

¹ Linear Sketching over \mathbb{F}_2 *

² **Sampath Kannan**¹

³ University of Pennsylvania

⁴ kannan@cis.upenn.edu

⁵ **Elchanan Mossel**²

⁶ Massachusetts Institute of Technology

⁷ elmos@mit.edu

⁸ **Swagato Sanyal**³

⁹ Division of Mathematical Sciences, Nanyang Technological University, Singapore and Centre for

¹⁰ Quantum Technologies, National University of Singapore, Singapore

¹¹ sanyalswagato@gmail.com

¹² **Grigory Yaroslavtsev**⁴

¹³ Indiana University, Bloomington

¹⁴ grigory@grigory.us

¹⁵ — Abstract —

¹⁶ We initiate a systematic study of linear sketching over \mathbb{F}_2 . For a given Boolean function treated
¹⁷ as $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ a randomized \mathbb{F}_2 -sketch is a distribution \mathcal{M} over $d \times n$ matrices with elements
¹⁸ over \mathbb{F}_2 such that $\mathcal{M}x$ suffices for computing $f(x)$ with high probability. Such sketches for $d \ll n$
¹⁹ can be used to design small-space distributed and streaming algorithms.

²⁰ Motivated by these applications we study a connection between \mathbb{F}_2 -sketching and a two-
²¹ player one-way communication game for the corresponding XOR-function. We conjecture that
²² \mathbb{F}_2 -sketching is optimal for this communication game. Our results confirm this conjecture for
²³ multiple important classes of functions: 1) low-degree \mathbb{F}_2 -polynomials, 2) functions with sparse
²⁴ Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results
²⁵ rely on a new structural theorem that shows that \mathbb{F}_2 -sketching is optimal (up to constant factors)
²⁶ for uniformly distributed inputs.

²⁷ Furthermore, we show that (non-uniform) streaming algorithms that have to process random
²⁸ updates over \mathbb{F}_2 can be constructed as \mathbb{F}_2 -sketches for the uniform distribution. In contrast with
²⁹ the previous work of Li, Nguyen and Woodruff (STOC'14) who show an analogous result for
³⁰ linear sketches over integers in the adversarial setting our result does not require the stream
³¹ length to be triply exponential in n and holds for streams of length $\tilde{O}(n)$ constructed through
³² uniformly random updates.

³³ **2012 ACM Subject Classification** Theory of computation → Probabilistic computation, Theory
³⁴ of computation → Streaming models, Theory of Computation → Computational complexity and
³⁵ cryptography → Communication complexity.

* This is an improved version of Kannan, Mossel, Yaroslavtsev <https://arxiv.org/pdf/1611.01879.pdf> [24] giving tight dependence on error in Theorem 4, a new result for degree- d \mathbb{F}_2 polynomials and including several other changes. ECCC preprint is available at <https://eccc.weizmann.ac.il/report/2018/064/>.

¹ This work was supported by grants NSF CICI 1547360 and ONR N00014-15-1-2006.

² E.M. acknowledges the support of grant N00014-16-1-2227 from Office of Naval Research and of NSF awards CCF 1320105 and DMS-1737944 as well as support from Simons Think Tank on Geometry & Algorithms.

³ S.S. acknowledges the support by the Singapore National Research Foundation under NRF RF Award No. NRF-NRFF2013-13. Part of this work was done when S. S. was a visiting research fellow at the Tata Institute of Fundamental Research, Mumbai.

⁴ This work was supported by NSF award 1657477.

³⁶ **Keywords and phrases** Linear sketch, Streaming algorithms, XOR-functions, Communication
³⁷ complexity.

³⁸ **Digital Object Identifier** 10.4230/LIPIcs.CCC.2018.8

³⁹ 1 Introduction

⁴⁰ Linear sketching is the underlying technique behind many of the biggest algorithmic break-
⁴¹ throughs of the past two decades. It has played a key role in the development of streaming
⁴² algorithms since [3] and most recently has been the key to modern randomized algorithms for
⁴³ numerical linear algebra (see survey [52]), graph compression (see survey [38]), dimensionality
⁴⁴ reduction, etc. Linear sketching is robust to the choice of a computational model and can be
⁴⁵ applied in settings as seemingly diverse as streaming, MapReduce as well as various other
⁴⁶ distributed models of computation including the congested clique model [19, 12, 23], allowing
⁴⁷ to save computational time, space and reduce communication in distributed settings. This
⁴⁸ remarkable versatility is based on properties of linear sketches enabled by linearity: simple
⁴⁹ and fast updates and mergeability of sketches computed on distributed data. Compatibility
⁵⁰ with fast numerical linear algebra packages makes linear sketching particularly attractive for
⁵¹ applications.

⁵² Even more surprisingly linear sketching over the reals is known to be the best possible
⁵³ algorithmic approach (unconditionally) in certain settings. Most notably, under some mild
⁵⁴ conditions linear sketches are known to be almost space optimal for processing dynamic
⁵⁵ data streams [10, 32, 1]. Optimal bounds for streaming algorithms for a variety of computa-
⁵⁶ tional problems can be derived through this connection by analyzing linear sketches rather
⁵⁷ than general algorithms. Examples include approximate matchings [5, 4], additive norm
⁵⁸ approximation [1] and frequency moments [32, 51].

⁵⁹ In this paper we study the power of linear sketching over \mathbb{F}_2 . ⁵ To the best of our
⁶⁰ knowledge no such systematic study currently exists as prior work focuses on sketching over
⁶¹ the field of reals (or large finite fields as reals are represented as word-size bounded integers).
⁶² Formally, for a random set $\mathbf{S} \subseteq [n]$ let $\chi_{\mathbf{S}} = \bigoplus_{i \in \mathbf{S}} x_i$. Given a function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ that
⁶³ needs to be evaluated over an input $x = (x_1, \dots, x_n)$ we are looking for a distribution over
⁶⁴ k subsets $\mathbf{S}_1, \dots, \mathbf{S}_k \subseteq [n]$ such that the following holds: for any input x given parities
⁶⁵ computed over these sets and denoted as $\chi_{\mathbf{S}_1}(x), \chi_{\mathbf{S}_2}(x), \dots, \chi_{\mathbf{S}_k}(x)$, it should be possible
⁶⁶ to compute $f(x)$ with probability $1 - \delta$. While the switch from reals to \mathbb{F}_2 might seem
⁶⁷ restrictive, we are unaware of any problem for which sketching over reals gives any advantage
⁶⁸ over \mathbb{F}_2 . Furthermore, as shown very recently and subsequently to the early version of this
⁶⁹ work [24], almost all dynamic graph streaming algorithms⁶ can be seen as \mathbb{F}_2 -sketches [26]
⁷⁰ without losing optimality in space⁷.

⁷¹ In matrix form \mathbb{F}_2 -sketching corresponds to multiplication over \mathbb{F}_2 of the row vector
⁷² $x \in \mathbb{F}_2^n$ by a random $n \times k$ matrix whose i -th column is a characteristic vector of the random
⁷³ parity $\chi_{\mathbf{S}_i}$:

⁵ It is easy to see that sketching over finite fields can be significantly better than linear sketching over integers for certain computations. As an example, consider a function $(x \bmod 2)$ (for an integer input x) which can be trivially sketched with 1 bit over the field of two elements while any linear sketch over the integers requires word-size memory.

⁶ With the only exception being the work of [25] on spectral graph sparsification.

⁷ Technically [26] uses \mathbb{F}_3 , but replacing \mathbb{F}_3 with \mathbb{F}_2 doesn't change their results.

$$(x_1 \ x_2 \ \dots \ x_n) \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ \chi_{\mathbf{S}_1} & \chi_{\mathbf{S}_2} & \dots & \chi_{\mathbf{S}_k} \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} = (\chi_{\mathbf{S}_1}(x) \ \chi_{\mathbf{S}_2}(x) \ \dots \ \chi_{\mathbf{S}_k}(x))$$

74 This sketch alone should then be sufficient for computing f with high probability for any
 75 input x . This motivates us to define the *randomized linear sketch* complexity of a function f
 76 over \mathbb{F}_2 as the smallest k which allows one to satisfy the above guarantee.

► **Definition 1** (\mathbb{F}_2 -sketching). For a function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ we define its *randomized linear sketch complexity*⁸ over \mathbb{F}_2 with error δ (denoted as $R_\delta^{lin}(f)$) as the smallest integer k such that there exists a distribution $\chi_{\mathbf{S}_1}, \chi_{\mathbf{S}_2}, \dots, \chi_{\mathbf{S}_k}$ over k linear functions over \mathbb{F}_2 and a postprocessing function $g: \mathbb{F}_2^k \rightarrow \mathbb{F}_2$ ⁹ which satisfies:

$$\forall x \in \mathbb{F}_2^n: \Pr_{\mathbf{S}_1, \dots, \mathbf{S}_k} [f(x_1, x_2, \dots, x_n) = g(\chi_{\mathbf{S}_1}(x), \chi_{\mathbf{S}_2}(x), \dots, \chi_{\mathbf{S}_k}(x))] \geq 1 - \delta.$$

77 We note that while the above definition requires that f is computed exactly, most of our
 78 structural results including Theorem 4 can be extended to allow approximate computation
 79 of real-valued functions $f: \mathbb{F}_2^n \rightarrow \mathbb{R}$ as shown in [54].

80 As we show in this paper the study of $R_\delta^{lin}(f)$ is closely related to a certain communication
 81 problem. For $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ define the XOR-function $f^+: \mathbb{F}_2^n \times \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ as $f^+(x, y) = f(x + y)$
 82 where $x, y \in \mathbb{F}_2^n$. Consider a communication game between two players Alice and Bob holding
 83 inputs x and y respectively. Given access to a shared source of random bits Alice has to send
 84 a single message to Bob so that he can compute $f^+(x, y)$. This is known as the one-way
 85 communication problem for XOR-functions.

86 ► **Definition 2** (Randomized one-way communication complexity of XOR function). For a
 87 function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ the *randomized one-way communication complexity* with error δ
 88 (denoted as $R_\delta^{\rightarrow}(f^+)$) of its XOR-function is defined as the smallest size¹⁰ (in bits) of the
 89 (randomized using public randomness) message $M(x)$ from Alice to Bob which allows Bob to
 90 evaluate $f^+(x, y)$ for any $x, y \in \mathbb{F}_2^n$ with error probability at most δ .

91 Communication complexity of XOR-functions has been recently studied extensively in the
 92 context of the log-rank conjecture (see e.g. [45, 55, 39, 29, 31, 47, 33, 49, 35, 18]). However,
 93 such studies either mostly focus on deterministic communication complexity or are specific
 94 to the two-way communication model. We discuss implications of this line of work for our
 95 \mathbb{F}_2 -sketching model in our discussion of prior work.

96 It is easy to see that $R_\delta^{\rightarrow}(f^+) \leq R_\delta^{lin}(f)$ as using shared randomness for sampling
 97 $\mathbf{S}_1, \dots, \mathbf{S}_k$ Alice can just send k bits $\chi_{\mathbf{S}_1}(x), \chi_{\mathbf{S}_2}(x), \dots, \chi_{\mathbf{S}_k}(x)$ to Bob who can for each

⁸ In the language of decision trees this can be interpreted as randomized non-adaptive parity decision tree complexity. We are unaware of any systematic study of this quantity either. Since heavy decision tree terminology seems excessive for our applications (in particular, sketching is done in one shot so there isn't a decision tree involved) we prefer to use a shorter and more descriptive name.

⁹ Technically g can also depend on the sampled sets $\mathbf{S}_1, \dots, \mathbf{S}_k$, but all sketches used in this paper are oblivious to the choice of these sets.

¹⁰ Formally the minimum here is taken over all possible protocols where for each protocol the size of the message $M(x)$ refers to the largest size (in bits) of such message taken over all inputs $x \in \mathbb{F}_2^n$. See [28] for a formal definition.

98 $i \in [k]$ compute $\chi_{\mathbf{S}_i}(x + y) = \chi_{\mathbf{S}_i}(x) + \chi_{\mathbf{S}_i}(y)$. This gives Bob an \mathbb{F}_2 -sketch of f on $x + y$ and
 99 hence suffices for computing $f^+(x, y)$ with probability $1 - \delta$. The main open question raised
 100 in our work is whether the reverse inequality holds (at least approximately), thus implying
 101 the equivalence of the two notions.

102 ▶ **Conjecture 3.** Is it true that $R_\delta^\rightarrow(f^+) = \tilde{\Theta}(R_\delta^{\text{lin}}(f))$ for every $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ and $0 < \delta < 1/2$?

103 In fact all known one-way protocols for XOR-functions can be seen as \mathbb{F}_2 -sketches so it is
 104 natural to ask whether this is always true. In this paper we further motivate this conjecture
 105 through a number of examples of classes of functions for which it holds. One important
 106 such example from the previous work is a function $\text{Ham}_{\geq k}$ which evaluates to 1 if and only
 107 if the Hamming weight of the input string is at least k . The corresponding XOR-function
 108 $\text{Ham}_{\geq k}^+$ can be seen to have one-way communication complexity of $\Theta(k \log k)$ via the small
 109 set disjointness lower bound of [9] and a basic upper bound based on random parities [20].
 110 Conjecture 3 would imply that in order to prove a one-way disjointness lower bound it suffices
 111 to only consider \mathbb{F}_2 -sketches.

112 A deterministic analog of Definition 1 requires that $f(x) = g(\chi_{\alpha_1}(x), \chi_{\alpha_2}(x), \dots, \chi_{\alpha_k}(x))$
 113 for a fixed choice of $\alpha_1, \dots, \alpha_k \in \mathbb{F}_2^n$. The smallest value of k which satisfies this definition is
 114 known to be equal to the Fourier dimension of f denoted as $\text{dim}(f)$. It corresponds to the
 115 smallest dimension of a linear subspace of \mathbb{F}_2^n that contains the entire spectrum of f (see
 116 Section 2.2 for a formal definition). In order to keep the notation uniform we also denote
 117 it as $D^{\text{lin}}(f)$. Most importantly, as shown in [39] an analog of Conjecture 3 holds without
 118 any loss in the deterministic case, i.e. $D^\rightarrow(f^+) = \text{dim}(f) = D^{\text{lin}}(f)$, where D^\rightarrow denotes the
 119 deterministic one-way communication complexity. This striking fact is one of the reasons
 120 why we suggest Conjecture 3 as an open problem.

121 Previous work and our results

122 In the discussion below using Yao’s principle we switch to the equivalent notion of distributional
 123 complexity of the above problems denoted as $\mathcal{D}_\delta^\rightarrow$ and $\mathcal{D}_\delta^{\text{lin}}$ respectively. For the formal
 124 definitions we refer to the reader to Section 2.1 and a standard textbook on communication
 125 complexity [28]. Equivalence between randomized and distributional complexities allows us
 126 to restate Conjecture 3 as $\mathcal{D}_\delta^\rightarrow = \tilde{\Theta}(\mathcal{D}_\delta^{\text{lin}})$.

127 For a fixed distribution μ over \mathbb{F}_2^n we define $\mathcal{D}_\delta^{\text{lin}, \mu}(f)$ to be the smallest dimension of an
 128 \mathbb{F}_2 -sketch that correctly outputs f with probability $1 - \delta$ over μ . Similarly for a distribution
 129 μ over $(x, y) \in \mathbb{F}_2^n \times \mathbb{F}_2^n$ we denote distributional one-way communication complexity of f
 130 with error δ as $\mathcal{D}_\delta^{\rightarrow, \mu}(f^+)$ (See Section 2 for a formal definition). Our first main result is an
 131 analog of Conjecture 3 for the uniform distribution U over (x, y) that matches the statement
 132 of the conjecture up to constant factors:

133 ▶ **Theorem 4.** For any $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ it holds that $\mathcal{D}_{1/9}^{\rightarrow, U}(f^+) \geq \frac{1}{6} \cdot \mathcal{D}_{1/3}^{\text{lin}, U}(f)$.

134 In order to prove Theorem 4 we introduce the notion of an *approximate Fourier dimension*
 135 (Definition 13) that extends the definition of exact Fourier dimension to allow that only $1 - \epsilon$
 136 fraction of the total “energy” in f ’s spectrum should be contained in the linear subspace.
 137 The key ingredient in the proof is a structural theorem, Theorem 14, that characterizes both
 138 $\mathcal{D}_\delta^{\text{lin}, U}(f)$ and $\mathcal{D}_\delta^{\rightarrow, U}(f^+)$ in terms of f ’s approximate Fourier dimension.

139 Using Theorem 14 we confirm Conjecture 3 for several well-studied classes of functions in
 140 Section 4. It is important to note that while we could have stated these results for randomized
 141 one-way communication it is critical that all lower bounds in this section hold for uniform
 142 distribution in order to derive our results for random streams in Section 5.

143 **Low-degree \mathbb{F}_2 polynomials**

144 Low-degree \mathbb{F}_2 polynomials have been extensively studied in theoretical computer science in
 145 various contexts: learning theory (Mossel, O'Donnell and Servedio [40]), property testing
 146 (Rubinfeld and Sudan [42], Bhattacharyya *et al.* [6], Alon *et al* [2]), pseudorandomness
 147 (Bogdanov and Viola [8], Lovett [34], Viola [50]), communication complexity (Tsang *et al.* [49]),
 148 etc.

149 Tsang *et al.* [49] studied deterministic two-way communication protocols for XOR-
 150 functions with low \mathbb{F}_2 -degree. They gave an upper bound on deterministic communication
 151 complexity of f^+ in terms of the spectral norm and the \mathbb{F}_2 -degree of f . Their result was
 152 obtained by observing that the communication complexity of f^+ is bounded above by the
 153 parity decision tree complexity of f , and then bounding the latter. In this work, we prove a
 154 lower bound on the randomized one-way communication complexity of f^+ in terms of the
 155 Fourier dimension of f and the \mathbb{F}_2 -degree of f , denoted as d . We prove the following result:

$$156 D^{lin}(f) = O\left(R_{1/3}^+(f^+) \cdot d\right).$$

157 In the regime $d = O(1)$, the above result implies that use of randomness does not enable
 158 us to design a better linear-sketching or a one-way communication protocol. Furthermore,
 159 since $R_{1/3}^+(f) \leq D^{lin}(f)$, the above result implies Conjecture 3 for constant degree \mathbb{F}_2 -
 160 polynomials. For \mathbb{F}_2 polynomials with bounded spectral norm this implies a new bound on
 161 Fourier dimension shown in Corollary 23: $D^{lin}(f) = \dim(f) = O(d\|\hat{f}\|_1^2)$ improving a result
 162 of Tsang et al. for $d = \omega\left(\log^{1/3} \|\hat{f}\|_1\right)$.

