2 → F2 is symmetric if it can be expressed as g(‖x‖0) for some function570

g : [0, n] → F2. We give the following lower bound for symmetric functions:571

I Theorem 25 (Lower bound for symmetric functions). For any symmetric function f : F
n
2 →

F2 that isn’t (1 − ε)-concentrated on {∅, {1, . . . , n}}:

Dlin,U
ε/8 (f) ≥ n

2e
, D→,U

ε/12 (f+) ≥ n

2e
.

Proof. First we prove an auxiliary lemma. Let Wk be the set of all vectors in F
n
2 of Hamming572

weight k.573

I Lemma 26. For any d ∈ [n/2], k ∈ [n − 1] and any d-dimensional subspace Ad ≤ F
n
2 :574

|Wk ∩ Ad|
|Wk| ≤

(
ed

n

)min(k,n−k,d)

≤ ed

n
.575

576

Proof. Fix any basis in Ad and consider the matrix M ∈ F
d×n
2 composed of the basis vectors577

as rows. W.l.o.g we can assume that this matrix is diagonalized and is in the standard form578

(Id, M ′) where Id is a d × d identity matrix and M ′ is a d × (n − d)-matrix. Clearly, any579
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linear combination of more than k rows of M has Hamming weight greater than k just from580

the contribution of the first d coordinates. Thus, we have |Wk ∩ Ad| ≤ ∑k
i=0

(
d
i

)
.581

For any k ≤ d it is a standard fact about binomials that
∑k

i=0

(
d
i

)
≤
(

ed
k

)k
. On the582

other hand, we have |Wk| =
(

n
k

)
≥ (n/k)k. Thus, we have |Wk∩Ad|

|Wk| ≤
(

ed
n

)k
and hence for583

1 ≤ k ≤ d the desired inequality holds.584

If d < k then consider two cases. Since d ≤ n/2 the case n − d ≤ k ≤ n − 1 is symmetric585

to 1 ≤ k ≤ d. If d < k < n − d then we have |Wk| > |Wd| ≥ (n/d)d and |Wk ∩ Ad| ≤ 2d so586

that the desired inequality follows.587

Any symmetric function has its spectrum distributed uniformly over Fourier coefficients588

of any fixed weight. Let wi =
∑

S∈Wi
f̂2(S). By the assumption of the theorem we have589 ∑n−1

i=1 wi ≥ ε. Thus, by Lemma 26 any linear subspace Ad of dimension at most d ≤ n/2590

satisfies that:591

∑

S∈Ad

f2(S) ≤ f̂2(∅) + f̂2({1, . . . , n}) +

n−1∑

i=1

wi
|Wi ∩ Ad|

|Wi|
592

≤ f̂2(∅) + f̂2({1, . . . , n}) +
n−1∑

i=1

wi
ed

n
593

≤ (1 − ε) + ε
ed

n
.594

595

Thus, f isn’t 1 − ε(1 − ed
n )-concentrated on any d-dimensional linear subspace, i.e.596

dimξ(f) > d for ξ = 1 − ε(1 − ed
n ). By Part 2 of Theorem 14 this implies that f doesn’t have597

randomized sketches of dimension at most d which err with probability less than:598

1

2
−

√
1 − ε(1 − ed

n )

2
≥ ε

4

(
1 − ed

n

)
≥ ε

8
599

600

where the last inequality follows by the assumption that d ≤ n
2e . The communication601

complexity lower bound follows by Part 3 of Theorem 14 by setting d = n
2e .602

4.4 Composition theorem for majority603

In this section using Theorem 14 we give a composition theorem for F2-sketching of the604

composed Maj3 function. Unlike in the deterministic case for which the composition theorem605

is easy to show (see Lemma 13) in the randomized case composition results require more606

work.607

I Definition 27 (Composition). For f : F
n
2 → F2 and g : F

m
2 → F2 their composition f ◦608

g : F
mn
2 → F2 is defined as:609

(f ◦ g)(x) = f(g(x1, . . . , xm), g(xm+1, . . . , x2m), . . . , g(xm(n−1)+1, . . . , xmn)).610
611

Consider the recursive majority function Maj◦k3 ≡ Maj3 ◦ Maj3 ◦ · · · ◦ Maj3 where the612

composition is taken k times.613

I Theorem 28. For any d ≤ n, k = log3 n and ξ > 4d
n it holds that dimξ

(
Maj◦k3

)
> d.614

First, we show a slighthly stronger result for standard subspaces and then extend this result615

to arbitrary subspaces with a loss of a constant factor. Fix any set S ⊆ [n] of variables. We616

associate this set with a collection of standard unit vectors corresponding to these variables.617

Hence in this notation ∅ corresponds to the all-zero vector.618
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I Lemma 29. For any standard subspace whose basis consists of singletons from the set619

S ⊆ [n] it holds that:620

∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2

≤ |S|
n

621

622

Proof. The Fourier expansion of Maj3 is given as623

Maj3(x1, x2, x3) =
1

2
(x1 + x2 + x3 − x1x2x3)624

. For i ∈ {1, 2, 3} let Ni = {(i − 1)n/3 + 1, . . . , in/3}. Let Si = S ∩ Ni. Let αi be defined as:625

αi =
∑

Z∈span(Si)

(
̂Maj◦k−1

3 (Z)

)2

.626

627

Then we have:628

∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2

=

3∑

i=1

∑

Z∈span(Si)

(
M̂aj◦k3 (Z)

)2

+629

∑

Z∈span(S)−∪3
i=1

span(Si)

(
M̂aj◦k3 (Z)

)2

.630

631

For each Si we have

∑

Z∈span(Si)

(
M̂aj◦k3 (Z)

)2

=
1

4

∑

Z∈span(Si)

(
̂Maj◦k−1

3 (Z)

)2

=
αi

4
.

