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ABSTRACT 
We model coordination and coregulation patterns in 33 triads 
engaged in collaboratively solving a challenging computer 
programming task for approximately 20 minutes.  Our goal is to 
prospectively model speech rate (words/sec) – an important 
signal of turn taking and active participation – of one teammate 
(A or B or C) from time lagged nonverbal signals (speech rate 
and acoustic-prosodic features) of the other two (i.e., A + B → C; 
A + C → B; B + C → A) and task-related context features. We 
trained feed-forward neural networks (FFNNs) and long short-
term memory recurrent neural networks (LSTMs) using group-
level nested cross-validation. LSTMs outperformed FFNNs and a 
chance baseline and could predict speech rate up to 6s into the 
future. A multimodal combination of speech rate, acoustic-
prosodic, and task context features outperformed unimodal and 
bimodal signals. The extent to which the models could predict an 
individual’s speech rate was positively related to that 
individual’s scores on a subsequent posttest, suggesting a link 
between coordination/coregulation and collaborative learning 
outcomes. We discuss applications of the models for real-time 
systems that monitor the collaborative process and intervene to 
promote positive collaborative outcomes. 

CCS CONCEPTS 
• Collaborative and social computing → Empirical studies 
in collaborative and social computing 
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1 INTRODUCTION 
Are two heads really better than one? What about three, or four, 
or five? Research in small group collaborative problem solving 
(CPS) over several decades suggests that more often than not, 
collaboration results in “process loss” where groups fail to 
achieve their full potential. This is in stark contrast to “process 
gain” where group interaction yields performance that exceeds 
the joint performance of the individual group members [36–38].  

As Steiner [56] summarizes: actual productivity = potential 
productivity – productivity loss due to faulty process. Research has 
focused on identifying conditions where the elusive process gain 
can be achieved. Some of the critical variables include group size 
[37, 38], problem structure [36, 53], cohesiveness of group 
members in ability and motivation [15, 24, 34], and task 
constraints [8, 59]. Research has sought causes for process losses, 
which can be subdivided into: (1) coordination losses, such as 
production blocking during collective ideation [46], the 
common-knowledge effect [21] (overemphasis on shared vs. 
individual knowledge), group-think [28] (individual members 
converge to the dominant view), and (2) motivation losses, such 
as social-loafing [29,30], evaluation apprehension [10] and free-
rider effects [32].  

Our present focus in on coordination processes in order to 
better understand and eventually prevent coordination losses. 
We emphasize coordination because  collaboration is 
fundamentally about interactions among people who have 
thoughts, feelings, and behaviors, and who react to and influence 
each other’s thoughts, feelings, and behaviors. Simply put, 
collaboration is about interactions among living and breathing 
people, not cold disembodied brains. It involves a host of socio-
cognitive processes, such as turn taking, conversational 
grounding, perspective taking, emotional coregulation, 
behavioral mirroring, and joint action [5, 6, 12, 48, 49, 66]. We 
hypothesize that collaborative outcomes would be productively 
influenced by intelligent systems that monitor these 
collaborative processes in real-time, triggering just-in-time 
interventions to improve the collaborative process. This is the 
long-term goal of our work. Here, we focus on real-time 
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modeling of underlying collaborative processes, a critical step 
along the way. 

We situate our work within a dynamical systems framework 
that views human interaction as a continuous and mutually 
adaptive process, structured by self-organization into functional 
synergies [7,18,22,23,44,51]. A synergy occurs when interacting 
components can function as a single unit. It arises as a system’s 
componential degrees of freedom become loosely coupled and 
mutually constrain each other, resulting in a dramatic and 
temporary reduction in the shared set of possibilities, allowing 
for more stable and coordinated forms of behavior [50,54]. 
Accordingly, for effective collaboration, individuals’ behavioral 
patterns, including those that map onto cognitive and affective 
states, are expected to come together as dynamic couplings of 
coordination and coregulation. These couplings are not simply 
aggregated behaviors, but are emergent patterns that reflect the 
activity of the system as a whole. Specifically, coordination 
refers to (near) concurrent bidirectional linkages of behavior 
(e.g., facial expressions, eye gaze) amongst interacting partners; 
coregulation refers to coupling at greater temporal lags and 
captures asymmetrical and symmetrical leader/follower patterns. 
Together, the processes sustain long-term temporal 
dependencies across the entire interaction, giving rise to patterns 
of global stability and complexity. These are also expressed 
across multiple interacting channels and index and maintain 
higher-order components of successful collaboration, including 
effective communication,  negotiation/coordination, and 
maintaining team function [57]. 

