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This paper introduces BioScript, a domain-specific language (DSL) for programmable biochemistry which
executes on emerging microfluidic platforms. The goal of this research is to provide a simple, intuitive, and
type-safe DSL that is accessible to life science practitioners. The novel feature of the language is its syntax,
which aims to optimize human readability; the technical contributions of the paper include the BioScript type
system and relevant portions of its compiler. The type system ensures that certain types of errors, specific to
biochemistry, do not occur, including the interaction of chemicals that may be unsafe. The compiler includes
novel optimizations that place biochemical operations to execute concurrently on a spatial 2D array platform
on the granularity of a control flow graph, as opposed to individual basic blocks. Results are obtained using
both a cycle-accurate microfluidic simulator and a software interface to a real-world platform.
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1 INTRODUCTION

The last two decades have witnessed the emergence of software-programmable laboratory-on-a-chip
(LoC) technology, enabled by technological advances in microfabrication coupled with scientific
understanding of microfluidics, the fundamental science of fluid behavior at the micro- to nano-
liter scale. The net result of these collective advancements is that many experimental laboratory
procedures have been miniaturized, accelerated, and automated, similar in principle to how the
world’s earliest computers automated tedious mathematical calculations that were previously
performed by hand. Although the vast majority of microfluidic devices are effectively Application
Specific Integrated Circuits (ASICs), a variety of programmable LoCs have been demonstrated
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[Amin et al. 2013, 2007; Fidalgo and Maerkl 2011; Jensen et al. 2010; Pollack et al. 2002; Urbanski
et al. 2006].

With a handful of exceptions, research on programming languages and compiler design for
programmable LoCs has lagged behind their silicon counterparts. To address this need, this paper
presents a domain-specific programming language, type system, and compiler for a specific class of
programmable LoCs that manipulate discrete droplets of liquid on a two-dimensional grid [Alistar
and Gaudenz 2017; Gong and Kim 2008; Hadwen et al. 2012; Moon et al. 2002; Noh et al. 2012; Pollack
et al. 2002]. The basic principles of the language, type system, and compiler readily generalize to
programmable LoCs in general, realized across a wide variety of microfluidic technologies.

The presented language, BioScript, offers a user-friendly syntax that reads like a cookbook recipe.
BioScript features a combination of fluidic/chemical variables and operations that can be interleaved
seamlessly with computation, if desired. Its intended user base is not traditional software developers,
but life science practitioners, who are likely to balk at a language that has a steep learning curve.

BioScript’s type system ensures that each fluid is never consumed more than once, and that
unsafe combinations of chemicals—those belonging to conflicting reactivity groups, as determined
by appropriately qualified government agencies—never interact on-chip; BioScript’s type system is
based on union types and was designed to ensure that type inference is decidable. This will set the
stage for future research on formal validation of biochemical programs.

The BioScript compiler exploits the parallelism provided by the target platform to execute as
many concurrent chemical operations as possible. Of particular importance, here, is a proper
formulation of the problem of microfluidic placement in the scope of a control flow graph, rather
than an individual basic block. The problem formulation presented here borrows ideas from graph
coloring register allocation as well as spatial/data flow compilation; placement problem instances
are solved using an evolutionary heuristic.

The BioScript language, type system, and compiler are evaluated using a set of benchmark appli-
cations obtained from scientific literature. We use a microfluidic simulator to assess performance
under ideal operating conditions, and also execute them on a real device, which is much smaller
and supports a subset of BioScript’s operational capabilities. This result establishes the feasibility of
high-level programming language and compiler design for programmable chemistry, and opens
up future avenues for research in type systems and formal verification techniques within this
non-traditional computing domain.

2 BACKGROUND & RELATED WORK
2.1 Digital Microfluidic Biochips (DMFBs).

This paper targets a specific class of programmable LoCs that manipulate discrete droplets of fluid
via electrostatic actuation. Fig. 1a illustrates the electrowetting principle [Lippmann 1875; Mugele
and Baret 2005]: applying an electrostatic potential to a droplet modifies the shape of the droplet
and its contact angle with the surface. As shown in Fig. 1b, droplet transport can be induced by
activating and deactivating a sequence of electrodes adjacent to the droplet [Pollack et al. 2002];
the ground electrode, on top of the array, improves the fidelity of droplet motion and reduces the
voltage required to induce droplet transport.

Fig. 2a depicts a programmable 2D electrowetting array, called a “Digital Microfluidic Biochip
(DMFB).” A DMFB can support five basic operations, shown in Fig. 2b: transport (move a droplet
from position (x, y) to (x’, y’)), split (create 2 droplets out of 1), merge/mix (combine 2 droplets
into 1, and, optionally, rotate them in a rectangular motion), and store (place a droplet at position
(x, y) for later u). A DMFB is reconfigurable, as these operations can be performed anywhere on
the array, and any given electrode can be used to perform different operations at different times.
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Fig. 1. The elecrowetting principle (a) enables droplet transport (b).
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(b) The DMFB ISA supports five basic operations:
transporting, merging, splitting, mixing and stor-
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Transporting

(a) Left: A DMFB is a planar array of electrodes
[Alistar and Gaudenz 2017; Gong and Kim 2008;
Hadwen et al. 2012; Moon et al. 2002; Noh et al.
2012; Pollack et al. 2002]. Right: Cross-sectional
view.

Fig. 2. A DMFB (a) and it’s reconfigurable instruction set (b).

Droplet I/O is performed using reservoirs on the perimeter of the chip, which are not depicted in
Fig. 2.

The DMFB ISA can be extended by integrating sensors [Alistar and Gaudenz 2017; Barsoukov
and Macdonald 2005; Bhattacharjee and Najjaran 2012; Cooreman et al. 2005; Gao et al. 2013;
J. Schertzer et al. 2012; Lederer et al. 2012; Li et al. 2014, 2015; Murran and Najjaran 2012; Ren
et al. 2004; Sadeghi et al. 2012; Shih et al. 2013, 2011; Suni 2008], optical detectors [Luan et al. 2008,
2012; Srinivasan et al. 2004; White Royal et al. 2013], heaters [Luo et al. 2015], or online video
monitoring capabilities [Basu 2013; Fobel et al. 2013; Hu et al. 2013; Li et al. 2017; Shin and Lee 2010;
Vo et al. 2017]. Sensors and actuators create a “cyber-physical” feedback loop between the host
PC controller and the DMFB. The ability to perform sensing, computation, and actuation based on
the results of the computation adds control flow to the instruction set of the DMFB. Prior work
has applied feedback-control for precise droplet positioning [Alistar and Gaudenz 2017; Basu 2013;
Bhattacharjee and Najjaran 2012; Fobel et al. 2013; Hu et al. 2013; Li et al. 2015, 2017; Murran and
Najjaran 2012; Shih et al. 2011; Vo et al. 2017] and online error detection and recovery [Alistar
and Pop 2015; Alistar et al. 2016; Hsieh et al. 2014; Ibrahim and Chakrabarty 2015a,b; Ibrahim et al.
2017; Jaress et al. 2015; Li et al. 2017; Luo et al. 2013a,b; Poddar et al. 2016; Zhao et al. 2010]; efforts
to leverage these capabilities to provide control flow constructs at the language syntax level have
been far more limited [Curtis and Brisk 2015; Curtis et al. 2018; Grissom et al. 2014].

2.2 DMFB Compilation

Compilation targeting DMFBs without control flow is mature. The input is effectively a fluidic
variation of a traditional data dependence graph, where vertices represent fluidic operations and
edges represent “fluidic dependencies”, i.e., an edge (u;, u;) indicates that operation u; produces a
droplet d; ; that is used (consumed) by operation u;. As shown in Fig. 3, a compiler for a fluidic data
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Fig. 3. A DMFB compiler for biochemical programs without control flow.

dependence graph must solve three interdependent NP-complete problems: operation scheduling
[Ding et al. 2001; Grissom and Brisk 2012; Liu et al. 2013; O’Neal et al. 2012; Ricketts et al. 2006;
Su and Chakrabarty 2008], reconfigurable module placement [Chen et al. 2013; Grissom and Brisk
2014; Liao and Hu 2011; Maftei et al. 2010, 2013; Su and Chakrabarty 2006; Xu and Chakrabarty
2008; Xu et al. 2008; Yuh et al. 2007], and droplet routing [Bohringer 2006; Cho and Pan 2008; Huang
and Ho 2009; Keszocze et al. 2015, 2014; Roy et al. 2010, 2012; Su et al. 2006; Yuh et al. 2008].

The scheduler must determine the time steps at which each biochemical operation occurs, while
satisfying droplet dependency constraints and physical resource constraints of the device. The
placer determines the location on the 2D electrode array where each operation is performed
as the reaction progresses over time. The router ensures that droplets are transported from/to
their start/stop positions (as determined by the placer) at appropriate times (as determined by the
scheduler), while ensuring that droplets do not inadvertently collide with one another or interrupt
any other ongoing operations on the chip during transport. If needed, the droplet router may
introduce wash droplets to remove residue left by “functional” droplets that travel over the surface
of the chip [Huang et al. 2010; Yao et al. 2016; Zhao and Chakrabarty 2012].

Compiling a Control Flow Graph (CFG) onto a DMFB is an active area of research; however, the
two techniques proposed to date still compile basic blocks individually, and therefore lack a global
scope. The first is to dynamically interpret the CFG by just-in-time (JIT) compiling each basic block
on-the-fly as the program executes [Grissom et al. 2014]: as each basic block executes, the runtime
performs computation on sensory data acquired from the device, which resolves conditions and
determines the next basic block to JIT-compile.

