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—— Abstract

We provide a novel accelerated first-order method that achieves the asymptotically optimal con-
vergence rate for smooth functions in the first-order oracle model. To this day, Nesterov’s Acceler-
ated Gradient Descent (AGD) and variations thereof were the only methods achieving acceleration
in this standard blackbox model. In contrast, our algorithm is significantly different from AGD,
as it relies on a predictor-corrector approach similar to that used by Mirror-Prox [18] and Extra-
Gradient Descent [14] in the solution of convex-concave saddle point problems. For this reason,
we dub our algorithm Accelerated Extra-Gradient Descent (AXGD).

Its construction is motivated by the discretization of an accelerated continuous-time dynam-
ics [15] using the classical method of implicit Euler discretization. Our analysis explicitly shows
the effects of discretization through a conceptually novel primal-dual viewpoint. Moreover, we
show that the method is quite general: it attains optimal convergence rates for other classes
of objectives (e.g., those with generalized smoothness properties or that are non-smooth and
Lipschitz-continuous) using the appropriate choices of step lengths. Finally, we present experi-
ments showing that our algorithm matches the performance of Nesterov’s method, while appear-
ing more robust to noise in some cases.
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1 Introduction

First-order methods for convex optimization have come to play an important role in the
design of algorithms and in Theoretical Computer Science in general, with applications
including numerical methods [30, 13], graph algorithms [12, 29], submodular optimization [8]
and complexity theory [11].

A classical setting for convex optimization is that of smooth optimization, i.e., minimizing
a convex differentiable function f over a convex set X C R", with the smoothness assumption
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that the gradient of f be L-Lipschitz continuous' for some positive real L, i.e.:
Va,ye X, V(@) - VIl < L-llz—yll.

In this setting, it is also assumed that the algorithm can access the input function f only via
queries to a first-order oracle, i.e., a blackbozx that on input x € X, returns the vector V f(z)
in constant time.?

Smooth optimization is of particular interest because it is the simplest setting in which
the phenomenon of acceleration arises, i.e., the optimal algorithms in the blackbox model
achieve an error that scales as O(1/t?), where ¢ is the number of queries [22]. This should be
compared to the convergence of steepest-descent methods, which attempt to locally minimize
the first-order approximation to the function and only yield O(1/t)-convergence [3, 28].
Acceleration has proved an active topic of algorithmic research, both for the promise of
obtaining generic speed-ups for problems having some smoothness condition and for the
unintuitive nature of the fact that faster algorithms can be obtained by not moving in the
direction of steepest-descent.

Recently, a number of papers have helped demystify the concept behind accelerated
algorithms by providing interpretations based on continuous dynamics and their discretiz-
ation [15, 33, 31], geometric ideas [5], and on trading off the performances of two slower
first-order methods [1]. Despite these efforts, to this day, Nesterov’s Accelerated Gradient
Descent (AGD) methods remain the only paradigm [22, 23] through which to obtain acceler-
ated algorithms in the blackbox model and in related settings, where all existing accelerated
algorithms are variations of Nesterov’s general method [32].

Our Main Contributions

We present a novel accelerated first-order method that achieves the optimal convergence rate
for smooth functions and is significantly different from Nesterov’s method, as it relies on a
predictor-corrector approach, similar to that of Mirror-Prox [18] and Extra-Gradient Des-
cent [14]. For this reason, we name our method Accelerated Extra-Gradient Descent (AXGD).
Our derivation of the AXGD algorithm is based on the discretization of a recently proposed
continuous-time accelerated algorithm [15, 33]. The continuous-time view is particularly
helpful in clarifying the relation between AGD, AXGD, and Mirror-Prox. Following [15], given a
gradient field V f and a prox function 1, it is possible to define two continuous-time evolutions:
the mirror-descent dynamics and the accelerated-mirror-descent dynamics (see Section 2.2).
With this setup, Nesterov’s AGD can be seen as a variant of the classical forward-Euler
discretization applied to the accelerated-mirror-descent dynamics. In contrast, Mirror-Prox
and extra-gradient methods arise from an approximate backward-Euler discretization [9] on
the mirror-descent dynamics. Finally, our algorithm AXGD is the result of an approximate
backward-Euler discretization of the accelerated mirror-descent dynamics.

Another conceptual contribution of our paper is the application of a primal-dual viewpoint
on the convergence of first-order methods, both in continuous and discrete time. At every
time instant ¢, our algorithm explicitly maintains a current primal solution x(* and a current
dual solution z(*), the latter in the form of a convex combination of gradients of the convex

! Lipschitz continuity is defined w.r.t to a pair of dual norms || - ||, || - ||«. At a first reading, these can be
taken as || - ||2-

2 In general, we may assume that the blackbox also returns the function value f(x). However, for the
general class of problems we consider this information is not necessary and the gradient suffices [28].
For intuition about this, see the expression for the change in duality gap in Equation 4.
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objective, i.e., a lower-bounding hyperplane. This primal-dual pair of solutions yields, for
every t, both an upper bound U; and a lower bound L; on the optimum: U; > f(x*) > L;.
In all cases, we obtain convergence bounds by explicitly quantifying the rate at which the
duality gap G; = Uy — L; goes to zero. We believe that this primal-dual viewpoint makes the
analysis and design of first-order methods easier to carry out. We provide its application to
proving other classical results in first-order methods, including Mirror Descent, Mirror-Prox,
and Frank-Wolfe algorithms in the upcoming manuscript [7].