Moreover, for each Z ∈ span(S) − ∪3
i=1span(Si) we have:632

M̂aj◦k3 (Z) =

{
− 1

2
̂Maj◦k−1

3 (Z1) ̂Maj◦k−1
3 (Z2) ̂Maj◦k−1

3 (Z3) if Z ∈ ×3
i=1(span(Si) \ ∅)

0 otherwise.
633

634

Thus, we have:635

∑

Z∈(span(S1)\∅)×(span(S2)\∅)×(span(S3)\∅)

(
M̂aj◦k3 (Z)

)2

636

=
∑

Z∈(span(S1)\∅)×(span(S2)\∅)×(span(S3)\∅)

1

4

(
̂Maj◦k−1

3 (Z1)

)2

·
(

̂Maj◦k−1
3 (Z2)

)2

·637

(
̂Maj◦k−1

3 (Z3)

)2

638

=
1

4


 ∑

Z∈(span(S1)\∅)

(
̂Maj◦k−1

3 (Z1)

)2

 ·


 ∑

Z∈(span(S2)\∅)

(
̂Maj◦k−1

3 (Z2)

)2

 ·639


 ∑

Z∈(span(S3)\∅)

(
̂Maj◦k−1

3 (Z3)

)2

640

=
1

4
α1α2α3.641

642
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where the last equality holds since ̂Maj◦k−1
3 (∅) = 0. Putting this together we have:643

∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2

=
1

4
(α1 + α2 + α3 + α1α2α3)644

≤ 1

4

(
α1 + α2 + α3 +

1

3
(α1 + α2 + α3)

)
=

1

3
(α1 + α2 + α3).645

646

Applying this argument recursively to each αi for k − 1 times we have:647

∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2

≤ 1

3k

3k∑

i=1

γi,648

649

where γi = 1 if i ∈ S and 0 otherwise. Thus,
∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2

≤ |S|
n .650

To extend the argument to arbitrary linear subspaces we show that any such subspace has651

less Fourier weight than a collection of three carefully chosen standard subspaces. First we652

show how to construct such subspaces in Lemma 30.653

For a linear subspace L ≤ F
n
2 we denote the set of all vectors in L of odd Hamming654

weight as O(L) and refer to it as the odd set of L. For two vectors v1, v2 ∈ F
n
2 we say that655

v1 dominates v2 if the set of non-zero coordinates of v1 is a (not necessarily proper) subset656

of the set of non-zero coordinates of v2. For two sets of vectors S1, S2 ⊆ F
n
2 we say that S1657

dominates S2 (denoted as S1 ≺ S2) if there is a matching M between S1 and S2 of size |S2|658

such that for each (v1 ∈ S1, v2 ∈ S2) ∈ M the vector v1 dominates v2.659

I Lemma 30 (Standard subspace domination lemma). For any linear subspace L ≤ F
n
2 of

dimension d there exist three standard linear subspaces S1, S2, S3 ≤ F
n
2 such that:

O(L) ≺ O(S1) ∪ O(S2) ∪ O(S3),

and dim(S1) = d − 1, dim(S2) = d, dim(S3) = 2d.660

Proof. Let A ∈ F
d×n
2 be the matrix with rows corresponding to the basis in L. We will661

assume that A is normalized in a way described below. First, we apply Gaussian elimination662

to ensure that A = (I, M) where I is a d × d identity matrix. If all rows of A have even663

Hamming weight then the lemma holds trivially since O(L) = ∅. By reordering rows and664

columns of A we can always assume that for some k ≥ 1 the first k rows of A have odd665

Hamming weight and the last d − k have even Hamming weight. Finally, we add the first666

column to each of the last d − k rows, which makes all rows have odd Hamming weight. This667

results in A of the following form:668

A =




1 0 · · · 0 0 · · · 0 a

0

Ik−1 0 M1
...
0

1

0 Id−k M2
...
1




669

We use the following notation for submatrices: A[i1, j1; i2, j2] refers to the submatrix of A670

with rows between i1 and j1 and columns between i2 and j2 inclusive. We denote to the671
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first row by v, the submatrix A[2, k; 1, n] as A and the submatrix A[k + 1, d; 1, n] as B. Each672

x ∈ O(L) can be represented as
∑

i∈S Ai where the set S is of odd size and the sum is over673

F
n
2 . We consider the following three cases corresponding to different types of the set S.674

Case 1. S ⊆ rows(A) ∪ rows(B). This corresponds to all odd size linear combinations675

of the rows of A that don’t include the first row. Clearly, the set of such vectors is dominated676

by O(S1) where S1 is the standard subspace corresponding to the span of the rows of the677

submatrix A[2, d; 2, d].678

Case 2. S contains the first row, |S ∩ rows(A)| and |S ∩ rows(B)| are even. All such679

linear combinations have their first coordinate equal 1. Hence, they are dominated by a680

standard subspace corresponding to span of the rows the d × d identity matrix, which we681

refer to as S2.682

Case 3. S contains the first row, |S ∩rows(A)| and |S ∩rows(B)| are odd. All such linear683

combinations have their first coordinate equal 0. This implies that the Hamming weight of684

the first d coordinates of such linear combinations is even and hence the other coordinates685

cannot be all equal to 0. Consider the submatrix M = A[1, d; d + 1, n] corresponding to the686

last n − d columns of A. Since the rank of this matrix is at most d by running Gaussian687

elimination on M we can construct a matrix M ′ containing as rows the basis for the row688

space of M of the following form:689

M ′ =

(
It M1

0 0

)
690

691

where t = rank(M). This implies that any non-trivial linear combination of the rows of692

M contains 1 in one of the first t coordinates. We can reorder the columns of A in such693

a way that these t coordinates have indices from d + 1 to d + t. Note that now the set of694

vectors spanned by the rows of the (d + t) × (d + t) identity matrix Id+t dominates the set695

of linear combinations we are interested in. Indeed, each such linear combination has even696

Hamming weight in the first d coordinates and has at least one coordinate equal to 1 in the697

set {d + 1, . . . , d + t}. This gives a vector of odd Hamming weight that dominates such linear698

combination. Since this mapping is injective we have a matching. We denote the standard699

linear subspace constructed this way by S3 and clearly dim(S3) ≤ 2d.700

The following proposition shows that the spectrum of the Maj◦k3 is monotone decreasing701

under inclusion if restricted to odd size sets only:702

I Proposition 31. For any two sets Z1 ⊆ Z2 of odd size it holds that:703

∣∣∣M̂aj◦k3 (Z1)
∣∣∣ ≥

∣∣∣M̂aj◦k3 (Z2)
∣∣∣ .704

705

Proof. The proof is by induction on k. Consider the Fourier expansion of Maj3(x1, x2, x3) =706