The alternative is to compile the CFG statically. To date, the only technique which has been
proposed compiles each basic block in isolation, using any of the scheduling, placement, and
routing algorithms listed above[Curtis et al. 2018]; however, the approach to placement taken by
that compiler introduces a number of otherwise unnecessary droplet transport operations, which
the placer introduced in this paper effectively eliminates. We provide a detailed discussion of the
key differences here.

Similar in principle to graph coloring register allocation [Briggs et al. 1994; Chaitin 1982; Chaitin
et al. 1981; George and Appel 1996] two placed operations or fluidic variables “interfere” if their life-
times overlap, and interfering operations or variables must be placed at non-overlapping positions
on the spatial 2D array to prevent inadvertent mixing and cross-contamination of fluids. Operations
are defined atomically within basic blocks (i.e., an operation such as “mix” cannot start in one
basic block and finish in another); further, the compiler introduced by [Curtis et al. 2018] splits all
fluidic variable live ranges at basic block boundaries, which serves to localize all interferences to
operations and variables whose lifetimes start and end within the same basic block. This ensures
that fully correct CFG compilation can be achieved by compiling each basic block in isolation and
inserting additional droplet transport operations at CFG boundaries to ensure that all droplets have
the same starting positions along all possible paths leading into all basic blocks. As noted earlier,
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this yields a correct executable "program,’ but does nothing to eliminate or reduce the number of
droplet transport operations that the compiler inserts.

For example, consider a fluidic dependence edge (u;, u;). If operations u; and u; are placed at
distinct on-chip locations p; = (x;, y;) and p; = (x}, y;), then the compiler must insert an operation
to transport droplet d; ; from p; to p;. On the other hand, if the placer can ensure that p; = p;, then
the transport distance becomes 0, eliminating the need to insert the operation. This is identical, in
principle, to coalescing performed during register allocation: assigning two variables involved in a
copy operation to the same register creates an identity operation (a copy from a register to itself),
which can be eliminated.

A similar observation holds for the ¢- and n-functions of the Static Single Assignment (SSA)
[Cytron et al. 1991] and Static Single Information (SSI) [Ananian and Smith 1999; Boissinot et al.
2012; Singer 2005] Forms. Without loss of generality, consider fluidic operations u; and uy, and a
¢-function ¢;, which we denote using subscript-j to ensure notational consistency: u; produces
a droplet d; ;, which is read by ¢;, and ¢; produces a droplet d; , which is read by u; the exact
statement of the ¢-function is therefore d; x < ¢(...,d; j,...). SSA elimination replaces ¢; with
a copy operation d; < d; j, which the compiler converts to a droplet transport operation. If u;
and uy are placed at positions p; and py, then the transport distance becomes 0 and the transport
operation can be eliminated if the placer can ensure that p; = px. Once again, this is analogous to
how a traditional compiler attempts to coalesce d; ; and d;  into a single variable to remove the
copy operation during SSA elimination [Sreedhar et al. 1999].

In short, the placer presented in this paper applies techniques derived from coalescing to minimize
the number of droplet transport operations that it inserts; moreover, when droplet transportation
operations are inserted, the placer attempts to minimize the overall transport distance while
incorporating a static estimate of the criticality of the transport operation to overall assay execution
time. In contrast, prior work on static DMFB compilation [Curtis et al. 2018] emphasized correctness
(i-e., the ability to statically compile a CFG), but did not attempt to reduce the number of length of
droplet transport operations that were inserted.

Prior work on microfluidic placement has taken inspiration from spatial computing: [Ding et al.
2001; Grissom and Brisk 2014; Xu et al. 2008] and have adapted placement algorithms originally
introduced for dynamically reconfigurable FPGAs [Bazargan et al. 2000] to the microfluidic context.
While practical and useful, these algorithms assume that tasks that are compiled onto a dynamically
reconfigurable FPGA do not communicate, and thus do not effectively reduce droplet transport
latencies when applied to microfluidics.

Unsurprisingly, there are also many principle similarities between microfluidic and data flow
compilation, both of which entail placement and routing problems [Smith et al. 2006]. One key
difference is that a data flow compiler must adhere to the microarchitectural details of the processing
elements and interconnect architecture of the data flow target, which are considerably more intricate
(enabled in no small part by multi-layer metallization) than the architecture of a DMFB (which
is inherently planar). One key similarity is that both microfluidic and data flow compilation can
improve performance by respectively minimizing data and fluidic transport distances. Additionally,
many techniques to extract parallel execution regions from sequential code can generalize from
data flow compilation to DMFBs. One important caveat is that DMFBs lack any notion of a memory
address space and/or off-chip memory hiearchy. As a result, fluidic pointers do not exist, which
eliminates the need for a microfluidic compiler to tackle technical challenges such as memory
disambiguation and memory access ordering.
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2.3 High-level Languages for Programmable Chemistry

Languages for programmable chemistry, including but not limited to microfluidics, typically fall
into one of three categories: ontologies, laboratory automation, and device-specific languages. For
a more general review, we refer the interested reader to [Sadowski et al. 2016].

Ontologies. Ontologies in synthetic biology, such as Synthetic Biology Open Language (SBOL)
[Galdzicki et al. 2014] or EXACT [Soldatova et al. 2008] aim to standardize how bio-chemical
scientists discuss and disseminate information in a standardized form. They describe experiments
and models in a common language, but cannot directly execute the experiment.

Laboratory Automation. Aquarium [Klavins 2014] specifies and composes laboratory work-
flows using a standard inventory, combining formal and informal statements with photographs.
Processes are formed from individual protocols and are then parallelized and scheduled on the avail-
able laboratory equipment. In principle, the inventory could be expanded to include a programmable
LoC programmed using BioScript or any other appropriate domains-specific language.

Cloud-based automation allows scientists to remotely execute biological procedures in robot-run
laboratories over the Internet. Experiments are described using laboratory-specific domain-specific
languages, such as Transcriptic’s Autoprotocol ' and Synthace’s Antha *. These languages could be
extended to encompass LoCs as laboratory components, but would still need to interact with a
high-level language to program the devices.

Device-Specific Languages for LoCs. BioStream targeted a programmable LoC designed pri-
marily for serial dilution protocols which coupled a fluidic mixer to a fluidic memory [Thies et al.
2007; Urbanski et al. 2006]. BioStream abstracted away the device-level details from the programmer
and included algorithms to automatically generate serial dilution protocols from a set of user-
specific target concentrations; however, after the initial publication, the specification and compiler
were never released.

Aquacore [Amin et al. 2013, 2007] is a programmable LoC comprising a collection of microvalve-
based components connected to a centralized bus, which is programmed using the assembly-
like AquaCore Instruction Set (AIS). A high-level language like BioScript could be specialized for
compatibility with Aquacore’s components, and a BioScript to AIS compiler, although not presently
under development, is certainly feasible.

BioCoder began as an ontology [Ananthanarayanan and Thies 2010] and was later extended to
target programmable LoCs [Curtis and Brisk 2015; Curtis et al. 2018; Grissom et al. 2014; McDaniel
et al. 2013]. Although useful as a proof-of-concept, BioCoder’s syntax is unintuitive and it lacks
a type system and formal semantics. BioScript is introduced here as a long-term replacement for
BioCoder, as it is much closer to a natural language and is likely to be easier for a biologist to learn
how to program.

3 OVERVIEW

BioScript Syntax and Semantics. BioScript is a language for programmable microfluidics whose
syntax aims to be palatable to life science practitioners, most of whom are not experienced pro-
grammers. We desired a syntax and semantics that expresses operations in a manner that closely
resembles plain English. To keep the language small, we do not include operations in the language
syntax that can automatically be inferred by the compiler and/or execution engine. For example,
the compiler can automatically infer implicit fluid transfers for a mix operation. BioScript features
a semantics that targets (p)LoC technologies ranging from simplest to the most complicated. The
syntax and semantics of BioScript’s type system are formally described in § 4.

Thttp://autoprotocol.org
Zhttps://docs.antha.com
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Table 1. BioScript supported fluidic operations.

Target Features
Material Declaration
Mix
Core Output
Store
Repeat
Branch
Loop
Detect
Digital Heat
Split

Control Flow

We divide BioScript’s fluidic operations into three categories, as shown in Table 1. The core of the
language contains generic operations that are effectively common to all LoCs, such as declaration
of fluidic variables and storage. BioScript also supports control flow operations, as well as DMFB-
specific operations including sensing (detect) and actuation (heat and split). The detect instruction
measures properties of droplets such as temperature or volume and the split instruction splits a
droplet into multiple parts.

We begin with a self-contained example to illustrate the expressive capabilities of BioScript.

Example: PCR with Droplet Replenishment. Fig. 4 presents a BioScript specification for a
DMFB-compatible implementation of the Polymerase Chain Reaction (PCR), used to amplify DNA
[Mullis et al. 1987]. This specific example was obtained from the scientific literature [Jebrail et al.
2015], and expressed in BioScript.

PCR involves thermocycling (repeatedly heating then cooling) a droplet containing the DNA
mixture undergoing amplification [lines 5-17]. In this implementation, thermocycling may cause
excess droplet evaporation. This implementation uses a weight sensor to detect the droplet volume
after each iteration [line 8]; if too much evaporation occurs [line 9] the algorithm injects a new
droplet to replenish the sample volume [line 10-11], preheating a template solution [line 12] to
ensure that replenishment does not affect the temperature of the DNA.