Other Technical Contributions

In Section 2.6, we provide a unified convergence proof for standard smooth functions (as
defined above) and for functions with Holder-continuous gradients, a more general notion of
smoothness [20]. While this paper focuses on the standard smooth setup, the same techniques
easily yield results matching those of AGD methods for the strongly-convex-and-smooth case.
Indeed, it is possible to prove that our method is universal, in the sense of Nesterov [21],
meaning that it can be composed with a line-search algorithm to yield near-optimal algorithms
even when the smoothness parameters of the functions are unknown. We illustrate this
phenomenon by showing that (AXGD) also achieves the optimal rate for the optimization of
Lipschitz-continuous convex functions, a non-smooth problem.

Finally, we present a suite of experiments comparing AGD, AXGD, and standard gradient
methods, showing that the performance of AXGD closely matches that of AGD methods.
We also explore the empirical performance of AXGD in the practically and theoretically
relevant case in which the queried gradients are corrupted by noise. We show that AXGD
exhibits better stability properties than AGD in some cases, leading to a number of interesting
theoretical questions on the convergence of AXGD.

1.1 Related Work

In his seminal work [22, 23], Nesterov gave a method for the minimization of convex functions
that are smooth with respect to the Euclidean norm, where the function is accessed through a
first-order oracle. Nesterov’s method converges quadratically faster than gradient descent, at
a rate of O(t%), which has been shown to be asymptotically optimal [23] for smooth functions
in this standard blackbox model [28]. More recently, Nesterov generalized this method to
allow non-Euclidean norms in the definition of smoothness [25]. We refer to this generalization
of Nesterov’s method and to instantiations thereof as AGD methods. Accelerated gradient
methods have been widely extended and modified for different settings, including composite
optimization [27, 16], cubic regularization [26], and universal methods [21]. They have also
found a number of fundamental applications in many algorithmic areas, including machine
learning (see [4]) and discrete optimization [17].

An important application of AGD methods concerns the solution of various convex-
concave saddle point problems. While these are examples of non-smooth problems, for
which the optimal rate is known to be Q(%) [20], Nesterov showed that the saddle-point
structure can be exploited by smoothing the original problem and applying AGD methods on
the resulting smooth function [25]. This approach [25, 24] yields an O(3)-convergence for
convex-concave saddle point problems with smooth gradients. Surprisingly, at around the
same time, Nemirovski [18] gave a very different algorithm, known as Mirror-Prox, which
achieves the same complexity for the saddle point problem. Mirror-Prox does not rely on the
algorithm or analysis underlying AGD, but is based instead on the idea of an eztra-gradient
step, i.e., a correction step that is performed at every iteration to speed up convergence.
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Mirror-Prox can be viewed as an approximate solution to the implicit Euler discretization of
the standard mirror descent dynamics of Nemirovski and Yudin [20]. In this fashion, our
AXGD algorithm resembles Mirror-Prox as it also makes use of an approximate implicit Euler
step to discretize a different, accelerated dynamic.

A number of interpretations have been proposed to explain the phenomenon of acceler-
ation in first-order methods. Tseng gives a formal framework that unifies all the different
instantiations of AGD methods [32]. More recently, Allen-Zhu and Orecchia [1] cast AGD meth-
ods as the result of coupling mirror descent and gradient descent steps. Bubeck et al. give
an elegant geometric interpretation of the Euclidean instantiation of Nesterov’s method [5].
At the same time, Su et al. [31], Krichene et al. [15], and Wibisono et al. [33] have provided
characterizations of accelerated methods as discretizations of certain families of ODEs re-
lated to the gradient flow of the objective f. Our algorithm is strongly influenced by these
works: in particular, the starting point for the derivation of AXGD is the continuous-time
accelerated-mirror-descent (AMD) dynamics [15].

1.2 Preliminaries

We focus on continuous and differentiable functions defined on a closed convex set X C R™.
We assume that there is an arbitrary (but fixed) norm || - || associated with the space, and
all the statements about function properties are stated with respect to that norm. We also
define the dual norm || - ||« in the standard way: ||z||. = sup{(z,x) : ||x|| = 1}. The following
definitions will be useful in our analysis, and thus we state them here for completeness.

» Definition 1. A function f : X — R is convex on X, if for all x,% € X: f(%x) >

FX) + (VF(x), % — x). -

» Definition 2. A function f: X — R is smooth on X with smoothness parameter L and
with respect to a norm | - ||, if for all x,% € X: f(%) < f(x) + (Vf(x),& —x) + Z|1%x — x|,

Definition 2 can equivalently be stated as: ||V f(x) — Vf(%)|« < L|x — %]

» Definition 3. A function f : X — R is strongly convex on X with strong convexity
parameter o and with respect to a norm |||, if forall x,% € X: f(%) > f(x)+(Vf(x),% — x)+
a1 2
g% =x|*

» Definition 4. (Bregman Divergence) Dy (x, %) = h(x) — (%) — (Vih(R),x — R).

» Definition 5. (Convex Conjugate) Function ¢* is the convex conjugate of ¢ : X — R, if
Y*(z) = maxxex{(z,x) —¥(x)}, Vz € R.

In the rest of the paper, we will assume that 1 (x) is continuously differentiable, so that
Fenchel-Moreau Theorem implies that 1** = 1.3 We are interested in minimizing a convex
function f over X C R"™. We let x* = argminye x f(x).