We propose predictive modeling of coordination and co-
regulation in triads remotely engage in a collaborative problem 
solving task. We focus on modeling speech rate which indexes 
active participation and turn taking [31], which are critical for 
successful collaboration [12,31].  More specifically, coordinated 
speech rate, as well as speech and intensity, have been associated 
with features of agreeableness and well-functioning 
conversations [41,44]. The structure of how people regulate 
turn-taking also provides insights into communication and 
active participation via the maintenance of conversational flow, 
efficient informational exchange, experiential quality [22,51], 
and indexing engagement in the timing of turns to anticipate 
turn completions [7]. 

1.1 Related Work 
Researchers have traditionally investigated coordination in 
terms of synchrony, where two or more people in a shared 
situation, task, or conversation coordinate behaviors in order to 
maintain common ground, establish social bonding, and improve 
quality of social interactions [9,23]. Some methods to analyze 
synchrony include time lagged correlations [9,14], recurrence 
analysis [9,14], and coupled oscillatory models [35] (see [9] for a 
review).  More recent methods, such as complexity matching [1], 
go beyond occurrences of the observed behavior and examine 
power law distributions of behaviors. For example, Abney et. al. 
[1] found evidence for complexity matching in acoustic onsets 
during affiliative dyadic, but not in argumentative conversations. 

Taking a multimodal approach, Duran and Fusaroli [14] 
examined coordination of head movements and speech rate 
during deceptive conversations. They hypothesized that 
deceivers maintain believability through heightened attention 
with their conversational partner, achieved by maintaining 
synchrony. They used window lagged cross correlations to 
analyze synchrony in head movements at short time scales (less 
than 1000 milliseconds) and cross recurrence quantification 
analysis to understand global patterns in synchrony of speech 
rate. They found that deceivers synchronized with their 
conversational partners’ head movements at short lags (between 
0 and 1000 milliseconds), concluding that deceivers closely 
follow the lead of their partner and anticipate cues. Additionally, 
when deceiving a conversational partner, speech rate was 
adapted to the partner as the conversation changed. 

In contrast to the aforementioned analytic approaches, which 
compute indices of synchrony from dyadic data, predictive 
model-based approaches emphasize the use of behaviors of one 
or more conversational participants to predict the behaviors of a 
different target partner. We could only find two such studies. 
First, Feng et. al. [18] used variational autoencoders and deep 
neural networks, trained on data collected during Skype 
conversations, to  generate facial expressions of an avatar from a 
human interlocutor’s facial cues. Second, Grafsgaard et. al. [23] 
used long-short term memory networks to model facial 
expressions and motion features of heterosexual romantic 
couples using the behaviors of the male to predict the behaviors 
of the female and vice versa. They found that their model-based 
measure of synchrony revealed unique insights compared to a 
naïve analytic approach of simply correlating the partners’ raw 
time series. We adopt a similar approach here. 

1.2 Contribution and Novelty 
The key idea of our work is that because coordination and 
coregulation are fundamentally about dependencies across 
participants, predicting behaviors of one partner from the 
behaviors of the others is a more direct test of such dependencies 
than simply quantifying them as in the analytic approach. 
Accordingly, in this work, we adopt a predictive approach to 
modeling speech rate of one conversational partner from 
behaviors of his/her teammates. Specifically, we use data from 
two teammates to predict speech rate of the third team member 
(i.e., A + B → C; A + C → B; B + C → A). Importantly, the 
models are trained using data from different teams  to generate 
predictions for the target team. We hypothesize that the fit 
between the model predictions and the original time series (Apred 
vs. Aorig; Bpred vs. Borig; Cpred vs. Corig) reflect global patterns of 
coordination and coregulation (because the models are trained 
on different teams). In contrast, the analytic approach would 
simply compute measures of synchrony from the original time 
series, thereby reflecting more local patterns. 

To our knowledge, this is the first attempt to predict speech 
rate of an individual solely from multimodal behavioral inputs of 
his/her conversational partners. There is related work on 
multimodal end-of-turn and next speaker prediction [11,33], but 
this research does not use behavioral inputs from the other 
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people in the conversation, which is a critical component of our 
approach. 

