
The Effectiveness of Visualization for Learning Expression
Evaluation: A Reproducibility Study

 Amruth N. Kumar
Ramapo College of New Jersey

Mahwah, NJ 07430, USA
1 201 684 7712

amruth@ramapo.edu

ABSTRACT

A study was conducted to reproduce the results of an earlier

study on the effectiveness of visualization for learning

expression evaluation in a problem-solving software tutor on

arithmetic expressions. In the current reproducibility study, data

was collected from a software tutor on assignment expressions

over six semesters. ANOVA analysis of the amount and speed

of learning was conducted with treatment, sex and racial groups

as fixed factors. Results include that visualization helped the

students learn significantly more concepts, whether the students

needed to use the tutor or benefited from using the tutor.

However, it only benefited the less-prepared students. It did not

help the students learn faster. It benefited both the sexes and

traditionally represented as well as underrepresented groups.

The current study confirmed almost all the results from the

previous study, albeit for a harder topic. One reason why

visualization was found to be effective in both these studies may

be that the same visualization scheme was used by the students

to both view feedback and construct their answers.

1. INTRODUCTION
Program visualization deals with visualizing programs at lower

levels of abstraction [10]. It may be static or dynamic, the latter

also referred to as program animation. Program visualization

systems may be specialized or generic: the former visualize

specific programming constructs, whereas the latter visualize

entire programming languages [10]. The subject of the current

study is static program visualization, specialized for expression

evaluation.

A systematic review of generic program visualization and

animation systems cataloged a mix of systems that were never

evaluated, those that did not yield positive results, those whose

results were not statistically significant and those with

significant positive results [10]. Another survey of successful

evaluations of visualization systems found that about half of the

evaluations were only about usability; and a third were informal,

“with little contribution to future improvements” [11]. A meta-

study of algorithm visualization, the other type of software

visualization found similarly equivocal results [2].

Few of the specialized visualization systems, i.e., those built for

specific programming constructs, have been evaluated. Among

those that have been evaluated, one study found that animation

was no more effective than text explanation for learning the

semantics of C++ pointers [3]. Another study found that graphic

visualization with text explanation was better than graphic

visualization alone when learning expression evaluation [4].

A recent large-scale study of a specialized visualization system

for arithmetic expression evaluation found that visualization

indeed helped students learn more concepts, but that the

“benefits primarily accrued to less-prepared students.” [6].

Arithmetic expressions, the subject of the reported study, are

arguably one of the easiest topics in introductory programming.

Could the results of the study be reproduced with assignment

expressions, arguably one of the harder expressions in

programming languages thanks to prefix, postfix, and compound

assignment operators? This was the question addressed by the

current study.

Reproducibility is a core principle of scientific research. A

recent study of reproducibility of 100 results published in 2008

in three top Psychology journals highlights its importance: It

found that only 35 of the 100 results could be reproduced at a

statistically significant level [8]. The reproduced results were

weaker than the claims made in the original paper for all 100

studies, although no claim was disproven. A hyper-competitive

scientific culture that prizes novelty, and provides little

incentive to reproduce earlier findings or publish results of such

studies was found partly to blame for this state of affairs.

Reproducibility as an issue is increasingly being addressed by

numerous Computer Science research communities, as revealed

by a search of the ACM digital library (e.g., Human Computer

Interaction, Software Engineering, Recommender Systems,

Databases, Simulation, Systems Research, Data Mining), but

Computer Science Education research is not one of them.

Reproducibility is not replicability. Whereas reproducibility

refers to the ability to draw the same results using different

instruments, methods, protocols and/or participants, replicability

refers to repeating the original experiment with exactly the same

instruments, methods, protocols and participants to see if the

same results can be obtained. Reproducibility is desirable,

whereas replicability is not even “good science” [1].

Being able to reproduce the results of the earlier study on

arithmetic expressions [6] would not only provide additional

support to the results of the earlier study, but also extend the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ITiCSE '16, July 09 -13, 2016,Arequipa, Peru

© 2016 ACM. ISBN 978-1-4503-4231-5/16/07…$15.00

DOI: http://dx.doi.org/10.1145/2899415.2899427

results to harder topics such as assignment expressions. In this

context, the current study was conducted to evaluate the

effectiveness of visualization in a software tutor on assignment

expressions and possibly reproduce or refute results from the

earlier study [6].