We will refer to any step that decreases the value of f as a gradient descent step. In the
special case of a smooth function f the gradient descent step from a point x € X will be
given as Grad(x) = argminge x { f(x) + (Vf(x),% — x) + &[|% — x[|*}.

We will assume that there is a strongly-convex differentiable function ¢ : X — R such
that maxxe x {(z,x) — 1¥(x)} is easily solvable, possibly in a closed form. Notice that this

3 Note that Fenchel-Moreau Theorem requires v to only be lower-semicontinuous for ¥** = 4 to hold,
which is a weaker property than continuity or continuous differentiability.
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problem defines the convex conjugate of ¥(-), i.e., ¥*(z) = maxxcx{(z,x) — ¥ (x)}. The
following standard fact will be extremely useful in carrying out the analysis of the algorithms
in this paper.

» Fact 6. Let ¢ : X — R be a differentiable strongly-convex function. Then:
V' () = argmax {(z,%) — Y(x)} .

Additional useful properties of Bregman divergence are provided in Appendix A.

2 Accelerated Extra-Gradient Descent

In this section, we describe the AXGD method and analyze its convergence. For comparison,
steps of AGD and AXGD are shown next to each other in the box below. In continuous time,
both algorithms follow the same dynamics. However, due to the different discretization
methods used in constructing AGD and AXCD, they follow different discrete-time updates. In
particular, we show in [7] that AGD can be interpreted as performing explicit (forward) Euler
discretization plus a gradient step to correct the discretization error. In contrast, AXGD
uses an approximate implementation of implicit (backward) Euler discretization to directly
control the discretization error.

Accelerated Gradient Descent (AGD) Accelerated Extra-Gradient Descent (AXGD)

A *
g0 — Ak ) 4 k41 Vi (z(k)),

(ot1) — Ak o) | Gkt G, (k) A1 Ag1
S Tt T L S5 _ (k) 2 (k)
k+1 k41 . 227 =2\ — a1 VEY), @)
2D = 5 g vF(xETD), &) KD Ak () GhL G 508
2D _ Grad(x*+D), A1 A1 ’

ZktD) _ (k) ak+1Vf(X<k+l)).

The idea behind AXGD is similar to the dual-averaging version of Nemirovski’s mirror prox
algorithm [18, 7], with the main difference coming from the discretization of the accelerated
dynamics in Equation (5) (as opposed to the standard mirror descent dynamics used in
[18]). As we will show, an exact implicit Euler step would have V¢*(z(**1)) instead of
Vip*(2)) in the third line of AXGD. However, obtaining x(*+1) in a such a manner could be
computationally prohibitive since z*+1) implicitly depends on x**+1) through its gradient.
Instead, we opt for an extra prox-step Vw*(i(k)) that adds the gradient at an intermediate
point (¥ constructed using x*) and z(®) from the previous iteration. Thanks to this
extra-gradient step, AXGD can correct the discretization error without using a gradient step.

Convergence proof for AXGD together with the sufficient conditions for obtaining optimal
convergence bounds are provided in Section 2.4. For example, Theorem 11 shows that when
the objective function is smooth, AXGD converges at the optimal rate of 1/k2. The analysis
of AGD is provided in [7].

2.1 Approximate Optimality Gap

The analysis relies on the construction of an approximate optimality gap G, which is defined
as the difference of an upper bound U; and a lower bound L; to the optimal function value
f(x*). In particular, for an increasing function of time ¢, a®*), the convergence analysis will
work on establishing the following:

’Invariance condition: oY) G, is non-increasing with time .
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Such a condition immediately implies: Gy < o (,) Gtm leading to the (,) convergence rate.
We sketch the main ideas that relate to the accelerated methods and AXGD in particular
here for completeness, while the more general arguments that recover a number of known
first-order methods are provided in [7].

We now describe the upper bound and the lower bound choices, which will take the same
form in both continuous time and discrete time domains. To do so, we will rely on the
Lebesgue-Stieltjes integration, which allows us to treat continuous and discrete choice of a*)
in a unified manner. Observe that when a(*) is a discrete measure, ¢ is a train of (scaled)
Dirac Delta functions. Denote A(*) = ftto do!7) = ftto a(Mdr.

Upper Bound

As x* € X is the minimizer of f(-), f(x) for any x € X constitutes a valid upper bound. In
particular, our choice of the upper bound will be U; = f(x(t)), where x® is the solution
maintained by the algorithm at time t.

Lower Bound

More interesting than the upper bound is the construction of a lower bound to f(x*).
From convexity of f, we have the standard lower-bounding hyperplanes Vx,% € X: f(x) >
f(X)+ (Vf(X),x —X). A natural choice of a lower bound to the optimum at time ¢ > ¢, is
obtained by averaging such hyperplanes over [tg, ] according to the measure «:

fu fto f(x)dal™) N f:o (V) u-x)dal™
A®) A

, Vu e X.