Additionally, compared to other related work [18,23], our 
approach is multimodal, focuses on speech rather than facial 
expressions, and considers coregulation by lagging input time 
series to make future predictions compared to mere coordination 
(synchrony at lag 0). We also consider triadic interactions 
because they provide a rich interaction context as synchrony 
occurs between dyads within the triad, or all three team 
members.  

2 DATA COLLECTION 

2.1 Participants 
Participants were 111 (63.1% female, average age = 19.4 years) 
undergraduate students from a medium-sized private 
Midwestern university, who were compensated with course 
credit. Participants were 74.8% Caucasian, 9.9% Hispanic/Latino, 
8.1% Asian, 0.9% Black, 0.9% American Indian/Native Alaskan, 
2.7% other, and 2.7% did not report ethnicity. Participants were 
assigned to 37 teams of three based on scheduling constraints. 
Nineteen participants from ten teams (27%) indicated they knew 
at least one person from their team prior to participation. The 
only inclusion criterion was no previous experience with 
computer programming; none of the participants were excluded 
on this basis. 

Four teams were removed because at least one participant in 
the team was missing an audio file. One team was missing a 
screen recording due to equipment failure, but was still used (see 
Section 3.1). Thus, we analyzed 33 teams. 

2.2 Study Protocol 
Participants were randomly assigned to one of three computer-
equipped rooms in a lab. Each computer had a webcam with a 
microphone so participants could see and hear each other, 
facilitated though Zoom’s video-conferencing and screen sharing 
capabilities(https://zoom.us). Participant audio was recorded on 
separate streams. The screen content was also recorded using 
Zoom’s built-in features (see Figure 1). 

The task involved completing an introductory and a 
collaborative problem solving activity using code.org’s (an 
online resource that teaches basic computer programming 
principles) Minecraft-themed Hour of Code [60] . Hour of Code 
uses Blockly [20], a visual programming language that 
represents lines of code (such as loops) as syntactically-correct 
interlocking blocks. One participant (designated participant A) 
was randomly assigned to interact with the environment and 
shared their screen content with the other participants 
(designated B and C). This was done due to technical constraints 
with the code.org web-based interface which was not inherently 
designed to support collaborations. 

In an introductory task, teams completed five lessons and 
watched three accompanying videos that taught basic 
programming principles along with instructions on how to use 

the coding environment. Participants were instructed to 
collaborate as a team to complete this task within 20 minutes.  

After completing the introductory task, the screen share was 
disabled, and participants individually rated their level of 
satisfaction with their team’s: (1) “performance at completing the 
lessons;” (2) how well their team “communicated with each 
other;” (3) how well their team “cooperated  to complete the 
lessons;” and (4) how “agreeable my teammates are;” Participants 
used a very dissatisfied (1) to very satisfied (6) scale for these 
ratings. 

The main CPS activity involved a challenging programming 
task where teams had 20 minutes to build a 4×4 brick building 
with the following constraints: use at least one if statement; use 
at least one repeat loop; build at least three bricks over water; 
and use 15 blocks of code or less. The same team member who 
controlled the interaction with the environment during the 
introductory phase also controlled the interaction during the 
coding challenge. 

After completing the challenging programming task, 
participants individually completed the same subjective 
assessments of their team’s performance, communication, 
cooperation, and agreeableness. Finally, participants individually 
completed a ten-item researcher-created multiple-choice test to 
assess their conceptual knowledge of coding concepts (such as 
repeat loops and if statements).  

 
Figure 1: Minecraft-themed Hour of Code. Participants 
could (A) visualize the results of running their code, (B) 
choose code blocks from a code bank, (C) generate 
solutions to the task, and (D) see their team’s faces. 

3 MODEL DESIGN AND TRAINING 
We model speech rate of each participant using behavioral 
features (speech rate, acoustic-prosodic features) of the other 
team members, as well as team-level task context features. We 
did not include facial features due to considerable missing data 
when the face of one of the teammates could not be tracked in 
the video stream. We also focus on the challenging programming 
task because the main purpose of the introductory activity was 
to familiarize participants with the environment and their 
teammates. 

3.1 Feature Processing 
We used the IBM Watson Speech to Text service [61] to generate 
transcriptions of individual audio recordings, from which we 
computed speech rate (words per second) for each second of the 
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collaboration. If a word spanned multiple seconds, we assigned it 
to the second in which it started.  

