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ABSTRACT

We model coordination and coregulation patterns in 33 triads
engaged in collaboratively solving a challenging computer
programming task for approximately 20 minutes. Our goal is to
prospectively model speech rate (words/sec) — an important
signal of turn taking and active participation — of one teammate
(A or B or C) from time lagged nonverbal signals (speech rate
and acoustic-prosodic features) of the other two (i.e., A+ B — C;
A +C — B; B+ C — A) and task-related context features. We
trained feed-forward neural networks (FFNNs) and long short-
term memory recurrent neural networks (LSTMs) using group-
level nested cross-validation. LSTMs outperformed FFNNs and a
chance baseline and could predict speech rate up to 6s into the
future. A multimodal combination of speech rate, acoustic-
prosodic, and task context features outperformed unimodal and
bimodal signals. The extent to which the models could predict an
that
individual’s scores on a subsequent posttest, suggesting a link
between coordination/coregulation and collaborative learning
outcomes. We discuss applications of the models for real-time
systems that monitor the collaborative process and intervene to
promote positive collaborative outcomes.

individual’s speech rate was positively related to
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1 INTRODUCTION

Are two heads really better than one? What about three, or four,
or five? Research in small group collaborative problem solving
(CPS) over several decades suggests that more often than not,
collaboration results in “process loss” where groups fail to
achieve their full potential. This is in stark contrast to “process
gain” where group interaction yields performance that exceeds
the joint performance of the individual group members [36-38].

As Steiner [56] summarizes: actual productivity = potential
productivity — productivity loss due to faulty process. Research has
focused on identifying conditions where the elusive process gain
can be achieved. Some of the critical variables include group size
[37, 38], problem structure [36, 53], cohesiveness of group
members in ability and motivation [15, 24, 34], and task
constraints [8, 59]. Research has sought causes for process losses,
which can be subdivided into: (1) coordination losses, such as
production blocking during collective ideation [46], the
common-knowledge effect [21] (overemphasis on shared vs.
individual knowledge), group-think [28] (individual members
converge to the dominant view), and (2) motivation losses, such
as social-loafing [29,30], evaluation apprehension [10] and free-
rider effects [32].

Our present focus in on coordination processes in order to
better understand and eventually prevent coordination losses.
We
fundamentally about interactions among people who have

emphasize coordination because collaboration is
thoughts, feelings, and behaviors, and who react to and influence
each other’s thoughts, feelings, and behaviors. Simply put,
collaboration is about interactions among living and breathing
people, not cold disembodied brains. It involves a host of socio-
such as turn taking,
grounding, perspective  taking, coregulation,
behavioral mirroring, and joint action [5, 6, 12, 48, 49, 66]. We
hypothesize that collaborative outcomes would be productively
that these
collaborative processes in real-time, triggering just-in-time

cognitive processes, conversational

emotional

influenced by intelligent systems monitor

interventions to improve the collaborative process. This is the
long-term goal of our work. Here, we focus on real-time
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modeling of underlying collaborative processes, a critical step
along the way.

We situate our work within a dynamical systems framework
that views human interaction as a continuous and mutually
adaptive process, structured by self-organization into functional
synergies [7,18,22,23,44,51]. A synergy occurs when interacting
components can function as a single unit. It arises as a system’s
componential degrees of freedom become loosely coupled and
mutually constrain each other, resulting in a dramatic and
temporary reduction in the shared set of possibilities, allowing
for more stable and coordinated forms of behavior [50,54].
Accordingly, for effective collaboration, individuals’ behavioral
patterns, including those that map onto cognitive and affective
states, are expected to come together as dynamic couplings of
coordination and coregulation. These couplings are not simply
aggregated behaviors, but are emergent patterns that reflect the
activity of the system as a whole. Specifically, coordination
refers to (near) concurrent bidirectional linkages of behavior
(e.g., facial expressions, eye gaze) amongst interacting partners;
coregulation refers to coupling at greater temporal lags and
captures asymmetrical and symmetrical leader/follower patterns.
Together, the processes sustain long-term temporal
dependencies across the entire interaction, giving rise to patterns
of global stability and complexity. These are also expressed
across multiple interacting channels and index and maintain
higher-order components of successful collaboration, including
effective communication, negotiation/coordination, and
maintaining team function [57].