Example: Synthesizing Acetaminophen. Chemistry is an enormous space; chemists con-
servatively theorize that the number of pharmacologically active molecules is on the order of
10%°[Dobson 2004]. Cheminformatics is a field where chemists rely on computers to manage drug
and compound discovery, a process whereby chemical libraries are used to screen and identify
substances that have desired therapeutic effects, which are then tested on a biological cell. Although
cheminformatics offers automation, many cheminformatic solutions may be unsafe when trans-
lated to the laboratory. BioScript’s type system can differentiate between safe and unsafe protocol
specifications.

The search space explored by Cheminformatics includes all molecular combinations to synthesize
concrete materials. In contrast, the static interaction table for type checking is limited to the
reactivity groups of materials, which is necessarily conservative.

Acetaminophen, discovered in 1886[Cahn and Hepp 1886], is a common pain medication used
today, and its synthesis has been extensively studied. Reaxys[Elsevier 2009], a leading chemical
reaction database, details 275 different ways to synthesize acetaminophen, but ignores factors such
as safety and efficiency. As an example, Fig. 5a and 5b report BioScript specifications of two of the
documented 275 paths: the one shown in Fig. 5a is safe, while its counterpart in Fig. 5b is unsafe
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1 // PCRMasterMix is a commercially available

2 // pre-mixed concentrated solution that has

3 // all required components to perform PCR

4 // that are specific to the sample.

5 PCRMix = mix PCRMasterMix with Template for 1s
6 repeat 50 times {

7 heat PCRMix at 95C for 20s

8 volumeWeight = detect Weight on PCRMix

9 if (volumeWeight <= 50ulL) {

10 replacement = mix 25uL of PCRMasterMix

11 with 25uL of Template for 5s
12 heat replacement at 95C for 45s

13 PCRMix = mix PCRMix with replacement for 5s
14 3}

15 heat PCRMix at 68C for 30s

16 heat PCRMix at 95C for 45s

17}

18 heat PCRMix at 68C for 5min
19 save PCRMix

Fig. 4. PCR with droplet replenishment [Jebrail et al. 2015]. It uses the target-specific save instruction.

1 step_1 = mix 10uL of acetic_acid
2 with 1@uL of tetrahydrofuran
3 step_2 = mix step_1 with

4 10uL of water
5
6
7

1 step_1 = mix ) ;
hydroxylamine_hydrochloride with step_3 = mix step_2 with
toluene 10uL of acetonitrile

2 heat step_1 at 105C for 24h heat step_3 at 20C for 12h

(a) Safe assay for synthesizing acetaminophen (b) Unsafe assay synthesizing acetaminophen
[Joncour et al. 2014] [Trader and Carlson 2013]. Mixing water with ace-

tonitrile creates hydrogen cyanide, an extremely
poisonous and flammable gas. Hence, this reac-
tion may be unsafe.

Fig. 5. Example BioScript Examples of safe and unsafe ways to produce acetaminophen.

and potentially dangerous. This distinction was made by BioScript’s type system. Leveraging the
type system could further reduce the search space for viable screening procedures by partitioning
the Reaxys database between safe and unsafe protocol specifications.

Type Systems and Safety. The Environmental Protection Agency (EPA) and National Oceanic
and Atmospheric Administration (NOAA) have categorized 9,800 chemicals into 68 reactivity groups
[Environmental Protection Agency & National Oceanic and Atmospheric Administration 2016],
defined by common physical properties of discrete chemicals. It is known that mixing materials
from certain reactivity groups can produce materials from other reactivity groups; for example
mixing acids and bases induces a strong reaction that produces salt and water. BioScript’s type
system models reactivity groups as types. As a material can belong to multiple reactivity groups, a
union type is associated with a material. Using standard reaction corpora, we calculate the type
signature of the mix operation, which is fundamental throughout chemistry, as a table of abstract
reactions between pairs of types, which results in a union of types.

At the same time, reactions vary in terms of safety. The EPA/NOAA categorization assigns one
of three outcomes to the combination of chemicals: Incompatible, Caution, or Compatible. If the
union type resulting from a mix operation includes a hazardous type, then the corresponding cell
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in the table is marked as being unsafe. Any biochemical procedure, or assay, specified in BioScript
is allowed to execute only if it is safe. The signature of the mix operation does not include unsafe
abstract reactions, which correspond to unsafe table cells. Therefore, the type system exclusively
type-checks mix statements that do not produce hazardous materials. This is fundamental to
the soundness of BioScript’s type system: it only type-checks assays that do not produce unsafe
materials.

BioScript allows, but does not require, type annotations, saving the programmer from the burden
of annotating programs with overly complicated union types. The assay specifications presented in
Fig. 4 and 5 do not use type annotations. BioScript’s type inference system can automatically infer
types. Since, the EPA/NOAA classification begins with a finite set of material types, type inference
can be reduced to efficiently decidable theories. We prove that the inference is sound: if a typing
assignment is inferred, it can be used to type-check the assay. We also prove that it is complete: if
there is a typing assignment with which the assay can be type-checked, the inference will discover
it. Otherwise, the assay is rejected and marked as a potential hazard if no typing assignment can be
inferred for it. Our experiments show that the type system is expressive enough to reject hazardous
and to accept safe assays.

Software & Hardware Architecture. The BioScript compiler and runtime system is comprised
of three discrete modules, as shown in Fig. 6: the compiler, the execution engine, and the DMFB.
The front-end performs lexical analysis, parsing, abstract syntax tree (AST) generation, and AST to
CFG conversion. The front-end inlines all function calls, noting that BioScript does not presently
support recursion, and then passes the CFG to the back end.

The back-end converts the CFG to Static Single Information (SSI) form [Ananian and Smith 1999;
Boissinot et al. 2012; Singer 2005], under which each definition of a variable dominates each use, and
each use of a variable post-dominates its definition, which linearizes def-use chains. The compiler
executes a type inference algorithm (described in the next section) in the back end, rather than
the front end, by gathering constraints and passing them to an SMT solver to infer types. If the
BioScript program is typeable, the compiler passes the SSI-based CFG to the execution engine, which
performs code generation (scheduling, placement, and routing), which may be performed either
statically [Curtis et al. 2018] or dynamically [Grissom et al. 2014]. The execution engine processes
sensory feedback produced by the DMFB, including dynamic error detection and recovery; it may
be necessary to re-compile parts of the assay, especially if a hard fault has been detected, rendering
a portion of the device unusable; prior work has covered dynamic error recovery in detail [Alistar
and Pop 2015; Alistar et al. 2016; Hsieh et al. 2014; Ibrahim and Chakrabarty 2015a,b; Ibrahim
et al. 2017; Jaress et al. 2015; Li et al. 2017; Luo et al. 2013a,b; Poddar et al. 2016; Zhao et al. 2010].
The execution engine terminates successfully when the control flow reaches the CFG exit node or
unsuccessfully if the error recovery mechanism fails for any reason.

4 TYPESYSTEM

This section presents the core BioScript language, its semantics, the type checking and inference
systems, and their guarantees. We present the core language and type system to showcase ideas
and have implemented the type system for our full language.

We first present the BioScript syntax and its operational semantics that models the runtime
execution of assays on pLoCs. Next, we present the type checking system, which guarantees
that well-typed assays never perform unsafe operations at run time. Unsafe operations include
dangerous material interactions and attempts to access materials that have already been consumed.
We establish the soundness of the type system as tandem progress and preservation properties. We
then present the type inference system, which can automatically infer types of variables in assays.
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Fig. 6. The BioScript compiler, execution engine and DMFB device.

We establish the soundness and completeness of type inference with respect to type checking. Type
inference succeeds if and only if there are types for the variables that make the assay type-check.

Syntax. Fig. 7 represents the core language syntax. The language is imperative and a statement is
a sequence of effectful instructions that involve side-effect-free terms.

A term t is one of: a variable x, a math operation, detection of a property for a material, or a value
v. The set of variables and values are respectively denoted by X and V. Math operations “t; ®t,” are
parametric in terms of the math operation @. The DMFB has a set of detection modules, moduley, ..,
module,, each of which measures a property of a material. A detect term “detect module on x for
t” returns the property that module detects for the material represented by the variable x after a
measurement for ¢ time units. A value v is a material value mat, a real number r or natural number
n. We use Mat, N and R to denote the set of materials, the set of natural and real numbers. Volume
and other fluidic properties are captured in the full language, but not in the core language.

A statement s is either the sequence of an instruction i and another statement or the terminal
skip statement. An instruction is either an assignment, material mixing, material splitting, or a
conditional or loop control operation. An assignment “x := ¢” assigns term ¢ to variable x. The
type system checks assignments to prevent aliasing for material variables. A mix instruction
“x := mix x; with x, for t” mixes the two materials represented by the variables x; and x, for ¢
time units and assigns the resulting material to the variable x. The type system checks the safety of
mixing x;’s reactivity group with that of x,. The split instruction “(x1, .., x,) := split x into n” splits
the material represented by the variable x into n parts and assigns them to variables xy, .., x,. The
conditional and loop instructions are standard.

Operational Semantics. We model execution of BioScript assays on a DMFB as an operational
semantics. A store ¢ maps the set of variables to a set of values. The state of the transition system
is a pair (o, s), where s is a statement. We now present the transition rules. If the conditions of no
rule is satisfied for a term (other than values) or a statement (other than skip), its evaluation is
stuck. A stuck term or statement models an error.

Fig. 8.(a) presents the evaluation rules for terms. Terms are side-effect-free and leave the store
unchanged; therefore, the transition rules for terms are of the form (o, t) — t’. The rule E-VAR
checks that the store o holds the value of a variable; if so, the variable’s value is read from the store.

