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Baker's yeast, S. cerevisiae, is a model organism that is used in synthetic biology. The work demonstrates
how GaN nanostructured thin films can encode physiological responses in S. cerevisiae yeast. The Ga-
polar, n-type, GaN thin films are characterized via Photocurrent Measurements, Atomic Force Microscopy
and Kelvin Probe Force Microscopy. UV light is used to induce persistent photoconductivity that results in
charge accumulation on the surface. The morphological, chemical and electronic properties of the nano-
structured films are utilized to activate the cell wall integrity pathway and alter the amount of chitin pro-
duced by the yeast. The encoded cell responses are induced by the semiconductor interfacial properties
associated with nanoscale topography and the accumulation of charge on the surface that promotes the
build-up of oxygen species and in turn cause a hyperoxia related change in the yeast. The thin films can
also alter the membrane voltage of yeast. The observed modulation of the membrane voltage of the yeast
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exposed to different GaN samples supports the notion that the semiconductor material can cause cell
polarization. The results thus define a strategy for bioelectronics communication where the roughness,
surface chemistry and charge of the wide band gap semiconductor’s thin film surface initiate the encod-
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Introduction

Information is transmitted through the process of communi-
cation which relies on suitable encoding-decoding schemes."
The encoding part of the communication progression transfers
an instruction into a specific format, where the decoding part
deciphers the meaning of the instruction. Societal needs have
pushed the development of different routes of communication
starting from physical/verbal to digital. Digital communication
relies on electronic components and devices that can partici-
pate in encoding and decoding. Increasing demand on
amount and long-term storage of data during communication
has led to looking into molecule-based (i.e. molecular) com-
munication via a suitable biological host such as bacteria.>
Thus, bioelectronics® is rapidly evolving around two essential
components: an interface that can be integrated into proces-
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sing electrical signals and a living interface that can generate
and respond to molecular information. Bioelectronic living
interfaces explored so far include in vitro and in vivo neural
based interfaces® along with ones utilizing various microor-
ganisms.” Finding a suitable interface that can receive and
transmit electrical signals, while being able to efficiently inte-
grate with current infrastructure that processes digital infor-
mation, is the key to advancing bioelectronics.

Nanostructured semiconductor thin films offer several
advantages for bioelectronics. The nanoscale roughness and
surface chemistry that is created during fabrication can be
used for directed placement of biomolecules and/or cells.*” A
vast amount of materials research has generated knowledge to
tune their optical, electronic and mechanical properties to
make them suitable for device integration.® Further research
into the processing of nanostructured semiconductor thin
films has resulted in the development of chemical functionali-
zation methods”' as well as the utilization of a wealth of
microscopy and spectroscopy techniques to understand the
changes in many of their interfacial properties after modifi-
cation.” However, not all nanostructured semiconductor thin
films are suitable for bioelectronics. Leaching of toxic ions
and lack of biocompatibility can hinder the integration of
certain materials compositions into bioelectronics. With these
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requirements in mind, Ill-nitrides'* have recently been identi-
fied as a promising platform for bioelectronics because they
can function as sensing, signaling and integration opto-
electronic components.'*'*

Here, we demonstrate the incorporation of gallium nitride
(GaN) nanostructured films into a bioelectronic interface for
the purpose of encoding yeast regulatory responses. We
describe experiments to take advantage of the surface rough-
ness and chemistry of the GaN films along with our ability to
vary its surface charge by inducing persistent photoconductiv-
ity (PPC) after exposure to UV light, as shown in Scheme 1. The
first row of Scheme 1 identifies the conditions used to functio-
nalize the surface using in situ modification with phosphoric
acid and a phosphonic acid derivative (C;HgNOsP). The
second row of Scheme 1 pictorially represents the accumu-
lation of surface charge after exposure to UV light and com-
pares and contrasts the difference when the surface is either
passivated or not. The third row of Scheme 1 depicts changes
after the removal of UV light and shows the transformation of
the surface upon contact with atmospheric oxygen. Possible
types of reactive oxygen species are shown as well as the quali-
tative difference in their accumulation on clean vs. passivated
GaN material. We monitor adhesion of S. cerevisiae strains
onto the GaN thin films and examine changes in the physi-
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Scheme 1 Representation of the processes used to change the pro-
perties of the semiconductor thin films.
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ology of the yeast due to extrinsic cues generated by the semi-
conductor interface.