We propose predictive modeling of coordination and co-
regulation in triads remotely engage in a collaborative problem
solving task. We focus on modeling speech rate which indexes
active participation and turn taking [31], which are critical for
successful collaboration [12,31]. More specifically, coordinated
speech rate, as well as speech and intensity, have been associated
with of
conversations [41,44]. The structure of how people regulate

features agreeableness and  well-functioning
turn-taking also provides insights into communication and
active participation via the maintenance of conversational flow,
efficient informational exchange, experiential quality [22,51],
and indexing engagement in the timing of turns to anticipate

turn completions [7].

1.1 Related Work

Researchers have traditionally investigated coordination in
terms of synchrony, where two or more people in a shared
situation, task, or conversation coordinate behaviors in order to
maintain common ground, establish social bonding, and improve
quality of social interactions [9,23]. Some methods to analyze
synchrony include time lagged correlations [9,14], recurrence
analysis [9,14], and coupled oscillatory models [35] (see [9] for a
review). More recent methods, such as complexity matching [1],
go beyond occurrences of the observed behavior and examine
power law distributions of behaviors. For example, Abney et. al.
[1] found evidence for complexity matching in acoustic onsets
during affiliative dyadic, but not in argumentative conversations.
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Taking a multimodal approach, Duran and Fusaroli [14]
examined coordination of head movements and speech rate
They hypothesized that
deceivers maintain believability through heightened attention

during deceptive conversations.
with their conversational partner, achieved by maintaining
synchrony. They used window lagged cross correlations to
analyze synchrony in head movements at short time scales (less
than 1000 milliseconds) and cross recurrence quantification
analysis to understand global patterns in synchrony of speech
rate. They found that deceivers synchronized with their
conversational partners’ head movements at short lags (between
0 and 1000 milliseconds), concluding that deceivers closely
follow the lead of their partner and anticipate cues. Additionally,
when deceiving a conversational partner, speech rate was
adapted to the partner as the conversation changed.

In contrast to the aforementioned analytic approaches, which
compute indices of synchrony from dyadic data, predictive
model-based approaches emphasize the use of behaviors of one
or more conversational participants to predict the behaviors of a
different target partner. We could only find two such studies.
First, Feng et. al. [18] used variational autoencoders and deep
neural networks, trained on data collected during Skype
conversations, to generate facial expressions of an avatar from a
human interlocutor’s facial cues. Second, Grafsgaard et. al. [23]
used long-short term memory networks to model facial
expressions and motion features of heterosexual romantic
couples using the behaviors of the male to predict the behaviors
of the female and vice versa. They found that their model-based
measure of synchrony revealed unique insights compared to a
naive analytic approach of simply correlating the partners’ raw
time series. We adopt a similar approach here.

1.2 Contribution and Novelty

The key idea of our work is that because coordination and
coregulation are fundamentally about dependencies across
participants, predicting behaviors of one partner from the
behaviors of the others is a more direct test of such dependencies
than simply quantifying them as in the analytic approach.
Accordingly, in this work, we adopt a predictive approach to
modeling speech rate of one conversational partner from
behaviors of his/her teammates. Specifically, we use data from
two teammates to predict speech rate of the third team member
(ie, A+B —> C A+ C — B; B+ C — A) Importantly, the
models are trained using data from different teams to generate
predictions for the target team. We hypothesize that the fit
between the model predictions and the original time series (Apreq
VS. Aorigs Bpred V8- Borigs Cpred VS. Corig) reflect global patterns of
coordination and coregulation (because the models are trained
on different teams). In contrast, the analytic approach would
simply compute measures of synchrony from the original time
series, thereby reflecting more local patterns.

To our knowledge, this is the first attempt to predict speech
rate of an individual solely from multimodal behavioral inputs of
his/her conversational partners. There is related work on
multimodal end-of-turn and next speaker prediction [11,33], but
this research does not use behavioral inputs from the other
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people in the conversation, which is a critical component of our
approach.

Additionally, compared to other related work [18,23], our
approach is multimodal, focuses on speech rather than facial
expressions, and considers coregulation by lagging input time
series to make future predictions compared to mere coordination
(synchrony at lag 0). We also consider triadic interactions
because they provide a rich interaction context as synchrony
occurs between dyads within the triad, or all three team
members.