We used the openSMILE toolkit [16] to extract the following 
acoustic-prosodic features over 10 millisecond windows: 
fundamental frequency, loudness, center frequency of the first 
through third formants, first through third formant amplitudes, 
harmonics to noise ratio, jitter, and shimmer.  

We used the screen recording to extract high-level task 
context features as a measure of the teams’ actions within the 
environment (log files were not available). We focused on two 
areas of interest (AOI) – the code runtime environment (A in 
Figure 1) and the code bank and workspace (B and C in Figure 1) 
– and used a validated motion estimation algorithm [58] to 
compute the amount of change in each area. Change in the code 
bank and workspace AOI indicated how many edits the team 
made to their solution, whereas the code runtime AOI indicated 
attempts to test their code.  

We computed one binary validity feature for whether speech 
rate and acoustic-prosodic features could be calculated and 
another for whether task context features could be computed. 
These features were only invalid when the relevant data file was 
missing or incomplete (see Section 2.1). In all, there were 16 
features per participant: one speech rate feature, 11 acoustic-
prosodic features, two task context features, and two validity 
features. 

3.2 Data Aggregation 
Our target outcome (words per second) was computed at a 1s 
granularity, which we deemed appropriate for these interactions. 
Because acoustic-prosodic and task context features were 
computed at different rates (100 Hz and 25 frames per second 
respectively), we averaged each of these features across non-
overlapping 1s windows. We also considered a coarser 3s 
granularity by aggregating the 1s time series across 3s non-
overlapping windows for speech rate, acoustic-prosodic, and 
task context features (see Figure 2). For the binary validity 
features, we computed the sum over the 3s window and 
transformed sums greater than zero to a binary validity of one. 
The 1s and 3s aggregations yielded time series of approximately 
1200 and 400 feature vectors (per participant), respectively, 
across the 20-minute CPS phase. Time series length varied 
slightly for teams who completed the task before the allotted 20 
minutes. 

Figure 2: Aggregation from a 1s to 3s time series. 

3.3 Neural Network Modeling 
We built neural network models to predict the speech rate of one 
teammate from behavioral signals (speech rate and acoustic-

prosodic) of the other two (i.e., A + B → C) along with team-level 
task context features. We compared two neural network model 
types using Keras with TensorFlow [62]. The first was a feed-
forward neural network (FFNN) [63] with a single fully connected 
dense layer. The second was a long-short term memory network 
(LSTM) which is a special type of recurrent neural network that 
can learn long term dependencies [26] by selectively retaining and 
forgetting information across input sequences. Both network types 
had a single hidden layer. We chose to use FFNNs and LSTMs 
because they have been applied to similar data and modalities 
[17,45,47]. We expected LSTMs to outperform FFNNs on data with 
time dependencies such as turn taking in speech.  

The LSTM was trained on sequences of inputs from the 1s and 
3s aggregations. The general form for an input sequence of length 
m would be X୩ି୫ାଵୟ ,  X୩ି୫ାଶୟ , … , X୩ୟ  to predict 𝑌௞ା௅௔  at lag L 
where a represents different aggregation windows (a=1s or a=3s) 
and k is the sequence index.  For example, an m of 2, L of 1, and a 
of 1s indicates predicting the next time point from the previous 
two time points in a 1s aggregated time series. Figure 3 shows 
example input sequences of length m=3 and predicted outputs at 
various lags. The FFNN takes only a single value 𝑋௞௔  as input to 
predict the output at 𝑌௞ା௅௔ . For example, using input 𝑋ଶ௔ to predict 
output 𝑌ଷ௔at lag L=1.  

Note that we refer to lags instead of leads because we envision 
the input time series lagging behind the output time series. 
Further, for a given lag, the extent to which we are predicting into 
the future pertains to the aggregation window length a. For a fixed 
lag of 2, an a of 1s would indicate predicting 2s in the future, but 
an a of 3s would involve predicting ahead by 6s. 

 
Input sequence 
length m = 3 

Predicted output at L 
L = 0 L= 1 L = 2 L = 3 … 

X2 X3 X4 Y4 Y5 Y6 Y7 … 
X3 X4 X5 Y5 Y6 Y7 Y8 … 
X4 X5 X6 Y6 Y7 Y8 Y9 … 

… … … … … … … … 

Figure 3: Example input and output sequences 

We  used team-level 10-fold cross validation (using scikit-learn 
[64]) to train and test our models. Within each fold, we further 
split the data into 60% training, 30% validation, and 10% testing. 