Results and discussion

Ga-polar, n-type, GaN thin films were grown on c-plane sap-
phire with two levels of Si doping: low Si doping yielding a
carrier concentration n = 8 x 10" em™" and high Si doping
with carrier concentration of n = 2 x 10" em ™. Further details
on growth process are found elsewhere.'>'® Atomic Force
Microscopy (AFM) analysis, Fig. 1, revealed similar morphology
and rms values below 3 nm for both the high and low doped
samples. It has to be noted that, at higher doping, the rough-
ness slightly increases likely as a consequence of increased
tensile stress'” in comparison to the atomic smooth spiral/step
flow growth morphology in low doped GaN. GaN, along with
other wide bandgap materials such as ZnO, exhibits PPC
(increased conductivity under above bandgap illumination i.e.
photoconductivity that persists after the removal of illumina-
tion) characterized by excess majority carriers (in this case,
electrons) with very long lifetimes. Interestingly, in GaN, the
PPC is accompanied by a similarly persistent surface charge or
surface potential."® We recently reported on the use of PPC in
biointerface studies with neurotypic cells."® We characterized
n-type Ga-polar GaN before and after UV light exposure to
assess any changes in surface chemistry. Treatment with UV
light resulted in significant reduction of carbon species on the
surface,”® making the surface more hydrophilic. In this work,
we quantified the amount of adsorbates present on the surface
after exposure to growth media utilized in yeast proliferation
studies. The quantification was done by measuring changes in
surface roughness, Fig. 1a. Two types of growth media (Yeast
Extract/Peptone/Dextrose medium (YPD) and Yeast Extract/
Peptone medium (YP)) were used in adsorption experiments
where the semiconductor films were submerged in solution
for 24 h, rinsed and examined by AFM. YP media type had no
glucose and the other (YPD) contained glucose. The AFM data
in Fig. 1a reveals that the composition of the growth media as
well as the UV light treatment can lead to variable amount of
adsorption. The changes in roughness, though quantifiable on
both types of semiconductor films after UV exposure, were stat-
istically significant on the material with high doping.
Assessing the attachment of biomolecules to surfaces from
solution media is essential since a number of studies have
shown that initial surface adhesion of proteins not only facili-
tates cell attachment but also subsequent behavior.?"??
Exposure to UV light of the n-type Ga-polar GaN samples
results in accumulation of charge on the surface. The charged
semiconductor surfaces promote an increased adsorption of
biomolecules and salts present in the yeast broth. In addition
to AFM we performed X-ray Photoelectron Spectroscopy (XPS)
analysis after the adsorption of YP and YPD media on the GaN
samples with different doping which were either exposed or
not exposed to UV light, Fig. 1b-d. In the N 1s spectrum we
consistently recorded the presence of C-NH, and N-C=O
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Fig. 1 (a) Surface roughness changes of the different GaN samples before and after UV treatment as well as incubation in growth media with two
compositions (YPD and YP medium); (b) C/N ratios extracted from XPS analysis of the different GaN samples before and after UV treatment as well
as incubation in growth media with two compositions (YPD and YP medium); (c) Ga/N ratios extracted from XPS analysis of the different GaN
samples before and after UV treatment as well as incubation in growth media with two compositions (YPD and YP medium); (d) C/O ratios extracted
from XPS analysis of the different GaN samples before and after UV treatment as well as incubation in growth media with two compositions (YPD

and YP medium).

(399.51 eV). Prior publications have discussed the origin of the
peak at a binding energy of ~400 eV and have attributed it to
amide and amine groups.> In the C 1s high resolution spec-
trum we detected evidence for C-C, C-N, C-O, amide and
C=0 with the carbonyl species appearing at the highest
binding energy of ~288.5 eV. The C/N ratio was only signifi-
cantly changed on the low doping samples when the UV light
exposure conditions were compared with the YP media,
Fig. 1b. The same significant change was also observed with
respect to the Ga/N ratios, Fig. 1c. In addition, the C/O ratios
were statistically different with and without UV treatment
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when both YP and YPD media was adsorbed onto the low
doping GaN samples, Fig. 1d. Furthermore, based on all the
elemental ratios we recorded by XPS, Fig. 1b-d, there was a
uniform significant variation in the ratios when the data from
the low vs. high doping n-type GaN samples was compared.
Taken in sum, the XPS data supports the AFM analysis that
adsorption of molecules from the growth media does occur,
and can alter the surface chemistry prior to yeast attachment.
We note that on polar materials, such as GaN and lithium
niobite, we** and others*® have shown that the difference in
adsorption behavior of biomolecules play a small role in cell

This journal is © The Royal Society of Chemistry 2018
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adhesion, and a more significant role in cell migration. Our
observations in this study are consistent with prior work done
by us*® and others®® that shows that surface charge on GaN
can be used to drive the assembly of charged species on the
material interface.