2 DATA COLLECTION

2.1 Participants

Participants were 111 (63.1% female, average age = 19.4 years)

undergraduate  students from a medium-sized private
Midwestern university, who were compensated with course
credit. Participants were 74.8% Caucasian, 9.9% Hispanic/Latino,
8.1% Asian, 0.9% Black, 0.9% American Indian/Native Alaskan,
2.7% other, and 2.7% did not report ethnicity. Participants were
assigned to 37 teams of three based on scheduling constraints.
Nineteen participants from ten teams (27%) indicated they knew
at least one person from their team prior to participation. The
only inclusion criterion was no previous experience with
computer programming; none of the participants were excluded
on this basis.

Four teams were removed because at least one participant in
the team was missing an audio file. One team was missing a
screen recording due to equipment failure, but was still used (see

Section 3.1). Thus, we analyzed 33 teams.

2.2 Study Protocol

Participants were randomly assigned to one of three computer-
equipped rooms in a lab. Each computer had a webcam with a
microphone so participants could see and hear each other,
facilitated though Zoom’s video-conferencing and screen sharing
capabilities(https://zoom.us). Participant audio was recorded on
separate streams. The screen content was also recorded using
Zoom’s built-in features (see Figure 1).

The task involved completing an introductory and a
collaborative problem solving activity using code.org’s (an
online resource that teaches basic computer programming
principles) Minecraft-themed Hour of Code [60] . Hour of Code
uses Blockly [20], a visual programming language that
represents lines of code (such as loops) as syntactically-correct
interlocking blocks. One participant (designated participant A)
was randomly assigned to interact with the environment and
shared their screen content with the other participants
(designated B and C). This was done due to technical constraints
with the code.org web-based interface which was not inherently
designed to support collaborations.

In an introductory task, teams completed five lessons and
watched three accompanying videos that taught basic
programming principles along with instructions on how to use
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the

collaborate as a team to complete this task within 20 minutes.

coding environment. Participants were instructed to

After completing the introductory task, the screen share was
disabled, and participants individually rated their level of
satisfaction with their team’s: (1) “performance at completing the
lessons;” (2) how well their team “communicated with each
other;” (3) how well their team “cooperated to complete the
lessons;” and (4) how “agreeable my teammates are;” Participants
used a very dissatisfied (1) to very satisfied (6) scale for these
ratings.

The main CPS activity involved a challenging programming
task where teams had 20 minutes to build a 4x4 brick building
with the following constraints: use at least one if statement; use
at least one repeat loop; build at least three bricks over water;
and use 15 blocks of code or less. The same team member who
controlled the interaction with the environment during the
introductory phase also controlled the interaction during the

coding challenge.
After completing the challenging programming task,
participants individually completed the same subjective

assessments of their team’s performance, communication,
cooperation, and agreeableness. Finally, participants individually
completed a ten-item researcher-created multiple-choice test to
assess their conceptual knowledge of coding concepts (such as
repeat loops and if statements).
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Figure 1: Minecraft-themed Hour of Code. Participants
could (A) visualize the results of running their code, (B)
choose code blocks from a code bank, (C) generate
solutions to the task, and (D) see their team’s faces.

3 MODEL DESIGN AND TRAINING

We model speech rate of each participant using behavioral
features (speech rate, acoustic-prosodic features) of the other
team members, as well as team-level task context features. We
did not include facial features due to considerable missing data
when the face of one of the teammates could not be tracked in
the video stream. We also focus on the challenging programming
task because the main purpose of the introductory activity was
to familiarize participants with the environment and their
teammates.

3.1 Feature Processing

We used the IBM Watson Speech to Text service [61] to generate
transcriptions of individual audio recordings, from which we
computed speech rate (words per second) for each second of the
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collaboration. If a word spanned multiple seconds, we assigned it
to the second in which it started.

We used the openSMILE toolkit [16] to extract the following
acoustic-prosodic  features over 10 millisecond windows:
fundamental frequency, loudness, center frequency of the first
through third formants, first through third formant amplitudes,
harmonics to noise ratio, jitter, and shimmer.