163 **Address function and Fourier sparsity**

164 The number s of non-zero Fourier coefficients of f (known as Fourier sparsity) is one of
 165 the key quantities in the analysis of Boolean functions. It also plays an important role
 166 in the recent work on log-rank conjecture for XOR-functions [49, 46]. A recent result by
 167 Sanyal [44] shows that for Boolean functions $\dim(f) = O(\sqrt{s} \log s)$, namely all non-zero
 168 Fourier coefficients are contained in a subspace of a polynomially smaller dimension. This
 169 bound is almost tight as the *address function* (see Section 4.2 for a definition) exhibits a
 170 quadratic gap. A direct implication of Sanyal's result is a deterministic \mathbb{F}_2 -sketching upper
 171 bound of $O(\sqrt{s} \log s)$ for any f with Fourier sparsity s . As we show in Section 4.2 this
 172 dependence on sparsity can't be improved even if randomization is allowed.

173 **Symmetric functions**

174 A function f is symmetric if it only depends on the Hamming weight of its input. In
 175 Section 4.3 we show that Conjecture 3 holds for all symmetric functions which are not too
 176 close to a constant function or the parity function $\sum_i x_i$, where the sum is taken over \mathbb{F}_2 .

177 **Composition theorem for recursive majority**

178 As an example of a composition theorem we give such a theorem for recursive majority.
 179 For an odd integer n the majority function Maj_n is defined to be 1 if and only if the
 180 Hamming weight of the input is greater than $n/2$. Of particular interest is the recursive
 181 majority function $Maj_3^{\circ k}$ that corresponds to k -fold composition of Maj_3 for $k = \log_3 n$.
 182 This function was introduced by Boppana [43] and serves as an important example of various
 183 properties of Boolean functions, most importantly in randomized decision tree complexity

184 ([43, 22, 37, 30, 36]), deterministic parity decision tree complexity [7] and communication
 185 complexity [22, 13].

186 In Section 4.4 we use Theorem 14 to obtain the following result:

► **Theorem 5.** *For any $\epsilon \in [0, \frac{1}{2}]$, $\xi > 4\epsilon^2$ and $k = \log_3 n$ it holds that:*

$$\mathcal{D}_{\frac{1-\xi}{6}}^{\rightarrow, U}(\text{Maj}_3^{\circ k+}) = \Omega(\epsilon^2 n).$$

187 **Applications to streaming and distributed computing**

188 In the turnstile streaming model of computation a vector x of dimension n is updated through
 189 a sequence of additive updates applied to its coordinates and the goal of the algorithm is to
 190 be able to output $f(x)$ at any point during the stream while using space that is sublinear
 191 in n . In the real-valued case we have either $x \in [0, m]^n$ or $x \in [-m, m]^n$ for some universal
 192 upper bound m and updates can be increments or decrements to x 's coordinates of arbitrary
 193 magnitude.

194 For $x \in \mathbb{F}_2^n$ additive updates have a particularly simple form as they always flip the
 195 corresponding coordinate of x . In the streaming literature this model is referred to as the
 196 XOR update model (see e.g. [48]) Note that XOR updates can't be handled using standard
 197 turnstile streaming algorithms as only the coordinate but not the sign of the update is given.
 198 As we show in Section 5.2 it is easy to see based on the recent work of [10, 32, 1] that in
 199 the adversarial streaming setting the space complexity of turnstile streaming algorithms
 200 over \mathbb{F}_2 is determined by the \mathbb{F}_2 -sketch complexity of the function of interest. However, this
 201 proof technique only works for very long streams which are unrealistic in practice – the
 202 length of the adversarial stream has to be triply exponential in n in order to enforce linear
 203 behavior. Large stream length requirement is inherent in the proof structure in this line of
 204 work and while one might expect to improve triply exponential dependence on n at least an
 205 exponential dependence appears necessary, which is a major limitation of this approach.

206 As we show in Section 5.1 it follows directly from our Theorem 4 that turnstile streaming
 207 algorithms that achieve low error probability under random \mathbb{F}_2 updates might as well be
 208 \mathbb{F}_2 -sketches. For two natural choices of the random update model short streams of length
 209 either $O(n)$ or $O(n \log n)$ suffice for our reduction. We stress that our lower bounds are also
 210 stronger than the worst-case adversarial lower bounds as they hold under an average-case
 211 scenario. Furthermore, our Conjecture 3 would imply that space optimal turnstile streaming
 212 algorithms over \mathbb{F}_2 have to be linear sketches for adversarial streams of length only $2n$. We
 213 believe that such result will also help show an analogous statement for real-valued linear
 214 sketches thus removing the triply exponential in n stream length assumption of [32, 1].

215 By linearity all \mathbb{F}_2 -sketching upper bounds are also applicable in the distributed setting
 216 where two parties Alice and Bob need to send messages to the coordinator who is required
 217 to output f^+ . This is also known as the Simultaneous Message Passing (SMP) model and
 218 all our one-way lower bounds hold in this model as well.

219 **Other previous work**

220 Closely related to ours is work on communication protocols for XOR-functions [45, 39, 49, 18].
 221 In particular [39] presents two basic one-way communication protocols based on random
 222 parities. The first one, stated as Fact 20 generalizes the classic communication protocol for
 223 equality. The second one uses the result of Grolmusz [17] and implies that ℓ_1 -sampling of
 224 Fourier characters gives a randomized \mathbb{F}_2 -sketch of size $O(\|\hat{f}\|_1^2)$ (for constant error).

225 In [18] structural results about deterministic two-way communication protocols for
 226 XOR-functions have been obtained. In particular, they show that the parity decision tree
 227 complexity of f is $O(D(f^+)^6)$. The key difference between our work and [18] lies in our focus
 228 on randomized protocols. In [18] it is left as the main open problem whether randomized
 229 parity decision tree complexity can be bounded by $\text{poly}(R(f^+))$. Our results can be seen as a
 230 step towards resolving this open problem in one-way communication setting. Full resolution
 231 of Conjecture 3 would show that the conjecture of [18] holds even without polynomial loss
 232 for one-way communication as we show for all the classes considered in Section 4.

233 Another line of work that is closely related to ours is the study of the two-player
 234 simultaneous message passing model (SMP). This model can also allow to prove lower bounds
 235 on \mathbb{F}_2 -sketching complexity. Since our results hold for one-way communication they also hold
 236 in the SMP model. Moreover, in the context of our work there is no substantial difference as
 237 for product distributions the two models are essentially equivalent. Recent results in the
 238 SMP model include [39, 31, 33].

239 While decision tree literature is not directly relevant to us since our model doesn't
 240 allow adaptivity we remark that there has been interest recently in the study of (adaptive)
 241 deterministic parity decision trees [7] and non-adaptive deterministic parity decision trees [46,
 242 44]. As mentioned above, our model can be interpreted as non-adaptive randomized parity
 243 decision trees and to the best of our knowledge it hasn't been studied explicitly before.
 244 Another related model is that of *parity kill numbers*. In this model a composition theorem
 245 has recently been shown by [41] but the key difference is again adaptivity.

246 Finally recent developments in the line of work on lifting theorems such as [15, 14] might
 247 suggest that such results might be applied in our context. However for our purposes we
 248 would need a lifting theorem for the XOR gadget and to the best of our knowledge no such
 249 result is known for randomized one-way communication.

250 Organization

251 The rest of this paper is organized as follows. In Section 2 we introduce the required
 252 background from communication complexity and Fourier analysis of Boolean functions. In
 253 Section 3 we prove Theorem 4. In Section 4 we give applications of this theorem for recursive
 254 majority (Theorem 5), address function, low-degree \mathbb{F}_2 polynomials and symmetric functions.
 255 In Section 5 we describe applications to streaming.

256 In Appendix B we give some basic results about deterministic \mathbb{F}_2 -sketching (or Fourier
 257 dimension) of composition and convolution of functions. We also present a basic lower
 258 bound argument based on affine dispersers. In Appendix C we give some basic results about
 259 randomized \mathbb{F}_2 -sketching including a lower bound based on extractors and a classic protocol
 260 based on random parities which we use as a building block in our sketch for LTFs. We also
 261 present evidence for why an analog of Theorem 14 doesn't hold for arbitrary distributions. In
 262 Appendix D we show a lower bound for one-bit protocols making progress towards resolving
 263 Conjecture 3.

264 2 Preliminaries

265 For an integer n we use notation $[n] = \{1, \dots, n\}$. For integers $n \leq m$ we use notation
 266 $[n, m] = \{n, \dots, m\}$. For an arbitrary domain \mathcal{D} we denote the uniform distribution over
 267 this domain as $U(\mathcal{D})$. We use the notation $x, x' \sim U(\mathcal{D})$ to denote that x and x' are sampled
 268 uniformly at random and independently from \mathcal{D} . The variance of a random variable X is

denoted by $\text{Var}[X]$. For a vector x and $p \geq 1$ we denote the p -norm of x as $\|x\|_p$ and reserve the notation $\|x\|_0$ for the Hamming weight.

2.1 Communication complexity

Consider a function $f: \mathbb{F}_2^n \times \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ and a distribution μ over $\mathbb{F}_2^n \times \mathbb{F}_2^n$. The *one-way distributional complexity* of f with respect to μ , denoted as $\mathcal{D}_\delta^{\rightarrow, \mu}(f)$ is the smallest communication cost of a one-way deterministic protocol that outputs $f(x, y)$ with probability at least $1 - \delta$ over the inputs (x, y) drawn from the distribution μ . The *one-way distributional complexity* of f denoted as $\mathcal{D}_\delta^{\rightarrow}(f)$ is defined as $\mathcal{D}_\delta^{\rightarrow}(f) = \sup_{\mu} \mathcal{D}_\delta^{\rightarrow, \mu}(f)$. By Yao's minimax theorem [53] it follows that $R_\delta^{\rightarrow}(f) = \mathcal{D}_\delta^{\rightarrow}(f)$. *One-way communication complexity over product distributions* is defined as $\mathcal{D}_\delta^{\rightarrow, \times}(f) = \sup_{\mu = \mu_x \times \mu_y} \mathcal{D}_\delta^{\rightarrow, \mu}(f)$ where μ_x and μ_y are distributions over \mathbb{F}_2^n .

With every two-party function $f: \mathbb{F}_2^n \times \mathbb{F}_2^n$ we associate a *communication matrix* $M^f \in \mathbb{F}_2^{2^n \times 2^n}$ with entries $M_{x,y}^f = f(x, y)$. We say that a deterministic protocol $M(x)$ with length t of the message that Alice sends to Bob partitions the rows of this matrix into 2^t *combinatorial rectangles* where each rectangle contains all rows of M^f corresponding to the same fixed message $y \in \{0, 1\}^t$.

2.2 Fourier analysis

We consider functions¹¹ from \mathbb{F}_2^n to \mathbb{R} . For any fixed $n \geq 1$, the space of these functions forms an inner product space with the inner product $\langle f, g \rangle = \mathbb{E}_{x \in \mathbb{F}_2^n} [f(x)g(x)] = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^n} f(x)g(x)$. The ℓ_2 norm of $f: \mathbb{F}_2^n \rightarrow \mathbb{R}$ is $\|f\|_2 = \sqrt{\langle f, f \rangle} = \sqrt{\mathbb{E}_x [f(x)^2]}$ and the ℓ_2 distance between two functions $f, g: \mathbb{F}_2^n \rightarrow \mathbb{R}$ is the ℓ_2 norm of the function $f - g$. In other words, $\|f - g\|_2 = \sqrt{\langle f - g, f - g \rangle} = \sqrt{\frac{1}{2^n} \sum_{x \in \mathbb{F}_2^n} (f(x) - g(x))^2}$.

For $\alpha \in \mathbb{F}_2^n$, the *character* $\chi_\alpha: \mathbb{F}_2^n \rightarrow \{+1, -1\}$ is the function defined by $\chi_\alpha(x) = (-1)^{\alpha \cdot x}$. Characters form an orthonormal basis as $\langle \chi_\alpha, \chi_\beta \rangle = \delta_{\alpha\beta}$ where δ is the Kronecker symbol. The *Fourier coefficient* of $f: \mathbb{F}_2^n \rightarrow \mathbb{R}$ corresponding to α is $\hat{f}(\alpha) = \mathbb{E}_x [f(x)\chi_\alpha(x)]$. The *Fourier transform* of f is the function $\hat{f}: \mathbb{F}_2^n \rightarrow \mathbb{R}$ that returns the value of each Fourier coefficient of f . We use notation $\text{Spec}(f) = \{\alpha \in \mathbb{F}_2^n : \hat{f}(\alpha) \neq 0\}$ to denote the set of all non-zero Fourier coefficients of f . The Fourier ℓ_1 norm, or the *spectral norm* of f , is defined as $\|\hat{f}\|_1 := \sum_{\alpha \in \mathbb{F}_2^n} |\hat{f}(\alpha)|$.

► **Fact 6** (Parseval's identity). For any $f: \mathbb{F}_2^n \rightarrow \mathbb{R}$ it holds that

$$\|f\|_2 = \|\hat{f}\|_2 = \sqrt{\sum_{\alpha \in \mathbb{F}_2^n} \hat{f}(\alpha)^2}.$$

Moreover, if $f: \mathbb{F}_2^n \rightarrow \{+1, -1\}$ then $\|f\|_2 = \|\hat{f}\|_2 = 1$.

We use notation $A \leq \mathbb{F}_2^n$ to denote the fact that A is a linear subspace of \mathbb{F}_2^n .

► **Definition 7** (Fourier dimension). The *Fourier dimension* of $f: \mathbb{F}_2^n \rightarrow \{+1, -1\}$ denoted as $\dim(f)$ is the smallest integer k such that there exists $A \leq \mathbb{F}_2^n$ of dimension k for which $\text{Spec}(f) \subseteq A$.

¹¹ In all Fourier-analytic arguments Boolean functions are treated as functions of the form $f: \mathbb{F}_2^n \rightarrow \{+1, -1\}$ where 0 is mapped to 1 and 1 is mapped to -1 . Otherwise we use these two notations interchangeably.

305 We say that $A \leq \mathbb{F}_2^n$ is a *standard subspace* if it has a basis v_1, \dots, v_d where each v_i has
 306 Hamming weight equal to 1. An *orthogonal subspace* A^\perp is defined as:

$$307 \quad A^\perp = \{\gamma \in \mathbb{F}_2^n : \forall x \in A \quad \gamma \cdot x = 0\}.$$

309 An *affine subspace* (or coset) of \mathbb{F}_2^n of the form $A = H + a$ for some $H \leq \mathbb{F}_2^n$ and $a \in \mathbb{F}_2^n$ is
 310 defined as:

$$311 \quad A = \{\gamma \in \mathbb{F}_2^n : \forall x \in H^\perp \quad \gamma \cdot x = a \cdot x\}.$$

313 We now introduce notation for restrictions of functions to affine subspaces.

314 ► **Definition 8.** Let $f : \mathbb{F}_2^n \rightarrow \mathbb{R}$ and $z \in \mathbb{F}_2^n$. We define $f^{+z} : \mathbb{F}_2^n \rightarrow \mathbb{R}$ as $f^{+z}(x) = f(x + z)$.

315 ► **Fact 9.** The Fourier coefficients of f^{+z} are $\widehat{f^{+z}}(\gamma) = (-1)^{\gamma \cdot z} \widehat{f}(\gamma)$ and hence:

$$316 \quad f^{+z} = \sum_{S \in \mathbb{F}_2^n} \widehat{f}(S) \chi_S(z) \chi_S.$$

318 ► **Definition 10 (Coset restriction).** For $f : \mathbb{F}_2^n \rightarrow \mathbb{R}$, $z \in \mathbb{F}_2^n$ and $H \leq \mathbb{F}_2^n$ we write $f_H^{+z} : H \rightarrow \mathbb{R}$
 319 for the restriction of f to $H + z$.

320 ► **Definition 11 (Convolution).** For two functions $f, g : \mathbb{F}_2^n \rightarrow \mathbb{R}$ their convolution $(f * g) : \mathbb{F}_2^n \rightarrow \mathbb{R}$
 321 is defined as $(f * g)(x) = \mathbb{E}_{y \sim U(\mathbb{F}_2^n)} [f(y)g(x + y)]$.

322 For $S \in \mathbb{F}_2^n$ the corresponding Fourier coefficient of convolution is given as $\widehat{f * g}(S) =$
 323 $\widehat{f}(S)\widehat{g}(S)$.

324 3 \mathbb{F}_2 -sketching over the uniform distribution

325 We use the following definition of Fourier concentration that plays an important role in
 326 learning theory [27]. As mentioned above in all Fourier-analytic arguments we replace the
 327 range of the functions with $\{+1, -1\}$.

328 ► **Definition 12 (Fourier concentration).** The spectrum of a function $f : \mathbb{F}_2^n \rightarrow \{+1, -1\}$ is
 329 ϵ -concentrated on a collection of Fourier coefficients $Z \subseteq \mathbb{F}_2^n$ if $\sum_{\alpha \in Z} \widehat{f}^2(\alpha) \geq \epsilon$.