All features were z-scored and then normalized to a [-3, 3] 
range per fold. We used the training data to compute the statistics 
needed for the z-scoring and normalization (mean, standard 
deviation, max, min), which were subsequently applied to the 
validation and testing sets. Preliminary results indicated that z-
scoring with [-3, 3] normalization slightly outperformed [-1, 1] 
normalization, greatly outperformed [0, 1] normalization, and was 
equivalent to z-scoring without normalization. We selected z-
scoring with [-3, 3] normalization to address missing values, 
which were replaced with a value of 5, chosen to be outside the 
normalized range. This only occurred for the task context features 
of one team that was missing a screen recording (Section 2.1). This 
binary mask to indicate if data was missing for each modality was 
shown to be useful for training LSTMs with missing data [42]. 
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Both networks utilized a single hidden layer with 32 units and 
leaky rectified linear unit activation function, which has been 
shown to improve performance and reduce training time [43]. We 
chose 32 units after comparing validation loss across 8, 16, 32, and 
64 units revealed that 32 units was adequate. Similarly, we 
compared networks with 1, 2, and 3 hidden layers and selected 
models with a single hidden layer as they achieved equitable 
performance compared to deeper networks. Thus, the final models 
had a single layer of 32 hidden units. Further, the LSTM models 
utilized a sequence length of 3s after experimentation. 

Neural networks use gradient descent and back propagation to 
update the weights during each pass of the training (referred to as 
a training epoch). At each epoch, a loss function (mean squared 
error) was computed and the weights were updated. We used an 
adaptive learning rate algorithm, NADAM [13], to tune the 
learning rate. We fixed the number of training epochs to 50 since 
the models converged within 50 epochs.  

We experimented with batch normalization [27] , l2 weight 
regularization [65], and dropout [55] to prevent overfitting. 
Dropout had no discernible impact when combined with the other 
two methods. Additionally, the default Keras batchnorm 
parameters and kernel regularization were adequate for our data.   

4 RESULTS 
Our key outcome measure is prediction accuracy, computed as 

the correlation coefficient between the observed and predicted 
speech rate time series. We used the nonparametric Spearman 
rank-order correlation as opposed to the parametric Pearson 
product moment correlation because the time series are zero-
inflated (i.e. when the target participant does not speak), thereby 
violating normality assumptions. To ensure fair comparisons 
across temporal granularity (i.e., 1s and 3s level of aggregation), 
we averaged correlations across lags for the 1s models to align 
with the lags of the 3s models. For example, we averaged the first, 
second, and third seconds of the 1s aggregated time series and 
compared it to the first data point in the 3s aggregated time series. 
Similarly, we averaged the fourth, fifth, and sixth seconds of the 1s 
aggregated time series and compared it to the second data point in 
the 3s aggregated time series. No averaging was done for lag 0. 

 provides a histogram of Spearman correlations for all 
observations, suggesting a positive skew but no notable outliers. 

Due to the repeated (multiple observations per team) and 
nested structure of the data (participants nested within teams), we 
used linear mixed effects regressions to model the data [4]. We 
included the number of voiced segments as a fixed effects 
covariate in all models because it was weakly correlated with 
prediction accuracy (Pearson rs = .133 and .176 for 1s and 3s 
aggregation, respectively). Team was included as a random 
intercept in all models. 

We used the lme4 package in R for the linear mixed effects 
models [4], the car package (Companion to Applied Regression) 
for significance testing of main effects and interactions [19], and 
the emmeans (estimated marginal means) package [39] for 
pairwise comparisons and to probe interactions [40].  

 

Figure 4: Histogram of correlations across all observations 
 
Selecting a model: Network type and aggregation level. 