We used the screen recording to extract high-level task
context features as a measure of the teams’ actions within the
environment (log files were not available). We focused on two
areas of interest (AOI) — the code runtime environment (A in
Figure 1) and the code bank and workspace (B and C in Figure 1)
— and used a validated motion estimation algorithm [58] to
compute the amount of change in each area. Change in the code
bank and workspace AOI indicated how many edits the team
made to their solution, whereas the code runtime AOI indicated
attempts to test their code.

We computed one binary validity feature for whether speech
rate and acoustic-prosodic features could be calculated and
another for whether task context features could be computed.
These features were only invalid when the relevant data file was
missing or incomplete (see Section 2.1). In all, there were 16
features per participant: one speech rate feature, 11 acoustic-
prosodic features, two task context features, and two validity
features.

3.2 Data Aggregation

Our target outcome (words per second) was computed at a 1s
granularity, which we deemed appropriate for these interactions.
Because acoustic-prosodic and task context features were
computed at different rates (100 Hz and 25 frames per second
respectively), we averaged each of these features across non-
overlapping 1s windows. We also considered a coarser 3s
granularity by aggregating the 1s time series across 3s non-
overlapping windows for speech rate, acoustic-prosodic, and
task context features (see Figure 2). For the binary validity
features, we computed the sum over the 3s window and
transformed sums greater than zero to a binary validity of one.
The 1s and 3s aggregations yielded time series of approximately
1200 and 400 feature vectors (per participant), respectively,
across the 20-minute CPS phase. Time series length varied
slightly for teams who completed the task before the allotted 20
minutes.

|1 ,2,3, 4,5,6, 7,8,9, 10,11,12, 13,14,15, ... | Original time series in
[ u T u It ﬂ T M ] 1 ﬁ ] seconds
’ Agg | ‘ Agg ‘ ‘ Agg ‘ ’ Agg ‘ ’ Agg ‘ O O O Aggregate by 3, taking

mean of each 3s period

’ X1 X2 X3 X4 X5 l New Sequence

Figure 2: Aggregation from a 1s to 3s time series.

3.3 Neural Network Modeling

We built neural network models to predict the speech rate of one
teammate from behavioral signals (speech rate and acoustic-
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prosodic) of the other two (i.e., A + B — C) along with team-level
task context features. We compared two neural network model
types using Keras with TensorFlow [62]. The first was a feed-
forward neural network (FFNN) [63] with a single fully connected
dense layer. The second was a long-short term memory network
(LSTM) which is a special type of recurrent neural network that
can learn long term dependencies [26] by selectively retaining and
forgetting information across input sequences. Both network types
had a single hidden layer. We chose to use FFNNs and LSTMs
because they have been applied to similar data and modalities
[17,45,47]. We expected LSTMs to outperform FFNNs on data with
time dependencies such as turn taking in speech.

The LSTM was trained on sequences of inputs from the 1s and
3s aggregations. The general form for an input sequence of length
m would be X{_ni1, Xpomszs - X to predict V%, at lag L
where a represents different aggregation windows (a=1s or a=3s)
and k is the sequence index. For example, an m of 2, L of 1, and a
of 1s indicates predicting the next time point from the previous
two time points in a 1s aggregated time series. Figure 3 shows
example input sequences of length m=3 and predicted outputs at
various lags. The FFNN takes only a single value X as input to
predict the output at ;% ;. For example, using input X5 to predict
output Y4'at lag L=1.

Note that we refer to lags instead of leads because we envision
the input time series lagging behind the output time series.
Further, for a given lag, the extent to which we are predicting into
the future pertains to the aggregation window length a. For a fixed
lag of 2, an a of 1s would indicate predicting 2s in the future, but
an a of 3s would involve predicting ahead by 6s.

Input sequence Predicted output at L

length m =3 L=0|L=1 |[L=2 |L=3
X, | X5 X | Ya | Y Y, Y,
X5 | Xe | Xs | Ys | Y, Y, Y,
X4 Xs Xs Y6 Yy Ys Yo

Figure 3: Example input and output sequences

We used team-level 10-fold cross validation (using scikit-learn
[64]) to train and test our models. Within each fold, we further
split the data into 60% training, 30% validation, and 10% testing.

