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ABSTRACT 

A study was conducted to reproduce the results of an earlier 

study on the effectiveness of visualization for learning 

expression evaluation in a problem-solving software tutor on 

arithmetic expressions. In the current reproducibility study, data 

was collected from a software tutor on assignment expressions 

over six semesters. ANOVA analysis of the amount and speed 

of learning was conducted with treatment, sex and racial groups 

as fixed factors. Results include that visualization helped the 

students learn significantly more concepts, whether the students 

needed to use the tutor or benefited from using the tutor. 

However, it only benefited the less-prepared students. It did not 

help the students learn faster. It benefited both the sexes and 

traditionally represented as well as underrepresented groups. 

The current study confirmed almost all the results from the 

previous study, albeit for a harder topic. One reason why 

visualization was found to be effective in both these studies may 

be that the same visualization scheme was used by the students 

to both view feedback and construct their answers.   

1. INTRODUCTION 
Program visualization deals with visualizing programs at lower 

levels of abstraction [10]. It may be static or dynamic, the latter 

also referred to as program animation. Program visualization 

systems may be specialized or generic: the former visualize 

specific programming constructs, whereas the latter visualize 

entire programming languages [10]. The subject of the current 

study is static program visualization, specialized for expression 

evaluation.   

A systematic review of generic program visualization and 

animation systems cataloged a mix of systems that were never 

evaluated, those that did not yield positive results, those whose 

results were not statistically significant and those with 

significant positive results [10]. Another survey of successful 

evaluations of visualization systems found that about half of the 

evaluations were only about usability; and a third were informal, 

“with little contribution to future improvements” [11]. A meta-

study of algorithm visualization, the other type of software 

visualization found similarly equivocal results [2]. 

Few of the specialized visualization systems, i.e., those built for 

specific programming constructs, have been evaluated. Among 

those that have been evaluated, one study found that animation 

was no more effective than text explanation for learning the 

semantics of C++ pointers [3]. Another study found that graphic 

visualization with text explanation was better than graphic 

visualization alone when learning expression evaluation [4].  

A recent large-scale study of a specialized visualization system 

for arithmetic expression evaluation found that visualization 

indeed helped students learn more concepts, but that the 

“benefits primarily accrued to less-prepared students.” [6]. 

Arithmetic expressions, the subject of the reported study, are 

arguably one of the easiest topics in introductory programming. 

Could the results of the study be reproduced with assignment 

expressions, arguably one of the harder expressions in 

programming languages thanks to prefix, postfix, and compound 

assignment operators? This was the question addressed by the 

current study.  

Reproducibility is a core principle of scientific research. A 

recent study of reproducibility of 100 results published in 2008 

in three top Psychology journals highlights its importance: It 

found that only 35 of the 100 results could be reproduced at a 

statistically significant level [8]. The reproduced results were 

weaker than the claims made in the original paper for all 100 

studies, although no claim was disproven. A hyper-competitive 

scientific culture that prizes novelty, and provides little 

incentive to reproduce earlier findings or publish results of such 

studies was found partly to blame for this state of affairs. 

Reproducibility as an issue is increasingly being addressed by 

numerous Computer Science research communities, as revealed 

by a search of the ACM digital library (e.g., Human Computer 

Interaction, Software Engineering, Recommender Systems, 

Databases, Simulation, Systems Research, Data Mining), but 

Computer Science Education research is not one of them.    

Reproducibility is not replicability. Whereas reproducibility 

refers to the ability to draw the same results using different 

instruments, methods, protocols and/or participants, replicability 

refers to repeating the original experiment with exactly the same 

instruments, methods, protocols and participants to see if the 

same results can be obtained. Reproducibility is desirable, 

whereas replicability is not even “good science” [1]. 

Being able to reproduce the results of the earlier study on 

arithmetic expressions [6] would not only provide additional 

support to the results of the earlier study, but also extend the 
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results to harder topics such as assignment expressions. In this 

context, the current study was conducted to evaluate the 

effectiveness of visualization in a software tutor on assignment 

expressions and possibly reproduce or refute results from the 

earlier study [6].  