While we could take the minimum over u € X on the right-hand side of this equation as
our notion of lower bound, this choice has two serious drawbacks. First, it is non-smooth,
and in general not even differentiable, as a function of t. Second, in continuous-time, it is
not defined for our initial time ¢y, meaning that we do not have a natural concept of initial
lower bound and initial duality gap. (In the discrete time, we can ensure that « contains a
Dirac Delta function at ¢, which overcomes this issue.) We address the first problem by
applying regularization, i.e., by adding to both sides of the inequality a regularizer term that
is strongly-convex in x and then minimizing the right-hand side with respect to u € X.*
Without loss of generality, the regularizer can be taken to be the Bregman divergence of a
o-strongly convex function v taken from an input point x(*)- This yields:

) Dy (x*,x(0))
f(x*) + A0

ft F(x)da™  mingex {ffo (VF(x),u - xMY dal™) + Dy (u, X(m))}
A0 o A0 :

To address the second problem, we mix into the a-combination of hyperplanes the optimal
lower bound f(x*) with weight a® — A® (which is just zero in the discrete time, as in that
case A = o). Rescaling the normalization factor, we obtain our notion of regularized

4 This is similar to the well-known Moreau-Yosida regularization.
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lower bound:

1 fft F(x)da(”  mingex {ffo (VF(x™),u—xD) da™ + Dw(u7x<to>)}
de 0
o a® (3)
alt) ’

2.2 Accelerated Mirror Descent in Continuous Time

We now show that the accelerated dynamics can be obtained by enforcing the invari-
ance condition from previous subsection with oY G; being constant; i.e., we enforce that
% d(aWG;) = 0. Towards that goal, assume that a(*) is continuously dlfferentlable and
observe that a® — A®) = o(t) is constant. To simplify the notation when taking the time
derivative of ¥ G®), we first show the following:

» Proposition 7. Let z(Y) = Vi (x(0)) — ftto Vf(x(™)da ™). Then:

¢
Ve*(zM) = arg min {/ <Vf(x(7)), u-— X(T)> da'™ + Dy (u, x(t‘)))} .
ueX to

Le., Vi*(z(") is the argument of the minimum appearing in the definition of lower bound
L;. The proof is simple and is provided in the appendix.

Recalling that U; = f(x®) and using (3) and Danskin’s theorem (which allows us to
differentiate inside the min):

4 a®a,) = %(au)f(x(t))) e f(x®) — o <Vf(x(t)), Vot (2 ) — X<t>>

(
dt
_ <V F(x®),a®Ox® — 4® (vw*(z“)) _ x(t))> . (4)

Hence, to obtain 4 (a®G,) = 0, it suffices to set a®x®) = 4 (Vy*(z) — x®), resulting
in the accelerated dynamics from [15]:

20 = _a0y f(x),
x®
L0 _ g0 V() — (5)
o) ’

z(t) — qu(x(to)), x(*) € X is an arbitrary initial point.

It is not hard to see that (5) constructs a sequence of points x(®) that are feasible, that is,
x(!) € X. This is because x*) can equivalently be written as di(a(t)x(t)) = aOVvy*(z),
( 0) x(to) + a(t) L vw* T))da(T) _
a convex combination of x(*) and V¢*(z(7)) for 7 E [to,t] By (5), x*) € X, while
Vi*(z(7)) € X by Proposition 7.

We immediately obtain the following continuous-time convergence guarantee:

which, after integrating over 7 € [to, ], gives x(!) =

» Lemma 8. Let xY evolve according to (5). Then, Vt > to:

Q) (f(x)) — f(x")) + Dy, x0)).
a®)

F) = f(x*) <

Proof. We have already established that < (aMG®) =0, and, therefore, f(x(*)) — f(x*) <

o(to)

Gy = %5 Gi,- Observing that Gy, = F(xt)) — f(x*) + Dy(x*,xt0)) /alto) | the proof
follows. <
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2.3 Discretization

As discussed in Section 2.1, our construction of the approximate optimality gap is valid
both in the continuous time and in the discrete time domain. To understand where the
discretization error occurs, we make the following observations. First, the upper bound does
not involve any integration, and thus cannot incur a discretization error. In the lower bound
(3), the role of the first integral is only to perform weighted averaging, which is the same in
the continuous time and in the discrete time, and, therefore, does not incur a discretization
error. The terms that are not integrated over look the same whether or not a® is discrete.
Therefore, the only term that can incur the discretization error is the integral under the min:
T(tost) — fttg (Vf(x™), V() — x(M) dal.

As mentioned before, when « is a discrete measure, we can express it as ot = Zfil a;d(t—
(to +i — 1)), where 6(-) denotes the Dirac Delta function and a;’s are positive. Then
Al = ftto da(™ = Zi:t0+i—1§t a;. To simplify the notation, we will use ¢ € Z, to denote
the discrete time points corresponding to tg + ¢ — 1 on the continuous line. Therefore,
the discretization error incurred in A®)L, between the discrete time points i and i + 1
(understood as integrating from it to (i + 1)*) is I+ — 18D where I8Y s the
continuous approximation of I(-t1) (i.e., we allow continuous integration rules in Iéi’H'l)).
We can now establish the following bound on the discretization error.

» Lemma 9. Let A;11Gip1 — A;G; = E; 11 be the discretization error. Then

_ Ay Zf:l E;
AT T

and
Bl < <vf(x(i+1)),A(i+1)X(i+1) _ A5 _ ai+1vw*(z(i+l))> — Dy (29, 201,

Proof. The first part of the lemma follows by summing over 1 <7 < k. For the second part,
we have already argued that E; 1 = 15““) — JGHD | For the discrete integral 70+ as
a® just samples the function under the integral at point i + 1, we have:

16D — g, <Vf(x(i+1))’v¢*(z(i+1)) _ X(i+1)>' (6)

For the continuous integral, using (5) and integration by parts:

1+1
T = / ™ <Vf(x(f)))5((f)> dr
' 1+1 )
[ (T, 90 @) - 9 (@) dal”

— A — p) - ) D) - 90 7)) b
= AD(FHD) = D)) = Dy (2, 205D, (™)

where we have used z(7) = —A(VV f(x(7)), V) Dy (27, 20H1)) = Vop*(2(7)) — Vop* (z(FD),
and Dy-(z®,z(") = 0.