Rules E-MATHR1 and E-MATHR? evaluate the first and second operands of a math operation
in-order; then the rule E-MATH applies the operation to the arguments if both are numeric values.
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Terms:

Variable

Math operation
Detect

Value

Values:
Material value
Real number
Natural number

Sensor module(s)
Statements:
Sequencing

Skip
Instructions:
Assignment
Mixing

Splitting
Conditional
Loop

Union Types:
Union type
Type variables
Scalar types:
Material types
Real number
Natural number

Context:
Empty context
Variable type binding

Set of variables x
Constraints

Fig. 7. Syntax of BioScript’s type system.

The rule E-DETECTR evaluates the time term ¢ until it is reduced to a value. Then, the rule E-DETECT
reduces a detect term if the value of the variable in the store is a material. Property measurement by
modules is modeled as the function detect that given the material, the module and the measurement
time returns the property value. If the value of the variable in the store is not a material, the detect
term is stuck.

Fig. 8.(b) presents the evaluation rules for statements. The rule E-AssiGNR evaluates the right-
hand side term (if it is not a variable); the rule E-AssIGN assigns the value to the variable in the
store. The rule E-AssiGN’ transfers a material from the right-hand side variable to the left-hand
side variable. The value of a variable is consumed when it is assigned to another variable. This
restriction is necessary for material variables but can be easily lifted for numeric variables.

The rule E-M1xR evaluates the time term; then, the rule E-Mix reduces a mix instruction if the
values of both variables in the store are materials and their interaction is safe. Run time material
interactions are represented by the concrete interaction function interact. Given input materials
mat; and mat; and the interaction time r, the function interact returns 4 if mixing mat; and mat;
for r time units is unsafe; otherwise, it returns the resulting material. The used variables x; and x;
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E-VAr E-MaTHR1 E-MaTHR2
x € dom(o) (o, ) > veENvVoeR (0, 1) >t

(o,x) > o(x) (0, h®R) >t (o, vOR) DVl

E-MATH
(v1 eNAv; eN)V (v eRAv; €R)  E-DETECTR
v @V =0 (o, t) >t

(0,01 ®vy) D v (o, detect module on x for t) —
detect module on x for ¢’

E-DeTECT
o(x) € Mat ry = detect(o(x), module, r;)

(o, detect module on x for r;) — ry
(a) Evaluation rules for terms

E-AssigN’

(o,t) >t te X E-AssiGN o' =(c\ {x'}P[x — o(x)]

(o, x:=t;s) > (0, x:=1t'; 5) (o, x :=v; s) > (c[x > v], s) (o, x :=x"; s) > (c',5)

E-Mix
o(x1) € Mat o(x2) € Mat

E-MIxR interact(o(x1), o(x2), r) # §

(o, 8) >t o' = (0 \ {x1, x2})[x > interact(co(x1), o(xz), 1)

(o, x := mix x1 with x; for t; s) — (o, x := mix x; with x; for r; s) — (o’ s)
(o, x := mix x; with x; for t; s)

E-IFR

E-SpLiT
o(x) € Mat o’ = (o \ {xPlx; - split(c(x), n)]

(o, (x1, .. xp) = split x into n; s) = (0’, s)

E-IFTRUE

(0, t) > 1’ n#0 E-IFFALSE

(o, if t then sy else sp; s) > (o, ifnsyelsesy; s)— (o, s;e s) (o, if0sgelsesy; s) > (0, sy@ s)
(o, if t’ then s; else sp; s)

E-WHILE
(o, while t s1; s3) — (o, if t then (s; @ while  s1; s3) else s3)

skipes=s (i; s)es’ =i; (ses’)

(b) Evaluation rules for statements

Fig. 8. Evaluation rules

are removed from the store and the variable x is mapped to the resulting material. The evaluation
of a mix instruction is stuck if either of the two variables does not represent a material value, or is
already used and removed from the store, or the interaction of the two is unsafe.

The rule E-SpriT reduces a material split instruction by removing the input variable from the store
and mapping the output variables to the splits. The function split models splits: given a material
mat and the number of splits n, it split mat to n parts of equal volume and returns a part. Rule
E-IFR reduces the condition term; rules E-IFTRUE and E-IFFALSE reduce an if instruction to either
the then or else statement depending on the value of the condition. The operator e on statements
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unrolls the second statement after the first as a sequence of instructions. The rule E-WHILE unrolls
the while statement once to an if statement.

Type Checking System. This section presents BioScript’s type system and its guarantees. We
first consider the typing judgments, and the typing rules for terms and statements, and then
establish progress and preservation properties. Using an abstract model of chemical interactions,
the type system guarantees that any program that type-checks will never cause an unsafe material
interaction at runtime. BioScript’s type system also guarantees that an operation is never applied to
mismatching or missing values. In the evaluation of a type-checked program, no material variable
is evaluated to an already used material.

Fig. 7 represents the syntax of types. A type T is either the union of the scalar types US or a type
variable V; type variables are used for type inference. The overline notation S denotes multiple
scalar types S. A scalar type is one of the material types Maty, .., Mat, or real R or natural N number
types. Each material type Mat; represents a group of similar materials. A material value mat can be
a member of one (or multiple) material types Mat; written as mat € Mat;. Membership is trivially
lifted to union types. The type Mat is defined as the union of all material types Mat; U .. U Mat,.
If a type T is a single scalar type, we elide the union symbol. For example, a union type with the
single natural number type N can be denoted as N. A scalar type S is a member of a type T = US,
written as S € T, iff § is one of the scalar types S. A type T is a subset of another type T’, written
as T C T, iff any scalar type in T is also in T’. Similarly, union, intersection and equality of types
are defined. A type environment I' is a mapping from variables to types. An empty environment is
denoted by 0; an environment that includes the mapping from variable x to T is denoted by I'; x : T.
Since the BioScript assays are written as scripts, I' contains the type assignment for all variables in
the assay.

The type system uses interact-abs, the abstract interaction function, which accepts two scalar
material types as arguments and returns a union type. The abstract interaction interact-abs is
conservative with respect to the concrete interaction interact. If two material values mat; and mat;
are members of two material types Mat; and Mat;, and the concrete interaction of mat; and mat;
is unsafe, then the abstract interaction of Mat; and Mat; is undefined; otherwise, the result of the
concrete interaction is a member of the type resulting from the abstract interaction of Mat; and
Mat;. A discussion of how the interact-abs function is used is presented in § 6.

The typing judgment for terms is ', X + ¢ : T, which states that under the typing environment I’
and set of available variables X, the term ¢ has type T. The type system keeps track of available
variables in the set X. These are the variables with unused values. Fig. 9.(a) presents the type
checking rules for terms.

Rule T-VAR states that a variable x has type T if it is typed as such in environment I" and it is
available (x € X). Rule T-MATH states that if the terms #; and t, have the same numeric type, then
the operation t; @ t; has the same type. Rule T-DETECT states that a detect term has the real return
type if the following conditions hold: only properties of materials can be detected; thus, the input
variable x should be typed as the union of only material types. In addition, the term ¢ for time
should be typed as a real number. Rule T-MAT states that a material literal has the union type of
material types that it belongs to. A material literal may belong to multiple material types. Rules
T-Nat and T-REAL type natural and real number literals.

The typing judgment for statements, I', X + s, X', states that term s is typed under typing envi-
ronment I' and available variable set X, yielding updated available variable set X’. A similar typing
judgment, I', X + i, X', exists for instructions. Fig. 9.(b) lists type checking rules for statements.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 128. Publication date: November 2018.



128:14 Jason Ott, Tyson Loveless, Chris Curtis, Mohsen Lesani, and Philip Brisk

(T-MATH)
(T-VAR) IXrt:T T,X+t,:T  (T-DETECT)
x:TeTl xeX T=NVT=R T, X+x:UMat; IXrt:R
ILXkx:T ILXrthh®@t:T T, X + detect module on x for ¢t : R
(T-MaT)

(T-NaT) (T-REAL)

mat € Mat;
ILX+rn:N I,Xrr:R

I, X+ mat : UMat;

(a) Typing rules for terms

(T-INST)
LXri X T,X+sx”  (TSkwp)
I,X+i;s X" T, X + skip, X
(T-AssIGN-1) (T-AsSIGN-2)
x: TeTl ILXro:T T cT x:Tel LLXkx':T TCcT
ILXFx:=v,XU{x} ILXFx:=x, X\ {x'}U{x}
(T-AsSIGN-3)
x:Tel (T-Mx)
teVuX TLXrt:T [,XFx :UMat; T,X+x;:UMat; T, Xrt:R
T"=RVT =N T'CcT interact-abs(Mat;, Mat;) C T(x) for each i and j
ILXFx:=t XU {x} T, X + x := mix x1 with x3 for t, X \ {x1, x3} U {x}
(T-SpL1T)

[,XFx:UMat; T(x) CT(xy), .., T(x) CT(xpn)
T, X+ (x1, .., xp) :=split x into n, X \ {x} U {x1, .., xp }
(T-Ir) (T-WHILE)
ILXrt:N I, X*Fs, X I, X+ sy, X" ILXrt:N I,X¢rs, X XcXx
T, X +if ¢ then s; else so, X' N X" T, X + while t s, X

(b) Typing rules for statements

Fig. 9. Type checking rules.