330 We now introduce the notion of *approximate Fourier dimension* of a Boolean function.

► **Definition 13 (Approximate Fourier dimension).** Let \mathcal{A}_k be the set of all linear subspaces of
 \mathbb{F}_2^n of dimension k . For $f : \mathbb{F}_2^n \rightarrow \{+1, -1\}$ and $\epsilon \in (0, 1]$ the ϵ -approximate Fourier dimension
 $\dim_\epsilon(f)$ is defined as:

$$328 \quad \dim_\epsilon(f) = \min \left\{ k : \exists A \in \mathcal{A}_k : \sum_{\alpha \in A} \widehat{f}^2(\alpha) \geq \epsilon \right\}.$$

331 The following theorem shows that for uniformly distributed inputs, both the one-way
 332 communication complexity of f^+ and the linear sketch complexity of f are characterized
 333 by the approximate Fourier dimension of f . An immediate corollary is that, up to some
 334 slack in the dependence on the probability of error, the one-way communication complexity
 335 under the uniform distribution matches the linear sketch complexity. We note that the lower
 336 bounds given by this theorem are stronger than the basic extractor lower bound given in
 337 Appendix C.1. See Remark C.1 for further discussion.

8:10 Linear Sketching over \mathbb{F}_2

³³⁸ \blacktriangleright **Theorem 14.** Let $f: \mathbb{F}_2^n \rightarrow \{+1, -1\}$ be a Boolean function. Let $\xi \in [0, 1]$ and $\gamma < \frac{1-\sqrt{\xi}}{2}$.
³³⁹ Let $d = \dim_{\xi}(f)$. Then,

$$\begin{aligned} \text{340} \quad 1. \quad \mathcal{D}_{(1-\xi)/2}^{\rightarrow, U}(f^+) \leq \mathcal{D}_{(1-\xi)/2}^{lin, U}(f) \leq d, \quad 2. \quad \mathcal{D}_{\gamma}^{lin, U}(f) \geq d, \quad 3. \quad \mathcal{D}_{(1-\xi)/6}^{\rightarrow, U} \geq \frac{d}{6}. \end{aligned}$$

³⁴² **Proof. Part 1**¹². Since $d = \dim_{\xi}(f)$, there exists a subspace $A \leq \mathbb{F}_2^n$ of dimension at most
³⁴³ d which satisfies $\sum_{\alpha \in A} \hat{f}^2(\alpha) \geq \xi$. Let $g: \mathbb{F}_2^n \rightarrow \mathbb{R}$ be a function defined by its Fourier
³⁴⁴ transform as follows:

$$\begin{aligned} \text{345} \quad \hat{g}(\alpha) = \begin{cases} \hat{f}(\alpha), & \text{if } \alpha \in A \\ 0, & \text{otherwise.} \end{cases} \end{aligned}$$

³⁴⁷ Consider drawing a random variable θ from the distribution with p.d.f $1 - |\theta|$ over $[-1, 1]$.

\blacktriangleright **Proposition 15.** For all t such that $-1 \leq t \leq 1$ and $z \in \{+1, -1\}$ random variable θ satisfies:

$$\Pr_{\theta}[\operatorname{sgn}(t - \theta) \neq z] \leq \frac{1}{2}(z - t)^2.$$

Proof. W.l.o.g we can assume $z = 1$ as the case $z = -1$ is symmetric. Then we have:

$$\Pr_{\theta}[\operatorname{sgn}(t - \theta) \neq 1] = \int_t^1 (1 - |\gamma|) d\gamma \leq \int_t^1 (1 - \gamma) d\gamma = \frac{1}{2}(1 - t)^2. \quad \blacksquare$$

³⁴⁸ Define a family of functions $g_{\theta}: \mathbb{F}_2^n \rightarrow \{+1, -1\}$ as $g_{\theta}(x) = \operatorname{sgn}(g(x) - \theta)$. Then we have:

$$\begin{aligned} \text{349} \quad \mathbb{E}_{\theta} \left[\Pr_{x \sim \mathbb{F}_2^n} [g_{\theta}(x) \neq f(x)] \right] &= \mathbb{E}_{x \sim \mathbb{F}_2^n} \left[\Pr_{\theta} [g_{\theta}(x) \neq f(x)] \right] \\ \text{350} \quad &= \mathbb{E}_{x \sim \mathbb{F}_2^n} \left[\Pr_{\theta} [\operatorname{sgn}(g(x) - \theta) \neq f(x)] \right] \\ \text{351} \quad &\leq \mathbb{E}_{x \sim \mathbb{F}_2^n} \left[\frac{1}{2}(f(x) - g(x))^2 \right] \text{ (by Proposition 15)} \\ \text{352} \quad &= \frac{1}{2} \|f - g\|_2^2. \end{aligned}$$

³⁵⁴ Using the definition of g and Parseval we have:

$$\begin{aligned} \text{355} \quad \frac{1}{2} \|f - g\|_2^2 &= \frac{1}{2} \|\widehat{f - g}\|_2^2 = \frac{1}{2} \|\hat{f} - \hat{g}\|_2^2 = \frac{1}{2} \sum_{\alpha \notin A} \hat{f}^2(\alpha) \leq \frac{1 - \xi}{2}. \end{aligned}$$

³⁵⁷ Thus, there exists a choice of θ such that g_{θ} achieves error at most $\frac{1-\xi}{2}$. Clearly g_{θ} can be
³⁵⁸ computed based on the d parities forming a basis for A and hence $\mathcal{D}_{(1-\xi)/2}^{lin, U}(f) \leq d$.

Part 2.

³⁶⁰ Fix any deterministic sketch that uses $d-1$ parities $\chi_{\alpha_1}, \dots, \chi_{\alpha_{d-1}}$ and let $S = (\alpha_1, \dots, \alpha_{d-1})$.
³⁶¹ For fixed values of these sketches $b = (b_1, \dots, b_{d-1})$ where $b_i = \chi_{\alpha_i}(x)$ we denote the resulting

¹²This argument is a refinement of the standard “sign trick” from learning theory which approximates a Boolean function by taking a sign of its real-valued approximation under ℓ_2 .

affine restriction of f as $f|_{(S,b)}$. Using the standard expression for the Fourier coefficients of an affine restriction the constant Fourier coefficient of the restricted function is given as:

$$\widehat{f|_{(S,b)}}(\emptyset) = \sum_{Z \subseteq [d-1]} (-1)^{\sum_{i \in Z} b_i} \hat{f} \left(\sum_{i \in Z} \alpha_i \right).$$

Thus, we have:

$$\widehat{f|_{(S,b)}}^2(\emptyset) = \sum_{Z \subseteq [d-1]} \hat{f}^2 \left(\sum_{i \in Z} \alpha_i \right) + \sum_{Z_1 \neq Z_2 \subseteq [d-1]} (-1)^{\sum_{i \in Z_1 \Delta Z_2} b_i} \hat{f} \left(\sum_{i \in Z_1} \alpha_i \right) \hat{f} \left(\sum_{i \in Z_2} \alpha_i \right).$$

Taking expectation over a uniformly random $b \sim U(\mathbb{F}_2^d)$ we have:

$$\begin{aligned} & \mathbb{E}_{b \sim U(\mathbb{F}_2^d)} \left[\widehat{f|_{(S,b)}}^2(\emptyset) \right] \\ &= \mathbb{E}_{b \sim U(\mathbb{F}_2^d)} \left[\sum_{Z \subseteq [d-1]} \hat{f}^2 \left(\sum_{i \in Z} \alpha_i \right) + \right. \\ & \quad \left. \sum_{Z_1 \neq Z_2 \subseteq [d-1]} (-1)^{\sum_{i \in Z_1 \Delta Z_2} b_i} \hat{f} \left(\sum_{i \in Z_1} \alpha_i \right) \hat{f} \left(\sum_{i \in Z_2} \alpha_i \right) \right] \\ &= \sum_{Z \subseteq [d-1]} \hat{f}^2 \left(\sum_{i \in Z} \alpha_i \right). \end{aligned}$$

The latter sum is the sum of squared Fourier coefficients over a linear subspace of dimension $d-1 < \dim_\xi(f)$, and hence is strictly less than ξ . Using Jensen's inequality:

$$\mathbb{E}_{b \sim U(\mathbb{F}_2^d)} \left[|\widehat{f|_{(S,b)}}(\emptyset)| \right] \leq \sqrt{\mathbb{E}_{b \sim U(\mathbb{F}_2^d)} \left[\widehat{f|_{(S,b)}}^2(\emptyset) \right]} < \sqrt{\xi}.$$

For a fixed restriction (S, b) if $|\widehat{f|_{(S,b)}}(\emptyset)| < \alpha$ then $|\Pr[f|_{(S,b)} = 1] - \Pr[f|_{(S,b)} = -1]| < \alpha$ and hence no algorithm can predict the value of the restricted function on this coset with probability at least $\frac{1+\alpha}{2}$. Thus no algorithm can predict $f|_{(\alpha_1, b_1), \dots, (\alpha_{d-1}, b_{d-1})}$ for a uniformly random choice of (b_1, \dots, b_{d-1}) , and hence also on a uniformly at random chosen x , with probability at least $\frac{1+\sqrt{\xi}}{2}$.

Part 3.

We will need the following fact about entropy of a binary random variable. The proof is given in the appendix (Section A.1).

► **Fact 16.** For any random variable X supported on $\{1, -1\}$, $H(X) \leq 1 - \frac{1}{2}(\mathbb{E}X)^2$.

We will need the following proposition that states that random variables taking value in $\{1, -1\}$ that are highly biased have low variance. The proof of Proposition 17 can be found in the appendix (Section E.1).

► **Proposition 17.** Let X be a random variable taking values in $\{1, -1\}$. Define $p := \min_{b \in \{1, -1\}} \Pr[X = b]$. Then $\text{Var}[X] \in [2p, 4p]$.

In the next two lemmas, we look into the structure of a one-way communication protocol for f^+ , and analyze its performance when the inputs are uniformly distributed. We give

391 a lower bound on the number of bits of information that any correct randomized one-way
 392 protocol reveals about Alice's input, in terms of the linear sketching complexity of f for
 393 uniform distribution¹³.

394 The next lemma bounds the probability of error of a one-way protocol from below in
 395 terms of the Fourier coefficients of f , and the conditional distributions of different parities of
 396 Alice's input conditioned on Alice's random message.

397 ▶ **Lemma 18.** *Let $\epsilon \in [0, \frac{1}{2})$. Let Π be a deterministic one-way protocol for f^+ such that
 398 $\Pr_{x,y \sim U(\mathbb{F}_2^n)}[\Pi(x,y) \neq f^+(x,y)] \leq \epsilon$. Let M denote the distribution of the random message
 399 sent by Alice to Bob in Π . For any fixed message m sent by Alice, let D_m denote the
 400 distribution of Alice's input x conditioned on the event that $M = m$. Then,*

$$401 \quad 4\epsilon \geq \sum_{\alpha \in \mathbb{F}_2^n} \widehat{f}^2(\alpha) \cdot \left(1 - \mathbb{E}_{m \sim M} \left(\mathbb{E}_{x \sim D_m} [\chi_\alpha(x)] \right)^2\right).$$

402 **Proof.** For any fixed input y of Bob, define $\epsilon_m^{(y)} := \Pr_{x \sim D_m}[\Pi(x,y) \neq f^+(x,y)]$. Thus,

$$403 \quad \epsilon \geq \mathbb{E}_{m \sim M} \mathbb{E}_{y \sim U(\mathbb{F}_2^n)} [\epsilon_m^{(y)}]. \quad (1)$$

405 Note that the output of the protocol is determined by Alice's message and y . Hence for
 406 a fixed message and Bob's input, if the restricted function is largely unbiased, then any
 407 protocol is forced to commit an error with high probability. Formally,

$$408 \quad \epsilon_m^{(y)} \geq \min_{b \in \{1, -1\}} \Pr_{x \sim D_m} [f^+(x,y) = b] \geq \frac{\text{Var}_{x \sim D_m}[f^+(x,y)]}{4}. \quad (2)$$

410 Since $f^+(\cdot, \cdot)$ takes values in $\{+1, -1\}$, the second inequality follows from Proposition 17.
 411 Now,

$$\begin{aligned} 412 \quad \text{Var}_{x \sim D_m}[f^+(x,y)] &= 1 - \left(\mathbb{E}_{x \sim D_m} [f^+(x,y)] \right)^2 && \text{(since } f^+(x,y) \in \{1, -1\}\text{)} \\ 413 \quad &= 1 - \left(\sum_{\alpha \in \mathbb{F}_2^n} \widehat{f}(\alpha) \chi_\alpha(y) \mathbb{E}_{x \sim D_m} [\chi_\alpha(x)] \right)^2 && \text{(by Fact 9 and linearity of expectation)} \\ 414 \quad &= 1 - \left(\sum_{\alpha \in \mathbb{F}_2^n} \widehat{f}^2(\alpha) \left(\mathbb{E}_{x \sim D_m} [\chi_\alpha(x)] \right)^2 \right. \\ 415 \quad &\quad \left. + \sum_{(\alpha_1, \alpha_2) \in \mathbb{F}_2^n \times \mathbb{F}_2^n : \alpha_1 \neq \alpha_2} \widehat{f}(\alpha_1) \widehat{f}(\alpha_2) \chi_{\alpha_1 + \alpha_2}(y) \mathbb{E}_{x \sim D_m} [\chi_{\alpha_1}(x)] \mathbb{E}_{x \sim D_m} [\chi_{\alpha_2}(x)] \right). \end{aligned}$$

417 Taking expectation over y we have:

$$418 \quad \mathbb{E}_{y \sim U(\mathbb{F}_2^n)} [\text{Var}_{x \sim D_m}[f^+(x,y)]] = 1 - \sum_{\alpha \in \mathbb{F}_2^n} \widehat{f}^2(\alpha) \left(\mathbb{E}_{x \sim D_m} [\chi_\alpha(x)] \right)^2. \quad (3)$$

13 We thus prove an *information complexity* lower bound. See, for example, [21] for an introduction to information complexity.

420 Taking expectation over messages it follows from (1), (2) and (3) that,

425 The second equality above follows from the Parseval's identity (Fact 6). The lemma follows.

427 Let $\epsilon := \frac{1-\xi}{6}$. Let Π be a deterministic protocol such that $\Pr_{x,y \sim U(\mathbb{F}_2^n)}[\Pi(x,y) \neq f^+(x,y)] \leq \epsilon$,
 428 with optimal cost $c_\Pi := \mathcal{D}_\epsilon^{\rightarrow,U}(f^+) = \mathcal{D}_{\frac{1-\xi}{6}}^{\rightarrow,U}(f^+)$. Let M denote the distribution of the
 429 random message sent by Alice to Bob in Π . For any fixed message m sent by Alice, let D_m
 430 denote the distribution of Alice's input x conditioned on the event that $M = m$. To prove
 431 Part 3 of Theorem 14 we use the protocol Π to come up with a subspace of \mathbb{F}_2^n . Next, in
 432 Lemma 19 (a) we prove, using Lemma 18, that f is ξ -concentrated on that subspace. In
 433 Lemma 19 (b) we upper bound the dimension of that subspace in terms of c_Π .

► **Lemma 19.** Let $\mathcal{A} := \{\alpha \in \mathbb{F}_2^n : \mathbb{E}_{m \sim M} (\mathbb{E}_{x \sim D_m} \chi_\alpha(x))^2 \geq \frac{1}{3}\} \subseteq \mathbb{F}_2^n$. Let $\ell = \dim(\text{span}(\mathcal{A}))$. Then,

436 (a) $\ell \geq d$.
 437 (b) $\ell \leq 6d$.

Proof. (a) We prove part (a) by showing that f is ξ -concentrated on $\text{span}(\mathcal{A})$. By Lemma 18 we have that

$$\begin{aligned}
440 \quad 4\epsilon &\geq \sum_{\alpha \in \text{span}(\mathcal{A})} \hat{f}^2(\alpha) \cdot \left(1 - \mathbb{E}_{m \sim M} \left(\mathbb{E}_{x \sim \mathbb{D}_m} \chi_\alpha(x) \right)^2\right) + \\
441 \quad &\quad \sum_{\alpha \notin \text{span}(\mathcal{A})} \hat{f}^2(\alpha) \cdot \left(1 - \mathbb{E}_{m \sim M} \left(\mathbb{E}_{x \sim \mathbb{D}_m} \chi_\alpha(x) \right)^2\right) \\
442 \quad &> \frac{2}{3} \cdot \sum_{\alpha \notin \text{span}(\mathcal{A})} \hat{f}^2(\alpha). \\
443
\end{aligned}$$

444 Thus $\sum_{\alpha \notin \text{span}(\mathcal{A})} \widehat{f}^2(\alpha) < 6\epsilon$. Hence, $\sum_{\alpha \in \text{span}(\mathcal{A})} \widehat{f}^2(\alpha) \geq 1 - 6\epsilon = \xi$. Hence we have
 445 $\ell = \dim(\text{span}(\mathcal{A})) \geq \dim_{\xi}(f) = d$.

(b) Notice that $\chi_\alpha(x)$ is an unbiased random variable taking values in $\{1, -1\}$. For each α in the set \mathcal{A} in Proposition 19, the value of $\mathbb{E}_{m \sim M} (\mathbb{E}_{x \sim D_m} \chi_\alpha(x))^2$ is bounded away from 0. This suggests that for a typical message m drawn from M , the distribution of $\chi_\alpha(x)$ conditioned on the event $M = m$ is significantly biased. Fact 16 enables us to conclude that Alice's message reveals $\Omega(1)$ bit of information about $\chi_\alpha(x)$. However, since the total information content of Alice's message is at most c_Π , there can be at most $O(c_\Pi)$ independent vectors in \mathcal{A} . Now we formalize this intuition.