Chemical functionalization has been widely used to
improve the optical and electrical properties of semi-
conductors.”’ One has a choice among various adsorbates
with different terminal groups and affinities for the semi-
conductor surface. In this study we used a simple chemical
functionalization using phosphoric acid along with a water
soluble phosphonic acid derivative terminated on a nitro
group, C;HgNOsP, in order to modulate the surface chemistry
as well as the PPC of the GaN. We and others have shown that
phosphonic acids can be used for the functionalization of
semiconductors.?®*® The photocurrent vs. time measurements
we collected, Fig. 2, indicate that functionalization changes
the type of PPC behavior observed. Prior work with wideband
gap materials has also demonstrated that chemical modifi-
cation can change the photoconductivity and alter the photo-
current decay.”® Chemical functionalization resulted in a
slower current decay compared to the curve recorded for the
clean samples. The results summarized on Fig. 2 indicate that
chemical functionalization can be used to change the PPC of
n-type Ga-polar GaN. This indicates that the PPC in GaN is
partly or completely due to surface band bending and the
associated electron-hole separating electric fields. However,
the increased roughness due to strain relaxation may introduce
increased surface recombination centers and hence rough sur-

— HighDoping-Nitro
- — — HighDoping

Normalized Current [arb. units]

T
0 50 100 150
Time [sec]

Fig. 2 Photoresponse of clean and functionalized n-type Ga-polar
samples. The symbol UV+ indicates the point when the UV light was
turned on and the symbol UV- indicates the point when the UV light
was turned off.
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faces are more sensitive to passivation mechanisms. Further,
one expects to observe variable chemical passivation on sur-
faces with heterogeneous nanoscale topography when a small
adsorbate that does not form well-ordered monolayers is
used.’! The data on Fig. 2 supports the notion that the adsor-
bate passivates better the samples that are rougher resulting in
less accessible surfaces to reactive oxygen species, as shown in
Scheme 1, leading to hindrance of the carrier recombination
process at the surface and slower photocurrent decay.*?

It should be noted that in addition to passivating the
surface, the chemical functionalization may induce a charge
transfer or an interface dipole at the surface. This charge plays
a role in cell adhesion and therefore we quantitatively com-
pared the amount of surface charge before and after
functionalization as well as UV exposure by collecting Kelvin
Probe Force Microscopy (KPFM) data, Fig. 3. Chemical
functionalization did not lead to statistically different surface
potential values when the high doping samples were exam-
ined. In addition, as expected the surface potential increased
after exposure to UV light. In the case of the low doping
samples the surface potential was altered both as a result of
UV light exposure as well as chemical functionalization. KPFM
agrees with the adsorption experiments where we observed
higher amount of adsorbates on samples exposed to UV light
and can be explained by electrostatic interactions between the
charged semiconductor and ions and protonated biomolecules
in solution. Taken in sum, the materials characterization we
performed and described in Fig. 1-3 indicates that we have a
tunable electronic interface that can be modulated to have
different chemical functional groups, facilitate variable bio-
molecular adsorption via its nanoscale topography, and carry
alterable surface charge.

In this work we aimed to use the ability to induce surface
charge via UV illumination to encode a regulatory response in
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Fig. 3 Summary of surface potential changes on the different sub-
strates extracted from KPFM measurements.
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Table 1 Adhesion and clustering of TBR1 yeast on different n-type Ga-
polar GaN samples

Substrate Cells/cluster (n) Cells/FOV (n)
Glass 6.7 +2.0 (34) NA

Low doping 3.1+1.1(63) 24 +7(11)
Low doping +UV 6.2 + 1.8** (52) 34 +16* (11)
High doping 4.2 +1.4 (39) 20 +4 (10)
High doping +UV 5.3 +2.0* (61) 31+ 8% (11)
Low doping-nitro 5.3 £2.7 (29) 37 +16(8)
Low doping-nitro +UV 7.9 +2.4** (41) 78 + 14* (7)
High doping-nitro 7.1 +£2.5(22) 20+ 8(7)
High doping-nitro +UV 7.9 + 2.8 (44) 45 + 15* (7)