Rule T-INsT states that sequence i; s, comprising instruction i and statement s, is typed if both i
and s are typed. The resulting available variable set from i is the input available variable set for
s. Rule T-Sk1p unconditionally types the terminating statement skip. Rule T-AssiGN-1 types an
assignment of a value to a variable. The type of the assigned value should be a subset of the type
of the variable. The variable is also added to the set of available variables. Rule T-AssSIGN-2 types
assignment of a variable to another. The right-hand side variable is consumed and the left-hand
side variable is added to the set of available variables. This rule prevents aliasing of materials: two
variables may not represent the same material. (At the cost of brevity, the rule can be easily relaxed
to not remove numeric variables from the available set.) Rule T-AssiGN-3 types assignments where
the assigned term has a numeric type. This rule restricts aliasing through reading from terms to
only numeric values. (With the current set of typing rules for terms, any term other than variables
and values can be typed only as a numeric type. However, we keep the numeric type condition in
this rule for future extensions of terms.)

Rule T-Mix types a mix instruction if the following conditions hold: only materials can be mixed;
thus, both input variables x; and x, should be typed as the union of only material types; term ¢
(time) should be typed as a real number; typing fails if the abstract interaction function is undefined
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for any pair of material types in the union types for x; and x;; if material types are defined for
all such pairs, then the result represents a safe material; as the result is assigned to x, the type
of x in the environment should be a superset of the resulting material types; since the materials
represented by x; and x, are consumed, x replaces x; and x; in the set of available variables.

Rule T-SpLIT types a split instruction of variable x into variables xj, .., x,. Only materials can be
split; thus, variable x should be typed as the union of material types. The split parts are assigned to
variables x, .., x,,; thus, the type of each x; should be a superset of the type of x in the environment;
X1, .., Xn replace x in the set of available variables.

Rule T-Ir types an if instruction; the output available set is conservatively the intersection of the
output available sets of the then and else statements. Rule T-WHILE types a while loop of a statement
s. Since the output available set of one iteration can be the input available set of the next, the output
available set for s should be a superset of its input available set X. Since the condition may fail and
the loop may not execute, the output available set of the while statement is conservatively X.

As classical results establish, there is correspondence between type systems and data-flow
analysis[Palsberg and Pavlopoulou 2001]. The type system corresponds to flow-sensitive analysis
for defined variables and flow-insensitive analysis for interaction safely.

We now state progress and preservation lemmas that together state that well-typed programs
never execute unsafe operations. As explained for the operational semantics, there is no reduction
rule for unsafe operations, that is unsafe operations are stuck. The following lemmas state that
well-typed programs never get stuck.

To state the lemmas, we first define the consistency invariant between the runtime store o and
the static type environment I' and the set of variables X. A store o is consistent with the type
environment I' and the set of variables X, if every variable that is in X and I', has a value in ¢
whose type complies with T

DEFINITION 1. For allT, X and o, consistent(I', X, o) iff for all x and T such that x € X and
(x:T)eT, wehaveo(x) e T.

The following progress lemma states that well-typed programs are not stuck, i.e., they can take a
step. More precisely, if a statement is typed, then it is either the terminal statement skip or it can
make a step with every consistent store.

LEMMA 1 (PROGRESS). ForallT', X, s and X', if T,X v s,X’ then either s is skip or for all o such
that consistent(T', X, o), there exists o’ and s’ such that (o, s) — (¢’, s).

The following preservation lemma states that if a well-typed program steps, the resulting program
is also well-typed. More precisely, if a statement s is typed and with a consistent store o steps to a
statement s’ and a store ¢, then s’ is typed and ¢’ is consistent as well.

LEMMA 2 (PRESERVATION). ForallT, X, 0,s, X", 0’,s’, if [, X +s,X”, consistent(T, X, o) and
(o, s) = (o', s’) then there exists an X’ such thatT, X’ + s’, X" and consistent(T', X', c”).

The proofs are available in the supplemental material.

Type Inference System. We now present the type inference system. A type can be not only
a union of scalar types but also an unknown type variable. The type inference rules match the
corresponding type checking rules but restate the conditions as constraints. After the type inference
system derives the constraints for a program, a satisfying model for the constraints yields types for
the variables of the program.

The type inference judgment for terms is I, X + t : T | C that states that under the typing
environment I" and available variables X, the term ¢ is typed as T if the constraints C are satisfied.
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(CT-VaR) (CT-MaTH) (CT-DETECT)
x:TeTl xeX I,Xvrt;:T1 | Cy ILXFty:Th | C I, Xtx:T1|C ILXrt:T, | Cy
ILXkFx:T|0 ILXrt1®ty: Ty | T, X + detect module on x for ¢t : R |
ClUGU{T1=T,=NVT,=T,=R} CGUGU{TIN{RN}=0,T,=R}
(CT-MaT)

(CT-REAL) (CT-NaT)

mat € Mat;
ILXtr:R|0O ILLXrn:N|O

T, X + mat : UMat; | 0

(a) Type inference rules for terms

(CT-INsT) (CT-AssGN-1)
LXriX |Ci TL,XrsX'|c (CI-Skip) x:Tel TLXro:T|C
I,X+i; 8, X" |CLUC, I[LXkskip X|0 T,Xrx:i=0v,XU{x}|CU{T'CT}
(CT-AssGN-2) (CT-AssGN-3)
x:Tel T, Xrx:T|C x:Tel t¢VUX T, Xrt:T|C
LXrx=x,X\{x}U{x}|CU{T'cT} TLLXrx:=tXU{x}|CU{T'=RVT =N,T' CT}
(CT-Mix)
ILX+tx:T|C ILXkxy:T' | C (CT-SpLIT)
LXHt:T'|C LX+x:T|C
T, X + x := mix x; with x; for t, T, X + (x1, .., Xp) := split x into n,
X\ {x, 22} U {x} | CuC UC"U X\ A{x} U {x1, .., xn} |

(TA{RN}=0, TN{R,N}=0, T =R, CU{TN{RN}=0,T CT(x),..,T CT(xn)}
foreach i, j: Mat; € T AMat; € T' =
interact-abs(Mat;, Mat;) C I'(x)}

(CT-Ir) (CT-WHILE)

LX+t:T|C LXrt:T|C
LXFs, X' |G L XFsp X' |G T,Xrs, X' |C  XcX
T, X +if t then s1 else sy, T, X + while ¢ s,

X' NnX"|CUCUC, U{T =N} X,CuC'U{T =N}

(b) Type inference rules for statements

Fig. 10. Type inference rules

The constraints C are quantifier-free set theory formulae. Since we have a finite set of scalar
types, the constraints can be reduced to quantifier-free formula in the theory of equality. The type
inference rules for terms are presented in Fig. 10.(a)

The rule CT-VAR introduces no constraints. The rule CT-MATH introduces constraints requiring
the two arguments to be of the same numeric type. The rule CT-DETECT introduces constraints
that require the type of the material variable x not to include numeric types. This is because, as
mentioned for the rule T-DETECT, only properties of materials can be detected; thus, the type of
the material variable should only include material types. The rules CT-MaT, CT-REAL and CT-NAT
type literal values without constraints.

The type inference judgment for statements is I', X + s, X’ | C, which states that under typing
environment I" and available variables X, statement s is typed and the resulting available variables
are X’ if all conditions C are satisfied. There is also a similar type inference judgment for instructions:
ILX + i,X’ | C. Fig. 10.(b) presents type inference rules for statements. Rules CT-AssGN-1, CT-
AssGN-2 and CT-AssGN-3 type the assignment instruction. If the right-hand side is a material
value, then rule CT-AssGN-1 introduces a constraint that requires the type of the right-hand side to
be a subset of the type of the left-hand side. Rule CT-AssGN-2 and CT-AssGN-3 similarly mirror
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rules T-AssiGN-2 and T-AssIGN-3. Rules CT-Mix, and CT-SpL1T restate the conditions of their
corresponding typing rules as constraints. Rules CT-Ir, and CT-WHILE introduce a constraint that
requires the condition term to be of natural number type.

To infer types for program s, we first check if the type inference judgment I, 0 + 5, X’ | C is
derivable; Iy maps each variable x in s to a fresh type variable V,, and the initial set of available
variables is empty. We note that to support optional type annotations for variables, Iy can map an
annotated variable to the concrete type annotation instead of a type variable. If the judgment cannot
be derived, the program may access an uninitialized variable or an already used material variable.
Thus the program is rejected. If the judgment can be derived and constraints C are satisfiable, then
any model m of C provides the typing [x — m(V,)] for the program.

We now state the soundness and completeness of the type inference system, which collectively
state that types can be inferred for a program iff it is typeable. The soundness lemma states that,
if the type inference system infers types for a program, then with the inferred types, the type
checking system can type-check the program. More precisely, if under a type environment I" with
type variables, the type inference system derives the set of type constraints C for a statement s and
C is satisfiable with a model m, then applying m to I yields the concrete type environment m(T’)
under which the type checking system can type-check s.

LEMMA 3 (SounNDNESs). ForallT, X, s, C, X', and m, if [, X + s,X’ | C and m is a model for C
thenm(T),X + s, X’.

The completeness lemma states that if, for a program, there exist types for variables under which
the type checking system can type-check the program, then the type inference system can infer
those types. More precisely, if there exists a model m that maps type variables in a type environment
T to concrete types such that under the concrete type environment m(T'), the type checking system
can type-check s, and the type inference system, under I', derives the constraints C for s, then C is
satisfiable and m is a model for it.

LEMMA 4 (COMPLETENESS). For allT, X, s, X', X", C, and m, if m(I'), X + s,X’ and T, X +
s,X" | C then m is a model for C.

The proofs are available in the supplemental material.