8:14 Linear Sketching over \mathbb{F}_2

454 Let $\mathcal{T} = \{\alpha_1, \dots, \alpha_\ell\}$ be a basis of $\text{span}(\mathcal{A})$. Then,

455 $c_{\Pi} \geq H(M)$ (by the third inequality of Fact 5 (1))

456 $\geq I(M; \chi_{\alpha_1}(x), \dots, \chi_{\alpha_\ell}(x))$ (by observation 7)

457 $= H(\chi_{\alpha_1}(x), \dots, \chi_{\alpha_\ell}(x)) - H(\chi_{\alpha_1}(x), \dots, \chi_{\alpha_\ell}(x) \mid M)$

458 $= \ell - H(\chi_{\alpha_1}(x), \dots, \chi_{\alpha_\ell}(x) \mid M)$

459 (by Fact 5 (3) as $\chi_{\alpha_i}(x)$'s are independent as random variables)

460 $\geq \ell - \sum_{i=1}^{\ell} H(\chi_{\alpha_i}(x) \mid M)$ (by Fact 5 (2))

461 $\geq \ell - \ell \left(1 - \frac{1}{2} \cdot \frac{1}{3}\right)$ (by Fact 16)

462 $= \frac{\ell}{6}.$

463 ■

464 Recall that $c_{\Pi} = \mathcal{D}_{\frac{1-\xi}{6}}^{\rightarrow, U}(f^+)$. Part 3 of Theorem 14 follows easily from Lemma 19:

465 $\mathcal{D}_{\frac{1-\xi}{6}}^{\rightarrow, U}(f^+) = c_{\Pi}$

466 $\geq \frac{\ell}{6}$ (by Lemma 19 (b))

467 $\geq \frac{d}{6}.$ (by Lemma 19 (a))

468 ■

469 The proof of Theorem 4 now follows directly from Part 1 and Part 3 of Theorem 14 by setting $\xi = 1/3$.

4 Applications

470 In this section using Theorem 14 we confirm Conjecture 3 for several function classes: low-degree \mathbb{F}_2 polynomials, functions with sparse Fourier spectrum and symmetric functions (which are not too imbalanced). We also give an example of a composition theorem using recursive majority function as an example.

4.1 Low-degree \mathbb{F}_2 polynomials

471 In this section we show that for Boolean functions with low \mathbb{F}_2 -degree randomness does not help in the design of linear sketches or one-way communication protocols. We briefly review some basic definitions, facts and results below.

472 ▶ **Fact 20.** For every Boolean function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ there is a unique n -variate polynomial $p \in \mathbb{F}_2[x_1, \dots, x_n]$ such that for every $(x_1, \dots, x_n) \in \mathbb{F}_2^n$, $f(x_1, \dots, x_n) = p(x_1, \dots, x_n)$.

473 The uniqueness of this representation in particular implies that the only \mathbb{F}_2 polynomial representing the constant 0 function is the polynomial 0. Taking the contrapositive, we have that for every non-constant \mathbb{F}_2 polynomial there is an assignment to its input variables on which the polynomial evaluates to 1.

474 The degree of p is referred to as the \mathbb{F}_2 -degree of f . We will need the following standard result which states that a function with low \mathbb{F}_2 -degree cannot vanish on too many points in its domain. For the sake of completion, we add a proof of it in the appendix (Section E.2).

491 ► **Lemma 21.** Let f be a Boolean function different than the constant 0 function with \mathbb{F}_2
 492 degree d . Then,

493
$$\Pr_{x \sim U(\mathbb{F}_2^n)}[f(x) = 1] \geq \frac{1}{2^d}.$$

494

495 In this section we prove the following theorem.

496 ► **Theorem 22.** Let $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ be a Boolean function, and let the \mathbb{F}_2 -degree of f be d .
 497 Then,

498
$$D^{lin}(f) = \dim(f) = O\left(R_{1/3}^{\rightarrow}(f^+) \cdot d\right).$$

499

500 **Proof.** Let $\ell = \mathcal{D}_{\frac{1}{4 \cdot 2^d}}^{lin,U}(f)$. This implies that there is a set $\mathcal{P} = \{P_1, \dots, P_\ell\}$ of at most ℓ
 501 parities and a Boolean function g such that $\Pr_{x \sim U(\mathbb{F}_2^n)}[f(x) \neq g(P_1(x), \dots, P_\ell(x))] \leq \frac{1}{4 \cdot 2^d}$.
 502 We now prove that $D^{lin}(f)$ (or equivalently Fourier dimension) of f is at most ℓ . That will
 503 prove the theorem as:

504
$$\mathcal{D}_{\frac{1}{4 \cdot 2^d}}^{lin,U}(f) = O\left(\mathcal{D}_{\frac{1}{12 \cdot 2^d}}^{\rightarrow,U}(f^+)\right),$$

 505
$$\mathcal{D}_{\frac{1}{12 \cdot 2^d}}^{\rightarrow,U}(f^+) = O\left(R_{\frac{1}{12 \cdot 2^d}}^{\rightarrow}(f^+)\right),$$

 506
$$R_{\frac{1}{12 \cdot 2^d}}^{\rightarrow}(f^+) = O\left(R_{1/3}^{\rightarrow}(f^+) \cdot d\right).$$

508 where the first relation follows by invoking parts 1 and 3 of Theorem 14 with $\xi = 1 - \frac{1}{2^{d+1}}$,
 509 the second relation holds by fixing the randomness of a randomized one-way protocol
 510 appropriately, and the third relation is true because the error of a randomized one-way
 511 protocol can be reduced from $1/3$ to $\frac{1}{12 \cdot 2^d}$ by taking the majority of $O(d)$ independent parallel
 512 repetitions.

It is left to prove that $D^{lin}(f) \leq \ell$. We prove it by showing that evaluations of all the
 parities in the set \mathcal{P} determine the value of f . For each $b = (b_1, \dots, b_\ell) \in \mathbb{F}_2^\ell$, let V_b denote
 the affine subspace $\{x \in \mathbb{F}_2^n : P_1(x) = b_1, \dots, P_\ell(x) = b_\ell\}$ and define:

$$p_b := \Pr_{x \sim U(V_b)}[f(x) \neq g(P_1(x), \dots, P_\ell(x))] = \Pr_{x \sim U(V_b)}[f(x) \neq g(b_1, \dots, b_\ell)].$$

513 Note that:

514
$$p_b \geq \min\left\{\Pr_{x \sim U(V_b)}[f(x) = 0], \Pr_{x \sim U(V_b)}[f(x) = 1]\right\} \geq \frac{1}{2} \Pr_{x, x' \sim U(V_b)}[f(x) \neq f(x')]. \quad (5)$$

Given this observation, define $F : \mathbb{F}_2^n \times \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ as follows. For $x, x' \in \mathbb{F}_2^n$ let:

$$F(x, x') := \mathbf{1}_{f(x) \neq f(x')} = f(x) + f(x') \pmod{2}.$$

516 Note that \mathbb{F}_2 -degree of F is at most d . Now,

$$\begin{aligned}
 517 \quad & \Pr_{x \sim U(\mathbb{F}_2^n)} [f(x) \neq g(P_1(x), \dots, P_\ell(x))] \leq \frac{1}{4 \cdot 2^d} \\
 518 \quad \Rightarrow \quad & \mathbb{E}_{b \sim U(\mathbb{F}_2^n)} \left[\Pr_{x \sim U(V_b)} [f(x) \neq g(b_1, \dots, b_\ell)] \right] \leq \frac{1}{4 \cdot 2^d} \\
 519 \quad \Rightarrow \quad & \mathbb{E}_{b \sim U(\mathbb{F}_2^n)} [p_b] \leq \frac{1}{4 \cdot 2^d} \\
 520 \quad \Rightarrow \quad & \mathbb{E}_{b \sim U(\mathbb{F}_2^n)} \left[\Pr_{x, x' \sim U(V_b)} [f(x) \neq f(x')] \right] \leq \frac{1}{2 \cdot 2^d} \quad (\text{From equation (5)}) \\
 521 \quad \Rightarrow \quad & \mathbb{E}_{b \sim U(\mathbb{F}_2^n)} \left[\Pr_{x, x' \sim U(V_b)} [F(x, x') = 1] \right] \leq \frac{1}{2 \cdot 2^d} \tag{6}
 \end{aligned}$$

523 Let V denote the subspace $\{(x, x') \in \mathbb{F}_2^n \times \mathbb{F}_2^n : P_1(x) = P_1(x'), \dots, P_\ell(x) = P_\ell(x')\}$ of
524 $\mathbb{F}_2^n \times \mathbb{F}_2^n$. From 6 we have that

$$525 \quad \Pr_{(x, x') \sim U(V)} [F(x, x') = 1] \leq \frac{1}{2 \cdot 2^d} < \frac{1}{2^d}. \tag{7}$$

527 Since \mathbb{F}_2 -degree of F is at most d , restriction of F to V also has \mathbb{F}_2 degree at most d .
528 Equation 7 and Fact 21 imply that F is the constant 0 function on V . Thus for each x, x'
529 such that $P_1(x) = P_1(x'), \dots, P_\ell(x) = P_\ell(x')$, $f(x) = f(x')$. Thus $f(x)$ is a function of
530 $P_1(x), \dots, P_\ell(x)$. Hence, Fourier dimension of f is at most ℓ . ■

531 For low-degree polynomials with bounded spectral norm we obtain the following corollary.

► **Corollary 23.** *Let $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ be a Boolean function of \mathbb{F}_2 -degree d . Then*

$$D^{lin}(f) = \dim(f) = O\left(d \cdot \|\hat{f}\|_1^2\right).$$

532 **Proof.** The proof follows from the result of Grolmusz [17, 39] that shows that $R_{1/3}^\rightarrow(f^+) =$
533 $O(\|\hat{f}\|_1^2)$ and Theorem 22. ■

534 This result should be compared with Corollary 6 in Tsang et al. [49] who show that
535 $D^{lin}(f) = O(2^{d^3/2} \log^{d^2} \|\hat{f}\|_1)$. Corollary 23 gives a stronger bound for $d = \omega(\log^{1/3} \|\hat{f}\|_1)$.

536 4.2 Address function and Fourier sparsity

537 Consider the *addressing function* $Add_n : \{0, 1\}^{\log n + n} \rightarrow \{0, 1\}$ defined as follows¹⁴:

$$538 \quad Add_n(x, y_1, \dots, y_n) = y_x, \text{ where } x \in \{0, 1\}^{\log n}, y_i \in \{0, 1\},$$

540 i.e. the value of Add_n on an input (x, y) is given by the x -th bit of the vector y where
541 x is treated as a binary representation of an integer number in between 1 and n . Here
542 x is commonly referred to as the *address block* and y as the *addressee block*. Addressing
543 function has only n^2 non-zero Fourier coefficients. In fact, as shown by Sanyal [44] the Fourier
544 dimension, and hence by Fact 8 also the deterministic sketch complexity, of any Boolean
545 function with Fourier sparsity s is $O(\sqrt{s} \log s)$.

546 Below using the addressing function we show that this relationship is tight (up to a
547 logarithmic factor) even if randomization is allowed, i.e. even for a function with Fourier
548 sparsity s an \mathbb{F}_2 sketch of size $\Omega(\sqrt{s})$ might be required.

¹⁴In this section it will be more convenient to represent both domain and range of the function using $\{0, 1\}$ rather than \mathbb{F}_2 .

► **Theorem 24.** For the addressing function Add_n and values $1 \leq d \leq n$ and $\xi > d/n$ it holds that:

$$\mathcal{D}_{\frac{1-\sqrt{\xi}}{2}}^{lin,U}(Add_n^+) > d, \quad \mathcal{D}_{\frac{1-\xi}{6}}^{\rightarrow,U}(Add_n) > \frac{d}{6}.$$

549 **Proof.** If we apply the standard Fourier notation switch where we replace 0 with 1 and 1
 550 with -1 in the domain and the range of the function then the addressing function $Add_n(x, y)$
 551 can be expressed as the following multilinear polynomial:

$$552 \quad Add_n(x, y) = \sum_{i \in \{0,1\}^{\log n}} y_i \prod_{j: i_j=1} \left(\frac{1-x_j}{2} \right) \prod_{j: i_j=0} \left(\frac{1+x_j}{2} \right),$$

554 which makes it clear that the only non-zero Fourier coefficients correspond to the sets that
 555 contain a single variable from the addressee block and an arbitrary subset of variables
 556 from the address block. This expansion also shows that the absolute value of each Fourier
 557 coefficient is equal to $\frac{1}{n}$.

558 Fix any d -dimensional subspace \mathcal{A}_d and consider the matrix $M \in \mathbb{F}_2^{d \times (\log n + n)}$ composed
 559 of the basis vectors as rows. We add to M extra $\log n$ rows which contain an identity
 560 matrix in the first $\log n$ coordinates and zeros everywhere else. This gives us a new matrix
 561 $M' \in \mathbb{F}_2^{(d+\log n) \times (\log n + n)}$. Applying Gaussian elimination to M' we can assume that it is of
 562 the following form:

$$563 \quad M' = \begin{pmatrix} I_{\log n} & 0 & 0 \\ 0 & I_{d'} & M'' \\ 0 & 0 & 0 \end{pmatrix},$$

565 where $d' \leq d$. Thus, the total number of non-zero Fourier coefficients spanned by the rows of
 566 M' equals nd' . Hence, the total sum of squared Fourier coefficients in \mathcal{A}_d is at most $\frac{d'}{n} \leq \frac{d}{n}$,
 567 i.e. $\dim_{\xi}(Add_n) > d$. By Part 2 and Part 3 of Theorem 14 the statement of the theorem
 568 follows. ■

569 4.3 Symmetric functions

570 A function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is symmetric if it can be expressed as $g(\|x\|_0)$ for some function
 571 $g : [0, n] \rightarrow \mathbb{F}_2$. We give the following lower bound for symmetric functions:

► **Theorem 25** (Lower bound for symmetric functions). For any symmetric function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ that isn't $(1 - \epsilon)$ -concentrated on $\{\emptyset, \{1, \dots, n\}\}$:

$$\mathcal{D}_{\epsilon/8}^{lin,U}(f) \geq \frac{n}{2e}, \quad \mathcal{D}_{\epsilon/12}^{\rightarrow,U}(f^+) \geq \frac{n}{2e}.$$

572 **Proof.** First we prove an auxiliary lemma. Let W_k be the set of all vectors in \mathbb{F}_2^n of Hamming
 573 weight k .

574 ► **Lemma 26.** For any $d \in [n/2]$, $k \in [n-1]$ and any d -dimensional subspace $\mathcal{A}_d \subseteq \mathbb{F}_2^n$:

$$575 \quad \frac{|W_k \cap \mathcal{A}_d|}{|W_k|} \leq \left(\frac{ed}{n} \right)^{\min(k, n-k, d)} \leq \frac{ed}{n}.$$

577 **Proof.** Fix any basis in \mathcal{A}_d and consider the matrix $M \in \mathbb{F}_2^{d \times n}$ composed of the basis vectors
 578 as rows. W.l.o.g we can assume that this matrix is diagonalized and is in the standard form
 579 (I_d, M') where I_d is a $d \times d$ identity matrix and M' is a $d \times (n-d)$ -matrix. Clearly, any

580 linear combination of more than k rows of M has Hamming weight greater than k just from
 581 the contribution of the first d coordinates. Thus, we have $|W_k \cap \mathcal{A}_d| \leq \sum_{i=0}^k \binom{d}{i}$.

582 For any $k \leq d$ it is a standard fact about binomials that $\sum_{i=0}^k \binom{d}{i} \leq \left(\frac{ed}{k}\right)^k$. On the
 583 other hand, we have $|W_k| = \binom{n}{k} \geq (n/k)^k$. Thus, we have $\frac{|W_k \cap \mathcal{A}_d|}{|W_k|} \leq \left(\frac{ed}{n}\right)^k$ and hence for
 584 $1 \leq k \leq d$ the desired inequality holds.

585 If $d < k$ then consider two cases. Since $d \leq n/2$ the case $n - d \leq k \leq n - 1$ is symmetric
 586 to $1 \leq k \leq d$. If $d < k < n - d$ then we have $|W_k| > |W_d| \geq (n/d)^d$ and $|W_k \cap \mathcal{A}_d| \leq 2^d$ so
 587 that the desired inequality follows. ■

588 Any symmetric function has its spectrum distributed uniformly over Fourier coefficients
 589 of any fixed weight. Let $w_i = \sum_{S \in W_i} \hat{f}^2(S)$. By the assumption of the theorem we have
 590 $\sum_{i=1}^{n-1} w_i \geq \epsilon$. Thus, by Lemma 26 any linear subspace \mathcal{A}_d of dimension at most $d \leq n/2$
 591 satisfies that:

$$\begin{aligned} 592 \sum_{S \in \mathcal{A}_d} f^2(S) &\leq \hat{f}^2(\emptyset) + \hat{f}^2(\{1, \dots, n\}) + \sum_{i=1}^{n-1} w_i \frac{|W_i \cap \mathcal{A}_d|}{|W_i|} \\ 593 &\leq \hat{f}^2(\emptyset) + \hat{f}^2(\{1, \dots, n\}) + \sum_{i=1}^{n-1} w_i \frac{ed}{n} \\ 594 &\leq (1 - \epsilon) + \epsilon \frac{ed}{n}. \\ 595 \end{aligned}$$

596 Thus, f isn't $1 - \epsilon(1 - \frac{ed}{n})$ -concentrated on any d -dimensional linear subspace, i.e.
 597 $\dim_{\xi}(f) > d$ for $\xi = 1 - \epsilon(1 - \frac{ed}{n})$. By Part 2 of Theorem 14 this implies that f doesn't have
 598 randomized sketches of dimension at most d which err with probability less than:

$$\begin{aligned} 599 \frac{1}{2} - \frac{\sqrt{1 - \epsilon(1 - \frac{ed}{n})}}{2} &\geq \frac{\epsilon}{4} \left(1 - \frac{ed}{n}\right) \geq \frac{\epsilon}{8} \\ 600 \end{aligned}$$

601 where the last inequality follows by the assumption that $d \leq \frac{n}{2\epsilon}$. The communication
 602 complexity lower bound follows by Part 3 of Theorem 14 by setting $d = \frac{n}{2\epsilon}$.

603 4.4 Composition theorem for majority

604 In this section using Theorem 14 we give a composition theorem for \mathbb{F}_2 -sketching of the
 605 composed Maj_3 function. Unlike in the deterministic case for which the composition theorem
 606 is easy to show (see Lemma 13) in the randomized case composition results require more
 607 work.

608 ▶ **Definition 27** (Composition). For $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ and $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$ their composition $f \circ$
 609 $g: \mathbb{F}_2^{mn} \rightarrow \mathbb{F}_2$ is defined as:

$$610 \quad (f \circ g)(x) = f(g(x_1, \dots, x_m), g(x_{m+1}, \dots, x_{2m}), \dots, g(x_{m(n-1)+1}, \dots, x_{mn})). \\ 611$$

612 Consider the recursive majority function $Maj_3^{\circ k} \equiv Maj_3 \circ Maj_3 \circ \dots \circ Maj_3$ where the
 613 composition is taken k times.