Our first step was to choose a network type and level of 
aggregation. Accordingly, we regressed prediction accuracy 
(Spearman’s rho) on the three-way interaction between network 
type (FFNN vs. LSTM) × aggregation level (1s vs. 3s) × lag (0s, 3s, 
6s, 9s). Modality (speech rate, speech rate + task context, speech 
rate + task context + acoustic-prosodic) and team member (A, B, or 
C) were included as categorical fixed effects; these are examined in 
more detail once a model is selected. The three way interaction 
was not statistically significant (p = .521), suggesting similar 
results across lags. However, there was a significant interaction 
between aggregation level and network type (2(1) = 4.39, p = .036, 
Figure 5). Pairwise comparisons, averaging across lag, modality, 
and team member, indicated that there was no significant 
difference (p = .619) between network types for the 3s aggregation, 
but LSTMs outperformed FFNNs (p < .001) for the 1s aggregation. 
Overall, prediction accuracy was also higher (p < .001) for the 3s 
compared to the 1s aggregation level. We focused on 3s 
aggregation and LSTMs for all subsequent analyses as they have a 
slight advantage over FFNNs. We also expanded the model to 12s 
and 15s lags to investigate how far out into the future we could 
predict speech rate. 

 
Figure 5: Interaction between network and aggregation 
level 

Effects of modality and team member.  We regressed 
prediction accuracy on the two-way interaction between 
modality × lag. We did not consider the three-way modality × 
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lag × team member interaction as this is not of theoretical 
interest. Instead, team member was included as a fixed main 
effect, which was statistically significant (2(2) = 49.7, p < .001). 
Pairwise comparisons with a Tukey correction for multiple 
comparisons indicated that prediction accuracies for the two 
team members who did not control the interface (i.e., B and C) 
were significantly higher (p < .001) than the team member (i.e., 
A) who controlled the interface. Further, fit for team member C 
was also higher (p < .001) than team member B (i.e., C > B > A). 
The difference in prediction accuracy between participants B and 
C compared to participant A might be attributable to more 
speech production by participant A (2(2) = 38.0, p < .001) 
compared to B and C (p’s < ,001). However, it would not explain 
the C > B difference because these participants produced 
equivalent speech (p = .938).  

The modality × lag interaction was also significant, (2(10) = 
321, p < .001, see Figure 6). Pairwise comparisons (with a Tukey 
adjustment) across the three modalities for each lag indicated 
that adding information on the task context to speech rate 
increased prediction accuracy for lags 0s, 3s, and 6s (p’s < .001), 
beyond which there were no statistical differences (p’s > .714). 
Similarly, adding acoustic-prosodic features to speech rate and 
task context only improved fit for lag 0s (p  < .01); there were no 
detectable differences for the other lags (p’s > .503). Modality 
had no affect beyond lag 9s, upon which the correlations were 
basically zero. 

Figure 6: Interaction between modality and lag (in 
seconds) 

Because the overall best results were obtained for the LSTM 
model with speech rate, task context, and acoustic-prosodic 
features, subsequent analyses focus on this model. Recall that this 
model aggregates data in 3s intervals and the LSTMs were trained 
with a sequence length of 3 resulting in 9s of history. We also 
experimented with sequence lengths of five (i.e. 15s of history) and 
seven (i.e. 21s of history), but the results were virtually identical (p 
= .619 for main effect of sequence length; p = .924 for sequence 
length × lag interaction). Thus, we proceeded with a sequence 
length of 3 (9s of history). 

Comparison with shuffled baseline. We trained surrogate 
models by shuffling the output time series per team while 
preserving the temporal integrity of the input time series. For 

example, we would shuffle participant C’s time series in the  A + B 
→ C model to produce Cshuffle. We trained an LSTM on A + B→ 
Cshuffle and compare its prediction accuracy to the prediction 
accuracy obtained with the original non-shuffled time series. This 
form of shuffling provides an important baseline because it 
preserves the central tendency of the speech rate distribution (i.e., 
mean and variance) while breaking temporal dependencies.  

We regressed prediction accuracy (Spearman rho) on a two-
way interaction between shuffle (yes vs. no) × lag (with team 
member as a fixed main effect). There was a statistically significant 
interaction, 2(5) = 396, p < .001. Pairwise comparisons indicated 
that the non-shuffled model significantly (p < .001) outperformed 
the shuffled model for lags 0s, 3s, and 6s but not for lags 9s, 12s, 
and 15s, see Figure 7). 

Figure 7: Interaction between shuffle and lag (in seconds). 

We also note that fit for the shuffled models was 
approximately zero past lag 0s, whereas the non-shuffled models 
maintained a nonzero correlation for lags 0s (rho = .380), 3s (rho = 
.162), and 6s (rho = .062), beyond which they were basically zero 
(i.e., .021, .023, and .012 for lags 9s, 12s, and 15s, respectively). 
Thus, the models could predict speech rate up to 6s in the future. 