5 CODE GENERATION

Code generation begins with a typeable program, whose CFG, including fluidic variables, has been
converted to SSI Form. To conserve space, we assume that the reader is familiar with SSI’s ¢- and
r-functions, which respectively split variable live ranges at branch convergence and divergence
points [Ananian and Smith 1999; Boissinot et al. 2012; Cytron et al. 1991; Singer 2005].

The first step is to schedule the operations in each basic block in isolation; in principle, any of
the scheduling algorithms described in § 2.2 can be used.

The second step, which is a novel contribution of this work, is to perform “global” placement
in a manner that is cognizant of the CFG, as opposed to prior work [Curtis et al. 2018], which
limited the scope of placement to individual basic blocks. As noted in § 2.2, a fluidic dependency
(us, u;) represents a droplet d; ; that is produced by u; and consumed by u;, which necessitates fluid
transport; however, if u; and u; are placed at the same location, or at least nearby, the transport
operation can be eliminated or shortened. When compiling a CFG, this observation generalizes to
dependencies that cross basic block boundaries.

In SSI Form, droplets that are stored across basic block boundaries are represented explicitly
by ¢- and z-functions; prior work has introduced techniques to translate out of fluidic SSI Form
[Curtis et al. 2018], but did not attempt to minimize droplet transport latencies while doing so;
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d; — Mix(...) d; < Mix(...)

d3 «— ¢(dy, dy) . insert a transport
operation

v —dy

@ (b) ©

Fig. 11. An SSA/SSI program fragment (a), shown with a single ¢-function: d3 < ¢(dy, d2). An example of
placement that has not been globally optimized from the perspective of the CFG (b): the operation that
produces droplet dj is placed at the same location as the operation that consumes droplet ds (after renaming
via the ¢-function), eliminating the droplet transport operation if the path on the left is taken; however,
the operation that produces droplet ds on the right is not placed at the same location as the operation
that consumes d3, necessitating the introduction of a new basic block (via critical edge splitting [Sreedhar
et al. 1999]) that contains the transport operation. Globally optimized placement (c): the operations that
produce droplets di and d are placed at the same location as the operation that consumes droplet d3, thereby
eliminating the need to insert additional droplet transport operations.

Fig. 11 illustrates the different results that may occur depending on whether or not the placer
accounts for transport operations that occur due to ¢- and 7-functions.

The global placement problem shares many principle similarities to graph coloring register
allocation [Briggs et al. 1994; Chaitin 1982; Chaitin et al. 1981; George and Appel 1996], however
there are significant and subtle differences. The first is that global placement must account for both
scheduled operations and fluidic variables that are stored on-chip, as both compete for space on the
surface of the DMFB. The second is that operations and variables must be placed on a 2D surface,
as opposed to being allocated to registers; this requires an extension to the graph coloring model,
as simply assigning distinct integer “colors” to two concurrent mixing operations is insufficient to
describe where they are placed. The third and final difference is that there is no off-chip fluidic
memory, which means that “spilling” is not allowed; if a legal placement cannot be found, then
code generation fails, and a larger DMFB is needed.

Let D be the set of fluidic variables; liveness information for each variable in D is already available
as a byproduct of SSI construction. Let U be the set of assay operations, which have already been
scheduled; thus, the lifetime of each operation in U, which is contained wholly within each basic
block, can be derived from the schedule. Let V = D U U.

Let E be the set of interferences edges; in other words, for each pair of fluidic variables or
operations v;,v; € V, interference edge (v;,v;) € E exists if and only if the lifetimes of v; and
v; overlap; in other words, v; and v; must be placed at different locations on the surface of the
DMFB. Let q; = (x;,y;) denote the location at which operation or fluidic variable v; is placed
(for non-unit-size operations, such as 3 X 3 mixers, the location can be defined anywhere, e.g.,
upper-left corner, center, etc., as long as the definition is applied consistently). Two operations
(and/or stored variables) are placed “legally” if they do not overlap and there is at least one row of
unused electrodes between them. For a more precise definition, refer to Refs. [Curtis et al. 2018; Su
and Chakrabarty 2006]; details are omitted to conserve space.
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Fig. 12. A scheduled basic block (a); the resulting interference graph corresponding to the schedule, with one
affinity edge (b); an unoptimized placement (c): since there is an affinity edge between v an vy, placing them
at different locations necessitates droplet transport; and an optimized placement (d): since there is an affinity
edge between v; an vy, placing them at the same location eliminates the need to transport a droplet.

Let A be the set of affinity edges; conceptually, for each pair of non-interfering fluidic variables or
operations v;, vy € V, an affinity edge (v;, vx) € A exists if it is possible to eliminate a droplet trans-
port operation by placing v; and vy are placed at the same location. This occurs in three situations:
operation v; produces a fluid that is used by operation vy (or vice-versa) as discussed earlier; there
exists a ¢-function d; . < @;(...,d;j,...); or there exists a r-function (..., d;k,...) < m;(d; ;).

Given a placement solution, the droplet d; ; associated with affinity edge (v;,v;) € A must
travel a distance D(v;, v;), which depends on ¢; and g;. The exact distance that d; ; will travel is
not known until after routing, as there may be additional placed operations and variables that
obstruct the shortest possible paths between g; and g;. Under the assumption of rectilinear droplet
transport, the distance D’(v;,v) = |x; — xj| + |y; — yj;| is a lower bound; and if g; = g;, then
D(v;,vj) = D'(v;,v;) = 0 is exact.

These observations allow us to define global placement as a constrained optimization problem.
Let G = (V, E, A) be a fluidic interference graph and Q = {g;|v; € V} be the set of locations at which
each operation or fluidic variable is placed. A global placement solution is legal if the placement
for each interference edge (v;, v;) is legal. The objective is to minimize an estimate of the total
distance traveled by each droplet, e.g.:

T= Z(‘u,—,‘uj)eE D'(v;, Uj)

It is straightforward to generalize this objective, e.g., to add additional weight terms to favor
shorter estimated transport distances in deep loop nests.

As an example, Fig. 12a shows a scheduled basic block. Fig. 12b shows the resulting interference
graph, which features three interference edges and one affinity edge (vq,v;). Fig. 12c shows a
legal, but unoptimized placement, the places v; and v, at different locations, thereby incurring the
overhead of droplet transport. Fig. 12d shows a legal and optimized placement, where v; and v, are
placed at the same location, thereby eliminating the need to transport the droplet.

Device Execution. To solve the global placement problem in practice, we used NSGA-II [Deb
et al. 2002], a publicly available genetic algorithm®. As an iterative improvement heuristic, NSGA-
II produces locally optimal solutions, although the running time and overall solution quality
depend on a number of user-specified parameters. An initial feasible solution is obtained using an
efficient heuristic [Grissom and Brisk 2014]. The solution is encoded as binary variables of the form
(xi, yi, 0, S;), where o0; and s; are the orientation and size of operation or stored variable v;; the
number of bits required for x; and y; vary, based on the maximum dimension of the architecture.

We configured NSGA-II to use a population size of 100 and to run for 250 iterations. The initial
feasible solution is implanted in the initial population, and additional solutions are generated
via mutation and crossover operations. After each generation, encoded solutions that NSGA-II

3Source code available at: https://www.iitk.ac.in/kangal/codes.shtml
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discovers via evolution are extracted and examined for legality; the objective is computed for legal
solutions. The constraints and objectives are returned to NSGA-II for the subsequent evolution. We
maintain a copy of the best solution(s) found thus far. After the final generation, we return the best
legal placement solution that was discovered.

Once global placement has been solved, the final step is to translate from SSI form [Curtis et al.
2018], and to insert droplet routes as needed; any of the droplet routing methods described in § 2.2
can be used.

6 IMPLEMENTATION

This section describes the underlying details of implementation of the BioScript language, its type
system and its code generator.

BioScript. The BioScript language was implemented as described in § 3. As DMFBs do not offer
external fluidic storage, there is no possibility to implement a stack or heap of substantial size.
For these reasons, BioScript provides inline functions exclusively and does not support recursion;
similarly, BioScript does not support arrays, even of constant size, as doing so would significantly
inhibit portability. We hope to address these issues in greater detail in a future publication. BioScript
handles variable assignment implicitly, e.g., Fig. 14d. However, the scientist declares a manifest of
chemicals that is used throughout the assay (“blood” and “water”, in this case) and the BioScript
compiler infers the dispense and move operations.

The Type System. BioScript’s type system utilizes static type checking, which runs during
compilation. The type system automatically infers types using an abstract interaction function that
is a conservative over-approximation of the resulting chemical types of each interaction. The type
system uses the 68 EPA/NOAA reactivity groups as the material types Mat;, that together with
natural N, and real R numbers, constitute the set of scalar types S.

We calculate the abstract interaction function interact-abs (used in § 4) as a table that is indexed
by two material types and stores union types. Each reactive group or type Mat; comprises a non-
empty set of chemicals C;. Abstract mixing of a pair of material types Mat; and Mat; effectively
mixes each pair of chemicals (c;, ¢;) in the cross product C; X C;. If any interaction is Incompatible,
the table entry for (Mat;, Mat;) is marked as hazardous (or undefined, as modeled in § 4). Otherwise,
if the mix operation yields a new chemical ¢k, we use the industry-standard ChemAxon [ChemAxon
2016] computational chemistry library to assign a union type UMaty. to cx, which are added to the
union type of the cell for Mat; and Mat;. In practice, molecules of ¢; and ¢; will remain after mixing

c; and cj, even if a reaction occurs, and the presence of extra molecules at the micro-liter scale, or
smaller, may have a non-negligible impact on the underlying chemistry or biology *. To account
for this fact, Mat; and Mat; are also added to the cell. Since type assignment to concrete chemicals
is conservative and we include the input types in the resulting union type, the types in the table
represent an over-approximation of the chemicals that can result from concrete interactions.