614 ▶ **Theorem 28.** For any $d \leq n$, $k = \log_3 n$ and $\xi > \frac{4d}{n}$ it holds that $\dim_{\xi}(Maj_3^{\circ k}) > d$.

615 First, we show a slightly stronger result for standard subspaces and then extend this result
 616 to arbitrary subspaces with a loss of a constant factor. Fix any set $S \subseteq [n]$ of variables. We
 617 associate this set with a collection of standard unit vectors corresponding to these variables.
 618 Hence in this notation \emptyset corresponds to the all-zero vector.

619 ► **Lemma 29.** For any standard subspace whose basis consists of singletons from the set
 620 $S \subseteq [n]$ it holds that:

$$621 \quad \sum_{Z \in \text{span}(S)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2 \leq \frac{|S|}{n}$$

623 **Proof.** The Fourier expansion of Maj_3 is given as

$$624 \quad \text{Maj}_3(x_1, x_2, x_3) = \frac{1}{2} (x_1 + x_2 + x_3 - x_1 x_2 x_3)$$

625 . For $i \in \{1, 2, 3\}$ let $N_i = \{(i-1)n/3 + 1, \dots, in/3\}$. Let $S_i = S \cap N_i$. Let α_i be defined as:

$$626 \quad \alpha_i = \sum_{Z \in \text{span}(S_i)} \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z) \right)^2.$$

628 Then we have:

$$629 \quad \sum_{Z \in \text{span}(S)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2 = \sum_{i=1}^3 \sum_{Z \in \text{span}(S_i)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2 +$$

$$630 \quad \sum_{Z \in \text{span}(S) - \cup_{i=1}^3 \text{span}(S_i)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2.$$

631 For each S_i we have

$$\sum_{Z \in \text{span}(S_i)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2 = \frac{1}{4} \sum_{Z \in \text{span}(S_i)} \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z) \right)^2 = \frac{\alpha_i}{4}.$$

632 Moreover, for each $Z \in \text{span}(S) - \cup_{i=1}^3 \text{span}(S_i)$ we have:

$$633 \quad \widehat{\text{Maj}}_3^{\circ k}(Z) = \begin{cases} -\frac{1}{2} \widehat{\text{Maj}}_3^{\circ k-1}(Z_1) \widehat{\text{Maj}}_3^{\circ k-1}(Z_2) \widehat{\text{Maj}}_3^{\circ k-1}(Z_3) & \text{if } Z \in \times_{i=1}^3 (\text{span}(S_i) \setminus \emptyset) \\ 0 & \text{otherwise.} \end{cases}$$

635 Thus, we have:

$$636 \quad \sum_{Z \in (\text{span}(S_1) \setminus \emptyset) \times (\text{span}(S_2) \setminus \emptyset) \times (\text{span}(S_3) \setminus \emptyset)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2$$

$$637 \quad = \sum_{Z \in (\text{span}(S_1) \setminus \emptyset) \times (\text{span}(S_2) \setminus \emptyset) \times (\text{span}(S_3) \setminus \emptyset)} \frac{1}{4} \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z_1) \right)^2 \cdot \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z_2) \right)^2 \cdot$$

$$638 \quad \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z_3) \right)^2$$

$$639 \quad = \frac{1}{4} \left(\sum_{Z \in (\text{span}(S_1) \setminus \emptyset)} \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z_1) \right)^2 \right) \cdot \left(\sum_{Z \in (\text{span}(S_2) \setminus \emptyset)} \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z_2) \right)^2 \right) \cdot$$

$$640 \quad \left(\sum_{Z \in (\text{span}(S_3) \setminus \emptyset)} \left(\widehat{\text{Maj}}_3^{\circ k-1}(Z_3) \right)^2 \right)$$

$$641 \quad = \frac{1}{4} \alpha_1 \alpha_2 \alpha_3.$$

643 where the last equality holds since $\widehat{\text{Maj}}_3^{\circ k-1}(\emptyset) = 0$. Putting this together we have:

$$\begin{aligned} 644 \quad & \sum_{Z \in \text{span}(S)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2 = \frac{1}{4}(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_1\alpha_2\alpha_3) \\ 645 \quad & \leq \frac{1}{4} \left(\alpha_1 + \alpha_2 + \alpha_3 + \frac{1}{3}(\alpha_1 + \alpha_2 + \alpha_3) \right) = \frac{1}{3}(\alpha_1 + \alpha_2 + \alpha_3). \\ 646 \end{aligned}$$

647 Applying this argument recursively to each α_i for $k-1$ times we have:

$$\begin{aligned} 648 \quad & \sum_{Z \in \text{span}(S)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2 \leq \frac{1}{3^k} \sum_{i=1}^{3^k} \gamma_i, \\ 649 \end{aligned}$$

650 where $\gamma_i = 1$ if $i \in S$ and 0 otherwise. Thus, $\sum_{Z \in \text{span}(S)} \left(\widehat{\text{Maj}}_3^{\circ k}(Z) \right)^2 \leq \frac{|S|}{n}$. \blacksquare

651 To extend the argument to arbitrary linear subspaces we show that any such subspace has
652 less Fourier weight than a collection of three carefully chosen standard subspaces. First we
653 show how to construct such subspaces in Lemma 30.

654 For a linear subspace $L \leq \mathbb{F}_2^n$ we denote the set of all vectors in L of odd Hamming
655 weight as $\mathcal{O}(L)$ and refer to it as the *odd set* of L . For two vectors $v_1, v_2 \in \mathbb{F}_2^n$ we say that
656 v_1 *dominates* v_2 if the set of non-zero coordinates of v_1 is a (not necessarily proper) subset
657 of the set of non-zero coordinates of v_2 . For two sets of vectors $S_1, S_2 \subseteq \mathbb{F}_2^n$ we say that S_1
658 *dominates* S_2 (denoted as $S_1 \prec S_2$) if there is a matching M between S_1 and S_2 of size $|S_2|$
659 such that for each $(v_1 \in S_1, v_2 \in S_2) \in M$ the vector v_1 dominates v_2 .

► **Lemma 30** (Standard subspace domination lemma). *For any linear subspace $L \leq \mathbb{F}_2^n$ of dimension d there exist three standard linear subspaces $S_1, S_2, S_3 \leq \mathbb{F}_2^n$ such that:*

$$\mathcal{O}(L) \prec \mathcal{O}(S_1) \cup \mathcal{O}(S_2) \cup \mathcal{O}(S_3),$$

660 and $\dim(S_1) = d-1$, $\dim(S_2) = d$, $\dim(S_3) = 2d$.

661 **Proof.** Let $A \in \mathbb{F}_2^{d \times n}$ be the matrix with rows corresponding to the basis in L . We will
662 assume that A is normalized in a way described below. First, we apply Gaussian elimination
663 to ensure that $A = (I, M)$ where I is a $d \times d$ identity matrix. If all rows of A have even
664 Hamming weight then the lemma holds trivially since $\mathcal{O}(L) = \emptyset$. By reordering rows and
665 columns of A we can always assume that for some $k \geq 1$ the first k rows of A have odd
666 Hamming weight and the last $d-k$ have even Hamming weight. Finally, we add the first
667 column to each of the last $d-k$ rows, which makes all rows have odd Hamming weight. This
668 results in A of the following form:

$$\begin{aligned} 669 \quad A = & \left(\begin{array}{c|c|c|c} 1 & 0 \cdots 0 & 0 \cdots 0 & a \\ \hline 0 & I_{k-1} & 0 & M_1 \\ \vdots & & & \\ 0 & & & \\ \hline 1 & 0 & I_{d-k} & M_2 \\ \vdots & & & \\ 1 & & & \end{array} \right) \end{aligned}$$

670 We use the following notation for submatrices: $A[i_1, j_1; i_2, j_2]$ refers to the submatrix of A
671 with rows between i_1 and j_1 and columns between i_2 and j_2 inclusive. We denote to the

672 first row by v , the submatrix $A[2, k; 1, n]$ as \mathcal{A} and the submatrix $A[k + 1, d; 1, n]$ as \mathcal{B} . Each
 673 $x \in \mathcal{O}(L)$ can be represented as $\sum_{i \in S} A_i$ where the set S is of odd size and the sum is over
 674 \mathbb{F}_2^n . We consider the following three cases corresponding to different types of the set S .

675 **Case 1.** $S \subseteq \text{rows}(\mathcal{A}) \cup \text{rows}(\mathcal{B})$. This corresponds to all odd size linear combinations
 676 of the rows of A that don't include the first row. Clearly, the set of such vectors is dominated
 677 by $\mathcal{O}(S_1)$ where S_1 is the standard subspace corresponding to the span of the rows of the
 678 submatrix $A[2, d; 2, d]$.

679 **Case 2.** S contains the first row, $|S \cap \text{rows}(\mathcal{A})|$ and $|S \cap \text{rows}(\mathcal{B})|$ are even. All such linear
 680 combinations have their first coordinate equal 1. Hence, they are dominated by a
 681 standard subspace corresponding to span of the rows the $d \times d$ identity matrix, which we
 682 refer to as S_2 .

683 **Case 3.** S contains the first row, $|S \cap \text{rows}(\mathcal{A})|$ and $|S \cap \text{rows}(\mathcal{B})|$ are odd. All such linear
 684 combinations have their first coordinate equal 0. This implies that the Hamming weight of
 685 the first d coordinates of such linear combinations is even and hence the other coordinates
 686 cannot be all equal to 0. Consider the submatrix $M = A[1, d; d + 1, n]$ corresponding to the
 687 last $n - d$ columns of A . Since the rank of this matrix is at most d by running Gaussian
 688 elimination on M we can construct a matrix M' containing as rows the basis for the row
 689 space of M of the following form:

$$690 \quad M' = \begin{pmatrix} I_t & M_1 \\ 0 & 0 \end{pmatrix}$$

691 where $t = \text{rank}(M)$. This implies that any non-trivial linear combination of the rows of
 692 M contains 1 in one of the first t coordinates. We can reorder the columns of A in such
 693 a way that these t coordinates have indices from $d + 1$ to $d + t$. Note that now the set of
 694 vectors spanned by the rows of the $(d + t) \times (d + t)$ identity matrix I_{d+t} dominates the set
 695 of linear combinations we are interested in. Indeed, each such linear combination has even
 696 Hamming weight in the first d coordinates and has at least one coordinate equal to 1 in the
 697 set $\{d + 1, \dots, d + t\}$. This gives a vector of odd Hamming weight that dominates such linear
 698 combination. Since this mapping is injective we have a matching. We denote the standard
 699 linear subspace constructed this way by S_3 and clearly $\dim(S_3) \leq 2d$. \blacksquare

700 The following proposition shows that the spectrum of the $\text{Maj}_3^{\circ k}$ is monotone decreasing
 701 under inclusion if restricted to odd size sets only:

702 **► Proposition 31.** For any two sets $Z_1 \subseteq Z_2$ of odd size it holds that:

$$703 \quad \left| \widehat{\text{Maj}_3^{\circ k}}(Z_1) \right| \geq \left| \widehat{\text{Maj}_3^{\circ k}}(Z_2) \right|.$$

704 **Proof.** The proof is by induction on k . Consider the Fourier expansion of $\text{Maj}_3(x_1, x_2, x_3) =$
 705 $\frac{1}{2}(x_1 + x_2 + x_3 - x_1 x_2 x_3)$. The case $k = 1$ holds since all Fourier coefficients have absolute
 706 value 1/2. Since $\text{Maj}_3^{\circ k} = \text{Maj}_3 \circ (\text{Maj}_3^{\circ k-1})$ all Fourier coefficients of $\text{Maj}_3^{\circ k}$ result from
 707 substituting either a linear or a cubic term in the Fourier expansion by the multilinear
 708 expansions of $\text{Maj}_3^{\circ k-1}$. This leads to four cases.

709 **Case 1.** Z_1 and Z_2 both arise from linear terms. In this case if Z_1 and Z_2 aren't disjoint
 710 then they arise from the same linear term and thus satisfy the statement by the inductive
 711 hypothesis.

712 **Case 2.** If Z_1 arises from a cubic term and Z_2 from the linear term then it can't be the
 713 case that $Z_1 \subseteq Z_2$ since Z_2 contains some variables not present in Z_1 .

714 **Case 3.** If Z_1 and Z_2 both arise from the cubic term then we have $(Z_1 \cap N_i) \subseteq (Z_2 \cap N_i)$ for
 715 each i . By the inductive hypothesis we then have $\left| \widehat{\text{Maj}_3^{\circ k-1}}(Z_1 \cap N_i) \right| \geq \left| \widehat{\text{Maj}_3^{\circ k-1}}(Z_2 \cap N_i) \right|$.

718 Since for $j = 1, 2$ we have $\widehat{\text{Maj}_3^{\circ k}}(Z_j) = -\frac{1}{2} \prod_i \widehat{\text{Maj}_3^{\circ k-1}}(Z_j \cap N_i)$ the desired inequality
719 follows.

720 **Case 4.** If Z_1 arises from the linear term and Z_2 from the cubic term then w.l.o.g.
721 assume that Z_1 arises from the x_1 term. Note that $Z_1 \subseteq (Z_2 \cap N_1)$ since $Z_1 \cap (N_2 \cup N_3) = \emptyset$.
722 By the inductive hypothesis applied to Z_1 and $Z_2 \cap N_1$ the desired inequality holds.

723 We can now complete the proof of Theorem 28

724 **Proof of Theorem 28.** By combining Proposition 31 and Lemma 29 we have that any set \mathcal{T} of
725 vectors that is dominated by $\mathcal{O}(\mathcal{S})$ for some standard subspace \mathcal{S} satisfies $\sum_{S \in \mathcal{T}} \widehat{\text{Maj}_3^{\circ k}}(S)^2 \leq$
726 $\frac{\dim(\mathcal{S})}{n}$. By the standard subspace domination lemma (Lemma 30) any subspace $L \leq \mathbb{F}_2^n$ of
727 dimension d has $\mathcal{O}(L)$ dominated by a union of three standard subspaces of dimension $2d$, d
728 and $d-1$ respectively. Thus, we have $\sum_{S \in \mathcal{O}(L)} \widehat{\text{Maj}_3^{\circ k}}(S)^2 \leq \frac{2d}{n} + \frac{d}{n} + \frac{d-1}{n} \leq \frac{4d}{n}$. \blacksquare

729 We have the following corollary of Theorem 28 that proves Theorem 5.

730 **► Corollary 32.** For any $\epsilon \in [0, \frac{1}{2}]$, $\xi > 4\epsilon^2$ and $k = \log_3 n$ it holds that:

$$731 \quad \mathcal{D}_{\frac{1-\sqrt{\xi}}{2}}^{\text{lin}, U}(\text{Maj}_3^{\circ k}) > \epsilon^2 n, \quad \mathcal{D}_{\frac{1-\xi}{6}}^{\rightarrow, U}(\text{Maj}_3^{\circ k+}) > \frac{\epsilon^2 n}{6}.$$

733 **Proof.** Fix $d = \epsilon^2 n$. For this choice of d Theorem 28 implies that for $\xi > 4\epsilon^2$ it holds that
734 $\dim_{\xi}(\text{Maj}_3^{\circ k}) > d$. The first part follows from Part 2 of Theorem 14. The second part is by
735 Part 3 of Theorem 14.

736 5 Streaming algorithms over \mathbb{F}_2

737 Let e_i be the standard unit vector in \mathbb{F}_2^n . In the turnstile streaming model the input $x \in \mathbb{F}_2^n$
738 is represented as a stream $\sigma = (\sigma_1, \sigma_2, \dots)$ where $\sigma_i \in \{e_1, \dots, e_n\}$. For a stream σ the
739 resulting vector x corresponds to its frequency vector $\text{freq } \sigma \equiv \sum_i \sigma_i$. Concatenation of two
740 streams σ and τ is denoted as $\sigma \circ \tau$.

741 5.1 Random streams

742 In this section we show how to translate our results in Section 3 and 4 into lower bounds for
743 streaming algorithms. We consider the following two natural models of random streams over
744 \mathbb{F}_2 :

745 **Model 1.** In the first model we start with $x \in \mathbb{F}_2^n$ that is drawn from the uniform
746 distribution over \mathbb{F}_2^n and then apply a uniformly random update $y \sim U(\mathbb{F}_2^n)$ obtaining $x + y$.
747 In the streaming language this corresponds to a stream $\sigma = \sigma_1 \circ \sigma_2$ where $\text{freq } \sigma_1 \sim U(\mathbb{F}_2^n)$
748 and $\text{freq } \sigma_2 \sim U(\mathbb{F}_2^n)$. A specific example of such stream would be one where for both σ_1 and
749 σ_2 we flip an unbiased coin to decide whether or not to include a vector e_i in the stream for
750 each value of i . The expected length of the stream in this case is n .

751 **Model 2.** In the second model we consider a stream σ which consists of uniformly
752 random updates. Let $\sigma_i = e_{r(i)}$ where $r(i) \sim U([n])$. This corresponds to each update being
753 a flip in a coordinate of x chosen uniformly at random. This model is equivalent to the
754 previous model but requires longer streams to mix. Using coupon collector's argument such
755 streams of length $\Theta(n \log n)$ can be divided into two substreams σ_1 and σ_2 such that with
756 high probability both $\text{freq } \sigma_1$ and $\text{freq } \sigma_2$ are uniformly distributed over \mathbb{F}_2^n and $\sigma = \sigma_1 \circ \sigma_2$.

757 ► **Theorem 33.** Let $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ be an arbitrary function. In the two random streaming
 758 models for generating σ described above any algorithm that computes $f(\text{freq } \sigma)$ with probability
 759 at least $8/9$ in the end of the stream has to use space that is at least $\mathcal{D}_{1/3}^{\text{lin}, U}(f)$.