2. METHODOLOGY

2.1 Participants
The participants of the study were students in introductory

programming courses from 41 institutions: 1721 students from

baccalaureate institutions, 154 from community colleges and

104 from high schools over six semesters: Fall 2011-Spring

2014. Students were given the option to identify their sex and

race. 1348 students identified themselves as male, and 487 as

female. 1275 students identified themselves as Caucasians or

Asians, the traditionally represented groups in Computer

Science, and 256 identified themselves as belonging to

underrepresented racial groups. Since this was a controlled

study, institutions were randomly assigned to control or

experimental group each semester.

2.2 Instrument – The Software Tutor
The instrument used for this study was a software tutor on

assignment expression evaluation. The tutor presents

expressions to the student, has the student evaluate each

expression one operator at a time, grades the student’s answer

and provides feedback. The student evaluates each operator by

dragging the mouse across the operator and appropriate

operands to draw an underbrace across them, and entering the

intermediate result in the dialog box presented for the

underbrace. The feedback includes whether the student’s answer

is correct and step-by-step explanation of the correct answer,

which has been shown to help students learn [5].

The tutor covers the following concepts: simple assignment,

compound assignment, prefix and postfix increment and

decrement operators, precedence and associativity of assignment

operators, and narrowing and widening coercion during

assignment. The tutor is accessible over the web – students can

use it on their own time, and at their own convenience. It is part

of a suite of problem-solving tutors for introductory

programming topics, available for free for educational use called

problets (problets.org).

The feedback provided by the tutor is in two forms:

 Text explanation feedback explaining each step in the

evaluation of the expression. For example, the text

explanation provided for the expression -- weight is:

The value of weight is 14

weight is decremented to 13

-- weight returns 13

Prefix -- operator returns the value of

the variable after decrementing it

 Graphic visualization feedback in the form of an

underbrace spanning the operator (-- in the above

example) and operands (weight above), with the

intermediate result (13 above) drawn centered underneath

the underbrace.

Figure 1 shows a snapshot of the two forms of feedback.

Graphic visualization explains the order of evaluation of

operators, but not concepts such as coercion. So, it was provided

in addition to rather than instead of text explanation. The

benefits of simultaneous presentation of the same information in

text and visual forms is explained by dual coding theory [9],

which postulates that visual and verbal information are

processed differently, in separate channels, to organize the

information and create separate mental representations, either of

which can be used later to recall the information.

2.3 Protocol
The software tutor administered pre-test-practice-post-test

protocol as follows:

Pretest – During the pretest, the tutor presented one problem

per concept. If a student solved a problem correctly, no

feedback was provided to the student, and no more problems

were presented to the student on the concept. On the other hand,

if the student solved a problem incorrectly, or opted to skip the

problem because the student did not know the answer, feedback

was presented to the student and additional problems on the

concept were scheduled to be presented during the subsequent

stages.

Adaptive practice – Once a student had solved all the pretest

problems, practice problems were presented to the student on

only the concepts on which the student had solved problems

incorrectly during the pre-test. For each such concept, the

student was presented multiple problems until the student

mastered the concept. After solving each problem, the student

received feedback explaining the correct answer. Since this was

a controlled study, students in the control group received only

text explanation whereas those in the experimental group

received both text explanation and graphic visualization.

Post-test - During this stage, the student was presented test

problems on the concepts that the student had mastered during

the adaptive practice.

Demographics - Students were provided the option to identify

their demographic information, including sex and race.

The entire protocol was limited to 30 minutes and was

administered back-to-back, entirely over the web. A concept

was considered to have been learned during this session if the

student solved the problem on that concept incorrectly during

the pre-test, solved enough problems during the adaptive

practice to master the concept, and proceeded to solve the

problem on the concept correctly during the post-test.