The type system implements Hindley-Milner type reconstruction [Milner 1978]. Constraints
are gathered from the CFG according to the type inference rules. Constraints are encoded in the
SMTLib2 format and passed to Z3 [De Moura and Bjerner 2008] for satisfiability. In cases that no
type can be inferred, deciding which part of the program is to blame is a classical problem[Wand
1986]. Life scientists using BioScript would benefit from localized typing errors; including the
necessary heuristics is left for future work.

There may be instances where scientists need to create hazardous reactions, which the type
system would correctly reject. For example, mixing ammonia with bleach yields chlorine gas, which
is deadly. The type system correctly prevents mixing ammonia and bleach; however, in organic

4This was confirmed by a collaborator in the Bioengineering department of the authors’ institution.
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Fig. 13. DropBot device (a) and example execution, where (b) & (c) depict mixing two droplets.

chemistry and industrial manufacturing, chlorine is a foundational material, and many consumer
products rely on chlorine for production, e.g. PVC piping and cleaning agents. Thus, a scientist
may wish to create chlorine to use elsewhere in the assay. In this case, the type system generates
all relevant errors and warnings, but allows the programmer an override to finish compilation and
execute the assay.

While not necessary, the execution engine is capable of performing dynamic checks as well. Before
each interaction, it consults the EPA and NOAA categorization: if the interaction is Incompatible,
then execution is halted or the user is prompted to override necessary safety precautions in order
to proceed. This is a final safety check, given the safety-critical nature of the domain.

Code Generation. The code generator presently targets three DMFB back-ends. The first two
are simulators that can statically compile [Curtis et al. 2018] or dynamically interpret [Grissom et al.
2014] assays featuring control flow operations. The simulator is primarily used for performance
characterization under idealized (i.e., fault-free) operating conditions.

As the simulator does not have access to physical sensors, it generates pseudo-random numbers,
constrained within realistic values, to represent sensor readings that are then passed to the execution
engine when confronted with a detect instruction.

The code generator also targets a real-world platform called DropBot [Fobel et al. 2013], shown
in Fig. 13a. Although DropBot features real-time object tracking, it does not, at present, support
execution of assays that feature control flow. The DropBot interface allows the user to specify
an electrode activation sequence using either a graphical interface, shown in or through a JSON
file. We modified the code generator to produce a DropBot-compatible JSON file. Fig. 13 shows
DropBot’s graphical interface while manipulating droplets on a real-world device.

7 EVALUATION

The objectives of BioScript are to reduce the time and costs of scientific research and to provide
a safe execution environment for chemists and biologists with respect to chemical interactions.
As noted earlier, BioScript is a DSL that enables high-level programming and direct execution of
bioassay on (p)LoCs. These objectives inform our selection of metrics to evaluate BioScript.
Language. Compared to other languages, BioScript offers an intuitive and readable syntax and
a type system. As a point of clarification, we do not claim that BioScript offers a performance
advantage with respect to other languages; performance primarily depends on the algorithms
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implemented in the compiler back-end and execution engine, which are compatible, in principle,
with any language and front-end. Hence, our evaluation emphasizes qualitative metrics of the
language.

First, we compare BioScript’s syntax to three other languages: the AquaCore Instruction Set (AIS),
a target-specific assembly-like language [Amin et al. 2007]; Antha, a language for cloud-based
laboratory automation [Synthace 2016]; and BioCoder, a C++ library that has been previously
specialized for DMFBs [Ananthanarayanan and Thies 2010; Curtis and Brisk 2015; Grissom et al.
2014]. We review these three languages in greater detail in § 2. Our comparison uses a set of
compact, yet representative, bioassays taken from published literature. As an illustrative example,
Fig. 14 shows a simple assay (a Mix followed by a Heat instruction) in all four languages; BioScript,
by far, has the shortest description.

e The BioCoder specification (Fig. 14a) is written as a C++ program. It does not require awareness
of the underlying physical resources of the target device, but does require explicit statements
to synchronize time-steps and to terminate the assay.

e The Antha specification (Fig. 14b), is imperative, but involves unintuitive notation such as []*
and . operators (e.g., []*wtype LHComponent).

o The AIS specification (Fig. 14c) operates at a lower level of abstraction. AIS is an assembly
language, that requires resource awareness, which inhibits retargetability. The programmer
must explicitly declare fluids, manually bind fluidic operations to resources, and explicitly
transfer fluids between resources. Our back-end can automate this process.

e The BioScript specification (Fig. 14a) requires 3 lines of code. The specification is compact
and declares variables implicitly.’

Fig. 15 compares the number of lines of code required to specify seven representative bioassays
using the four languages; three of the seven assays were not compatible with AIS (which is tethered
to a specific pLoC [Amin et al. 2007]) and Antha (which is tethered to a cloud laboratory), so we
only report four assays for those languages. We do not count empty lines (for spacing/aesthetic
purposes) or lines that contain comments. We wrote each assay based on our notion of human
readability, which generally meant one statement/operation per line for AIS, BioCoder, and Antha.
As shown in Fig. 14d, the mixture statement in BioScript succinctly encompasses two implicit
variable declarations with fluid type and volume information.

Across the four compatible assays, BioScript required 68% fewer lines of code than AIS and 73%
fewer lines of code than Antha. Across all seven assays, BioScript required 65% fewer lines of code
than BioCoder, which can target DMFBs, [Curtis and Brisk 2015; Grissom et al. 2014], unlike AIS
and Antha. Although these results do not account for subjective experience, we believe that they
convey the same basic sentiments as Fig. 14: BioScript has an intuitive syntax and will be far easier
for scientists to learn and use compared to existing languages in the same space. Source code for all
implementations of the bioassays reported in Fig. 15 are included in our supplementary materials.

Type System Evaluation. BioScript’s type system’s main purpose is to prevent inadvertent
production of hazardous chemicals. We evaluate its ability to detect hazardous mixing in BioScript
descriptions of 5 reported real-world incidents [American Industrial Hygiene Association 2016; Blog
2016], as well as several hand-generated examples. To the best of our understanding, BioScript’s
type system is first-of-its kind, so there are no prior type systems to compare against.

Table 2 summarizes the results of our experiments. The first four tests are taken from documented
real-world situations in which chemists ignored safety precautions while carrying out experiments.
The first three are incidents documented by the American Industrial Hygiene Association (AIHA)

3In fact, the only arguably superfluous keywords are of (preposition), with (preposition), at (preposition) and for (preposition
or conjunction), which bring the language closer to written English than to an imperative programming language.
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. . . 1 /xInitialization Omittedx*/
1 /xInitialization Omittedx/
2 b first_step(): 2 smpl := make([Jxwtype.LHComponent, @)
: - P o 3 Bld := mixer.SampleForTotalVolume
3 b.measure_fluid(blood, tube);
. 4 (Blood, BldVol)
4 b.measure_fluid(water, tube);
5 b.next_step(): 5 smpl = append(smpl, Bld)
: n P 6 Wtr = mixer.Sample(Water, WtrVol)
6 b.tap(tube, tenSec);
7 b.next_step(); 7 smpl = append(smpl, Wtr)
. =Stept); 8 rctn := MixInto(OutPlate, "", smpl...)
8 b.incubate(tube, 100, tenSec);
9 b.end_protocol (); 9 ri = Incubate(rctn, mltTemp,
) -P ’ 10 InitDenatime, false)
a
( ) (b)
1 /xInitialization Omittedx/
2 input s1, ipil
3  input s2, ip2 1 /x Initialization Omitted =x/
4 move mixerl, sl ; 2 mixture = mix 1QuL of water with
5 move mixerl, s2 ; 3 19uL of blood for 10s
6 mix mixerl, 10 ; 4 heat mixture at 100C for 10s
7 move heaterl, mixerl;
8 incubate heaterl, 100, 10; (d)

©

Fig. 14. Example assay specified using Biocoder(Fig. 14a)[Curtis and Brisk 2015; Grissom and Brisk 2014],
Antha(Fig. 14b)[Synthace 2016], AIS(Fig. 14c)[Amin et al. 2007], and BioScript(Fig. 14d).

6 Biological DSL Comparison: Code Complexity (280)

50
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Image Probe Glucose Neuro- PCR Probabilistic PCR Opiate
Synthesis Detection transmitter PCR w/ Droplet Detection
Sensing Replenisment
BAIS = Antha # BioCoder = BioScript

Fig. 15. The number of lines of code to specify Image Probe Synthesis, Glucose Detection, Neurotransmitter
Sensing, PCR[Amin et al. 2007], Probabilistic PCR[Luo et al. 2015], PCR w/ Droplet Replacement[Jebrail et al.
2015], and Opiate Detection[Backer et al. 2005; Jiang et al. 2011; Mao et al. 2006] in AIS [Amin et al. 2007],
BioCoder [Ananthanarayanan and Thies 2010; Curtis and Brisk 2015; Grissom et al. 2014], Antha [Synthace
2016], and BioScript. We were unable to specify the latter three assays in AlS and Antha.