760 **Proof.** The proof follows directly from Theorem 4 as in both models we can partition the
 761 stream into σ_1 and σ_2 such that $\text{freq } \sigma_1$ and $\text{freq } \sigma_2$ are both distributed uniformly over \mathbb{F}_2^n .
 762 We treat these two frequency vectors as inputs of Alice and Bob in the communication game.
 763 Since communication $\mathcal{D}_{1/9}^{\rightarrow, U}(f^+) \geq \mathcal{D}_{1/3}^{\text{lin}, U}(f)$ is required no streaming algorithm with less
 764 space exists as otherwise Alice would transfer its state to Bob with less communication. ■

765 Using the same proof as in Theorem 33 it follows that all the lower bounds in Section 4
 766 hold for both random streaming models described above.

767 5.2 Adversarial streams

768 We now show that any randomized turnstile streaming algorithm for computing $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$
 769 with error probability δ has to use space that is at least $R_{6\delta}^{\text{lin}}(f) - O(\log n + \log(1/\delta))$ under
 770 adversarial sequences of updates. The proof is based on the recent line of work that shows that
 771 this relationship holds for real-valued sketches [10, 32, 1]. The proof framework developed
 772 by [10, 32, 1] for real-valued sketches consists of two steps. First, a turnstile streaming
 773 algorithm is converted into a path-independent stream automaton (Definition 35). Second,
 774 using the theory of modules and their representations it is shown that such automata can
 775 always be represented as linear sketches. We observe that the first step of this framework
 776 can be left unchanged under \mathbb{F}_2 . However, as we show the second step can be significantly
 777 simplified as path-independent automata over \mathbb{F}_2 can be directly seen as linear sketches
 778 without using module theory. Furthermore, since we are working over \mathbb{F}_2 we also avoid the
 779 $O(\log m)$ factor loss in the reduction between path independent automata and linear sketches
 780 that is present in [10].

781 We use the following abstraction of a *stream automaton* from [10, 32, 1] adapted to our
 782 context to represent general turnstile streaming algorithms over \mathbb{F}_2 .

783 ► **Definition 34 (Deterministic Stream Automaton).** A *deterministic stream automaton* \mathcal{A} is a
 784 Turing machine that uses two tapes, an undirectional read-only input tape and a bidirectional
 785 work tape. The input tape contains the input stream σ . After processing the input, the
 786 automaton writes an output, denoted as $\phi_{\mathcal{A}}(\sigma)$, on the work tape. A configuration (or state)
 787 of \mathcal{A} is determined by the state of its finite control, head position, and contents of the work
 788 tape. The computation of \mathcal{A} can be described by a transition function $\oplus_{\mathcal{A}}: C \times \mathbb{F}_2 \rightarrow C$,
 789 where C is the set of all possible configurations. For a configuration $c \in C$ and a stream
 790 σ , we denote by $c \oplus_{\mathcal{A}} \sigma$ the configuration of \mathcal{A} after processing σ starting from the initial
 791 configuration c . The set of all configurations of \mathcal{A} that are reachable via processing some
 792 input stream σ is denoted as $C(\mathcal{A})$. The space of \mathcal{A} is defined as $\mathcal{S}(\mathcal{A}) = \log |C(\mathcal{A})|$.

793 We say that a deterministic stream automaton computes a function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ over a
 794 distribution Π if $\Pr_{\sigma \sim \Pi}[\phi_{\mathcal{A}}(\sigma) = f(\text{freq } \sigma)] \geq 1 - \delta$.

795 ► **Definition 35 (Path-independent automaton).** An automaton \mathcal{A} is said to be *path-
 796 independent* if for any configuration c and any input stream σ , $c \oplus_{\mathcal{A}} \sigma$ depends only on $\text{freq } \sigma$
 797 and c .

798 ► **Definition 36 (Randomized Stream Automaton).** A *randomized stream automaton* \mathcal{A} is
 799 a deterministic automaton with an additional tape for the random bits. This random

800 tape is initialized with a random bit string R before the automaton is executed. During
 801 the execution of the automaton this bit string is used in a bidirectional read-only manner
 802 while the rest of the execution is the same as in the deterministic case. A randomized
 803 automaton \mathcal{A} is said to be path-independent if for each possible fixing of its randomness R
 804 the deterministic automaton \mathcal{A}_R is path-independent. The space complexity of \mathcal{A} is defined
 805 as $\mathcal{S}(\mathcal{A}) = \max_R(|R| + \mathcal{S}(\mathcal{A}_R))$.

806 Theorems 5 and 9 of [32] combined with the observation in Appendix A of [1] that
 807 guarantees path independence yields the following:

808 ▶ **Theorem 37** (Theorems 5 and 9 in [32] + [1]). *Suppose that a randomized stream automaton
 809 \mathcal{A} computes f on any stream with probability at least $1 - \delta$. For an arbitrary distribution
 810 Π over streams there exists a deterministic¹⁵ path independent stream automaton \mathcal{B} that
 811 computes f with probability $1 - 6\delta$ over Π such that $\mathcal{S}(\mathcal{B}) \leq \mathcal{S}(\mathcal{A}) + O(\log n + \log(1/\delta))$.*

812 The rest of the argument below is based on the work of Ganguly [10] adopted for our
 813 needs. Since we are working over a finite field we also avoid the $O(\log m)$ factor loss in
 814 the reduction between path independent automata and linear sketches that is present in
 815 Ganguly's work.

816 Let A_n be a path-independent stream automaton over \mathbb{F}_2 and let \oplus abbreviate \oplus_{A_n} . Define
 817 the function $* : \mathbb{F}_2^n \times C(A_n) \rightarrow C(A_n)$ as: $x*a = a \oplus \sigma$, where $\text{freq}(\sigma) = x$. Let o be the initial
 818 configuration of A_n . The *kernel* M_{A_n} of A_n is defined as $M_{A_n} = \{x \in \mathbb{F}_2^n : x * o = 0^n * o\}$.

819 ▶ **Proposition 38.** The kernel M_{A_n} of a path-independent automaton A_n is a linear subspace
 820 of \mathbb{F}_2^n . ■

821 **Proof.** For $x, y \in M_{A_n}$ by path independence $(x + y)*o = x*(y*o) = 0^n * o$ so $x + y \in M_{A_n}$.
 822 ■

823 Since $M_{A_n} \leq \mathbb{F}_2^n$ the kernel partitions \mathbb{F}_2^n into cosets of the form $x + M_{A_n}$. Next we show
 824 that there is a one to one mapping between these cosets and the states of A_n .

825 ▶ **Proposition 39.** For $x, y \in \mathbb{F}_2^n$ and a path independent automaton A_n with a kernel M_{A_n} it
 826 holds that $x * o = y * o$ if and only if x and y lie in the same coset of M_{A_n} .

827 **Proof.** By path independence $x * o = y * o$ iff $x * (x * o) = x * (y * o)$ or equivalently
 828 $0^n * o = (x + y) * o$. The latter condition holds iff $x + y \in M_{A_n}$ which is equivalent to x and
 829 y lying in the same cost of M_{A_n} . ■

830 The same argument implies that the transition function of a path-independent automaton
 831 has to be linear since $(x + y)*o = x*(y*o)$. Combining these facts together we conclude
 832 that a path-independent automaton has at least as many states as the best deterministic
 833 \mathbb{F}_2 -sketch for f that succeeds with probability at least $1 - 6\delta$ over Π (and hence the best
 834 randomized sketch as well). Putting things together we get:

835 ▶ **Theorem 40.** *Any randomized streaming algorithm that computes $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ under
 836 arbitrary updates over \mathbb{F}_2 with error probability at least $1 - \delta$ has space complexity at least
 837 $R_{6\delta}^{\text{lin}}(f) - O(\log n + \log(1/\delta))$.*

¹⁵We note that [32] construct \mathcal{B} as a randomized automaton in their Theorem 9 but it can always be made deterministic by fixing the randomness that achieves the smallest error.

838 **Acknowledgements**

839 S. S. thanks Nikhil Mande, Rahul Jain and Anurag Anshu for helpful discussions.

840 **References**

- 841 1 Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New Characterizations in Turn-
842 stile Streams with Applications. In Ran Raz, editor, *31st Conference on Computational*
843 *Complexity (CCC 2016)*, volume 50 of *Leibniz International Proceedings in Informatics*
844 (*LIPICS*), pages 20:1–20:22, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
845 fuer Informatik. URL: <http://drops.dagstuhl.de/opus/volltexte/2016/5833>, doi:
846 <http://dx.doi.org/10.4230/LIPIcs.CCC.2016.20>.
- 847 2 Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
848 reed-muller codes. *IEEE Trans. Information Theory*, 51(11):4032–4039, 2005.
- 849 3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
850 frequency moments. *J. Comput. Syst. Sci.*, 58(1):137–147, 1999. URL: <http://dx.doi.org/10.1006/jcss.1997.1545>, doi:10.1006/jcss.1997.1545.
- 851 4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size
852 in graph streams. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium*
853 *on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19*,
854 pages 1723–1742, 2017.
- 855 5 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
856 in dynamic graph streams and the simultaneous communication model. In *Proceedings of*
857 *the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,*
858 *Arlington, VA, USA, January 10-12, 2016*, pages 1345–1364, 2016.
- 859 6 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
860 Zuckerman. Optimal testing of reed-muller codes. In *51th Annual IEEE Symposium on*
861 *Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,*
862 *USA*, pages 488–497, 2010.
- 863 7 Eric Blais, Li-Yang Tan, and Andrew Wan. An inequality for the fourier spectrum of parity
864 decision trees. *CoRR*, abs/1506.01055, 2015. URL: <http://arxiv.org/abs/1506.01055>.
- 865 8 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. In *48th Annual*
866 *IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007,*
867 *Providence, RI, USA, Proceedings*, pages 41–51, 2007.
- 868 9 Anirban Dasgupta, Ravi Kumar, and D. Sivakumar. Sparse and lopsided set disjointness
869 via information theory. In *Approximation, Randomization, and Combinatorial Optimiza-*
870 *tion. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th*
871 *International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Pro-*
872 *ceedings*, pages 517–528, 2012.
- 873 10 Sumit Ganguly. Lower bounds on frequency estimation of data streams (extended abstract).
874 In *Computer Science - Theory and Applications, Third International Computer Science*
875 *Symposium in Russia, CSR 2008, Moscow, Russia, June 7-12, 2008, Proceedings*, pages
876 204–215, 2008.
- 877 11 Dmitry Gavinsky, Julia Kempe, and Ronald de Wolf. Quantum communication cannot
878 simulate a public coin. *CoRR*, quant-ph/0411051, 2004. URL: <http://arxiv.org/abs/quant-ph/0411051>.
- 879 12 Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In *Proceed-*
880 *ings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,*
881 *Chicago, IL, USA, July 25-28, 2016*, pages 19–28, 2016.

884 13 Mika Göös and T. S. Jayram. A composition theorem for conical juntas. In *31st Conference*
 885 *on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan*, pages
 886 5:1–5:16, 2016.

887 14 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
 888 angles are nonnegative juntas. In *Proceedings of the Forty-Seventh Annual ACM on Sym-
 889 posium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015*,
 890 pages 257–266, 2015.

891 15 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
 892 tition number. In *IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
 893 2015, Berkeley, CA, USA, 17-20 October, 2015*, pages 1077–1088, 2015.

894 16 Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wimmer.
 895 Testing fourier dimensionality and sparsity. *SIAM J. Comput.*, 40(4):1075–1100, 2011. URL:
 896 <http://dx.doi.org/10.1137/100785429>, doi:10.1137/100785429.

897 17 Vince Grolmusz. On the power of circuits with gates of low $\{\text{L1}\}$ norms. *Theoretical Com-
 898 puter Science*, 188(1–2):117 – 128, 1997. URL: <http://www.sciencedirect.com/science/article/pii/S0304397596002903>, doi:[http://dx.doi.org/10.1016/S0304-3975\(96\)00290-3](http://dx.doi.org/10.1016/S0304-3975(96)00290-3).

901 18 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR
 902 functions. In *IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
 903 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA*, pages 282–288,
 904 2016.

905 19 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh,
 906 and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connectiv-
 907 ity and MST. In *Proceedings of the 2015 ACM Symposium on Principles of Distributed
 908 Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015*, pages 91–100,
 909 2015.

910 20 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity
 911 of the hamming distance problem. *Inf. Process. Lett.*, 99(4):149–153, 2006. URL: <http://dx.doi.org/10.1016/j.ipl.2006.01.014>, doi:10.1016/j.ipl.2006.01.014.

913 21 T. S. Jayram. Information complexity: a tutorial. In *Proceedings of the Twenty-Ninth
 914 ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
 915 2010, June 6-11, 2010, Indianapolis, Indiana, USA*, pages 159–168, 2010.

916 22 T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of information complexity.
 917 In *Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11,
 918 2003, San Diego, CA, USA*, pages 673–682, 2003.

919 23 Tomasz Jurzinski and Krzysztof Nowicki. MST in $O(1)$ rounds of congested clique. In
 920 *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
 921 SODA 2018, New Orleans, LA, USA, January 7-10, 2018*, pages 2620–2632, 2018.

922 24 Sampath Kannan, Elchanan Mossel, and Grigory Yaroslavtsev. Linear sketching over \mathbb{F}_2 .
 923 *Electronic Colloquium on Computational Complexity (ECCC)*, 23:174, 2016. URL: <http://eccc.hpi-web.de/report/2016/174>.

925 25 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
 926 Single pass spectral sparsification in dynamic streams. In *55th IEEE Annual Symposium
 927 on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
 928 2014*, pages 561–570, 2014.

929 26 Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff,
 930 and Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers
 931 and finding duplicates in streams. In *58th IEEE Annual Symposium on Foundations of
 932 Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017*, pages 475–486,
 933 2017.

934 27 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
 935 *SIAM J. Comput.*, 22(6):1331–1348, 1993. URL: <http://dx.doi.org/10.1137/0222080>,
 936 doi:10.1137/0222080.

937 28 Eyal Kushilevitz and Noam Nisan. *Communication complexity*. Cambridge University
 938 Press, 1997.

939 29 Troy Lee and Shengyu Zhang. Composition theorems in communication complexity. In
 940 *Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Boro-
 941 deaux, France, July 6-10, 2010, Proceedings, Part I*, pages 475–489, 2010.

942 30 Nikos Leonardos. An improved lower bound for the randomized decision tree complexity
 943 of recursive majority,. In *Automata, Languages, and Programming - 40th International
 944 Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I*, pages 696–
 945 708, 2013.

946 31 Ming Lam Leung, Yang Li, and Shengyu Zhang. Tight bounds on the randomized com-
 947 munication complexity of symmetric XOR functions in one-way and SMP models. *CoRR*,
 948 abs/1101.4555, 2011. URL: <http://arxiv.org/abs/1101.4555>.

949 32 Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as
 950 well be linear sketches. In *Symposium on Theory of Computing, STOC 2014, New York,
 951 NY, USA, May 31 - June 03, 2014*, pages 174–183, 2014.

952 33 Yang Liu and Shengyu Zhang. Quantum and randomized communication complexity of
 953 XOR functions in the SMP model. *Electronic Colloquium on Computational Complexity
 954 (ECCC)*, 20:10, 2013. URL: <http://eccc.hpi-web.de/report/2013/010>.

955 34 Shachar Lovett. Unconditional pseudorandom generators for low degree polynomials. In
 956 *Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
 957 Columbia, Canada, May 17-20, 2008*, pages 557–562, 2008.

958 35 Shachar Lovett. Recent advances on the log-rank conjecture in communication complexity.
 959 *Bulletin of the EATCS*, 112, 2014. URL: [http://eatscs.org/beatcs/index.php/beatcs/
 article/view/260](http://eatscs.org/beatcs/index.php/beatcs/

 960 article/view/260).

961 36 Frédéric Magniez, Ashwin Nayak, Miklos Santha, Jonah Sherman, Gábor Tardos, and
 962 David Xiao. Improved bounds for the randomized decision tree complexity of recursive
 963 majority. *CoRR*, abs/1309.7565, 2013. URL: <http://arxiv.org/abs/1309.7565>.

964 37 Frédéric Magniez, Ashwin Nayak, Miklos Santha, and David Xiao. Improved bounds for
 965 the randomized decision tree complexity of recursive majority. In *Automata, Languages
 966 and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July
 967 4-8, 2011, Proceedings, Part I*, pages 317–329, 2011.

968 38 Andrew McGregor. Graph stream algorithms: a survey. *SIGMOD Record*, 43(1):9–20,
 969 2014. URL: <http://doi.acm.org/10.1145/2627692.2627694>, doi:10.1145/2627692.
 2627694.

971 39 Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR func-
 972 tions. *CoRR*, abs/0909.3392, 2009. URL: <http://arxiv.org/abs/0909.3392>.

973 40 Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas. In *Proceedings
 974 of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego,
 975 CA, USA*, pages 206–212, 2003.

976 41 Ryan O’Donnell, John Wright, Yu Zhao, Xiaorui Sun, and Li-Yang Tan. A composition
 977 theorem for parity kill number. In *IEEE 29th Conference on Computational Complexity,
 978 CCC 2014, Vancouver, BC, Canada, June 11-13, 2014*, pages 144–154, 2014.

979 42 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applica-
 980 tions to program testing. *SIAM J. Comput.*, 25(2):252–271, 1996.

981 43 Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity
 982 of evaluating game trees. In *27th Annual Symposium on Foundations of Computer Science,
 983 Toronto, Canada, 27-29 October 1986*, pages 29–38, 1986.

984 **44** Swagato Sanyal. Near-optimal upper bound on fourier dimension of boolean functions in
 985 terms of fourier sparsity. In *Automata, Languages, and Programming - 42nd International*
 986 *Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I*, pages 1035–
 987 1045, 2015.

988 **45** Yaoyun Shi and Zhiqiang Zhang. Communication complexities of symmetric xor functions.
 989 *Quantum Inf. Comput.*, pages 0808–1762, 2008.

990 **46** Amir Shpilka, Avishay Tal, and Ben lee Volk. On the structure of boolean functions with
 991 small spectral norm. In *Innovations in Theoretical Computer Science, ITCS'14, Princeton,*
 992 *NJ, USA, January 12-14, 2014*, pages 37–48, 2014.