2. METHODOLOGY 

2.1 Participants 
The participants of the study were students in introductory 

programming courses from 41 institutions: 1721 students from 

baccalaureate institutions, 154 from community colleges and 

104 from high schools over six semesters: Fall 2011-Spring 

2014. Students were given the option to identify their sex and 

race. 1348 students identified themselves as male, and 487 as 

female. 1275 students identified themselves as Caucasians or 

Asians, the traditionally represented groups in Computer 

Science, and 256 identified themselves as belonging to 

underrepresented racial groups. Since this was a controlled 

study, institutions were randomly assigned to control or 

experimental group each semester. 

2.2 Instrument – The Software Tutor 
The instrument used for this study was a software tutor on 

assignment expression evaluation. The tutor presents 

expressions to the student, has the student evaluate each 

expression one operator at a time, grades the student’s answer 

and provides feedback. The student evaluates each operator by 

dragging the mouse across the operator and appropriate 

operands to draw an underbrace across them, and entering the 

intermediate result in the dialog box presented for the 

underbrace. The feedback includes whether the student’s answer 

is correct and step-by-step explanation of the correct answer, 

which has been shown to help students learn [5].   

The tutor covers the following concepts: simple assignment, 

compound assignment, prefix and postfix increment and 

decrement operators, precedence and associativity of assignment 

operators, and narrowing and widening coercion during 

assignment. The tutor is accessible over the web – students can 

use it on their own time, and at their own convenience. It is part 

of a suite of problem-solving tutors for introductory 

programming topics, available for free for educational use called 

problets (problets.org).   

The feedback provided by the tutor is in two forms:  

 Text explanation feedback explaining each step in the 

evaluation of the expression. For example, the text 

explanation provided for the expression -- weight is: 

The value of weight is 14 

weight is decremented to 13 

-- weight returns 13 

Prefix -- operator returns the value of 

the variable after decrementing it 

 Graphic visualization feedback in the form of an 

underbrace spanning the operator (-- in the above 

example) and operands (weight above), with the 

intermediate result (13 above) drawn centered underneath 

the underbrace.  

Figure 1 shows a snapshot of the two forms of feedback. 

Graphic visualization explains the order of evaluation of 

operators, but not concepts such as coercion. So, it was provided 

in addition to rather than instead of text explanation. The 

benefits of simultaneous presentation of the same information in 

text and visual forms is explained by dual coding theory [9], 

which postulates that visual and verbal information are 

processed differently, in separate channels, to organize the 

information and create separate mental representations, either of 

which can be used later to recall the information.    

2.3 Protocol 
The software tutor administered pre-test-practice-post-test 

protocol as follows:  

Pretest – During the pretest, the tutor presented one problem 

per concept. If a student solved a problem correctly, no 

feedback was provided to the student, and no more problems 

were presented to the student on the concept. On the other hand, 

if the student solved a problem incorrectly, or opted to skip the 

problem because the student did not know the answer, feedback 

was presented to the student and additional problems on the 

concept were scheduled to be presented during the subsequent 

stages. 

Adaptive practice – Once a student had solved all the pretest 

problems, practice problems were presented to the student on 

only the concepts on which the student had solved problems 

incorrectly during the pre-test. For each such concept, the 

student was presented multiple problems until the student 

mastered the concept. After solving each problem, the student 

received feedback explaining the correct answer. Since this was 

a controlled study, students in the control group received only 

text explanation whereas those in the experimental group 

received both text explanation and graphic visualization. 

Post-test - During this stage, the student was presented test 

problems on the concepts that the student had mastered during 

the adaptive practice. 

Demographics - Students were provided the option to identify 

their demographic information, including sex and race.  

The entire protocol was limited to 30 minutes and was 

administered back-to-back, entirely over the web. A concept 

was considered to have been learned during this session if the 

student solved the problem on that concept incorrectly during 

the pre-test, solved enough problems during the adaptive 

practice to master the concept, and proceeded to solve the 

problem on the concept correctly during the post-test.  

2.4 Design 
The dependent variables of this study were all between-groups: 

 Pre-test mean score per problem, calculated as the total 

pre-test score divided by the number of pre-test problems 

solved – this normalized the variation in the number of 

problems solved by the students (10-17). Since the students 

used the tutor after classroom instruction on assignment 

expressions, pre-test score was a measure of their prior 

knowledge; 

 Number of concepts learned; 

 Number of practice problems solved per learned concept, 

calculated as the number of problems solved during 

practice, divided by the number of concepts learned, once 

again, to normalize the variation in the number of concepts 

learned by the students. Since the tutor was adaptive, and 

presented practice problems on a concept until the student 



had mastered the concept, the more the practice problems a 

student needed to learn a concept, the slower the pace of 

learning.  