2.4 Design
The dependent variables of this study were all between-groups:

 Pre-test mean score per problem, calculated as the total

pre-test score divided by the number of pre-test problems

solved – this normalized the variation in the number of

problems solved by the students (10-17). Since the students

used the tutor after classroom instruction on assignment

expressions, pre-test score was a measure of their prior

knowledge;

 Number of concepts learned;

 Number of practice problems solved per learned concept,

calculated as the number of problems solved during

practice, divided by the number of concepts learned, once

again, to normalize the variation in the number of concepts

learned by the students. Since the tutor was adaptive, and

presented practice problems on a concept until the student

had mastered the concept, the more the practice problems a

student needed to learn a concept, the slower the pace of

learning.

The independent variables of this study were:

 Treatment – text explanation only versus text explanation

with graphic visualization.

 Sex: male or female.

 Representation – traditionally represented (Caucasians and

Asians) versus underrepresented (the other racial groups,

viz., Black/African American, Hispanic/Latino, Native

American, Native Hawaiian/Pacific Islander and Other

races)

2.5 Data Collection
The pre-test contained 17 problems for C++ and 16 problems

for Java. Since students could use the tutor as often as they

pleased, if a student used the tutor multiple times, only the first

attempt when the student solved all the pre-test problems was

considered. If the student never solved all the pre-test problems,

the attempt with the most number of pre-test problems solved

was considered. In order to eliminate trial or frivolous attempts

by students, only those sessions were considered where students

solved at least 10 pre-test problems. After this sifting, the

control group contained 1112 students and experimental group,

867 students – this was the group for which statistics were

reported earlier in Section 2.1.

Although students from high schools, community colleges and

undergraduate institutions used the tutor, in order to maintain

homogeneity of participant population, we considered only

students from undergraduate institutions.

2.6 Data Analysis
A typical expression contains one or more operators. The grade

awarded for a problem was calculated by the software tutor as

the number of operators correctly evaluated, divided by the total

number of operators in the expression. Therefore, the score on

each problem was normalized to 0  1.0 regardless of the

number of operators in the expression.

Univariate ANOVA analysis was conducted for the dependent

variables listed in Section 2.4, with treatment, sex and

representation as the fixed factors.

3. RESULTS
We first analyze the data of all the students. Thereafter, we

consider subsets of students based on programming language,

need, benefit and preparation to see if we can localize the results

obtained for the entire population. We list only significant

results (i.e., main effects), except for treatment.

3.1 All the undergraduate students
The results of analyzing the pre-test score per problem were:

 No difference in the prior knowledge of the control

(N=751) and test (N=565) groups. So, any subsequent

difference between the groups can be attributed to the use

of the tutor.

 Male students scored significantly higher than female

students and traditionally represented students scored

significantly higher than students from under-represented

groups as shown in the table below. So, male students and

students from traditionally represented groups had

significantly greater prior knowledge than their

counterparts.

Pre-test Score N Mean

Sex [F(1,1315) = 8.845, p = 0.003]

Male 965 0.872 ± 0.013

Female 351 0.835 ± 0.021

Representation [F(1,1315) = 13.601, p < 0.001]

Traditional 1121 0.877 ± 0.01

Underrepresented 195 0.83 ± 0.023

Analysis of the number of concepts learned found that the

experimental group learned significantly more concepts than the

control group [F(1,787) = 3.831, p = 0.051] as shown in the

table below, i.e., students learned more with visualization than

without.

Concepts Learned N Mean

Control 446 2.679 ± .288

Test 342 3.104 ± .314

Analysis of the number of practice problems solved per learned

concept yielded no significant results.

3.2 C++ Students
We considered C++ students who had solved all 17 pre-test

problems (N=352). The results of analyzing the pre-test score

per problem, summarized in the table below, were that the

control group students scored significantly more than the

experimental group students; male students scored significantly

higher than female students; and traditionally represented

students scored significantly higher than students from under-

represented groups. In other words, the control group students,

male students and students from traditionally represented groups

had significantly greater prior knowledge than their

counterparts.

Pretest Score N Mean

Treatment [F(1,351) = 9.778, p = 0.002]

Control 275 0.882 ± 0.027

Test 77 0.800 ± 0.043

Sex [F(1,351) = 13.222, p < 0.001]

Male 285 0.889 ± 0.026

Female 67 0.794 ± 0.044

Representation [F(1,351) = 27.607, p < 0.001]

Traditional 296 0.91 ± 0.023

Underrepresented 56 0.773 ± 0.046

The results of analyzing the number of concepts learned, as

summarized in the table below, were that the experimental

group learned significantly more concepts than the control

group, i.e., students learned significantly more with

visualization than without; and female students learned

significantly more concepts than male students.