*P < 0.5 between control (non-UV) and UV exposed. **P < 0.001
between control (non-UV) and UV exposed.

yeast. We note that no yeast cells were ever exposed to the UV
illumination. To determine the effects of induced surface
charge on the behavior of S. cerevisiae, we exposed cells of the
TBR1 yeast, a wildtype haploid strain of Saccharomyces cerevi-
siae*?** to GaN (low and high doping) surfaces that have been
exposed to UV illumination. As controls we also examined
these same cells on glass surfaces and the same GaN sub-
strates which were not illuminated with a UV lamp prior to
their contact with the yeast. We recorded significance in both
cell-cell clustering as well as adhesion to the GaN substrate
after exposure to UV radiation (Table 1). Yeast on all non-acti-
vated GaN substrates have smaller cell clusters than those
incubated on GaN substrates that have been activated by UV
exposure (Table 1). For instance, on low doping substrate we
observed the clusters of yeast cells to contain 3-4 cells on
average, while on low doping substrates that have been
exposed to UV light we observe almost twice this number. We
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also detected significantly more cells on GaN surfaces that
have been activated by UV illumination (Table 1), which sup-
ports the notion that GaN samples with induced surface
charge have a higher binding affinity for yeast cells.
Differences were observed based on the doping of the samples
indicating that it is an important control parameter in
addition to UV illumination and surface roughness.

To determine whether charged GaN surfaces experiencing
PPC alter the physiology of yeast, we labeled the TBR1 yeast
with Calcofluor White (CFW), a dye that binds to the polysac-
charide chitin.>*?® The levels of chitin within the cell wall
directly correlates to the activation of the Cell Wall Integrity
Pathway and is indicative of the amount of mechanical stress
applied to yeast cell.***” The levels of chitin expression as
demonstrated by CFW staining is roughly equal among all
yeast cells on all GaN surfaces that have not been photo-acti-
vated and are similar to the levels of yeast cells cultured on a
glass substrate (Fig. 4A). However, in all cases TBR1 yeast cells
express reduced levels of chitin when cultured on a GaN
surface that has been photo-activated (Fig. 4A; compare
Fig. 7A-D). The accumulation of surface charge or increase in
surface potential after UV illumination encodes a behavior
response in yeast that causes a decrease in chitin and we
hypothesize a possible build-up of oxygen species on the
surface. The oxygen adsorption has also been hypothesized for
Zn0.***? The diminution in chitin can be viewed as a semi-
conductor induced hyperoxia response of yeast*® in contact
with a photo-activated GaN surface. This hyperoxia due to an
external cue from the environment is manifested in the
mechanical properties change in the cell wall but has been
studied extensively and shown to lead to a number of changes
in gene expression.*® Thus the altered chitin levels are a direct
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Fig. 4 (A) Dosimetry of the CFW/chitin signal; (B) Dosimetry of the DiBac,(3)/membrane voltage.
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indication of encoding an yeast behavioral change caused by
the electronic properties of the nanostructured semiconductor
surface due to photo-activation.

We also examined the membrane potential of the yeast
plasma membrane using the anionic membrane potential-sen-
sitive probe Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol
(DiBAc4(3)).* Compared to glass, the membrane potential
increased when yeast was exposed to the different GaN samples,
Fig. 4B. DiBAc4(3) is an anionic dye and its intensity increases
as the membrane potential becomes more positive.”' Changes
in membrane potential lead to altered fluxes of ions across the
cell membrane. The observed modulation of the membrane
potential of the yeast exposed to different GaN samples sup-
ports the notion that the semiconductor material can cause cell
polarization.*”> The membrane potential results were variable
when one compares samples before and after UV illumination.
TBR1 yeasts demonstrated a significant reduction in DiBAc4(3)
fluorescence when cultured on GaN surfaces with low doping
that have been photo-activated (Fig. 4B, compare Fig. 7D and E).
UV illumination caused no alteration to the DiBAc4(3) signal on
clean high doping samples and on low doping samples functio-
nalized with the nitro group. However, the modified high
doping GaN substrate showed a trend similar to the low doping
GaN substrate; Z.e. a reduction of the DiBac4(3) signal, however
the control signal from the non-photo-induced nitro-modified
high doping GaN substrates is higher than all other conditions
and may be a product of the high background signal from these
samples. The variability of the membrane potential changes are
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not surprising since yeast cells polarization is very sensitive to
external and internal cues.*®> Moreover, the membrane potential
changes in yeast can be very localized as it has been demon-
strated by optogenetics studies and experiments with appli-
cation of external electrical fields in different directions.****
Our results demonstrate that the heterogeneous nanostructured
thin films can also encode a variable membrane potential
change.