All features were z-scored and then normalized to a [-3, 3]
range per fold. We used the training data to compute the statistics
needed for the z-scoring and normalization (mean, standard
deviation, max, min), which were subsequently applied to the
validation and testing sets. Preliminary results indicated that z-
scoring with [-3, 3] normalization slightly outperformed [-1, 1]
normalization, greatly outperformed [0, 1] normalization, and was
equivalent to z-scoring without normalization. We selected z-
scoring with [-3, 3] normalization to address missing values,
which were replaced with a value of 5, chosen to be outside the
normalized range. This only occurred for the task context features
of one team that was missing a screen recording (Section 2.1). This
binary mask to indicate if data was missing for each modality was
shown to be useful for training LSTMs with missing data [42].
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Both networks utilized a single hidden layer with 32 units and
leaky rectified linear unit activation function, which has been
shown to improve performance and reduce training time [43]. We
chose 32 units after comparing validation loss across 8, 16, 32, and
64 units revealed that 32 units was adequate. Similarly, we
compared networks with 1, 2, and 3 hidden layers and selected
models with a single hidden layer as they achieved equitable
performance compared to deeper networks. Thus, the final models
had a single layer of 32 hidden units. Further, the LSTM models
utilized a sequence length of 3s after experimentation.

Neural networks use gradient descent and back propagation to
update the weights during each pass of the training (referred to as
a training epoch). At each epoch, a loss function (mean squared
error) was computed and the weights were updated. We used an
adaptive learning rate algorithm, NADAM [13], to tune the
learning rate. We fixed the number of training epochs to 50 since
the models converged within 50 epochs.

We experimented with batch normalization [27] , [2 weight
regularization [65], and dropout [55] to prevent overfitting.
Dropout had no discernible impact when combined with the other
two methods. Additionally, the default Keras batchnorm
parameters and kernel regularization were adequate for our data.

4 RESULTS

Our key outcome measure is prediction accuracy, computed as
the correlation coefficient between the observed and predicted
speech rate time series. We used the nonparametric Spearman
rank-order correlation as opposed to the parametric Pearson
product moment correlation because the time series are zero-
inflated (i.e. when the target participant does not speak), thereby
violating normality assumptions. To ensure fair comparisons
across temporal granularity (i.e., 1s and 3s level of aggregation),
we averaged correlations across lags for the 1s models to align
with the lags of the 3s models. For example, we averaged the first,
second, and third seconds of the 1s aggregated time series and
compared it to the first data point in the 3s aggregated time series.
Similarly, we averaged the fourth, fifth, and sixth seconds of the 1s
aggregated time series and compared it to the second data point in
the 3s aggregated time series. No averaging was done for lag 0.

provides a histogram of Spearman correlations for all
observations, suggesting a positive skew but no notable outliers.

Due to the repeated (multiple observations per team) and
nested structure of the data (participants nested within teams), we
used linear mixed effects regressions to model the data [4]. We
included the number of voiced segments as a fixed effects
covariate in all models because it was weakly correlated with
prediction accuracy (Pearson rs = .133 and .176 for 1s and 3s
aggregation, respectively). Team was included as a random
intercept in all models.

We used the 1me4 package in R for the linear mixed effects
models [4], the car package (Companion to Applied Regression)
for significance testing of main effects and interactions [19], and
the emmeans (estimated marginal means) package [39] for
pairwise comparisons and to probe interactions [40].
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Figure 4: Histogram of correlations across all observations

Selecting a model: Network type and aggregation level.
Our first step was to choose a network type and level of
aggregation. Accordingly, we regressed prediction accuracy
(Spearman’s rho) on the three-way interaction between network
type (FFNN vs. LSTM) x aggregation level (1s vs. 3s) X lag (0s, 3s,
6s, 9s). Modality (speech rate, speech rate + task context, speech
rate + task context + acoustic-prosodic) and team member (A, B, or
C) were included as categorical fixed effects; these are examined in
more detail once a model is selected. The three way interaction
was not statistically significant (p = .521), suggesting similar
results across lags. However, there was a significant interaction
between aggregation level and network type (; ;(2(1) =4.39, p=.036,
Figure 5). Pairwise comparisons, averaging across lag, modality,
and team member, indicated that there was no significant
difference (p = .619) between network types for the 3s aggregation,
but LSTMs outperformed FFNNs (p < .001) for the 1s aggregation.
Overall, prediction accuracy was also higher (p < .001) for the 3s
compared to the 1s aggregation level. We focused on 3s
aggregation and LSTMs for all subsequent analyses as they have a
slight advantage over FFNNs. We also expanded the model to 12s
and 15s lags to investigate how far out into the future we could
predict speech rate.