Concepts Learned N Mean

Treatment [F(1,160) = 5.233, p = 0.024]

Control 127 2.456 ± .471

Test 34 3.621 ± .889

Sex [F(1,160) = 4.932, p = 0.028]

Male 128 2.473 ± 0.709

Female 33 3.604 ± 0.715

The results of analyzing the number of practice problems solved

per learned concept, as summarized in the table below, were that

the experimental group solved significantly more problems per

learned concept than the control group, and female students

solved significantly more problems per learned concept than

male students. In other words, the pace of learning was

significantly slower with visualization than without, and for

female students as compared to male students. .

Practice Problems N Mean

Treatment [F(1,160 = 4.118, p = 0.044]

Control 127 3.105 ± 0.276

Test 34 3.71 ± 0.52

Sex [F(1,160) = 9.787, p = 0.002]

Male 128 2.941 ± 0.415

Female 33 3.874 ± 0.418

3.3 Java Students
We considered Java students who had solved all 16 pre-test

problems (N=730). The results of analyzing the pre-test score

per problem were:

 There was no difference in the prior knowledge of the

control (N=346) and test (N=384) groups.

 Male students scored marginally higher than female

students, and traditionally represented students scored

significantly higher than students from under-represented

groups, as shown in the table below.

Pretest Score N Mean

Sex [F(1,729) = 2.996, p = 0.084]

Male 517 0.875 ± 0.017

Female 213 0.845 ± 0.029

Representation [F(1,729) = 5.259, p = 0.022]

Traditional 629 0.88 ± 0.012

Underrepresented 101 0.84 ± 0.031

Analysis of the concepts learned and the number of practice

problems solved per learned concept yielded no significant

results.

3.4 Students who needed to use the Tutor
A normalized score of 1.0 represented ceiling effect. The

students who scored less than 1.0 stood to benefit from using the

tutor, since they had incorrectly solved one or more problems

during the pretest. For our next analysis, we considered all the

students whose normalized score was 0.95 or less – this

included even those who had incorrectly solved exactly one

problem.

The results of analyzing the pre-test score per problem were:

 There was no difference in the prior knowledge of the

control (N=438) and test (N=327) groups.

 Traditionally represented students scored significantly

higher than students from under-represented groups

[F(1,764) = 7.34, p = 0.007] as shown in the table below.

Pretest Score N Mean

Traditional 636 0.799 ± 0.012

Underrepresented 129 0.759 ± 0.026

Analysis of the concepts learned found that the experimental

group learned significantly more concepts than the control

group [F(1,619) = 4.973, p = 0.026] as shown in the table below,

i.e., students learned significantly more with visualization than

without.

Concepts Learned N Mean

Control 264 3.019 ± .316

Test 356 3.547 ± .342

Analysis of the number of practice problems solved per learned

concept yielded no significant results.

3.5 Students who benefited from the Tutor
The students who benefited from using the tutor were those who

learned at least one concept. For our next analysis, we

considered all the undergraduate students who had learned at

least one concept.

The results of analyzing the pre-test score per problem were:

 There was no difference in the prior knowledge of the

control (N=446) and test (N=342) groups.

 Male students scored marginally more than female

students, and traditionally represented students scored

significantly higher than students from under-represented

groups, as shown in the table below.

Pretest Score N Mean

Sex [F(1,787) = 2.769, p = 0.097]

Male 559 0.83 ± 0.16

Female 229 0.806 ± 0.23

Representation [F(1,787) = 8.7, p = 0.003]

Traditional 677 0.84 ± 0.011

Underrepresented 111 0.797 ± 0.027

Analysis of the concepts learned found that the experimental

group learned significantly more concepts than the control

group [F(1,787) = 3.831, p = 0.051] as shown in the table below,

i.e., students learned significantly more with visualization than

without.

Concepts Learned N Mean

Control 342 2.679 ± .288

Test 446 3.104 ± .314

Analysis of the number of practice problems solved per learned

concept yielded no significant results.