Comparison with self-models. The current models utilize 
data from a target participant’s teammates along with information 
from the task context to predict his/her own speech rate. How do 
these peer models (e.g., A + B + task context → C) compare to self-
models (e.g., C + task context → C)? We addressed this question 
by training LSTM models to predict the target’s future speech rate 
from lagged versions of  his or her own speech rate, acoustic-
prosodic features, and task context features (e.g., Clagged→ Cfuture). 
Prediction accuracy of these self-models can be considered to be 
an upper bound on what can be achieved with our approach. 

We used the same statistical model to analyze the data, with a 
focus on the input source (self vs. peer) × lag interaction term. We 
did not include lag 0s in the analysis as it essentially equates to 
training and testing on the same data for the self-models. The 
results (see Figure 8) indicate a significant interaction, 2(4) = 84, p 
< .001. As expected, the self-model outperformed (p < .001) the 
peer model, and its main advantage emerged for the earlier lags, 
rapidly decreasing beyond lag 12s. 

Prediction accuracies for the self and peer models were 
moderately correlated (r’s between .355 and .520) for lags 0s to 9s 
and more weakly correlated (r’s .197 and .198) for lags 12s and 15s. 
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Thus, the models appear to be tapping related, but not redundant 
information. 

Figure 8: Interaction between input source and lag (in secs) 

Predicting individual outcomes. We examined whether 
the accuracy of our speech rate predictions were related to 
collaborative problem solving outcomes. Because the models 
generate participant-level predictions of speech rate of each 
team member, we focused on each participant’s objective 
posttest score, and their subjective assessments of their team’s 
performance, communication, cooperation, and agreeableness. 
We averaged each participant’s communication, cooperation, 
and agreeableness scores since they were strongly correlated 
(Cronbach’s alpha = .89). We separately regressed each of these 
outcome variables on prediction accuracy with team member (A, 
B, and C) and number of voiced segments as fixed effects 
covariates. Team was an intercept-only random effect. We 
focused on the lag 0 model as these yielded the best prediction 
accuracy, and thus is most reliable. 

The results indicated no significant effect of prediction 
accuracy on subjective perceptions of performance (p = .617) or 
the average of communication, cooperation, and agreeableness (p 
= .460). However, prediction accuracy significantly predicted 
posttest scores (B = 1.40, SE = .704,  2(1) = 3.93, p = .047). 
Participants whose speech rate could be more accurately 
predicted from their peers’ data had higher posttest scores 
(Figure 9). The same effect was not observed (p = .181) for the 
self-model. 

Figure 9: Correlations between prediction accuracy and 
posttest score 

Example output. Figure 10 provides an example of the 
predicted and actual time series for one participant for which the 
model was particularly accurate (Spearman rho = .700). 

 
(A) Actual vs. predicted time series 

(B) Density plots of actual vs. predicted distributions 

Figure 10: Sample results for one team member 

5 DISCUSSION 
We adopted a predictive approach to modeling coordination and 
coregulation during collaborative problem solving, 
hypothesizing that the predictive models capture global patterns 
of collaboration compared to existing analytic approaches. 
Accordingly, we used speech rate and acoustic-prosodic features 
of two teammates and information on task context to model the 
speech rate of the third teammate, training the models on data 
from unrelated teams. 

5.1 Main Findings 
We found that a combination of speech rate, acoustic-prosodic 
features, and task context features outperformed unimodal or 
bimodal models. The biggest boost was obtained by the addition 
of task context features, which encode when a team makes 
changes to their solution and runs it. We hypothesize that these 
features capture knowledge-building discourse [25], which occur 
when teams collectively generate, communicate, and iteratively 
refine ideas [25], a pattern somewhat enforced by a combination 
of concrete goals of the coding task and instant feedback (i.e. 
teams run their code).  The addition of acoustic-prosodic features 
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increased prediction accuracy at lag 0s, presumably because they 
communicate nonverbal cues that the conversational floor is 
open. 

We could successfully predict speech rate up to 6s into the 
future, with the best result occurring at lag 0s, presumably due 
to the model encoding turn-taking dynamics. In conversation, 
people usually do not speak at the same time [14], making 
information about speaking patterns closer to the target a more 
accurate description of the unfolding conversation. That said, a 
lack of speech of two partners does not imply that the third will 
speak because there are periods of silence, especially when a 
solution is being tested or during periods of ideation.  