0.14 -
Aggregation

o 0.12- ft
£ —&— Istm
[ =
©
E o0.10-
©
o
Q
[D]

0.08 -

3s 1s
Network Type

Figure 5: Interaction between network and aggregation
level

Effects of modality and team member.
prediction accuracy on the two-way interaction between

We regressed

modality x lag. We did not consider the three-way modality x



Session 1: Multiparty Interaction

lag x team member interaction as this is not of theoretical
interest. Instead, team member was included as a fixed main
effect, which was statistically significant (;(2(2) =49.7, p < .001).
Pairwise comparisons with a Tukey correction for multiple
comparisons indicated that prediction accuracies for the two
team members who did not control the interface (i.e., B and C)
were significantly higher (p < .001) than the team member (i.e.,
A) who controlled the interface. Further, fit for team member C
was also higher (p < .001) than team member B (i.e., C > B > A).
The difference in prediction accuracy between participants B and
C compared to participant A might be attributable to more
speech production by participant A (;(Z(Z) = 38.0, p < .001)
compared to B and C (p’s < ,001). However, it would not explain
the C > B difference because these participants produced
equivalent speech (p = .938).

The modality x lag interaction was also significant, ((10) =
321, p < .001, see Figure 6). Pairwise comparisons (with a Tukey
adjustment) across the three modalities for each lag indicated
that adding information on the task context to speech rate
increased prediction accuracy for lags 0s, 3s, and 6s (p’s < .001),
beyond which there were no statistical differences (p’s > .714).
Similarly, adding acoustic-prosodic features to speech rate and
task context only improved fit for lag 0s (p < .01); there were no
detectable differences for the other lags (p’s > .503). Modality
had no affect beyond lag 9s, upon which the correlations were
basically zero.

04-
Modality
o 03- SR
£
c
—e—
5 02- SR+TC
o SR +TC + AP
o
W 0.1-
0.0-
1 1 1 1 1 1
0 3 6 9 12 15
Lag

SR: Speech Rate; TC: Task Context; AP: Acoustic-Prosadic

Figure 6: Interaction between modality and lag (in
seconds)

Because the overall best results were obtained for the LSTM
model with speech rate, task context, and acoustic-prosodic
features, subsequent analyses focus on this model. Recall that this
model aggregates data in 3s intervals and the LSTMs were trained
with a sequence length of 3 resulting in 9s of history. We also
experimented with sequence lengths of five (i.e. 15s of history) and
seven (i.e. 21s of history), but the results were virtually identical (p
= .619 for main effect of sequence length; p= .924 for sequence
length x lag interaction). Thus, we proceeded with a sequence
length of 3 (9s of history).

Comparison with shuffled baseline. We trained surrogate
models by shuffling the output time series per team while
preserving the temporal integrity of the input time series. For
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example, we would shuffle participant C’s time series in the A +B
— C model to produce Cgyyee. We trained an LSTM on A + B—
Cshuffle and compare its prediction accuracy to the prediction
accuracy obtained with the original non-shuffled time series. This
form of shuffling provides an important baseline because it
preserves the central tendency of the speech rate distribution (i.e.,
mean and variance) while breaking temporal dependencies.

We regressed prediction accuracy (Spearman rho) on a two-
way interaction between shuffle (yes vs. no) x lag (with team
member as a fixed main effect). There was a statistically significant
interaction, ;52(5) =396, p < .001. Pairwise comparisons indicated
that the non-shuffled model significantly (p < .001) outperformed
the shuffled model for lags 0s, 3s, and 6s but not for lags 9s, 12s,
and 15s, see Figure 7).

0.4-
Shuffle
0.3- Yes
o
kS
c —— No
E 0.2-
©
o
o
» 01-
y s 4
00- ; 1
0 3 6 9 12 15

Lag

Figure 7: Interaction between shuffle and lag (in seconds).