By convexity of f, f(x(+D) — f(x() < (Vf(x*D),x*D — x@) Combining with (6)
and (7):

Bl < <vf(x(i+1)),A(i+1)X(i+1) _ A0 _ ai+1vw*(z(i+l))> — Dy (29, 20D,

as claimed. <
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We remark that the same result for the discretization error can be obtained by directly
computing A;11Giy1 — A;G; under a discrete measure « (where all the integrals in the
definition of the duality gap are replaced by summations). We have chosen to work with the
integration error described above to demonstrate the cause of the discretization error.

We now describe how AXGD cancels out the discretization error by (approximately)
implementing implicit Euler discretization of x(*).

Implicit Euler Discretization

Implicit Euler discretization is an abstract discretization method which defines the next iterate
x (1) implicitly as a function of the gradient at x(**1)_ In the case of the AMD dynamics,
implicit Euler discretization yields the following algorithm: let x(!) € X be an arbitrary
initial point that satisfies x(") = Vop* (z(1)), where z(V) = Vi(xM) — V f(x1); for all k > 1

{Z(kﬂ) =20 — a1 Vf(xFHD), (8)
(k+1) — _Ar (k) 4 Gkt1 x74)% (7 (k+1)
X = A;:HX + AMWJ (z )

Observe that x(**1) in (8) exactly sets the inner product in F;;; (Lemma 9) to zero, leaving
only the negative term — Dy« (z(¥), z(+1)). While this discretization is not computationally
feasible in practice, as it requires solving for the implicitly defined x**+1), it also boasts a
negative discretization error, i.e., it converges faster than the continuous-time AMD. Ulti-
mately, we will use this extra slack to trade-off the error arising from an approzimate implicit
discretization.

2.4 Convergence of AXGD

A standard way to implement implicit Euler discretization in the solution of ODEs [9] is
to replace the exact solution of the implicit equation with a small number of fixed point
iterations of the same equation. In our case, the implicit equation can be written as:

A
x(bFD) = Lk ) UL Gy g, v f(xEHDY).
Akt A1
Two steps of the fixed-point iteration yield the following updates, which are exactly those
performed by AXGD:

{;{(k) = ﬁx(k) + %vw*(z(k)).
x(k+1) — ﬁx(k) + %vw*(z(k) — a1 VFERM))

We can now analyze AXGD as producing an approximate solution to the implicit Euler
discretization problem. The following lemma gives a general bound on the convergence of
AXGD for a convex and differentiable f(-) without additional assumptions. The only (mild)
difference is replacing Dy, (x,x™1) and Dy (x*,x1)) by Dy(x,%®) and Dy (x*,%(?)), since
we start from the “intermediate” point £(°). This change is only important for bounding the
initial gap G7; everything else is the same as before.

» Lemma 10. Consider the AXGD algorithm as described in Equation (2), starting from
an arbitrary point KO with 200 = V(%) and Ag = 0. Then the error from Lemma 9 is
bounded by:

Eir1 <aip <Vf(x(i+1)) — VfERD), v (D) — vw*(z(i+1))>

— Dy (29, 20D) — Dy (29,20).

)

23:9
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Proof. From Lemma 9:

Eisy Saiss (VD) Ve (@0) = Vi (2D) ) = Dy (29, 204)

a1 (VIxED) = FRD) + VAERD), 967 (20) - 97 (20+))
_ Dw*(z(i),z(i“)).

We now use the fact that a;if(%) = 29 — 2 together with the standard triangle-
inequality for Bregman divergences (see Proposition 17) to show that:

asr (VIED), V0 (@) = Vo (20)) = (29— 20, vy (2) - Vi (20

= Dd,*(z(i),Z(H—l)) _ Dw*(i(i),z(i+1)) _ DW(Z(”,%(”),

Combining the results of the last two equations, we get the claimed bound on the error. <

2.5 Smooth Minimization with AXGD

We show that AXGD achieves the asymptotically optimal convergence rate of 1/k? for the
minimization of an L-smooth convex objective f(-) by applying Lemma 10. The crux of the
proof is that we can take sufficiently large steps while keeping the error from Lemma 10
non-positive. In other words, we are able to move quickly through the continuous evolution
of AMD by taking large discrete steps.

» Theorem 11. Let f : X — R be an L-smooth convex function and let x¥) z(F) &(*) 5(F)
be updated according to the AXGD algorithm in Equation (2), starting from an arbitrary
initial point %0 € X with the following initial conditions: z(0) = V(%)) and Ag = 0. Let
1 X — R be o-strongly convez. If % < 7, then for allk > 1,

f(x(k)) — f(x*) < M.