993 **47** Xiaoming Sun and Chengu Wang. Randomized communication complexity for linear al-
 994 gebra problems over finite fields. In *29th International Symposium on Theoretical Aspects*
 995 *of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France*, pages
 996 477–488, 2012.

997 **48** Justin Thaler. Semi-streaming algorithms for annotated graph streams. In *43rd Interna-*
 998 *tional Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15,*
 999 *2016, Rome, Italy*, pages 59:1–59:14, 2016.

1000 **49** Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
 1001 norm, and the log-rank conjecture. In *54th Annual IEEE Symposium on Foundations of*
 1002 *Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA*, pages 658–667,
 1003 2013.

1004 **50** Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d . In
 1005 *Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, CCC 2008,*
 1006 *23-26 June 2008, College Park, Maryland, USA*, pages 124–127, 2008.

1007 **51** Omri Weinstein and David P. Woodruff. The simultaneous communication of disjointness
 1008 with applications to data streams. In *Automata, Languages, and Programming - 42nd*
 1009 *International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part*
 1010 *I*, pages 1082–1093, 2015.

1011 **52** David P. Woodruff. Sketching as a tool for numerical linear algebra. *Foundations and*
 1012 *Trends in Theoretical Computer Science*, 10(1-2):1–157, 2014. URL: <http://dx.doi.org/10.1561/0400000060>, doi:10.1561/0400000060.

1013 **53** Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (extended abstract). In
 1014 *24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9*
 1015 *November 1983*, pages 420–428, 1983.

1016 **54** Grigory Yaroslavtsev. Approximate linear sketching over \mathbb{F}_2 , 2017.

1017 **55** Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of boolean functions.
 1018 *Theor. Comput. Sci.*, 411(26-28):2612–2618, 2010. URL: <http://dx.doi.org/10.1016/j.tcs.2010.03.027>, doi:10.1016/j.tcs.2010.03.027.

1021 **Appendix**1022 **A Information theory**

1023 Let X be a random variable supported on a finite set $\{x_1, \dots, x_s\}$. Let \mathcal{E} be any event in
 1024 the same probability space. Let $\mathbb{P}[\cdot]$ denote the probability of any event. The *conditional*
 1025 *entropy* $H(X | \mathcal{E})$ of X conditioned on \mathcal{E} is defined as follows.

► **Definition 1** (Conditional entropy).

$$1026 \quad H(X | \mathcal{E}) := \sum_{i=1}^s \mathbb{P}[X = x_i | \mathcal{E}] \log_2 \frac{1}{\mathbb{P}[X = x_i | \mathcal{E}]}$$

1027 An important special case is when \mathcal{E} is the entire sample space. In that case the above
 1028 conditional entropy is referred to as the *Shannon entropy* $H(X)$ of X .

► **Definition 2** (Entropy).

$$1029 \quad H(X) := \sum_{i=1}^s \mathbb{P}[X = x_i] \log_2 \frac{1}{\mathbb{P}[X = x_i]}$$

1030 Let Y be another random variable in the same probability space as X , taking values from a
 1031 finite set $\{y_1, \dots, y_t\}$. Then the conditional entropy of X conditioned on Y , $H(X | Y)$, is
 1032 defined as follows.

► **Definition 3**.

$$1033 \quad H(X | Y) = \sum_{i=1}^t \mathbb{P}[Y = y_i] \cdot H(X | Y = y_i)$$

1034 We next define the binary entropy function $H_b(\cdot)$.

1035 ► **Definition 4** (Binary entropy). For $p \in (0, 1)$, the binary entropy of p , $H_b(p)$, is defined to
 1036 be the Shannon entropy of a random variable taking two distinct values with probabilities p
 1037 and $1 - p$.

$$1038 \quad H_b(p) := p \log_2 \frac{1}{p} + (1 - p) \log \frac{1}{1 - p}.$$

1039 The following properties of entropy and conditional entropy will be useful.

1040 ► **Fact 5.** (1) Let X be a random variable supported on a finite set \mathcal{A} , and let Y be another
 1041 random variable in the same probability space. Then $0 \leq H(X | Y) \leq H(X) \leq \log_2 |\mathcal{A}|$.
 1042 (2) (*Sub-additivity of conditional entropy*). Let X_1, \dots, X_n be n jointly distributed random
 1043 variables in some probability space, and let Y be another random variable in the same
 1044 probability space, all taking values in finite domains. Then,

$$1045 \quad H(X_1, \dots, X_n | Y) \leq \sum_{i=1}^n H(X_i | Y).$$

1046 (3) Let X_1, \dots, X_n be independent random variables taking values in finite domains. Then,

$$1047 \quad H(X_1, \dots, X_n) = \sum_{i=1}^n H(X_i).$$

1048 (4) (Taylor expansion of binary entropy in the neighbourhood of $\frac{1}{2}$).

1049
$$H_b(p) = 1 - \frac{1}{2 \log_e 2} \sum_{n=1}^{\infty} \frac{(1-2p)^{2n}}{n(2n-1)}$$

1050 ► **Definition 6** (Mutual information). Let X and Y be two random variables in the same
1051 probability space, taking values from finite sets. The mutual information between X and Y ,
1052 $I(X;Y)$, is defined as follows.

1053
$$I(X;Y) := H(X) - H(X | Y).$$

1054 It can be shown that $I(X;Y)$ is symmetric in X and Y , i.e. $I(X;Y) = I(Y;X) = H(Y) -$
1055 $H(Y | X)$.

1056 The following observation follows immediately from the first inequality of Fact 5 (1).

1057 ► **Observation 7.** For any two random variables X and Y , $I(X;Y) \leq H(X)$.

1058 A.1 Proof of Fact 16

1059 Let $\mathbb{E}X = \delta$. Then,

1060
$$H(X) = \begin{cases} 1 & \text{with probability } \frac{1}{2} + \frac{\delta}{2} \\ -1 & \text{with probability } \frac{1}{2} - \frac{\delta}{2} \end{cases}$$

1061 So,

1062
$$\begin{aligned} H(X) &= H_b\left(\frac{1}{2} + \frac{\delta}{2}\right) \\ 1063 &= 1 - \frac{1}{2 \log_e 2} \sum_{n=1}^{\infty} \frac{\delta^{2n}}{n(2n-1)} \quad (\text{From Fact 5 (4)}) \\ 1064 &\leq 1 - \frac{\delta^2}{2}. \end{aligned}$$

1066 B Deterministic \mathbb{F}_2 -sketching

1067 In the deterministic case it will be convenient to represent \mathbb{F}_2 -sketch of a function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$
1068 as a $d \times n$ matrix $M_f \in \mathbb{F}_2^{d \times n}$ that we call the *sketch matrix*. The d rows of M_f correspond
1069 to vectors $\alpha_1, \dots, \alpha_d$ used in the deterministic sketch so that the sketch can be computed
1070 as $M_f x$. W.l.o.g below we will assume that the sketch matrix M_f has linearly independent
1071 rows and that the number of rows in it is the smallest possible among all sketch matrices
1072 (ties in the choice of the sketch matrix are broken arbitrarily).

1073 The following fact is standard (see e.g. [39, 16]):

1074 ► **Fact 8.** For any function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ it holds that $D^{lin}(f) = \dim(f) = \text{rank}(M_f)$.
1075 Moreover, set of rows of M_f forms a basis for a subspace $A \leq \mathbb{F}_2^n$ containing all non-zero
1076 coefficients of f .

1077 B.1 Disperser argument

1078 We show that the following basic relationship holds between deterministic linear sketching
1079 complexity and the property of being an affine disperser. For randomized \mathbb{F}_2 -sketching an
1080 analogous statement holds for affine extractors as shown in Lemma 16.

1081 ► **Definition 9** (Affine disperser). A function f is an affine disperser of dimension at least d if
 1082 for any affine subspace of \mathbb{F}_2^n of dimension at least d the restriction of f on it is a non-constant
 1083 function.

1084 ► **Lemma 10.** Any function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ which is an affine disperser of dimension at least d
 1085 has deterministic linear sketching complexity at least $n - d + 1$.

1086 **Proof.** Assume for the sake of contradiction that there exists a linear sketch matrix M_f with
 1087 $k \leq n - d$ rows and a deterministic function g such that $g(M_f x) = f(x)$ for every $x \in \mathbb{F}_2^n$.
 1088 For any vector $b \in \mathbb{F}_2^k$, which is in the span of the columns of M_f , the set of vectors x which
 1089 satisfy $M_f x = b$ forms an affine subspace of dimension at least $n - k \geq d$. Since f is an
 1090 affine disperser for dimension at least d the restriction of f on this subspace is non-constant.
 1091 However, the function $g(M_f x) = g(b)$ is constant on this subspace and thus there exists x
 1092 such that $g(M_f x) \neq f(x)$, a contradiction. ■

1093 B.2 Composition and convolution

1094 In order to prove a composition theorem for D^{lin} we introduce the following operation on
 1095 matrices which for a lack of a better term we call matrix super-slam¹⁶.

1096 ► **Definition 11** (Matrix super-slam). For two matrices $A \in \mathbb{F}_2^{a \times n}$ and $B \in \mathbb{F}_2^{b \times m}$ their
 1097 *super-slam* $A \dagger B \in \mathbb{F}_2^{ab^n \times nm}$ is a block matrix consisting of a blocks $(A \dagger B)_i$. The i -th
 1098 block $(A \dagger B)_i \in \mathbb{F}_2^{b^n \times nm}$ is constructed as follows: for every vector $j \in \{1, \dots, b\}^n$ the
 1099 corresponding row of $(A \dagger B)_i$ is defined as $(A_{i,1}B_{j_1}, A_{i,2}B_{j_2}, \dots, A_{i,n}B_{j_n})$, where B_k denotes
 1100 the k^{th} row of B .

1101 ► **Proposition 12.** $\text{rank}(A \dagger B) \geq \text{rank}(A)\text{rank}(B)$.

1102 **Proof.** Consider the matrix C which is a subset of rows of $A \dagger B$ where from each block $(A \dagger B)_i$
 1103 we select only b rows corresponding to the vectors j of the form α^n for all $\alpha \in \{1, \dots, b\}$.
 1104 Note that $C \in \mathbb{F}_2^{ab \times mn}$ and $C_{(i,k),(j,l)} = A_{i,j}B_{k,l}$. Hence, C is a Kronecker product of A and
 1105 B and we have:

$$1106 \text{rank}(A \dagger B) \geq \text{rank}(C) = \text{rank}(A)\text{rank}(B). \quad \blacksquare$$

1108 The following composition theorem for D^{lin} holds as long as the inner function is balanced:

1109 ► **Lemma 13.** For $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ and $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$ if g is a balanced function then:

$$1110 D^{lin}(f \circ g) \geq D^{lin}(f)D^{lin}(g)$$

1112 **Proof.** The multilinear expansions of f and g are given as $f(y) = \sum_{S \in \mathbb{F}_2^n} \hat{f}(S)\chi_S(y)$ and
 1113 $g(y) = \sum_{S \in \mathbb{F}_2^m} \hat{g}(S)\chi_S(y)$. The multilinear expansion of $f \circ g$ can be obtained as follows. For
 1114 each monomial $\hat{f}(S)\chi_S(y)$ in the multilinear expansion of f and each variable y_i substitute
 1115 y_i by the multilinear expansion of g on a set of variables $x_{m(i-1)+1, \dots, mi}$. Multiplying all
 1116 these multilinear expansions corresponding to the term $\hat{f}(S)\chi_S$ gives a polynomial which is
 1117 a sum of at most b^n monomials where b is the number of non-zero Fourier coefficients of g .
 1118 Each such monomial is obtained by picking one monomial from the multilinear expansions
 1119 corresponding to different variables in χ_S and multiplying them. Note that there are no

¹⁶This name was suggested by Chris Ramsey.

1120 cancellations between the monomials corresponding to a fixed χ_S . Moreover, since g is
 1121 balanced and thus $\hat{g}(\emptyset) = 0$ all monomials corresponding to different characters χ_S and $\chi_{S'}$
 1122 are unique since S and S' differ on some variable and substitution of g into that variable
 1123 doesn't have a constant term but introduces new variables. Thus, the characteristic vectors
 1124 of non-zero Fourier coefficients of $f \circ g$ are the same as the set of rows of the super-slam of
 1125 the sketch matrices M_f and M_g (note, that in the super-slam some rows can be repeated
 1126 multiple times but after removing duplicates the set of rows of the super-slam and the set of
 1127 characteristic vectors of non-zero Fourier coefficients of $f \circ g$ are exactly the same). Using
 1128 Proposition 12 and Fact 8 we have:

$$1129 \quad D^{lin}(f \circ g) = \text{rank}(M_{f \circ g}) = \text{rank}(M_f \dagger M_g) \geq \text{rank}(M_f) \text{rank}(M_g) = D^{lin}(f) D^{lin}(g).$$

1130

1132 Deterministic \mathbb{F}_2 -sketch complexity of convolution satisfies the following property:

1133 ► **Proposition 14.** $D^{lin}(f * g) \leq \min(D^{lin}(f), D^{lin}(g))$.

1134 **Proof.** The Fourier spectrum of convolution is given as $\widehat{f * g}(S) = \widehat{f}(S)\widehat{g}(S)$. Hence, the set
 1135 of non-zero Fourier coefficients of $f * g$ is the intersection of the sets of non-zero coefficients of
 1136 f and g . Thus by Fact 8 we have $D^{lin}(f * g) \leq \min(\text{rank}(M_f, M_g)) = \min(D^{lin}(f), D^{lin}(g))$.

1137

1138 C Randomized \mathbb{F}_2 -sketching

1139 We represent randomized \mathbb{F}_2 -sketches as distributions over $d \times n$ matrices over \mathbb{F}_2 . For a
 1140 fixed such distribution \mathcal{M}_f the randomized sketch is computed as $\mathcal{M}_f x$. If the set of rows of
 1141 \mathcal{M}_f satisfies Definition 1 for some reconstruction function g then we call it a *randomized*
 1142 *sketch matrix* for f .

1143 C.1 Extractor argument

1144 We now establish a connection between randomized \mathbb{F}_2 -sketching and affine extractors which
 1145 will be used to show that the converse of Part 1 of Theorem 14 doesn't hold for arbitrary
 1146 distributions.

► **Definition 15** (Affine extractor). A function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is an affine δ -extractor if for any
 affine subspace A of \mathbb{F}_2^n of dimension at least d it satisfies:

$$1145 \quad \min_{z \in \{0,1\}} \Pr_{x \sim U(A)} [f(x) = z] > \delta.$$

► **Lemma 16.** For any $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ which is an affine δ -extractor of dimension at least d it
 holds that:

$$R_\delta^{lin}(f) \geq n - d + 1.$$

1147 **Proof.** For the sake of contradiction assume that there exists a randomized linear sketch
 1148 with a reconstruction function $g : \mathbb{F}_2^k \rightarrow \mathbb{F}_2$ and a randomized sketch matrix \mathcal{M}_f which is a
 1149 distribution over matrices with $k \leq n - d$ rows. First, we show that:

$$1150 \quad \Pr_{x \sim U(\mathbb{F}_2^n) M \sim \mathcal{M}_f} [g(Mx) \neq f(x)] > \delta.$$

1152 Indeed, fix any matrix $M \in \text{supp}(\mathcal{M}_f)$. For any affine subspace \mathcal{S} of the form $\mathcal{S} = \{x \in$
 1153 $\mathbb{F}_2^n \mid Mx = b\}$ of dimension at least $n - k \geq d$ we have that $\min_{z \in \{0,1\}} \Pr_{x \sim U(\mathcal{S})} [f(x) = z] > \delta$.

1154 This implies that $\Pr_{x \sim U(\mathcal{S})}[f(x) \neq g(Mx)] > \delta$. Summing over all subspaces corresponding
 1155 to the fixed M and all possible choices of b we have that $\Pr_{x \sim U(\mathbb{F}_2^n)}[f(x) \neq g(Mx)] > \delta$.
 1156 Since this holds for any fixed M the bound follows.

1157 Using the above observation it follows by averaging over $x \in \{0, 1\}^n$ that there exists
 1158 $x^* \in \{0, 1\}^n$ such that:

$$1159 \quad \Pr_{M \sim \mathcal{M}_f}[g(Mx^*) \neq f(x^*)] > \delta. \\ 1160$$

1161 This contradicts the assumption that \mathcal{M}_f and g form a randomized linear sketch of dimension
 1162 $k \leq n - d$. ■

1163 ► **Fact 17.** The inner product function $IP(x_1, \dots, x_n) = \sum_{i=1}^{n/2} x_{2i-1} \wedge x_{2i}$ is an $(1/2 - \epsilon)$ -
 1164 extractor for affine subspaces of dimension $\geq (1/2 + \alpha)n$ where $\epsilon = \exp(-\alpha n)$.

1165 ► **Corollary 18.** *Randomized linear sketching complexity of the inner product function is at
 1166 least $n/2 - O(1)$.*

1167 ► **Remark.** We note that the extractor argument of Lemma 16 is often much weaker than the
 1168 arguments we give in Part 2 and Part 3 Theorem 14 and wouldn't suffice for our applications
 1169 in Section 4. In fact, the extractor argument is too weak even for the majority function
 1170 Maj_n . If the first $100\sqrt{n}$ variables of Maj_n are fixed to 0 then the resulting restriction has
 1171 value 0 with probability $1 - e^{-\Omega(n)}$. Hence for constant error Maj_n isn't an extractor for
 1172 dimension greater than $100\sqrt{n}$. However, as shown in Section 4.3 for constant error \mathbb{F}_2 -sketch
 1173 complexity of Maj_n is linear.

1174 C.2 Existential lower bound for arbitrary distributions

1175 Now we are ready to show that an analog of Part 1 of Theorem 14 doesn't hold for arbitrary
 1176 distributions, i.e. concentration on a low-dimensional linear subspace doesn't imply existence
 1177 of randomized linear sketches of small dimension.