It is important to determine whether internal cellular pro-
cesses can also be changed in yeast by exposure to photoacti-
vated GaN. For this purpose we examined the mitochondrial
membrane potential (MMP) in live yeast using MitoTracker
Red CMX ROS dye, which labels mitochondria in a MMP
dependent fashion.*” Yeast cells incubated on the low and
high doped UV illuminated GaN substrates demonstrated a
significant reduction in MMP when compared to control sub-
strates that were not exposed to light (Fig. 5). Reduction of
MMP in yeast has been demonstrated to be controlled by
extrinsic and intrinsic factors including increased levels of
ROS as well as age and is known to initiate a complex intra-
cellular signaling pathway, called the retrograde response.*®™*®
In the context of this work we note that cell behavior such as
clustering, changes to cell wall content and the membrane
potential of the plasma membrane represent alterations to the
external state/condition of the cell, but changes to the MMP
within the cells demonstrate that the response by the yeast is
biological when placed in contact with GaN that experiences
PPC. The reduction of MMP has been demonstrated by others
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Fig. 5 PPC-induced reduction of yeast mitochondrial membrane potential. (A) Dosimetry of the Mitochondria/Mitotracker Red CMXRos signal. (B)
Confocal micrographs of TBR1 yeast cells stained with CFW and Mitotracker Red CMXRos; top row low dope GaN substrate not exposed to UV;
bottom row TBR1 yeast on GaN substrates exposed to UV; merged images, mitochondria (red) and cell wall chitin (blue).
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Fig. 6 Changes in the absorbance of C.I. Reactive Red 198 dye in the
presence of clean and functionalized GaN before and after exposure to
UV light.

to be the one response to excess reactive oxygen species.”®*°

However, the MMP we observed in this study in conjunction
with the other phenotypes (i.e. clustering, change in cell wall
content and plasma membrane polarization) is novel and
suggests a unique cellular response.
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We also gathered additional data to support our conclusion
regarding which property of the surface triggered the cell
responses we observed. We performed a dye quenching experi-
ment to validate Scheme 1. Azo dyes are commonly used to
detect hydroxyl radicals (OH") and other reactive oxygen species
such as 0,”.>' We used C.I. Reactive Red 198 dye
(Cy7H;5CIN;Na 0,5S5) because of its characteristic Apax at
517 nm.”> We measured changes in the dye UV absorbance
spectrum in the presence of different GaN samples, Fig. 6. The
clean and modified GaN samples were immersed in the dye
solution before and after UV illumination. All UV illumination
was done outside of the solution with dry samples. The changes
in absorbance were measured using a protocol reported by
others.>® We observed that we can decrease the dye absorbance
in the presence of samples exposed to UV light. This experiment
verified the presence of reactive oxygen species on the surface
after the removal of UV light. The results are in agreement with
the mechanism we propose in Scheme 1 and support the
notion that the observed yeast behavior changes are encoded
through the surface present radicals. The reactive oxygen
species we generated on the photoactive semiconductor surface
did not kill the yeast but were responsible for a very specific
deviation from its regular behavior.

It is important to address the possibility of yeast physiologi-
cal changes due to the production of reactive oxygen species
(ROS) induced by metal ions leached by the semiconductor

Fig. 7 S. cerevisiae TBR1 cells on GaN surfaces. (A—C) Clusters of TBR1 yeast cells that were cultured on GaN substrates with low doping and no UV
treatment, two of the clusters have three cells and one has two. (A) CFW signal; (B) DiBac,(3) signal; (C) merge of the two signals. (D—F) One cluster
containing five TBR1 yeast cells that were cultured on GaN substrates with low doping after UV treatment; (D) CFW signal; (E) DiBac,(3) signal; (F)