The independent variables of this study were: 

 Treatment – text explanation only versus text explanation 

with graphic visualization. 

 Sex: male or female. 

 Representation – traditionally represented (Caucasians and 

Asians) versus underrepresented (the other racial groups, 

viz., Black/African American, Hispanic/Latino, Native 

American, Native Hawaiian/Pacific Islander and Other 

races) 

2.5 Data Collection  
The pre-test contained 17 problems for C++ and 16 problems 

for Java. Since students could use the tutor as often as they 

pleased, if a student used the tutor multiple times, only the first 

attempt when the student solved all the pre-test problems was 

considered. If the student never solved all the pre-test problems, 

the attempt with the most number of pre-test problems solved 

was considered. In order to eliminate trial or frivolous attempts 

by students, only those sessions were considered where students 

solved at least 10 pre-test problems. After this sifting, the 

control group contained 1112 students and experimental group, 

867 students – this was the group for which statistics were 

reported earlier in Section 2.1. 

Although students from high schools, community colleges and 

undergraduate institutions used the tutor, in order to maintain 

homogeneity of participant population, we considered only 

students from undergraduate institutions. 

2.6 Data Analysis 
A typical expression contains one or more operators. The grade 

awarded for a problem was calculated by the software tutor as 

the number of operators correctly evaluated, divided by the total 

number of operators in the expression. Therefore, the score on 

each problem was normalized to 0  1.0 regardless of the 

number of operators in the expression.  

Univariate ANOVA analysis was conducted for the dependent 

variables listed in Section 2.4, with treatment, sex and 

representation as the fixed factors.  

3. RESULTS 
We first analyze the data of all the students. Thereafter, we 

consider subsets of students based on programming language, 

need, benefit and preparation to see if we can localize the results 

obtained for the entire population. We list only significant 

results (i.e., main effects), except for treatment. 

3.1 All the undergraduate students 
The results of analyzing the pre-test score per problem were: 

 No difference in the prior knowledge of the control 

(N=751) and test (N=565) groups. So, any subsequent 

difference between the groups can be attributed to the use 

of the tutor. 

 Male students scored significantly higher than female 

students and traditionally represented students scored 

significantly higher than students from under-represented 

groups as shown in the table below. So, male students and 

students from traditionally represented groups had 

significantly greater prior knowledge than their 

counterparts.  

Pre-test Score N Mean 

Sex [F(1,1315) = 8.845, p = 0.003] 

Male 965 0.872 ± 0.013 

Female 351 0.835 ± 0.021 

Representation [F(1,1315) = 13.601, p < 0.001] 

Traditional 1121 0.877 ± 0.01 

Underrepresented 195 0.83 ± 0.023 

Analysis of the number of concepts learned found that the 

experimental group learned significantly more concepts than the 

control group [F(1,787) = 3.831, p = 0.051] as shown in the 

table below, i.e., students learned more with visualization than 

without. 

Concepts Learned N Mean 

Control 446 2.679 ± .288 

Test 342 3.104 ± .314 

Analysis of the number of practice problems solved per learned 

concept yielded no significant results.  

3.2 C++ Students  
We considered C++ students who had solved all 17 pre-test 

problems (N=352). The results of analyzing the pre-test score 

per problem, summarized in the table below, were that the 

control group students scored significantly more than the 

experimental group students; male students scored significantly 

higher than female students; and traditionally represented 

students scored significantly higher than students from under-

represented groups. In other words, the control group students, 

male students and students from traditionally represented groups 

had significantly greater prior knowledge than their 

counterparts.  

Pretest Score N Mean 

Treatment [F(1,351) = 9.778, p = 0.002] 

Control 275 0.882 ± 0.027 

Test 77 0.800 ± 0.043 

Sex [F(1,351) = 13.222, p < 0.001] 

Male 285 0.889 ± 0.026 

Female 67 0.794 ± 0.044 

Representation [F(1,351) = 27.607, p < 0.001] 

Traditional 296 0.91 ± 0.023 

Underrepresented 56 0.773 ± 0.046 

The results of analyzing the number of concepts learned, as 

summarized in the table below, were that the experimental 

group learned significantly more concepts than the control 

group, i.e., students learned significantly more with 

visualization than without; and female students learned 

significantly more concepts than male students. 