Ap
In particular, if a, = £ - 2 and (x) = Z||x||?, then:
. 2L . o~
FEW) = f(x) < m”x - O,

Proof. The proof follows directly by applying Lemma 10 and using L-smoothness of f and
o-strong convexity of ¥. In particular, by Cauchy-Schwartz inequality and smoothness:

(VH4) = T p(=0), Vi (@) - Vi (24
< L|xHD — W [ vy (20HD) — vyt 2®W)),
and, by Proposition 16
Dy (2(’6)’ z(k+1)) + Dy- (z(k), 2(1@))

> 2 (Iver (29) = Vo D) P + 99 (&) — Vo (60))12) Y

From the definition of the steps, x(¥*1) —x () = j’;—i(vw*@(k)) —Vy*(z*))), and, therefore:

ak+12L pg— g

Ep1 <
S A 2

(* +¢?),
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where p = HVz/J*(Z(’“)) — Vl/}*(z(’“‘l))ﬂ and ¢ = ||V1p*(z(k)) — Vl/}*(i(k))H. Since, for any p, q,
Ap41

2
p2 + q2 — 2apq > 0 whenever « < 1, it follows that Fx41 < 0 whenever m% < 1, which

is true by the theorem assumptions. In particular, for a; = k—;rl 7 Ap = %(W) >
%%. This proves that f(x®)) — f(x*) < %. It remains to bound G;. This a simple

computation, shown in the appendix, which yields: G; < A%Dw(x*7 %)), <

2.6 Generalized Smoothness: Holder-Continuous Gradients

Suppose that f(-) has Holder-continuous gradients, namely, f(-) then satisfies:
IVF(&) = Vi) < L& —x][|", (10)

which also implies:

vx,ReX: f(R) < f(x)+(Vf(x),x—x)+ %ch — x|, (11)
where v € (0,1], L, € Ry4. In particular, if v = 1, then f(-) is L,-smooth. Thus, the func-
tions with Holder-continuous gradients represent a class of functions with generalized /relaxed
smoothness properties.

The lower iteration complexity bound for (unconstrained) minimization of convex functions
with Holder-continuous gradients was established in [20] and equals O LVD%'*'”EH%),
where D, is the distance from the initial point to the optimal solution. A matching upper
bound was obtained in [19].

To recover the optimal convergence rate in the minimization of convex functions with
Hoélder-continuous gradients, as before, we bound the discretization error from Lemma 10.
Before doing so, we will need the following technical proposition (which appears in a similar
form as Lemma 3.1 a) in [18]).

» Proposition 12.

@it <Vf(x(i+1)) — Vf(fc(i)), Vw*(z(i-&-l)) _ vw*(z(i))>
< o Va2 VD) — VRO |12

The proof is provided in the appendix.

» Theorem 13. Let f(-) be a convex function that satisfies (10), and let (-) be o-strongly
convez. Let x®) z(F) &(®) 3(K) pe updated according to the AXGD algorithm in Equation (2),

starting from an arbitrary initial point ) € X with the following initial conditions: z(®) =
—143v
V(D) and Ag = 0. Let a), = cL%Dl_”k: = where D = maxy zex ||x — X|| and
3u(v+1)—1

c=2"2 . Then,Vk>1:

A v—1 * 5(0)
132(+1>£D Dy (x*, % )

113
o k‘%fz

Fx®) — f(x*) <2

In particular, if Y(x) = ||x||?, then:

1-3v(v+1)

fx®) — f(x*) <2 =2 LDk~

1430
2 .
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Proof. We prove the theorem by bounding the discretization error F;y; from Lemma 10.
Applying Propositions 16 and 12:

Eir1 =aisn <Vf(x(i+1)) ~VHERD), vy (60) — v¢*(z(i+1))>

— Dy~ (ﬁ(i),z(i‘H)) _ Dw*(z(i),i(i))

<o lai ?|VF(xUFY) = VD))
= 2 (V9 (9) = Vo )2 + [V (29) - v (29)]2)

<o tai LAY - KO - 2Vt (20) - e @)
L1 2@ Y ot (512 T (oD o (5012

<o= L,/ = Rz Ve (2") = Vi (2™)|| 5 V9" (@) = Ve @)%, (12)

it
where the second inequality is by (10) and the third inequality is by the step definition (2).

—1+43v 3u(v+1)—1

Taking ap = cL%Dl_”k z  where ¢ = 27 =, it follows that Ay = Zle a; >

130
Zf:(k/ﬂ a; > ng“’L%(g) 2. Therefore, the expression in (12) is at least:

1
(=2 (k4177 + 2ol Ve (29) - Ve @) 2 > o,

as (k+ 1)¥~! < 1. Therefore, we have that G}, < %Gl, and using similar arguments to

bound the initial gap G, the proof follows. |

2.7 Non-Smooth Minimization: Lipschitz-Continuous Objective

We now show that we can recover the well-known ﬁ convergence rate for the class of
non-smooth L-Lipschitz objectives by using AXGD. This is summarized in the following
theorem. We note that, as in the analysis of classical mirror descent (see, e.g., [3]), the factor
log(k) can be removed if we fix the approximation error (and, consequently, the number of
steps k) in advance.

» Theorem 14. Let f(-) be a Lipschitz-continuous function with parameter L. Let x*)
2z &) 20 be updated according to the AXGD algorithm in Equation (2), starting from
an arbitrary initial point X©) € X with the following initial conditions: z(®) = V(%)) and

Ag=0. Ifay = Y2/ PeCED) ypon k> 1

2V2L k
) = 7)< 8(2-+ bl E VDL
In particular, for ¢ (x) = §[x||*:

L. Jx* =%
L

Proof. As before, we bound the discretization error from Lemma 10. As f(-) is L-Lipschitz,
using Proposition 16:

Bist Sair (V) = VF(D), V7 (29) - Vi (2+Y) )
— Dy- (ﬁ(i)’z(iJrl)) _ Dw*(z(i),i(i))
* 7 x (At o * 7 * (i
<2041 L[|V (2F) = Vi ()| = |V (2D) — v @)

§8(a(i+1)L)2
o

F®) = f(x*) < 4V2(2 + log(k))