[American Industrial Hygiene Association 2016]. Mustard gas refers to a documented situation
where an individual mixed two common reagents used to clean swimming pools, inadvertently
creating mustard gas. SafetyZone refers to a documented explosion where a student mixed a sulfuric
acid/hydrogen peroxide mixture with acetone [Dobbs et al. 1990] (it remains unknown whether
this explosion was intentional or accidental). The type system correctly identified the presence of
safety hazards in all of these cases.
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Table 2. Experimental tests validating BioScript’s type system; parentheses denote reactive group(s) assigned
to chemicals. Tests are documented incidents that could have been prevented. | denote Incompatible errors
(dangerous) based on the EPA/NOAA reactive groups.

Experiment Name ‘ Outcome ‘ Experiment Description

AIHA 1 [American Industrial Hygiene Association 2016] | FAIL - Mix Nitric Acid (2) and Tetrachloroethylene (17,28)

AIHA 2 [American Industrial Hygiene Association 2016] | FAIL - Mix Nitric Acid (2) and Methanol (4)

AIHA 3 [American Industrial Hygiene Association 2016] | FAIL - Mix Potassium Hydride (35, 21) and Diaminopropane (7)

Mustard Gas [Blog 2016] FAIL - Mix Calcium Hypo (1) and Dichlor (17)

Safety Zone [Dobbs et al. 1990] FAIL - Mix Hydrogen Peroxide (44) and Sulfuric Acid (2), then mix Acetone (19)

—

We also tested the type system on 14 assays that were known to be safe; BioScript’s type system
successfully inferred types in all of these cases. We have intentionally chosen to express only
the assays in Table 3, noting the limited benchmarks. These assays are currently being used in
the bio-chemical sciences today. By demonstrating BioScript’s ability to express, type-check, and
execute these assays, we demonstrate the power that BioScript provides scientists. We could have
created synthetic benchmarks, but all would be derivative of the presented assays and, ostensibly,
would not provide as compelling an argument to a life scientist of BioScript’s capabilities.

Compilation Time. We compiled the safe and unsafe assays described in the previous sub-
section, targeting the DropBot platform, which is a 4 X 15 array (ignoring I/O reservoirs on the
perimeter), assuming the default electrode actuation time of 750ms. The experiments were run on
a 2.7 GHz Intel™ Core i7 processor, 8GB RAM, machine running macOS™.

Construction of the the type system’s abstract interaction table took 31 minutes running on a
2.53 Ghz Intel™ Xeon™ processor, with 24GB RAM, running CentOS 5. In this case, performance
was limited to a single execution thread, as per ChemAxon’s documentation [ChemAxon 2016].
Constructing the abstraction interaction table using a multithreaded implementation of ChemAxon
would significantly reduce construction time.

Table 3 reports the compilation time, constraint solving time, number of constraints gather,
time spent in the execution engine performing code generation, and total assay execution for each
of the benchmarks. The unsafe assays were unable to run, so their execution times are reported
as N/A. On average, each material defined in the benchmarks belonged to 3.015 distinct reactive
groups; average benchmark compilation time was 0.0190 seconds; and the average time spent
solving constraints was 1.594 seconds. Execution times, in these cases, depended on the assay
specifications (e.g., PCR spends a lot of time thermocycling, which cannot be optimized away) and
the effectiveness of the code generation algorithms.

BioScript assays, along with several additional synthetic benchmarks, are made available in the
supplemental materials.

Simulation Results. As DropBot cannot execute assays that feature control flow, we evaluated
the impact of our global placement techniques using a cycle-accurate DMFB in the preceding
section. Table 4 reports the simulated execution times for several benchmarks that feature control
flow. These benchmarks were compiled using the optimized global placement strategy presented in
this paper, and compared against a more naive approach that compiles each basic block individually,
introducing droplet transport operations when needed, at basic block boundaries [Curtis et al.
2018]. Identical random number seeds were used when executing each benchmark using the two
placement strategies.

The results show small, but consistent, improvements in assay execution time. The explanation
is that placement can optimize droplet transport times, which are generally much shorter than
the time required for mixing or heating/cooling. Although improved scheduling could potentially
reduce the latency of the scheduled operations, there is no way that existing code generation
techniques, for example, could reduce the amount of time that a PCR implementation spends
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Table 3. Compile time, the number of constraints gathered, and simulated execution times for the safe and
unsafe assays.

Benchmark Compilation Time | Constraint Solving | Gathered Con- | Execution Engine | Execution Time
(sec) Time (sec) straints Time (m:s:ms)

AIHA 1 [American Industrial | 0.012 0.936 70 N/A N/A

Hygiene Association 2016]

AIHA 2 [American Industrial 0.012 1.648 68 N/A N/A

Hygiene Association 2016]

AIHA 3 [American Industrial 0.014 1.214 17 N/A N/A

Hygiene Association 2016]

Broad  Spectrum  Opiate 0.011 0.887 11 0:18:55 0:23:21

[Backer et al. 2005; Jiang et al.

2011; Mao et al. 2006]

Ciprofloxacin [Jiang et al. | 0.023 1.722 14 101:31:80 128:54:32

2011]

Diazepam [Hornbeck 1991] 0.024 1.007 14 96:48:13 121:01:39

Dilution [Hornbeck 1991] 0.014 0.892 9 0:21:05 0:26:33

Fentanyl [Mao et al. 2006] 0.018 0.900 13 126:32:40 158:10:80

Full Morphine [Hornbeck | 0.048 4.188 19 127:16:78 159:06:17

1991]

Glucose Detection [Amin 0.012 1.633 14 0:23:77 0:29:73

et al. 2007]

Heroine [Hornbeck 1991] 0.020 1.553 13 126:32:40 158:10:80

Image Probe Synthesis [Amin | 0.015 2.181 13 8:38:96 10:47:50

et al. 2007]

Morphine [Hornbeck 1991] 0.018 1.026 13 126:32:40 158:10:80

Mustard Gas [Blog 2016] 0.015 1.433 83 N/A N/A

Oxycodone [Backer et al. [ 0.026 0.959 13 126:32:40 158:10:80

2005]

PCR [Amin et al. 2007] 0.032 3.534 8 11:16:12 14:36:29

Safety Zone [Dobbs et al. | 0.013 1.341 76 N/A N/A

1990]

Cancer-detection via gene- | 0.016 1.637 16 1920:08:01 N/A

editing [Sinha et al. 2018]

Table 4. The impact of the proposed global placement method in comparison to a prior approach that
computes placement for each scheduled basic block in isolation [Curtis et al. 2018].

Benchmark Global Placement Prior Placement
PCR w/droplet replenishment 38m 16s 40m 44s
Probabilistic PCR(full) 11m 17s 11m 19s
Probabilistic PCR(early exit) 7m 20s 7m 21s

Opiate immunoassay (positive) 399m 54s 405m 30s

Opiate immunoassay (negative) 100m 16s 101m 48s

on thermocycling. Although the results of the optimized placement are not necessarily optimal
(noting that placement is NP-complete), these results do quantify the limitations and capabilities of
placement on real-world benchmarks that have been extracted from the scientific literature.

8 CONCLUSION AND FUTURE WORK

This paper has established the viability of high-level programming languages and type systems
for programmable LoCs, and has properly formulated the problem of global placement, on the
granularity of CFGs, for digital microfluidics. This paper reports a full system implementation,
which can compile and type-check a high-level language program and execute it on the real-world
DropBot platform by transmitting commands (electrode actuation sequences) via the DropBot
software interface.

In the future, we hope to extend the BioScript language with support for non-inlined functions,
arrays, SIMD operations, and some notion akin to processes or threads. We view the type system as a
starting point for a much deeper foray into formal verifications, e.g., to ensure that biological media
always experience physical properties such as temperature or pH levels within a user specified
range. We also plan to investigate more efficient heuristics for global placement compared to
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NSGA-IL Lastly, we will continually scour the scientific literature on microfluidics to find new and
relevant benchmarks that exploit novel device-level capabilities, especially involving control flow.
Long-term, we hope to expand the language and compiler to target a wider variety of microfluidic
technologies and programmable LoC platforms.

Type System. Being nascent, BioScript’s type system statically type-checks only chemical
reactivity groups. Extending the type system, introducing dependent types to account for properties
such as temperature, pH, volume, or concentration is a natural next step. For example, material
types can be dependent on concentration and volume. The split rule will keep the concentration
the same but lower the volume. The mix rule should use an extended 4 dimensional abstract
interaction table that in addition to the reactivity groups is dependent on the concentration and
volume. To have a finite table, properties can be divided to ranges such as, low, medium and high
concentration. However, available datasets such as chemicals/pubchem [Kim et al. 2015] do not
report these properties. A large dataset is needed to calculate the dependent abstract interaction
table. In conjunction with extending the type system’s capabilities, providing meaningful error
messages will help life scientists understand problematic portions of their BioScript program. Long-
term, this type system could be generalized into a generic type system for cyber-physical systems,
transcending even (p)LoC-based biochemistry.

Compiler. We aim to support both compilation and synthesis. Compilation targets a pLoC
which has already been fabricated, while synthesis converts a BioScript program into an optimized
application-specific LoC prior to fabrication. Likewise, we aim to target two technologies: DMFBs
and continuous fluid flow technologies. At present, our compiler targets a specific hardware, we
aim to extend support to more devices than just DMFB devices.

BioScript enables scientists to express assays in a comfortable manner, similar in principle to
laboratory notebooks. Its type system, which defines the operational semantics of BioScript, can
provide safety guarantees when potentially hazardous chemicals are used. BioScript is extensible,
allowing it to target pLoC compilation and LoC synthesis across multiple technologies. BioScript
and its software stack pave the way for many life science subdisciplines to increase productivity
due to automation and programmability.
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