We also note that fit for the shuffled models
approximately zero past lag 0s, whereas the non-shuffled models

was

maintained a nonzero correlation for lags 0s (rho = .380), 3s (rho =
.162), and 6s (rho = .062), beyond which they were basically zero
(ie., .021, .023, and .012 for lags 9s, 12s, and 15s, respectively).
Thus, the models could predict speech rate up to 6s in the future.

Comparison with self-models. The current models utilize
data from a target participant’s teammates along with information
from the task context to predict his/her own speech rate. How do
these peer models (e.g., A + B + task context — C) compare to self-
models (e.g., C + task context — C)? We addressed this question
by training LSTM models to predict the target’s future speech rate
from lagged versions of his or her own speech rate, acoustic-
prosodic features, and task context features (e.g., Clagged— Ctuture)-
Prediction accuracy of these self-models can be considered to be
an upper bound on what can be achieved with our approach.

We used the same statistical model to analyze the data, with a
focus on the input source (self vs. peer) x lag interaction term. We
did not include lag 0s in the analysis as it essentially equates to
training and testing on the same data for the self-models. The
results (see Figure 8) indicate a significant interaction, 7(@) =84, p
< .001. As expected, the self-model outperformed (p < .001) the
peer model, and its main advantage emerged for the earlier lags,
rapidly decreasing beyond lag 12s.

Prediction accuracies for the self and peer models were
moderately correlated (r’s between .355 and .520) for lags 0s to 9s
and more weakly correlated (r’s .197 and .198) for lags 12s and 15s.
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Thus, the models appear to be tapping related, but not redundant

information.
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Figure 8: Interaction between input source and lag (in secs)

Predicting individual outcomes. We examined whether
the accuracy of our speech rate predictions were related to
collaborative problem solving outcomes. Because the models
generate participant-level predictions of speech rate of each
team member, we focused on each participant’s objective
posttest score, and their subjective assessments of their team’s
performance, communication, cooperation, and agreeableness.
We averaged each participant’s communication, cooperation,
and agreeableness scores since they were strongly correlated
(Cronbach’s alpha = .89). We separately regressed each of these
outcome variables on prediction accuracy with team member (A,
B, and C) and number of voiced segments as fixed effects
covariates. Team was an intercept-only random effect. We
focused on the lag 0 model as these yielded the best prediction
accuracy, and thus is most reliable.

The results indicated no significant effect of prediction
accuracy on subjective perceptions of performance (p = .617) or
the average of communication, cooperation, and agreeableness (p
= .460). However, prediction accuracy significantly predicted
posttest scores (B = 1.40, SE = .704, ;(Z(l) = 393, p = .047).
Participants whose speech rate could be more accurately
predicted from their peers’ data had higher posttest scores
(Figure 9). The same effect was not observed (p = .181) for the
self-model.
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Figure 9: Correlations between prediction accuracy and
posttest score
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Example output. Figure 10 provides an example of the
predicted and actual time series for one participant for which the
model was particularly accurate (Spearman rho = .700).
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(B) Density plots of actual vs. predicted distributions
Figure 10: Sample results for one team member

5 DISCUSSION

We adopted a predictive approach to modeling coordination and

coregulation  during  collaborative  problem  solving,
hypothesizing that the predictive models capture global patterns
of collaboration compared to existing analytic approaches.
Accordingly, we used speech rate and acoustic-prosodic features
of two teammates and information on task context to model the
speech rate of the third teammate, training the models on data

from unrelated teams.

5.1 Main Findings

We found that a combination of speech rate, acoustic-prosodic
features, and task context features outperformed unimodal or
bimodal models. The biggest boost was obtained by the addition
of task context features, which encode when a team makes
changes to their solution and runs it. We hypothesize that these
features capture knowledge-building discourse [25], which occur
when teams collectively generate, communicate, and iteratively
refine ideas [25], a pattern somewhat enforced by a combination
of concrete goals of the coding task and instant feedback (i.e.
teams run their code). The addition of acoustic-prosodic features
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increased prediction accuracy at lag 0s, presumably because they
communicate nonverbal cues that the conversational floor is
open.

We could successfully predict speech rate up to 6s into the
future, with the best result occurring at lag 0s, presumably due
to the model encoding turn-taking dynamics. In conversation,
people usually do not speak at the same time [14], making
information about speaking patterns closer to the target a more
accurate description of the unfolding conversation. That said, a
lack of speech of two partners does not imply that the third will
speak because there are periods of silence, especially when a
solution is being tested or during periods of ideation.