1178 ► **Lemma 19.** *For any fixed constant $\epsilon > 0$ there exists a function $f: \mathbb{F}_2^n \rightarrow \{+1, -1\}$ such
 1179 that $R_{\epsilon/8}^{lin}(f) \geq n - 3 \log n$ such that f is $(1 - 2\epsilon)$ -concentrated on the 0-dimensional linear
 1180 subspace.*

1181 **Proof.** The proof is based on probabilistic method. Consider a distribution over functions
 1182 from \mathbb{F}_2^n to $\{+1, -1\}$ which independently assigns to each x value 1 with probability $1 - \epsilon/4$
 1183 and value -1 with probability $\epsilon/4$. By a Chernoff bound with probability $e^{-\Omega(\epsilon 2^n)}$ a random
 1184 function f drawn from this distribution has at least an $\epsilon/2$ -fraction of -1 values and hence
 1185 $\hat{f}(\emptyset) = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^n} f(x) \geq 1 - \epsilon$. This implies that $\hat{f}(\emptyset)^2 \geq (1 - \epsilon)^2 \geq 1 - 2\epsilon$ so f is $(1 - 2\epsilon)$ -
 1186 concentrated on a linear subspace of dimension 0. However, as we show below the randomized
 1187 sketching complexity of some functions in the support of this distribution is large.

1188 The total number of affine subspaces of codimension d is at most $(2 \cdot 2^n)^d = 2^{(n+1)d}$ since
 1189 each such subspace can be specified by d vectors in \mathbb{F}_2^n and a vector in \mathbb{F}_2^d . The number
 1190 of vectors in each such affine subspace is 2^{n-d} . The probability that less than $\epsilon/8$ fraction
 1191 of inputs in a fixed subspace have value -1 is by a Chernoff bound at most $e^{-\Omega(\epsilon 2^{n-d})}$.
 1192 By a union bound the probability that a random function takes value -1 on less than $\epsilon/8$
 1193 fraction of the inputs in any affine subspace of codimension d is at most $e^{-\Omega(\epsilon 2^{n-d})} 2^{(n+1)d}$.
 1194 For $d \leq n - 3 \log n$ this probability is less than $e^{-\Omega(\epsilon n)}$. By a union bound, the probability
 1195 that a random function is either not an $\epsilon/8$ -extractor or isn't $(1 - 2\epsilon)$ -concentrated on $\hat{f}(\emptyset)$
 1196 is at most $e^{-\Omega(\epsilon n)} + e^{-\Omega(\epsilon 2^n)} \ll 1$. Thus, there exists a function f in the support of our

1197 distribution which is an $\epsilon/8$ -extractor for any affine subspace of dimension at least $3 \log n$
 1198 while at the same time is $(1 - 2\epsilon)$ -concentrated on a linear subspace of dimension 0. By
 1199 Lemma 16 there is no randomized linear sketch of dimension less than $n - 3 \log n$ for f which
 1200 errs with probability less than $\epsilon/8$. ■

1201 **C.3 Random \mathbb{F}_2 -sketching**

1202 The following result is folklore as it corresponds to multiple instances of the communication
 1203 protocol for the equality function [28, 11] and can be found e.g. in [39] (Proposition 11). We
 1204 give a proof for completeness.

► **Fact 20.** A function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ such that $\min_{z \in \{0,1\}} \Pr_x[f(x) = z] \leq \epsilon$ satisfies

$$R_\delta^{lin}(f) \leq \log \frac{\epsilon 2^{n+1}}{\delta}.$$

1205 **Proof.** We assume that $\arg\min_{z \in \{0,1\}} \Pr_x[f(x) = z] = 1$ as the other case is symmetric.
 1206 Let $T = \{x \in \mathbb{F}_2^n \mid f(x) = 1\}$. For every two inputs $x \neq x' \in T$ a random \mathbb{F}_2 -sketch χ_α for
 1207 $\alpha \sim U(\mathbb{F}_2^n)$ satisfies $\Pr[\chi_\alpha(x) \neq \chi_\alpha(x')] = 1/2$. If we draw t such sketches $\chi_{\alpha_1}, \dots, \chi_{\alpha_t}$ then
 1208 $\Pr[\chi_{\alpha_i}(x) = \chi_{\alpha_i}(x'), \forall i \in [t]] = 1/2^t$. For any fixed $x \in T$ we have:

$$1209 \quad 1210 \quad \Pr[\exists x' \neq x \in T \ \forall i \in [t] : \chi_{\alpha_i}(x) = \chi_{\alpha_i}(x')] \leq \frac{|T| - 1}{2^t} \leq \frac{\epsilon 2^n}{2^t} \leq \frac{\delta}{2}.$$

1211 Conditioned on the negation of the event above for a fixed $x \in T$ the domain of f is
 1212 partitioned by the linear sketches into affine subspaces such that x is the only element of T in
 1213 the subspace that contains it. We only need to ensure that we can sketch f on this subspace
 1214 which we denote as \mathcal{A} . On this subspace f is isomorphic to an OR function (up to taking
 1215 negations of some of the variables) and hence can be sketched using $O(\log 1/\delta)$ uniformly
 1216 random sketches with probability $1 - \delta/2$. For the OR-function existence of the desired
 1217 protocol is clear since we just need to verify whether there exists at least one coordinate of
 1218 the input that is set to 1. In case it does exist a random sketch contains this coordinate with
 1219 probability $1/2$ and hence evaluates to 1 with probability at least $1/4$. Repeating $O(\log 1/\delta)$
 1220 times the desired guarantee follows. ■

1221 **D Towards the proof of Conjecture 3**

We call a function $f : \mathbb{F}_2^n \rightarrow \{+1, -1\}$ *non-linear* if for all $S \in \mathbb{F}_2^n$ there exists $x \in \mathbb{F}_2^n$ such that $f(x) \neq \chi_S(x)$. Furthermore, we say that f is ϵ -far from being linear if:

$$\max_{S \in \mathbb{F}_2^n} \left[\Pr_{x \sim U(\mathbb{F}_2^n)} [\chi_S(x) = f(x)] \right] = 1 - \epsilon.$$

1222 The following theorem is our first step towards resolving Conjecture 3. Since non-linear
 1223 functions don't admit 1-bit linear sketches we show that the same is also true for the
 1224 corresponding communication complexity problem, namely no 1-bit communication protocol
 1225 for such functions can succeed with a small constant error probability.

1226 ► **Theorem 21.** For any non-linear function f that is at most $1/10$ -far from linear $\mathcal{D}_{1/200}^\rightarrow(f^+) > 1$.

1228 **Proof.** Let $S = \arg\max_T [\Pr_{x \in \mathbb{F}_2^n} [\chi_T(x) = f(x)]]$. Pick $z \in \mathbb{F}_2^n$ such that $f(z) \neq \chi_S(z)$. Let
 1229 the distribution over the inputs (x, y) be as follows: $y \sim U(\mathbb{F}_2^n)$ and $x \sim \mathcal{D}_y$ where \mathcal{D}_y is

1230 defined as:

$$1231 D_y = \begin{cases} 1232 \quad y + z \text{ with probability } 1/2, \\ \quad U(\mathbb{F}_2^n) \text{ with probability } 1/2. \end{cases}$$

1233 Fix any deterministic Boolean function $M(x)$ that is used by Alice to send a one-bit message
 1234 based on her input. For a fixed Bob's input y he outputs $g_y(M(x))$ for some function g_y that
 1235 can depend on y . Thus, the error that Bob makes at predicting f for fixed y is at least:

$$1236 \frac{1 - |\mathbb{E}_{x \sim D_y} [g_y(M(x))f(x + y)]|}{2}. \\ 1237$$

1238 The key observation is that since Bob only receives a single bit message there are only four
 1239 possible functions g_y to consider for each y : constants $-1/1$ and $\pm M(x)$.

1240 Bounding error for constant estimators.

1241 For both constant functions we introduce notation $B_y^c = |\mathbb{E}_{x \sim D_y} [g_y(M(x))f(x + y)]|$ and
 1242 have:

$$1243 B_y^c = |\mathbb{E}_{x \sim D_y} [g_y(M(x))f(x + y)]| = |\mathbb{E}_{x \sim D_y} [f(x + y)]| = \left| \frac{1}{2} f(z) + \frac{1}{2} \mathbb{E}_{w \sim U(\mathbb{F}_2^n)} [f(w)] \right| \\ 1244$$

1245 If χ_S is not constant then $|\mathbb{E}_{w \sim U(\mathbb{F}_2^n)} [f(w)]| \leq 2\epsilon$ we have:

$$1246 \left| \frac{1}{2} f(z) + \frac{1}{2} \mathbb{E}_{w \sim U(\mathbb{F}_2^n)} [f(w)] \right| \leq \frac{1}{2} (|f(z)| + |\mathbb{E}_{w \sim U(\mathbb{F}_2^n)} [f(w)]|) \leq 1/2 + \epsilon. \\ 1247$$

1248 If χ_S is a constant then w.l.o.g $\chi_S = 1$ and $f(z) = -1$. Also $\mathbb{E}_{w \sim U(\mathbb{F}_2^n)} [f(w)] \geq 1 - 2\epsilon$.
 1249 Hence we have:

$$1250 \left| \frac{1}{2} f(z) + \frac{1}{2} \mathbb{E}_{w \sim U(\mathbb{F}_2^n)} [f(w)] \right| = \frac{1}{2} |-1 + \mathbb{E}_{w \sim U(\mathbb{F}_2^n)} [f(w)]| \leq \epsilon. \\ 1251$$

1252 Since $\epsilon \leq 1/10$ in both cases $B_y^c \leq \frac{1}{2} + \epsilon$ which is the bound we will use below.

1253 Bounding error for message-based estimators.

1254 For functions $\pm M(x)$ we need to bound $|\mathbb{E}_{x \sim D_y} [M(x)f(x + y)]|$. We denote this expression
 1255 as B_y^M . Proposition 22 shows that $\mathbb{E}_y[B_y^M] \leq \frac{\sqrt{2}}{2} (1 + \epsilon)$.

1256 ▶ Proposition 22. $\mathbb{E}_{y \sim U(\mathbb{F}_2^n)} [|\mathbb{E}_{x \sim D_y} [M(x)f(x + y)]|] \leq \frac{\sqrt{2}}{2} (1 + \epsilon)$.

1257 We have:

$$1258 \mathbb{E}_y [|\mathbb{E}_{x \sim D_y} [M(x)f(x + y)]|] \\ 1259 = \mathbb{E}_y \left[\left| \frac{1}{2} (M(y + z)f(z) + \mathbb{E}_{x \sim D_y} [M(x)f(x + y)]) \right| \right] \\ 1260 = \frac{1}{2} \mathbb{E}_y [| (M(y + z)f(z) + (M * f)(y)) |] \\ 1261 \leq \frac{1}{2} \left(\mathbb{E}_y \left[((M(y + z)f(z) + (M * f)(y)))^2 \right] \right)^{1/2} \\ 1262 = \frac{1}{2} \left(\mathbb{E}_y \left[((M(y + z)f(z))^2 + ((M * f)(y))^2 + 2M(y + z)f(z)(M * f)(y)) \right] \right)^{1/2} \\ 1263 = \frac{1}{2} \left(\mathbb{E}_y [((M(y + z)f(z))^2] + \mathbb{E}_y [((M * f)(y))^2] + \right. \\ 1264 \left. 2\mathbb{E}_y [M(y + z)f(z)(M * f)(y))] \right)^{1/2}$$

8:36 Linear Sketching over \mathbb{F}_2

1266 We have $(M(y+z)f(z))^2 = 1$ and also by Parseval, expression for the Fourier spectrum
 1267 of convolution and Cauchy-Schwarz:

$$1268 \quad \mathbb{E}_y[((M * f)(y))^2] = \sum_{S \in \mathbb{F}_2^n} \widehat{M * f}(S)^2 = \sum_{S \in \mathbb{F}_2^n} \widehat{M}(S)^2 \widehat{f}(S)^2 \leq \|M\|_2 \|f\|_2 = 1$$

1270 Thus, it suffices to give a bound on $\mathbb{E}[M(y+z)f(z)(M * f)(y)]$. First we give a bound
 1271 on $(M * f)(y)$:

$$1272 \quad (M * f)(y) = \mathbb{E}_x[M(x)f(x+y)] \leq \mathbb{E}_x[M(x)\chi_S(x+y)] + 2\epsilon$$

1273

1274 Plugging this in we have:

$$\begin{aligned} 1276 \quad & \mathbb{E}_y[M(y+z)f(z)(M * f)(y)] \\ 1277 \quad &= -\chi_S(z)\mathbb{E}_y[M(y+z)(M * f)(y)] \\ 1278 \quad &\leq -\chi_S(z)\mathbb{E}_y[M(y+z)(M * \chi_S)(y)] + 2\epsilon \\ 1279 \quad &= -\chi_S(z)(M * (M * \chi_S))(z) + 2\epsilon \\ 1280 \quad &= -\chi_S(z)^2 \widehat{M}(S)^2 + 2\epsilon \\ 1281 \quad &\leq 2\epsilon. \\ 1282 \end{aligned}$$

1283 where we used the fact that the Fourier spectrum of $(M * (M * \chi_S))$ is supported on S only
 1284 and $M * \widehat{(M * \chi_S)}(S) = \widehat{M}^2(S)$ and thus $(M * (M * \chi_S))(z) = \widehat{M}^2(S)\chi_S(z)$.
 1285 Thus, overall, we have:

$$1286 \quad \mathbb{E}_y[|\mathbb{E}_{x \sim D_y}[M(x)f(x+y)]|] \leq \frac{1}{2}\sqrt{2+4\epsilon} \leq \frac{\sqrt{2}}{2}(1+\epsilon). \quad \blacksquare$$

1288 Putting things together.

1289 We have that the error that Bob makes is at least:

$$1290 \quad \mathbb{E}_y\left[\frac{1 - \max(B_y^c, B_y^M)}{2}\right] = \frac{1 - \mathbb{E}_y[\max(B_y^c, B_y^M)]}{2}$$

1292 Below we now bound $\mathbb{E}_y[\max(B_y^c, B_y^M)]$ from above by 99/100 which shows that the error is
 1293 at least 1/200.

$$\begin{aligned} 1294 \quad & \mathbb{E}_y[\max(B_y^c, B_y^M)] \\ 1295 \quad &= \Pr[B_y^M \geq 1/2 + \epsilon] \mathbb{E}[B_y^M | B_y^M \geq 1/2 + \epsilon] + \Pr[B_y^M < 1/2 + \epsilon] \left(\frac{1}{2} + \epsilon\right) \\ 1296 \quad &= \mathbb{E}_y[B_y^M] + \Pr[B_y^M < 1/2 + \epsilon] \left(\frac{1}{2} + \epsilon - \mathbb{E}[B_y^M | B_y^M < 1/2 + \epsilon]\right) \\ 1297 \end{aligned}$$

1298 Let $\delta = \Pr[B_y^M < 1/2 + \epsilon]$. Then the first of the expressions above gives the following bound:

$$1299 \quad \mathbb{E}_y[\max(B_y^c, B_y^M)] \leq (1 - \delta) + \delta \left(\frac{1}{2} + \epsilon\right) = 1 - \frac{\delta}{2} + \epsilon\delta \leq 1 - \frac{\delta}{2} + \epsilon$$

1301 The second expression gives the following bound:

$$1302 \quad \mathbb{E}_y[\max(B_y^c, B_y^M)] \leq \frac{\sqrt{2}}{2}(1 + \epsilon) + \delta \left(\frac{1}{2} + \epsilon\right) \leq \frac{\sqrt{2}}{2} + \frac{\delta}{2} + \frac{\sqrt{2}}{2}\epsilon + \epsilon.$$

1303

1304 These two bounds are equal for $\delta = 1 - \frac{\sqrt{2}}{2}(1 + \epsilon)$ and hence the best of the two bounds
 1305 is always at most $(\frac{\sqrt{2}}{4} + \frac{1}{2}) + \epsilon \left(\frac{\sqrt{2}}{4} + 1 \right) \leq \frac{99}{100}$ where the last inequality uses the fact that
 1306 $\epsilon \leq \frac{1}{10}$.

1307 **E Auxiliary Proofs**

1308 **E.1 Proof of Proposition 17**

1309 Without loss of generality assume that $p = \Pr[X = 1]$

$$\begin{aligned} 1310 \quad \text{Var}[X] &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \\ 1311 &= 1 - (\mathbb{E}[X])^2 \quad (X^2 = 1 \text{ as } X \text{ is supported on } \{1, -1\}) \\ 1312 &= 1 - (p \cdot 1 + (1 - p)(-1))^2 \\ 1313 &= 1 - (2p - 1)^2 \\ 1314 &= 4p(1 - p) \\ 1315 \end{aligned}$$

1316 Since $p \leq \frac{1}{2}$, $4(1 - p) \in [2, 4]$ and the proposition follows.

1317 **E.2 Proof of Lemma 21**

1318 Let $p \in \mathbb{F}_2[x_1, \dots, x_n]$ be the \mathbb{F}_2 -polynomial corresponding to f . Fix one monomial $\mathcal{M} =$
 1319 $\Pi_{i \in S} x_i$ of the largest degree. Thus $|S| = d$. We will show that for each assignment $a_{\bar{S}}$ to the
 1320 variables outside of S , there is an assignment a_S to the variables in S such that $p(a_S, a_{\bar{S}}) = 1$.
 1321 This will prove that there are at least 2^{n-d} assignments on which p evaluates to 1, and will
 1322 thus imply the lemma.

1323 To this end, fix an assignment $a_{\bar{S}}$ to the variables in \bar{S} . Let $p|_{\bar{S} \leftarrow a_{\bar{S}}}$ be the polynomial
 1324 obtained from p by setting the variables in \bar{S} according to $a_{\bar{S}}$. Notice that since \mathcal{M} was a
 1325 monomial of largest degree in p , \mathcal{M} continues to be a monomial in $p|_{\bar{S} \leftarrow a_{\bar{S}}}$. Thus $p|_{\bar{S} \leftarrow a_{\bar{S}}}$ is
 1326 a non-constant polynomial in the variables $\{x_i \mid i \in S\}$. In particular, this implies that there
 1327 exists an assignment a_S to the variables in S , such that $p|_{\bar{S} \leftarrow a_{\bar{S}}}(a_S) = 1$ (see the discussion
 1328 in the paragraph after fact 20). This in turn implies that $p(a_S, a_{\bar{S}}) = 1$.