1
2 (x1 + x2 + x3 − x1x2x3). The case k = 1 holds since all Fourier coefficients have absolute707

value 1/2. Since Maj◦k3 = Maj3 ◦ (Maj◦k−1
3 ) all Fourier coefficients of Maj◦k3 result from708

substituting either a linear or a cubic term in the Fourier expansion by the multilinear709

expansions of Maj◦k−1
3 . This leads to four cases.710

Case 1. Z1 and Z2 both arise from linear terms. In this case if Z1 and Z2 aren’t disjoint711

then they arise from the same linear term and thus satisfy the statement by the inductive712

hypothesis.713

Case 2. If Z1 arises from a cubic term and Z2 from the linear term then it can’t be the714

case that Z1 ⊆ Z2 since Z2 contains some variables not present in Z1.715

Case 3. If Z1 and Z2 both arise from the cubic term then we have (Z1∩Ni) ⊆ (Z2∩Ni) for716

each i. By the inductive hypothesis we then have

∣∣∣∣
̂Maj◦k−1

3 (Z1 ∩ Ni)

∣∣∣∣ ≥
∣∣∣∣

̂Maj◦k−1
3 (Z2 ∩ Ni)

∣∣∣∣.717
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Since for j = 1, 2 we have M̂aj◦k3 (Zj) = − 1
2

∏
i

̂Maj◦k−1
3 (Zj ∩ Ni) the desired inequality718

follows.719

Case 4. If Z1 arises from the linear term and Z2 from the cubic term then w.l.o.g.720

assume that Z1 arises from the x1 term. Note that Z1 ⊆ (Z2 ∩ N1) since Z1 ∩ (N2 ∪ N3) = ∅.721

By the inductive hypothesis applied to Z1 and Z2 ∩ N1 the desired inequality holds.722

We can now complete the proof of Theorem 28723

Proof of Theorem 28. By combining Proposition 31 and Lemma 29 we have that any set T of724

vectors that is dominated by O(S) for some standard subspace S satisfies
∑

S∈T M̂aj◦k3 (S)2 ≤725

dim(S)
n . By the standard subspace domination lemma (Lemma 30) any subspace L ≤ F

n
2 of726

dimension d has O(L) dominated by a union of three standard subspaces of dimension 2d, d727

and d − 1 respectively. Thus, we have
∑

S∈O(L) M̂aj◦k3 (S)2 ≤ 2d
n + d

n + d−1
n ≤ 4d

n .728

We have the following corollary of Theorem 28 that proves Theorem 5.729

I Corollary 32. For any ε ∈ [0, 1
2 ], ξ > 4ε2 and k = log3 n it holds that:730

Dlin,U
1−

√
ξ

2

(Maj◦k3 ) > ε2n, D→,U
1−ξ

6

(Maj◦k3

+
) >

ε2n

6
.731

732

Proof. Fix d = ε2n. For this choice of d Theorem 28 implies that for ξ > 4ε2 it holds tha t733

dimξ

(
Maj◦k3

)
> d. The first part follows from Part 2 of Theorem 14. The second part is by734

Part 3 of Theorem 14.735

5 Streaming algorithms over F2736

Let ei be the standard unit vector in F
n
2 . In the turnstile streaming model the input x ∈ F

n
2737

is represented as a stream σ = (σ1, σ2, . . . ) where σi ∈ {e1, . . . , en}. For a stream σ the738

resulting vector x corresponds to its frequency vector freq σ ≡ ∑i σi. Concatenation of two739

streams σ and τ is denoted as σ ◦ τ .740

5.1 Random streams741

In this section we show how to translate our results in Section 3 and 4 into lower bounds for742

streaming algorithms. We consider the following two natural models of random streams over743

F2:744

Model 1. In the first model we start with x ∈ F
n
2 that is drawn from the uniform745

distribution over F
n
2 and then apply a uniformly random update y ∼ U(Fn

2 ) obtaining x + y.746

In the streaming language this corresponds to a stream σ = σ1 ◦ σ2 where freq σ1 ∼ U(Fn
2 )747

and freq σ2 ∼ U(Fn
2 ). A specific example of such stream would be one where for both σ1 and748

σ2 we flip an unbiased coin to decide whether or not to include a vector ei in the stream for749

each value of i. The expected length of the stream in this case is n.750

Model 2. In the second model we consider a stream σ which consists of uniformly751

random updates. Let σi = er(i) where r(i) ∼ U([n]). This corresponds to each update being752

a flip in a coordinate of x chosen uniformly at random. This model is equivalent to the753

previous model but requires longer streams to mix. Using coupon collector’s argument such754

streams of length Θ(n log n) can be divided into two substreams σ1 and σ2 such that with755

high probability both freq σ1 and freq σ2 are uniformly distributed over F
n
2 and σ = σ1 ◦ σ2.756
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I Theorem 33. Let f : F
n
2 → F2 be an arbitrary function. In the two random streaming757

models for generating σ described above any algorithm that computes f(freq σ) with probability758

at least 8/9 in the end of the stream has to use space that is at least Dlin,U
1/3 (f).759

Proof. The proof follows directly from Theorem 4 as in both models we can partition the760

stream into σ1 and σ2 such that freq σ1 and freq σ2 are both distributed uniformly over F
n
2 .761

We treat these two frequency vectors as inputs of Alice and Bob in the communication game.762

Since communication D→,U
1/9 (f+) ≥ Dlin,U

1/3 (f) is required no streaming algorithm with less763

space exists as otherwise Alice would transfer its state to Bob with less communication.764

Using the same proof as in Theorem 33 it follows that all the lower bounds in Section 4765

hold for both random streaming models described above.766

5.2 Adversarial streams767

We now show that any randomized turnstile streaming algorithm for computing f : F
n
2 → F2768

with error probability δ has to use space that is at least Rlin
6δ (f) − O(log n + log(1/δ)) under769

adversarial sequences of updates. The proof is based on the recent line of work that shows that770

this relationship holds for real-valued sketches [10, 32, 1]. The proof framework developed771

by [10, 32, 1] for real-valued sketches consists of two steps. First, a turnstile streaming772

algorithm is converted into a path-independent stream automaton (Definition 35). Second,773

using the theory of modules and their representations it is shown that such automata can774

always be represented as linear sketches. We observe that the first step of this framework775

can be left unchanged under F2. However, as we show the second step can be significantly776

simplified as path-independent automata over F2 can be directly seen as linear sketches777

without using module theory. Furthermore, since we are working over F2 we also avoid the778