3.6 Less-prepared Students
The mean of normalized pre-test scores for the entire

undergraduate cohort was 0.853. The students who scored 0.853

or lower on the pre-test were less-prepared as compared to those

who scored more than 0.853. We next considered the less-

prepared undergraduate students.

Analysis of the pre-test score per problem found no difference in

the prior knowledge of the control (N=281) and test (N=177)

groups.

Analysis of the concepts learned found that the experimental

group learned significantly more concepts than the control

group [F(1,379) = 6.859, p = 0.009] as shown in the table below,

i.e., students learned significantly more with visualization than

without.

Concepts Learned N Mean

Control 233 3.568 ± .377

Test 147 4.326 ± .427

Analysis of the number of practice problems solved per learned

concept yielded no significant results.

3.7 Better-prepared Students
Finally, we considered the better-prepared students: those whose

normalized score was over the cohort average of 0.853, but

under 1.0. We excluded the students who had scored 1.0 since

they knew all the concepts, and could not benefit from using the

tutor.

Analysis of the pre-test score per problem found that there was

no difference in the prior knowledge of the control (N=249) and

test (N=246) groups.

Analysis of the concepts learned and the number of practice

problems solved per learned concept yielded no significant

results.

4. DISCUSSION
The following table summarizes the results of the various cases

that we analyzed in the previous section. The rows correspond

to the 7 cases we considered: All the students, C++ students,

Java students, the students who needed the tutor, the students

who benefited from using the tutor, the less-prepared students

and the better-prepared students. For each of Pretest Score,

Concepts Learned and Problems per Learned concept, the

columns list Treatment (T), Sex (S) and Representation (R). A

cell contains a check mark if a statistically significant result was

found for it, e.g., when all the students were considered, a

significant difference was found between the sexes (S) on the

Pretest Sore.

 Pretest Score Concepts

Learned

Problems per

Concept

 T S R T S R T S R

All √ √ √

C++ √ √ √ √ √ √ √

Java √ √

Need √

Benefit √ √

Less √

Better

From the Pretest Score (T) column of the table, it is clear that

the prior preparation of the control and experimental groups was

statistically comparable in all but one case. Yet, from the

Concepts Learned (T) column of the table, it is clear that

visualization helped the students learn significantly more

concepts in most cases. It helped the students learn more

concepts, whether the students needed to use the tutor or

benefited from using the tutor. However, it only benefited the

less-prepared students, not the better-prepared ones.

From the Problems per Concept (T) column of the table, it is

clear that visualization did not help the students learn faster, as

measured by the number of practice problems solved per

learned concept. In the one instance when a significant

difference was found for treatment (C++), learning was slower

with visualization than without!

Considering the lack of significant differences in S and R

columns of Concepts Learned and Problems per Concept, we

can state that 1) the tutor was not biased towards either sex or

racial group; and 2) both the sexes and racial groups benefited

the same from using the tutor. In the one case (C++) when a

significant difference was found for sex, female students learned

more concepts, although at a slower pace than male students.

From (S) and (R) columns of Pretest Score, we can summarize

that regrettably, female students were often less-prepared before

using the tutor than male students and underrepresented

students were often less-prepared than traditionally represented

students. In the prior study, arithmetic expressions were used

[6]. Since many of the concepts covered as arithmetic

expressions in programming languages are typically also

covered in K-12 math, it is harder to localize the reason for the

differences in the prior preparation of the sexes and racial

groups, if any. Assignment expressions on the other hand are

concepts unique to programming languages – it is safe to

assume that they are not covered in K-12 math. Any prior

knowledge of assignment expressions is acquired by the

students in class or through programming activity. This leads to

one of two explanations for the lower prior-preparation of

female and underrepresented students:

 Although introductory programming courses typically

assume that students will not have had any prior

programming experience, this may not be entirely accurate.

Male and traditionally represented students may be

entering the introductory programming course with more

exposure to programming concepts than their counterparts.

If so, providing additional encouragement to female and

underrepresented students in high school to engage in

programming activities may redress this difference.