merge of the two signals.
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surface. A number of toxicity studies with nanostructured
materials have established that elevated metal ions in solution
can lead to variable responses and production of ROS which
are dependent on specific cell type.”* We have evaluated the
release of gallium ions from our semiconductor thin films and
have quantitatively confirmed that significant amount of
gallium leaches only after days in contact with water solu-
tions.?>**3> All cell experiments were done where yeast was
exposed to the semiconductor thin films for 1 hour prior to
any imaging and assay quantification. Literature reports also
indicate that in the case of yeast, release of ions only slightly
contributes to the recorded toxicity, compared to other factors
that cause adverse changes such as cytoplasm leakage,
crushed cell wall and irregular cell shapes.’® We observed no
evidence of such abnormalities in our microscopy studies,
Fig. 7. The biological assays we performed demonstrated that
the n-type Ga-polar GaN thin films can transduce external
stimuli in the form of nanoscale topography and/or surface
chemistry and charge into a cellular reaction associated with a
physiological change. The nanostructured thin films can par-
ticipate in bioelectronics communication because their mor-
phological and electronic properties encoded the observed
yeast response.

Conclusions

In summary, we described how one can integrate many of the
unique properties of nanostructured n-type Ga-polar GaN thin
films for the purpose of encoding regulatory responses in
S. cerevisiae yeast. The number of cells and the size of the yeast
clusters was dependent on surface chemistry and charge of the
semiconductor surface. UV illumination of the thin films
resulted in accumulation of surface charge that triggered a cell
wall integrity pathway response which yielded a decrease in
chitin. Compared to control experiments with glass surfaces
the membrane voltage was also altered due to the presence of
the semiconductor interface. In this work we focused on
demonstrating that one can encode a response in yeast, which
is a very well-studied model system. One needs to be able to
decode a response in order to complete a communication. The
responses we induced via the use of n-type Ga-polar GaN thin
films are known to result in changes in signaling pathways
which can be decoded by monitoring change in ion fluxes for
instance. In future work we plan to explore the second part of
the bioelectronics communication and pursue decoding using
the nanostructured thin film rather than traditional fluo-
rescence based biological assays.

Experimental methods

Semiconductor thin growth and characterization via
photocurrent measurements, AFM and KPFM

All sample growth was done using metalorganic chemical
vapor deposition and has been detailed in prior work."> A
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cleaning procedure was done for all semiconductor samples
which included 20 min sonication in acetone and 20 min soni-
cation in methanol and drying of the samples using com-
pressed N, gas. Chemical functionalization of some samples
was conducted after the cleaning procedure and a 100 °C soak
in a 50/50 vol% H,0/45% HCI for 10 min. After rinsing with DI
water, the samples were soaked in a 50/50 vol% in a 3 mM of a
4-nitrobenzyl phosphonic acid (C;HgNOsP)/97% phosphoric
acid for 2.5 hours. The conditions for the photocurrent
measurements and all microscopy using AFM and KPFM were
identical to the ones reported in our recent publication.>®

Yeast strains and culture

S. cerevisiae strains used in this study were TBR1(MATaura3-52
leu2::hisG his3::hisG).>*>* Frozen stocks were maintained at
—80 °C. For each experiment, colonies from freshly streaked
YPD plates were used. Liquid YPD (Yeast extract, Peptone,
Dextrose, Water) media was inoculated with one colony per
10 ml. Liquid cultures were grown with shaking ~ 200 rpm at
25 °C to an ODggo ~0.5 indicative of mid-log phase growth.””
One culture was used to seed each surface for one hour prior
to imaging.

Vital staining and confocal microscopy imaging of yeast on
different GaN substrates

Yeast culture of the appropriate optical density (OD600 ~0.5)
were cultured on GaN substrates for one hour. Twenty minutes
prior to the end of this culture period dyes were loaded into
the YPD culture media at the following final concentrations:
CFW (Sigma),1 pg ml™"; DIBAC,(3), 1.7 pM; Mitotracker Red
CMXRos, 250nM (Invitrogen). After one hour, samples were
washed twice in fresh YPD and then imaged in a petri dish. All
images were collected using Zeiss Observer Z.01 spinning disc
confocal with Axiovision software. All images were collected
using the same exposure times and laser settings.
Densitometry data was collected from individual frames using
the Interactive Measurement application within Axiovision.
Data for both the CFW and DiBac staining was collect on
similar portions of the cell; specifically avoiding areas of cell-
cell contacts, which have higher levels of both signals, and
avoid bud scars for the same rationale. Densitometry data was
statistically analyzed using Microsoft Excel software specifically
the ¢-test function.
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