O(log m) factor loss in the reduction between path independent automata and linear sketches779

that is present in [10].780

We use the following abstraction of a stream automaton from [10, 32, 1] adapted to our781

context to represent general turnstile streaming algorithms over F2.782

I Definition 34 (Deterministic Stream Automaton). A deterministic stream automaton A is a783

Turing machine that uses two tapes, an undirectional read-only input tape and a bidirectional784

work tape. The input tape contains the input stream σ. After processing the input, the785

automaton writes an output, denoted as φA(σ), on the work tape. A configuration (or state)786

of A is determined by the state of its finite control, head position, and contents of the work787

tape. The computation of A can be described by a transition function ⊕A : C × F2 → C,788

where C is the set of all possible configurations. For a configuration c ∈ C and a stream789

σ, we denote by c ⊕A σ the configuration of A after processing σ starting from the initial790

configuration c. The set of all configurations of A that are reachable via processing some791

input stream σ is denoted as C(A). The space of A is defined as S(A) = log |C(A)|.792

We say that a deterministic stream automaton computes a function f : F
n
2 → F2 over a793

distribution Π if Prσ∼Π[φA(σ) = f(freq σ)] ≥ 1 − δ.794

I Definition 35 (Path-independent automaton). An automaton A is said to be path-795

independent if for any configuration c and any input stream σ, c ⊕A σ depends only on freq σ796

and c.797

I Definition 36 (Randomized Stream Automaton). A randomized stream automaton A is798

a deterministic automaton with an additional tape for the random bits. This random799
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tape is initialized with a random bit string R before the automaton is executed. During800

the execution of the automaton this bit string is used in a bidirectional read-only manner801

while the rest of the execution is the same as in the deterministic case. A randomized802

automaton A is said to be path-independent if for each possible fixing of its randomness R803

the deterministic automaton AR is path-independent. The space complexity of A is defined804

as S(A) = maxR(|R| + S(AR)).805

Theorems 5 and 9 of [32] combined with the observation in Appendix A of [1] that806

guarantees path independence yields the following:807

I Theorem 37 (Theorems 5 and 9 in [32] + [1]). Suppose that a randomized stream automaton808

A computes f on any stream with probability at least 1 − δ. For an arbitrary distribution809

Π over streams there exists a deterministic15 path independent stream automaton B that810

computes f with probability 1 − 6δ over Π such that S(B) ≤ S(A) + O(log n + log(1/δ)).811

The rest of the argument below is based on the work of Ganguly [10] adopted for our812

needs. Since we are working over a finite field we also avoid the O(log m) factor loss in813

the reduction between path independent automata and linear sketches that is present in814

Ganguly’s work.815

Let An be a path-independent stream automaton over F2 and let ⊕ abbreviate ⊕An
. Define816

the function ∗ : F
n
2 ×C(An) → C(An) as: x∗a = a⊕σ, where freq(σ) = x. Let o be the initial817

configuration of An. The kernel MAn
of An is defined as MAn

= {x ∈ F
n
2 : x ∗ o = 0n ∗ o}.818

I Proposition 38. The kernel MAn
of a path-independent automaton An is a linear subspace819

of F
n
2 .820

Proof. For x, y ∈ MAn
by path independence (x+y)∗o = x∗ (y ∗o) = 0n ∗o so x+y ∈ MAn

.821

822

Since MAn
≤ F

n
2 the kernel partitions F

n
2 into cosets of the form x + MAn

. Next we show823

that there is a one to one mapping between these cosets and the states of An.824

I Proposition 39. For x, y ∈ F
n
2 and a path independent automaton An with a kernel MAn

it825

holds that x ∗ o = y ∗ o if and only if x and y lie in the same coset of MAn
.826

Proof. By path independence x ∗ o = y ∗ o iff x ∗ (x ∗ o) = x ∗ (y ∗ o) or equivalently827

0n ∗ o = (x + y) ∗ o. The latter condition holds iff x + y ∈ MAn
which is equivalent to x and828

y lying in the same cost of MAn
.829

The same argument implies that the the transition function of a path-independent automaton830

has to be linear since (x + y) ∗ o = x ∗ (y ∗ o). Combining these facts together we conclude831

that a path-independent automaton has at least as many states as the best deterministic832

F2-sketch for f that succeeds with probability at least 1 − 6δ over Π (and hence the best833

randomized sketch as well). Putting things together we get:834

I Theorem 40. Any randomized streaming algorithm that computes f : F
n
2 → F2 under835

arbitrary updates over F2 with error probability at least 1 − δ has space complexity at least836

Rlin
6δ (f) − O(log n + log(1/δ)).837

15 We note that [32] construct B as a randomized automaton in their Theorem 9 but it can always be
made deterministic by fixing the randomness that achieves the smallest error.
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Appendix1021

A Information theory1022

Let X be a random variable supported on a finite set {x1, . . . , xs}. Let E be any event in1023

the same probability space. Let P[·] denote the probability of any event. The conditional1024

entropy H(X | E) of X conditioned on E is defined as follows.1025

I Definition 1 (Conditional entropy).

H(X | E) :=

s∑

i=1

P[X = xi | E ] log2

1

P[X = xi | E ]
1026

An important special case is when E is the entire sample space. In that case the above1027

conditional entropy is referred to as the Shannon entropy H(X) of X.1028

I Definition 2 (Entropy).

H(X) :=

s∑

i=1

P[X = xi] log2

1

P[X = xi]
1029

Let Y be another random variable in the same probability space as X, taking values from a1030

finite set {y1, . . . , yt}. Then the conditional entropy of X conditioned on Y , H(X | Y ), is1031

defined as follows.1032

I Definition 3.