)
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Figure 1 (a),(c) Exact and (b),(d) approximate duality gaps for AGD and AXGD with exact
gradients.

where we have used the inequality 2zy — 2% < 2, Va,y. As 0 > L and

i=1 i=[k/2]
we have that
"B Dy(x7,X0)
Z - (log(k) + 1),
= Ak Vovk

which, after bounding the initial gap by similar arguments, completes the proof. |

3 Experiments

We now illustrate the performance of AGD and AXGD for (i) an unconstrained problem over
R™ with the objective function f(x) = 1 (Ax,x) — (b,x), and (ii) for the problem with the
same objective and unit simplex as the feasible region, where A is the Laplacian of a cycle
graph® and b is a vector whose first element is one and the remaining elements are zero.
This example is known as a “hard” instance for smooth minimization — it is typically used in
proving the lower iteration complexity bound for first-order methods (see, e.g., [28]). We also
include Gradient Descent (GD) in the exact gap graphs for comparison. In the experiments,
we take n = 100 and 0 = L (= 4). We use the ¢3 norm in the gradient steps.

In the figures, f denotes the objective value at the upper-bound point and f* denotes the

optimal objective value, so that f — f* is the true distance to the optimum (the exact gap).

Fig. 1 shows the distance to the optimum and the approximate duality gap Gy = Uy — Ly,
obtained using our analysis. We can observe that AGD and AXGD exhibit similar performance
in these examples. The approximate gap overestimates the actual duality gap, however, the
difference between the two decreases with the number of iterations.

Acceleration and Noise

We now consider the setting in which the gradients output by our oracle are corrupted by
additive noise, which has significant applications in practice [10] and theory [2]. We note

5 Namely, the sum of a tridiagonal matrix B with 2’s on its main diagonal and -1’s on its remaining two
diagonals and a matrix C whose all elements are zero except for the Cy, = C,,1 = —1.
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Figure 2 Exact gap for additive Gaussian noise in the gradients with zero mean and covariance
enl (a)-(c) in the unconstrained-region case and (d)-(f) in unit simplex.

that this model is fundamentally different from the inexact model considered by Devolder et
al. [6], for which tight lower bounds preventing acceleration exist.

Specifically, we experimentally evaluate the performance of AGD and AXGD under additive
Gaussian noise. Fig. 2 illustrates the performance of AGD and AXGD when the gradients are
corrupted by zero-mean additive Gaussian noise with covariance matrix €, I, where I is the
identity matrix. When the region is unconstrained (top row in Fig. 2), both AGD and AXGD
exhibit high sensitivity to noise. The GD method overall exhibits higher tolerance to noise
(at the expense of slower convergence). In the case of the unit simplex region (bottom row
in Fig. 2), all the algorithms appear more tolerant to noise than in the unconstrained case.
Interestingly, on this example AXGD exhibits higher tolerance to noise than GD and AGD,
both in terms of mean and in terms of variance. Explaining this phenomenon analytically is
an interesting question that merits further investigation.

4 Conclusion

We have presented a novel accelerated method — AXGD— that combines ideas from the
Nesterov’s AGD and Nemirovski’s mirror prox. AXGD achieves optimal convergence rates for a
range of convex optimization problems, such as the problems with the (i) smooth objectives,
(ii) objectives with Holder-continuous gradients, (iii) and non-smooth Lipschitz-continuous
objectives. In the constrained-regime experiments from Section 3, the method demonstrates
favorable performance compared to AGD when subjected to zero-mean Gaussian noise.
There are several directions that merit further investigation. A more thorough analytical
and experimental study of acceleration when the gradients are corrupted by noise is of

5 In [6], it is assumed that a function f(-) is associated with a (8, L) oracle, such that f(&) < f(x) +
(Vf(x),%x—x%x)+ % 1% — x|+ g, Vx,% € X. Such a model seems more suitable for incorrectly specified
functions (e.g., non-smooth functions treated as being smooth) and adversarially perturbed functions.
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particular interest, since the gradients can often come from noise-corrupted measurements.
Further, our experiments from Fig. 2 suggest that there are cases that incur a trade-off
between noise tolerance and acceleration. A systematic study of this trade-off is thus another
important direction, since it would guide the choice of accelerated /non-accelerated algorithms

in practice depending on the application. Finally, it is interesting to investigate whether

restart schemes can improve the algorithms’ noise tolerance, since in the noiseless setting

several restart schemes are known to improve the convergence of AGD in practice.
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A Properties of the Bregman Divergence
The following properties of Bregman divergence will be useful in our analysis.
» Proposition 15. D, (Vy*(z),x) = Dy- (V¢ (x),2), VX, 2.