As expected, models with inputs of a person’s own speech
rate (self-models) outperformed those with only inputs of that
person’s teammates (peer models). That said, the results for the
self-models were far from perfect with correlations slightly
exceeding 0.3 at lag 3s. This provides an important upper bound
of what might be achievable with these models, data, and
features due to the multiple influences on whether a person will
speak and at what rate. This is reflected by the fact that the
prediction accuracy was lower for the participant who controlled
the interface, ostensibly because there are additional degrees of
freedom for these participants. Further, recall that the goal is not
to merely predict speech rate but to model team collaboration
dynamics. The fact that we could achieve correlations as high as
0.380 suggest that the model is capturing interesting aspects of
the dynamics of the unfolding collaboration.

The accuracy of the model’s predictions of speech rate
predicted how much an individual would learn as a result of the
collaboration. This result is possibly related to the establishment
of common ground and success in coordinating action with the
group, which are related to successful collaborative outcomes
[3,31]. Further, this result provides external evidence that the
models are picking up collaborative patterns among team
members because more cohesive teams should theoretically be
more predictable.

It is particularly notable that our models were able to predict
speech rate at all because virtual collaborations lack the richness
of social cues present in face-to-face interaction [2,52], which
can lead to impaired ability to coordinate action, read social cues,
and may also reduce engagement [52]. It is possible that teams
that the challenges
collaboration established more

associated with virtual
coupled regulatory
behaviors, which led to more accurate modeling and better
learning outcomes.

There were also differences among team roles, as we were
more accurate at predicting speech rate of team members who
were not controlling the interaction (i.e., B and C) compared to
those who were (i.e., A). This suggests inherent differences in
how coordination and coregulation is manifested, depending on
the role a person takes in a collaboration. What is surprising,
however, is that the models were also more accurate at
predicting the speech rate of participant C compared to B despite
both having the same role. This is a puzzling finding worthy of
replication.

overcame
and
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5.2 Applications

Our method of modeling speech rate of an individual in a virtual
collaborative context is fully automated, generalizable across
teams (due to our cross-validation method), and is, to some
extent, applicable to new tasks (due to our method of generating
task context features without log files). Thus, it can be used in a
real-time system that supports productive virtual collaboration
for triads. In particular, our multimodal models were able to
prospectively predict speech rate, up to six seconds into the
future, allowing for regulation of behavior before it occurs. For
example, team members who might interrupt other team
members could be prompted not to do so prior to exhibiting that
behavior. The model predictions of future verbal contributions
could be used to determine when to encourage participation
from team members that might not speak as often as others.

Finally, prediction accuracy was positively related to learning
outcomes, leading us to conclude that the models are to some
extent indexing positive team dynamics. Therefore, a real-time
system could use prediction accuracy (comparing predicted
speech rate to actual speech rate over the past few seconds) to
determine when and how to intervene. Teams with a low
prediction accuracy might be struggling to effectively coordinate
and coregulate and could receive an intervention to help them
collaborate effectively. Teams receiving high prediction accuracy
should be left alone but should be monitored for notable
decreases, which would be wused to trigger appropriate
interventions.

5.3 Limitations and Future Work

Our work has limitations that should be addressed in the future.
For one, the dataset is small and was collected at a single
university with little ethnic, age, or cultural diversity, and
focused on a single task. We were also unable to model facial
features due to large amounts of missing data, thereby missing
an important social cue. Additionally, this work should be
expanded to include the content of what was said, in addition to
speech rate. We are currently investigating these limitations by
collecting a second dataset with quality facial expression
tracking, from multiple universities, and across multiple
collaborative tasks. We are also collecting and analyzing
additional modalities, such as eye gaze, linguistic information,
and peripheral physiology.

5.4 Conclusion

We modeled coordination and coregulation patterns during
collaborative problem solving using a predictive approach where
the behavior of one individual was predicted from the behavior
of the other individuals in a triad. We were able to predict when
a person will speak up to six seconds in the future and model
accuracy was predictive of collaborative outcomes. The next step
is to leverage the models to trigger interventions that
dynamically support collaborative processes in virtual teams.
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