H(X | Y ) =

t∑

i=1

P[Y = yi] · H(X | Y = yi)1033

We next define the binary entropy function Hb(·).1034

I Definition 4 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hb(p), is defined to1035

be the Shannon entropy of a random variable taking two distinct values with probabilities p1036

and 1 − p.1037

Hb(p) := p log2

1

p
+ (1 − p) log

1

1 − p
.1038

The following properties of entropy and conditional entropy will be useful.1039

I Fact 5. (1) Let X be a random variable supported on a finite set A, and let Y be another1040

random variable in the same probability space. Then 0 ≤ H(X | Y ) ≤ H(X) ≤ log2 |A|.1041

(2) (Sub-additivity of conditional entropy). Let X1, . . . , Xn be n jointly distributed random1042

variables in some probability space, and let Y be another random variable in the same1043

probability space, all taking values in finite domains. Then,1044

H(X1, . . . , Xn | Y ) ≤
n∑

i=1

H(Xi | Y ).1045

(3) Let X1, . . . , Xn are independent random variables taking vakues in finite domains. Then,1046

H(X1, . . . , Xn) =

n∑

i=1

H(Xi).1047
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(4) (Taylor expansion of binary entropy in the neighbourhood of 1
2 ).1048

Hb(p) = 1 − 1

2 loge 2

∞∑

n=1

(1 − 2p)2n

n(2n − 1)
1049

I Definition 6 (Mutual information). Let X and Y be two random variables in the same1050

probability space, taking values from finite sets. The mutual information between X and Y ,1051

I(X; Y ), is defined as follows.1052

I(X; Y ) := H(X) − H(X | Y ).1053

It can be shown that I(X; Y ) is symmetric in X and Y , i.e. I(X; Y ) = I(Y ; X) = H(Y ) −1054

H(Y | X).1055

The following observation follows immediately from the first inequality of Fact 5 (1).1056

I Observation 7. For any two random variables X and Y , I(X; Y ) ≤ H(X).1057

A.1 Proof of Fact 161058

Let EX = δ. Then,1059

H(X) =

{
1 with probability 1

2 + δ
2

−1 with probability 1
2 − δ

2

1060

So,1061

H(X) = Hb

(
1

2
+

δ

2

)
1062

= 1 − 1

2 loge 2

∞∑

n=1

δ2n

n(2n − 1)
(From Fact 5 (4))1063

≤ 1 − δ2

2
.1064

1065

B Deterministic F2-sketching1066

In the deterministic case it will be convenient to represent F2-sketch of a function f : F
n
2 → F21067

as a d × n matrix Mf ∈ F
d×n
2 that we call the sketch matrix. The d rows of Mf correspond1068

to vectors α1, . . . , αd used in the deterministic sketch so that the sketch can be computed1069

as Mf x. W.l.o.g below we will assume that the sketch matrix Mf has linearly independent1070

rows and that the number of rows in it is the smallest possible among all sketch matrices1071

(ties in the choice of the sketch matrix are broken arbitrarily).1072

The following fact is standard (see e.g. [39, 16]):1073

I Fact 8. For any function f : F
n
2 → F2 it holds that Dlin(f) = dim(f) = rank(Mf ).1074

Moreover, set of rows of Mf forms a basis for a subspace A ≤ F
n
2 containing all non-zero1075

coefficients of f .1076

B.1 Disperser argument1077

We show that the following basic relationship holds between deterministic linear sketching1078

complexity and the property of being an affine disperser. For randomized F2-sketching an1079

analogous statement holds for affine extractors as shown in Lemma 16.1080
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I Definition 9 (Affine disperser). A function f is an affine disperser of dimension at least d if1081

for any affine subspace of F
n
2 of dimension at least d the restriction of f on it is a non-constant1082

function.1083

I Lemma 10. Any function f : F
n
2 → F2 which is an affine disperser of dimension at least d1084

has deterministic linear sketching complexity at least n − d + 1.1085

Proof. Assume for the sake of contradiction that there exists a linear sketch matrix Mf with1086

k ≤ n − d rows and a deterministic function g such that g(Mf x) = f(x) for every x ∈ F
n
2 .1087

For any vector b ∈ F
k
2 , which is in the span of the columns of Mf , the set of vectors x which1088

satisfy Mf x = b forms an affine subspace of dimension at least n − k ≥ d. Since f is an1089

affine disperser for dimension at least d the restriction of f on this subspace is non-constant.1090

However, the function g(Mf x) = g(b) is constant on this subspace and thus there exists x1091

such that g(Mf x) 6= f(x), a contradiction.1092

B.2 Composition and convolution1093

In order to prove a composition theorem for Dlin we introduce the following operation on1094

matrices which for a lack of a better term we call matrix super-slam16.1095

I Definition 11 (Matrix super-slam). For two matrices A ∈ F
a×n
2 and B ∈ F

b×m
2 their1096

super-slam A † B ∈ F
abn×nm
2 is a block matrix consisting of a blocks (A † B)i. The i-th1097

block (A † B)i ∈ F
bn×nm
2 is constructed as follows: for every vector j ∈ {1, . . . , b}n the1098

corresponding row of (A † B)i is defined as (Ai,1Bj1
, Ai,2Bj2

, . . . , Ai,nBjn
), where Bk denotes1099

the kth row of B.1100

I Proposition 12. rank(A † B) ≥ rank(A)rank(B).1101

Proof. Consider the matrix C which is a subset of rows of A†B where from each block (A†B)i1102

we select only b rows corresponding to the vectors j of the form αn for all α ∈ {1, . . . , b}.1103

Note that C ∈ F
ab×mn
2 and C(i,k),(j,l) = Ai,jBk,l. Hence, C is a Kronecker product of A and1104

B and we have:1105

rank(A † B) ≥ rank(C) = rank(A)rank(B).1106
1107

The following composition theorem for Dlin holds as long as the inner function is balanced:1108

I Lemma 13. For f : F
n
2 → F2 and g : F

m
2 → F2 if g is a balanced function then:1109

Dlin(f ◦ g) ≥ Dlin(f)Dlin(g)1110
1111

Proof. The multilinear expansions of f and g are given as f(y) =
∑

S∈F
n
2

f̂(S)χS(y) and1112

g(y) =
∑

S∈F
m
2

ĝ(S)χS(y). The multilinear expansion of f ◦ g can be obtained as follows. For1113

each monomial f̂(S)χS(y) in the multilinear expansion of f and each variable yi substitute1114

yi by the multilinear expansion of g on a set of variables xm(i−1)+1,...,mi. Multiplying all1115

these multilinear expansions corresponding to the term f̂(S)χS gives a polynomial which is1116

a sum of at most bn monomials where b is the number of non-zero Fourier coefficients of g.1117

Each such monomial is obtained by picking one monomial from the multilinear expansions1118

corresponding to different variables in χS and multiplying them. Note that there are no1119