 Somehow, male and traditionally represented students learn

better from classroom instruction of introductory

programming concepts than their counterparts. If so,

Computer Science educators and education researchers

may want to isolate the instructional strategies for

introductory programming that are effective across sexes

and races and propagate them.

Since this is a reproducibility study, comparison of the results

from this study with those from the previous study [6] are in

order. Primary results of the prior study were that “visualization

helped students learn more concepts; visualization did not

increase the speed of learning; the benefits of visualization

accrued primarily to less-prepared students; and visualization

may affect different demographic subgroups differently”. All

the results were reproduced in the current study except the last

one – the population size of the current study was not large

enough to confirm/refute whether visualization affected

different demographic subgroups (e.g., underrepresented female

students) differently. Students find the subject of this study, viz.,

assignment expressions to be harder than arithmetic expressions,

the subject of the prior study. So, in addition to confirming the

results of the earlier study, this study extended those results to

harder topics.

So, why was visualization found to be effective in both the

studies, especially for the less-prepared students, when the form

of visualization was “viewing”, one of the least effective forms

of engagement [7]? It could be because students also

“constructed” their answer using the same visualization scheme

before submitting it, and “constructing” is considered to be one

of the highest levels of engagement [7]. Using the same

visualization scheme to both view feedback and construct

answers may hold the key to improving the effectiveness of

visualization in software tutors. For instance, just as drawing

underbraces was found to be effective for evaluating

expressions, the following student-constructed visualization

techniques might turn out to be effective for other program

comprehension tasks: drawing boxes around code segments to

clarify scope; drawing arrows across code to trace the flow of

control and data; and superimposing state diagram on the code

to track and debug the lifecycle of variables. Future work

includes evaluating the effectiveness of these student-

constructed visualization techniques in online tutors.

5. ACKNOWLEDGMENTS
Partial support for this work was provided by the National

Science Foundation under grant DUE 1432190.

6. REFERENCES
[1] Drummond, C. Replicability is not Reproducibility: Nor is

it Good Science. Proc. Evaluation Methods for Machine

Learning Workshop, 26th ICML, Montreal, Canada, 2009.

[2] Hundhausen, C.D., S.A. Douglas, and J.T. Stasko, A meta-

study of algorithm visualization effectiveness. Journal of

Visual Languages and Computing, 2002. 13(3): p. 259-290.

[3] Kumar, A.N., Data Space Animation for Learning the

Semantics of C++ Pointers, in SIGCSE Technical

Symposium2009: Chattanooga, TN. p. 499-503.

[4] Kumar, A.N., Results from the Evaluation of the

Effectiveness of an Online Tutor on Expression Evaluation,

in 36th SIGCSE Technical Symposium2005: St. Louis,

MO. p. 216-220.

[5] Kumar, A.N., Explanation of step-by-step execution as

feedback for problems on program analysis, and its

generation in model-based problem-solving tutors.

Technology, Instruction, Cognition and Learning (TICL)

Journal, 2006. 4(1).

[6] Kumar, A.N. The Effectiveness of Visualization for

Learning Expression Evaluation. Proc. 40th SIGCSE

Technical Symposium on Computer Science Education.

SIGCSE 2015. Kansas City, KS. 362-367.

[7] Naps, T.L., et al., Exploring the role of visualization and

engagement in computer science education, in SIGCSE

Bulletin 2003. p. 131-152.

[8] Open Science Collaboration, Estimating the reproducibility

of psychological science, Science, Vol. 349(6251), 28

August 2015

[9] Paivio, A., Mental representations: A dual coding

approach, 1990, New York: Oxford University Press.

[10] Sorva, J., V. Karavirta, and L. Malmi, A Review of

Generic Program Visualization Systems for Introductory

Programming Education. Transactions on Computing

Education, 2013. 13(4): p. 1-64.

[11] Urquiza-Fuentes, J. and J.Á. Velázquez-Iturbide, A Survey

of Successful Evaluations of Program Visualization and

Algorithm Animation Systems. Transactions of Computing

Education, 2009. 9(2): p. 1-21.

Figure 1 (© Amruth N. Kumar): Screen shot of the feedback provided by Assignment Expression Tutor. Both graphic visualization

(between the two pink lines) and text explanation (after the second pink line) are shown. Courtesy: problets.org.