As expected, models with inputs of a person’s own speech 
rate (self-models) outperformed those with only inputs of that 
person’s teammates (peer models). That said, the results for the 
self-models were far from perfect with correlations slightly 
exceeding 0.3 at lag 3s. This provides an important upper bound 
of what might be achievable with these models, data, and 
features due to the multiple influences on whether a person will 
speak and at what rate. This is reflected by the fact that the 
prediction accuracy was lower for the participant who controlled 
the interface, ostensibly because there are additional degrees of 
freedom for these participants. Further, recall that the goal is not 
to merely predict speech rate but to model team collaboration 
dynamics. The fact that we could achieve correlations as high as 
0.380 suggest that the model is capturing interesting aspects of 
the dynamics of the unfolding collaboration. 

The accuracy of the model’s predictions of speech rate 
predicted how much an individual would learn as a result of the 
collaboration. This result is possibly related to the establishment 
of common ground  and success in coordinating action with the 
group, which are related to successful collaborative outcomes 
[3,31]. Further, this result provides external evidence that the 
models are picking up collaborative patterns among team 
members because more cohesive teams should theoretically be 
more predictable. 

It is particularly notable that our models were able to predict 
speech rate at all because virtual collaborations lack the richness 
of social cues present in face-to-face interaction [2,52], which  
can lead to impaired ability to coordinate action, read social cues, 
and may also reduce engagement [52]. It is possible that teams 
that overcame the challenges associated with virtual 
collaboration established more coupled and regulatory 
behaviors, which led to more accurate modeling and better 
learning outcomes. 

There were also differences among team roles, as we were 
more accurate at predicting speech rate of team members who 
were not controlling the interaction (i.e., B and C) compared to 
those who were (i.e., A). This suggests inherent differences in 
how coordination and coregulation is manifested, depending on 
the role a person takes in a collaboration. What is surprising, 
however, is that the models were also more accurate at 
predicting the speech rate of participant C compared to B despite 
both having the same role. This is a puzzling finding worthy of 
replication.  

5.2 Applications 
Our method of modeling speech rate of an individual in a virtual 
collaborative context is fully automated, generalizable across 
teams (due to our cross-validation method), and is, to some 
extent, applicable to new tasks (due to our method of generating 
task context features without log files). Thus, it can be used in a 
real-time system that supports productive virtual collaboration 
for triads. In particular, our multimodal models were able to 
prospectively predict speech rate, up to six seconds into the 
future, allowing for regulation of behavior before it occurs. For 
example, team members who might interrupt other team 
members could be prompted not to do so prior to exhibiting that 
behavior. The model predictions of future verbal contributions 
could be used to determine when to encourage participation 
from team members that might not speak as often as others. 

Finally, prediction accuracy was positively related to learning 
outcomes, leading us to conclude that the models are to some 
extent indexing positive team dynamics. Therefore, a real-time 
system could use prediction accuracy (comparing predicted 
speech rate to actual speech rate over the past few seconds) to 
determine when and how to intervene. Teams with a low 
prediction accuracy might be struggling to effectively coordinate 
and coregulate and could receive an intervention to help them 
collaborate effectively. Teams receiving high prediction accuracy 
should be left alone but should be monitored for notable 
decreases, which would be used to trigger appropriate 
interventions. 

5.3 Limitations and Future Work 
Our work has limitations that should be addressed in the future. 
For one, the dataset is small and was collected at a single 
university with little ethnic, age, or cultural diversity, and 
focused on a single task. We were also unable to model facial 
features due to large amounts of missing data, thereby missing 
an important social cue. Additionally, this work should be 
expanded to include the content of what was said, in addition to 
speech rate. We are currently investigating these limitations by 
collecting a second dataset with quality facial expression 
tracking, from multiple universities, and across multiple 
collaborative tasks. We are also collecting and analyzing 
additional modalities, such as eye gaze, linguistic information, 
and peripheral physiology. 

5.4 Conclusion 
We modeled coordination and coregulation patterns during 
collaborative problem solving using a predictive approach where 
the behavior of one individual was predicted from the behavior 
of the other individuals in a triad. We were able to predict when 
a person will speak up to six seconds in the future and model 
accuracy was predictive of collaborative outcomes. The next step 
is to leverage the models to trigger interventions that 
dynamically support collaborative processes in virtual teams. 
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