16 This name was suggested by Chris Ramsey.
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cancellations between the monomials corresponding to a fixed χS . Moreover, since g is1120

balanced and thus ĝ(∅) = 0 all monomials corresponding to different characters χS and χS′1121

are unique since S and S′ differ on some variable and substitution of g into that variable1122

doesn’t have a constant term but introduces new variables. Thus, the characteristic vectors1123

of non-zero Fourier coefficients of f ◦ g are the same as the set of rows of the super-slam of1124

the sketch matrices Mf and Mg (note, that in the super-slam some rows can be repeated1125

multiple times but after removing duplicates the set of rows of the super-slam and the set of1126

characteristic vectors of non-zero Fourier coefficients of f ◦ g are exactly the same). Using1127

Proposition 12 and Fact 8 we have:1128

Dlin(f ◦ g) = rank(Mf◦g) = rank(Mf † Mg) ≥ rank(Mf )rank(Mg) = Dlin(f)Dlin(g).1129

1130
1131

Deterministic F2-sketch complexity of convolution satisfies the following property:1132

I Proposition 14. Dlin(f ∗ g) ≤ min(Dlin(f), Dlin(g)).1133

Proof. The Fourier spectrum of convolution is given as f̂ ∗ g(S) = f̂(S)ĝ(S). Hence, the set1134

of non-zero Fourier coefficients of f ∗ g is the intersection of the sets of non-zero coefficients of1135

f and g. Thus by Fact 8 we have Dlin(f ∗ g) ≤ min(rank(Mf , Mg)) = min(Dlin(f), Dlin(g)).1136

1137

C Randomized F2-sketching1138

We represent randomized F2-sketches as distributions over d × n matrices over F2. For a1139

fixed such distribution Mf the randomized sketch is computed as Mf x. If the set of rows of1140

Mf satisfies Definition 1 for some reconstruction function g then we call it a randomized1141

sketch matrix for f .1142

C.1 Extractor argument1143

We now establish a connection between randomized F2-sketching and affine extractors which1144

will be used to show that the converse of Part 1 of Theorem 14 doesn’t hold for arbitrary1145

distributions.1146

I Definition 15 (Affine extractor). A function f : F
n
2 → F2 is an affine δ-extractor if for any

affine subspace A of F
n
2 of dimension at least d it satisfies:

min
z∈{0,1}

Pr
x∼U(A)

[f(x) = z] > δ.

I Lemma 16. For any f : F
n
2 → F2 which is an affine δ-extractor of dimension at least d it

holds that:

Rlin
δ (f) ≥ n − d + 1.

Proof. For the sake of contradiction assume that there exists a randomized linear sketch1147

with a reconstruction function g : F
k
2 → F2 and a randomized sketch matrix Mf which is a1148

distribution over matrices with k ≤ n − d rows. First, we show that:1149

Pr
x∼U(Fn

2
)M∼Mf

[g(Mx) 6= f(x)] > δ.1150

1151

Indeed, fix any matrix M ∈ supp(Mf ). For any affine subspace S of the form S = {x ∈1152

F
n
2 |Mx = b} of dimension at least n − k ≥ d we have that minz∈{0,1} Prx∼U(S)[f(x) = z] > δ.1153



S. Kannan, E. Mossel, S. Sanyal and G. Yaroslavtsev 8:33

This implies that Prx∼U(S)[f(x) 6= g(Mx)] > δ. Summing over all subspaces corresponding1154

to the fixed M and all possible choices of b we have that Prx∼U(Fn
2

)[f(x) 6= g(Mx)] > δ.1155

Since this holds for any fixed M the bound follows.1156

Using the above observation it follows by averaging over x ∈ {0, 1}n that there exists1157

x∗ ∈ {0, 1}n such that:1158

Pr
M∼Mf

[g(Mx∗) 6= f(x∗)] > δ.1159

1160

This contradicts the assumption that Mf and g form a randomized linear sketch of dimension1161

k ≤ n − d.1162

I Fact 17. The inner product function IP (x1, . . . xn) =
∑n/2

i=1 x2i−1 ∧ x2i is an (1/2 − ε)-1163

extractor for affine subspaces of dimension ≥ (1/2 + α)n where ε = exp(−αn).1164

I Corollary 18. Randomized linear sketching complexity of the inner product function is at1165

least n/2 − O(1).1166

I Remark. We note that the extractor argument of Lemma 16 is often much weaker than the1167

arguments we give in Part 2 and Part 3 Theorem 14 and wouldn’t suffice for our applications1168

in Section 4. In fact, the extractor argument is too weak even for the majority function1169

Majn. If the first 100
√

n variables of Majn are fixed to 0 then the resulting restriction has1170

value 0 with probability 1 − e−Ω(n). Hence for constant error Majn isn’t an extractor for1171

dimension greater than 100
√

n. However, as shown in Section 4.3 for constant error F2-sketch1172

complexity of Majn is linear.1173

C.2 Existential lower bound for arbitrary distributions1174

Now we are ready to show that an analog of Part 1 of Theorem 14 doesn’t hold for arbitrary1175

distributions, i.e. concentration on a low-dimensional linear subspace doesn’t imply existence1176

of randomized linear sketches of small dimension.1177

I Lemma 19. For any fixed constant ε > 0 there exists a function f : F
n
2 → {+1, −1} such1178

that Rlin
ε/8(f) ≥ n − 3 log n such that f is (1 − 2ε)-concentrated on the 0-dimensional linear1179

subspace.1180

Proof. The proof is based on probabilistic method. Consider a distribution over functions1181

from F
n
2 to {+1, −1} which independently assigns to each x value 1 with probability 1 − ε/41182

and value −1 with probability ε/4. By a Chernoff bound with probability e−Ω(ε2n) a random1183

function f drawn from this distribution has at least an ε/2-fraction of −1 values and hence1184

f̂(∅) = 1
2n

∑
α∈F

n
2

f(x) ≥ 1 − ε. This implies that f̂(∅)2 ≥ (1 − ε)2 ≥ 1 − 2ε so f is (1 − 2ε)-1185

concentrated on a linear subspace of dimension 0. However, as we show below the randomized1186

sketching complexity of some functions in the support of this distribution is large.1187