Proof. From the definition of ¢* and Fact 6,

P (z) = (V" (2), 2) — (V") Va. (13)
Similarly, as in the light of Fenchel-Moreau Theorem ** = 1),
P(x) = (Vi(x), x) — " (Vi (x)), vx. (14)

Using the definition of Dy, (V1y*(z),x) and Fact 6:

Dy (Vip*(z),x) = $(V*(2)) — $(x) = (Vib(x), Vi)™ (2) — x)
= P(Vi™(2)) + 7 (VY (x)) — (Vib(x), Vi (z)) . (15)
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Similarly, using the definition of Dy« (V1) (x),z) combined with (13):

Dy- (Vi (x),2) = " (Vip(x)) = ¢*(2) = (Vi (2), VY (x) - 2)
= V" (VY (x) + (V' (2) — (Vi (2), Vi (x)) - (16)

Comparing (15) and (16), the proof follows. <
» Proposition 16. If ¢(-) is o-strongly convex, then Dy-(z,2) > Z||Vi*(z) — Vi (2)2.
Proof. Using the definition of Dy-(z,2) and (13), we can write Dy-(z,2) as:
Dy-(z,2) = (Vy*(2)) — ¥(V™(2)) — (2, V™ (2) — V™ (2)) .
Since t(-) is o-strongly convex, it follows that:
Dy (2.2) 2 2|V (2) = Vo (2) > + (Ve(Vo* (2) - 2, V6" (2) — Vi (2)
As, from Fact 6, Vi)*(z) = arg maxxex {(x,2) —(x)}, by the first-order optimality condition
(Vi (Vy*(z)) — 2, VY (2) — Vi'(z)) = 0,
completing the proof. |

The Bregman divergence Dy-(x,y) captures the difference between ¢*(x) and its first
order approximation at y. Notice that, for a differentiable 1*, we have:

VxDy- (x,y) = V™ (x) = Vi (y).

The Bregman divergence Dy-(x,y) is a convex function of x. Its Bregman divergence is
itself.

» Proposition 17. For all x,y,z € X

Dy (%,y) = Dy-(2,y) + (Vi (2) = VY™ (y),x — 2) + Dy- (X, 2).

B Omitted Proofs from Section 2

» Proposition 7 (restated). Let z() = Vi(x(0)) — j;to Vixda™). Then:

ueX

t
Vi (2") = arg min { / (VF) 0= XD ) da® 4 Dy, x<to>)} |
to
Proof. From the definition of Bregman divergence:
t
arg min {/ <Vf(x(7)), u— X(T)> da(™ + Dy(u, X(to))}
ueX to

= arg min {/ <Vf(x(7)), u-— X(T)> da™ + P(u) — ¢(x(t0>) _ <V¢(x(t0)), u— x(to)>}

ueX
t
= arg mi)r{l {</ Vi(x)da'™ — v (x0)), u> + w(u)} .
uc to
Using the definition of z(!) and Fact 6, the proof follows. <
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Remaining Proof of Theorem 11 (The Bound on G;). To bound G, we recall the defini-
tion of Lq:

1
L, = f(xM min { ( VF(x®),x — xM D (x.%© Dy (x*, %)
1 ( ) xelX {< ( ), > 1, (X, )} w(x )

= £ + (VD) Ve (20) - x D)

1 1
—D RO — — Dy (x*, %),
T s(Vr(z1), %) m (x5, %)

Ay

As a; = A, xM) = vy*(29), and a; V(%) = 20 — 20 using Proposition 17, we have
that:

(VIE®), T (2) = xD)

1

— 7(0) _ 5(0) # (g (L)Y *(5(0)
= 5 (= Vot (20) - vy (20))
1
T4

On the other hand, by smoothness of f(-) and the initial condition:
(VM) = V), v (20) - x D)
> —L|Vy* (@) - 2|y (=) - xD. (18)

(Dw (2©,20) — Dy (2,20 + Dw*(z@,z(l))) . (17)

Finally, by Proposition 15 and the initial condition z(®) =
Dy-(29,20) = D,(Vy*(zM),%?). Combining with (17), (1
f(xMY) — Ly:

G1 <L|Vy*(29) =& - vy (z) — x|

Vi(%(?)), we have that
) and G1 = U1 L1 =

1 1
— (29, 2) (0) (M — * £(0)
oy (D ,2%) 4+ Dy« (27, 2 ))+A1Dw(x ,X)
=L||Vy* (&€ )—XO)H V™ (2) — x|
1 1
el ) (50 L1 el * £(0)
4 Dy(V )+ Dy« (27,2 ))JrAlD’/’(X’X )
<L|[Vy* (2(0)) O)H V9™ (2) — x|
o . X 1 *
g (1997 @) = 2O 4 V0 (=) = xV)?) 4+ Dy (", 2)
1
SEDw(X*ai(O))7
where we have used Proposition 15, x() = V¢*(2(9)), and %12 =A< 7 |

» Proposition 12 (restated).
i1 <Vf(x(i+1)) VFED), Vit (20D - Vw*(z(i))>
<o i [ V) - VD)
Proof. From the first order optimality condition in Fact 6, Vx,y € X:
<w(w*(z(i+1>)) ~ gl x v¢*(z(i+1>)> >0, and (19)
(Vv (3) =29,y - Vi (@) = 0. (20)
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Letting x = V¢*(2()), y = V*(20+)), and summing (19) and (20):
<2<i> — 20D () - vw*(z(i+1>)>

> <V"/}(V1/)*(2(i))) — V?/)(Vq/;*(z(i‘f‘l)))’ V'(/J*(i(i)) _ V¢*(z(i+1))>
> o|| Vg (27) — vy (27D) |7, (21)

where (21) follows by the o-strong convexity of 1(-). Using the Cauchy-Schwartz inequality
and dividing both sides by ||[Vy*(2()) — Vop* (z0HD)|| gives [|2(9) — 20+D|| > o|| Vp*(2()) —
V(20 D).

Since, by the step definition (2), 2() — z0%D = q; 1 (Vf(x0HD) — Vf(5®)), apply-
ing Cauchy-Schwartz Inequality to a;1 (Vf(x01)) — VF(&D), Vo (z0FD) — Vyp*(29))
completes the proof. |
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