The total number of affine subspaces of codimension d is at most (2 · 2n)d = 2(n+1)d since1188

each such subspace can be specified by d vectors in F
n
2 and a vector in F

d
2. The number1189

of vectors in each such affine subspace is 2n−d. The probability that less than ε/8 fraction1190

of inputs in a fixed subspace have value −1 is by a Chernoff bound at most e−Ω(ε2n−d).1191

By a union bound the probability that a random function takes value −1 on less than ε/81192

fraction of the inputs in any affine subspace of codimension d is at most e−Ω(ε2n−d)2(n+1)d.1193

For d ≤ n − 3 log n this probability is less than e−Ω(εn). By a union bound, the probability1194

that a random function is either not an ε/8-extractor or isn’t (1 − 2ε)-concentrated on f̂(∅)1195

is at most e−Ω(εn) + e−Ω(ε2n) � 1. Thus, there exists a function f in the support of our1196
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distribution which is an ε/8-extractor for any affine subspace of dimension at least 3 log n1197

while at the same time is (1 − 2ε)-concentrated on a linear subspace of dimension 0. By1198

Lemma 16 there is no randomized linear sketch of dimension less than n − 3 log n for f which1199

errs with probability less than ε/8.1200

C.3 Random F2-sketching1201

The following result is folklore as it corresponds to multiple instances of the communication1202

protocol for the equality function [28, 11] and can be found e.g. in [39] (Proposition 11). We1203

give a proof for completeness.1204

I Fact 20. A function f : F
n
2 → F2 such that minz∈{0,1} Prx[f(x) = z] ≤ ε satisfies

Rlin
δ (f) ≤ log

ε2n+1

δ
.

Proof. We assume that argminz∈{0,1} Prx[f(x) = z] = 1 as the other case is symmetric.1205

Let T = {x ∈ F
n
2 |f(x) = 1}. For every two inputs x 6= x′ ∈ T a random F2-sketch χα for1206

α ∼ U(Fn
2 ) satisfies Pr[χα(x) 6= χα(x′)] = 1/2. If we draw t such sketches χα1

, . . . , χαt
then1207

Pr[χαi
(x) = χαi

(x′), ∀i ∈ [t]] = 1/2t. For any fixed x ∈ T we have:1208

Pr[∃x′ 6= x ∈ T ∀i ∈ [t] : χαi
(x) = χαi

(x′)] ≤ |T | − 1

2t
≤ ε2n

2t
≤ δ

2
.1209

1210

Conditioned on the negation of the event above for a fixed x ∈ T the domain of f is1211

partitioned by the linear sketches into affine subspaces such that x is the only element of T in1212

the subspace that contains it. We only need to ensure that we can sketch f on this subspace1213

which we denote as A. On this subspace f is isomorphic to an OR function (up to taking1214

negations of some of the variables) and hence can be sketched using O(log 1/δ) uniformly1215

random sketches with probability 1 − δ/2. For the OR-function existence of the desired1216

protocol is clear since we just need to verify whether there exists at least one coordinate of1217

the input that is set to 1. In case it does exist a random sketch contains this coordinate with1218

probability 1/2 and hence evaluates to 1 with probability at least 1/4. Repeating O(log 1/δ)1219

times the desired guarantee follows.1220

D Towards the proof of Conjecture 31221

We call a function f : F
n
2 → {+1, −1} non-linear if for all S ∈ F

n
2 there exists x ∈ F

n
2 such

that f(x) 6= χS(x). Furthermore, we say that f is ε-far from being linear if:

max
S∈F

n
2

[
Pr

x∼U(Fn
2

)
[χS(x) = f(x)]

]
= 1 − ε.

The following theorem is our first step towards resolving Conjecture 3. Since non-linear1222

functions don’t admit 1-bit linear sketches we show that the same is also true for the1223

corresponding communication complexity problem, namely no 1-bit communication protocol1224

for such functions can succeed with a small constant error probability.1225

I Theorem 21. For any non-linear function f that is at most 1/10-far from linear D→1/200(f+)1226

> 1.1227

Proof. Let S = arg maxT

[
Prx∈F

n
2
[χT (x) = f(x)

]
. Pick z ∈ F

n
2 such that f(z) 6= χS(z). Let1228

the distribution over the inputs (x, y) be as follows: y ∼ U(Fn
2 ) and x ∼ Dy where Dy is1229
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defined as:1230

Dy =

{
y + z with probability 1/2,

U(Fn
2 ) with probability 1/2.

1231

1232

Fix any deterministic Boolean function M(x) that is used by Alice to send a one-bit message1233

based on her input. For a fixed Bob’s input y he outputs gy(M(x)) for some function gy that1234

can depend on y. Thus, the error that Bob makes at predicting f for fixed y is at least:1235

1 −
∣∣Ex∼Dy

[gy(M(x))f(x + y)]
∣∣

2
.1236

1237

The key observation is that since Bob only receives a single bit message there are only four1238

possible functions gy to consider for each y: constants −1/1 and ±M(x).1239

Bounding error for constant estimators.1240

For both constant functions we introduce notation Bc
y =

∣∣Ex∼Dy
[gy(M(x))f(x + y)]

∣∣ and1241

have:1242

Bc
y =

∣∣Ex∼Dy
[gy(M(x))f(x + y)]

∣∣ = |Ex∼Dy
[f(x + y)]| =

∣∣∣∣
1

2
f(z) +

1

2
Ew∼U(Fn

2
)[f(w)]

∣∣∣∣1243

1244

If χS is not constant then
∣∣Ew∼U(Fn

2
)[f(w)]

∣∣ ≤ 2ε we have:1245

∣∣∣∣
1

2
f(z) +

1

2
Ew∼U(Fn

2
)[f(w)]

∣∣∣∣ ≤ 1

2

(
|f(z)| +

∣∣Ew∼U(Fn
2

)[f(w)]
∣∣) ≤ 1/2 + ε.1246

1247

If χS is a constant then w.l.o.g χS = 1 and f(z) = −1. Also Ew∼U(Fn
2

)[f(w)] ≥ 1 − 2ε.1248

Hence we have:1249

∣∣∣∣
1

2
f(z) +

1

2
Ew∼U(Fn

2
)[f(w)]

∣∣∣∣ =
1

2

∣∣−1 + Ew∼U(Fn
2

)[f(w)]
∣∣ ≤ ε.1250

1251

Since ε ≤ 1/10 in both cases Bc
y ≤ 1

2 + ε which is the bound we will use below.1252

Bounding error for message-based estimators.1253

For functions ±M(x) we need to bound
∣∣Ex∼Dy

[M(x)f(x + y)]
∣∣. We denote this expression1254

as BM
y . Proposition 22 shows that Ey[BM

y ] ≤
√

2
2 (1 + ε).1255

I Proposition 22. Ey∼U(Fn
2

)

[∣∣Ex∼Dy
[M(x)f(x + y)]

∣∣] ≤
√

2
2 (1 + ε).1256

We have:1257

Ey

[∣∣Ex∼Dy
[M(x)f(x + y)]

∣∣]
1258

= Ey

[∣∣∣∣
1

2

(
M(y + z)f(z) + Ex∼Dy

[M(x)f(x + y)]
)∣∣∣∣
]

1259

=
1

2
Ey [|(M(y + z)f(z) + (M ∗ f)(y))|]1260

≤ 1

2

(
Ey

[
((M(y + z)f(z) + (M ∗ f)(y)))

2
])1/2

1261

=
1

2

(
Ey

[(
(M(y + z)f(z))2 + ((M ∗ f)(y))2 + 2M(y + z)f(z)(M ∗ f)(y))

)])1/2
1262

=
1

2

(
Ey

[(
(M(y + z)f(z))2

]
+ Ey

[
((M ∗ f)(y))2

]
+1263

2Ey [M(y + z)f(z)(M ∗ f)(y)))])
1/2

1264
1265
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We have (M(y + z)f(z))2 = 1 and also by Parseval, expression for the Fourier spectrum1266

of convolution and Cauchy-Schwarz:1267

Ey[((M ∗ f)(y))2] =
∑

S∈F
n
2

M̂ ∗ f(S)2 =
∑

S∈F
n
2

M̂(S)2f̂(S)2 ≤ ||M ||2||f ||2 = 11268

1269

Thus, it suffices to give a bound on E[M(y + z)f(z)(M ∗ f)(y))]. First we give a bound1270

on (M ∗ f)(y):1271

(M ∗ f)(y) = Ex[M(x)f(x + y)] ≤ Ex[M(x)χS(x + y)] + 2ε1272

1273
1274

Plugging this in we have:1275

Ey[M(y + z)f(z)(M ∗ f)(y))]1276

= −χS(z)Ey[M(y + z)(M ∗ f)(y))]1277

≤ −χS(z)Ey [M(y + z)(M ∗ χS)(y)] + 2ε1278

= −χS(z)(M ∗ (M ∗ χS))(z) + 2ε1279

= −χS(z)2M̂(S)2 + 2ε1280

≤ 2ε.1281
1282

where we used the fact that the Fourier spectrum of (M ∗ (M ∗ χS)) is supported on S only1283

and ̂M ∗ (M ∗ χS)(S) = M̂2(S) and thus (M ∗ (M ∗ χS))(z) = M̂2(S)χS(z).1284

Thus, overall, we have:1285

Ey

[∣∣Ex∼Dy
[M(x)f(x + y)]

∣∣] ≤ 1

2

√
2 + 4ε ≤

√
2

2
(1 + ε).1286

1287

Putting things together.1288

We have that the error that Bob makes is at least:1289

Ey

[
1 − max(Bc

y, BM
y )

2

]
=

1 − Ey[max(Bc
y, BM

y )]

2
1290

1291

Below we now bound Ey[max(Bc
y, BM

y )] from above by 99/100 which shows that the error is1292

at least 1/200.1293

Ey[max(Bc
y, BM

y )]1294

= Pr[BM
y ≥ 1/2 + ε]E[BM

y |BM
y ≥ 1/2 + ε] + Pr[BM

y < 1/2 + ε]

(
1

2
+ ε

)
1295

= Ey[BM
y ] + Pr[BM

y < 1/2 + ε]

(
1

2
+ ε − E[BM

y |BM
y < 1/2 + ε]

)
1296

1297

Let δ = Pr[BM
y < 1/2 + ε]. Then the first of the expressions above gives the following bound:1298

Ey[max(Bc
y, BM

y )] ≤ (1 − δ) + δ

(
1

2
+ ε

)
= 1 − δ

2
+ εδ ≤ 1 − δ

2
+ ε1299

1300

The second expression gives the following bound:1301

Ey[max(Bc
y, BM

y )] ≤
√

2

2
(1 + ε) + δ

(
1

2
+ ε

)
≤

√
2

2
+

δ

2
+

√
2

2
ε + ε.1302

1303
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These two bounds are equal for δ = 1 −
√

2
2 (1 + ε) and hence the best of the two bounds1304

is always at most (
√

2
4 + 1

2 ) + ε
(√

2
4 + 1

)
≤ 99

100 where the last inequality uses the fact that1305

ε ≤ 1
10 .1306

E Auxiliary Proofs1307

E.1 Proof of Proposition 171308

Without loss of generality assume that p = Pr[X = 1]1309

Var[X] = E[X2] − (E[X])2
1310

= 1 − (E[X])2 (X2 = 1 as X is supported on {1,-1})1311

= 1 − (p · 1 + (1 − p)(−1))2
1312

= 1 − (2p − 1)2)1313

= 4p(1 − p)1314
1315

Since p ≤ 1
2 , 4(1 − p) ∈ [2, 4] and the proposition follows.1316

E.2 Proof of Lemma 211317

Let p ∈ F2[x1, . . . , xn] be the F2-polynomial corresponding to f . Fix one monomial M =1318

Πi∈Sxi of the largest degree. Thus |S| = d. We will show that for each assignment aS to the1319

variables outside of S, there is an assignment aS to the variables in S such that p(aS , aS) = 1.1320

This will prove that there are at least 2n−d assignments on which p evaluates to 1, and will1321

thus imply the lemma.1322

To this end, fix an assignment aS to the variables in S. Let p |S←a
S

be the polynomial1323

obtained from p by setting the variables in S according to aS . Notice that since M was a1324

monomial of largest degree in p, M continues to be a monomial in p |S←a
S

. Thus p |S←a
S

is1325

a non-constant polynomial in the variables {xi | i ∈ S}. In particular, this implies that there1326

exists an assignment aS to the variables in S, such that p |S←a
S

(aS) = 1 (see the discussion1327

in the paragraph after fact 20). This in turn implies that p(aS , aS) = 1.1328
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