Concepts Learned N Mean 

Treatment [F(1,160) = 5.233, p = 0.024] 

Control 127 2.456 ± .471 

Test 34 3.621 ± .889 

Sex [F(1,160) = 4.932, p = 0.028] 

Male 128 2.473 ± 0.709 

Female 33 3.604 ± 0.715 



The results of analyzing the number of practice problems solved 

per learned concept, as summarized in the table below, were that 

the experimental group solved significantly more problems per 

learned concept than the control group, and female students 

solved significantly more problems per learned concept than 

male students. In other words, the pace of learning was 

significantly slower with visualization than without, and for 

female students as compared to male students.   . 

Practice Problems N Mean 

Treatment [F(1,160 = 4.118, p = 0.044] 

Control 127 3.105 ± 0.276 

Test 34 3.71 ± 0.52 

Sex [F(1,160) = 9.787, p = 0.002] 

Male 128 2.941 ± 0.415 

Female 33 3.874 ± 0.418 

 

3.3 Java Students  
We considered Java students who had solved all 16 pre-test 

problems (N=730). The results of analyzing the pre-test score 

per problem were: 

 There was no difference in the prior knowledge of the 

control (N=346) and test (N=384) groups.   

 Male students scored marginally higher than female 

students, and traditionally represented students scored 

significantly higher than students from under-represented 

groups, as shown in the table below.   

Pretest Score N Mean 

Sex [F(1,729) = 2.996, p = 0.084] 

Male 517 0.875 ± 0.017 

Female 213 0.845 ± 0.029 

Representation [F(1,729) = 5.259, p = 0.022] 

Traditional 629 0.88 ± 0.012 

Underrepresented 101 0.84 ± 0.031 

Analysis of the concepts learned and the number of practice 

problems solved per learned concept yielded no significant 

results. 

3.4 Students who needed to use the Tutor 
A normalized score of 1.0 represented ceiling effect. The 

students who scored less than 1.0 stood to benefit from using the 

tutor, since they had incorrectly solved one or more problems 

during the pretest. For our next analysis, we considered all the 

students whose normalized score was 0.95 or less – this 

included even those who had incorrectly solved exactly one 

problem.   

The results of analyzing the pre-test score per problem were: 

 There was no difference in the prior knowledge of the 

control (N=438) and test (N=327) groups.   

 Traditionally represented students scored significantly 

higher than students from under-represented groups 

[F(1,764) = 7.34, p = 0.007] as shown in the table below. 

Pretest Score N Mean 

Traditional 636 0.799 ± 0.012 

Underrepresented 129 0.759 ± 0.026 

Analysis of the concepts learned found that the experimental 

group learned significantly more concepts than the control 

group [F(1,619) = 4.973, p = 0.026] as shown in the table below, 

i.e., students learned significantly more with visualization than 

without. 

Concepts Learned N Mean 

Control 264 3.019 ± .316 

Test 356 3.547 ± .342 

Analysis of the number of practice problems solved per learned 

concept yielded no significant results.  

3.5 Students who benefited from the Tutor 
The students who benefited from using the tutor were those who 

learned at least one concept. For our next analysis, we 

considered all the undergraduate students who had learned at 

least one concept.   

The results of analyzing the pre-test score per problem were: 

 There was no difference in the prior knowledge of the 

control (N=446) and test (N=342) groups.   

 Male students scored marginally more than female 

students, and traditionally represented students scored 

significantly higher than students from under-represented 

groups, as shown in the table below.   

Pretest Score N Mean 

Sex [F(1,787) = 2.769, p = 0.097] 

Male 559 0.83 ± 0.16 

Female 229 0.806 ± 0.23 

Representation [F(1,787) = 8.7, p = 0.003] 

Traditional 677 0.84 ± 0.011 

Underrepresented 111 0.797 ± 0.027 

Analysis of the concepts learned found that the experimental 

group learned significantly more concepts than the control 

group [F(1,787) = 3.831, p = 0.051] as shown in the table below, 

i.e., students learned significantly more with visualization than 

without. 

Concepts Learned N Mean 

Control 342 2.679 ± .288 

Test 446 3.104 ± .314 

Analysis of the number of practice problems solved per learned 

concept yielded no significant results.  

3.6 Less-prepared Students  
The mean of normalized pre-test scores for the entire 

undergraduate cohort was 0.853. The students who scored 0.853 

or lower on the pre-test were less-prepared as compared to those 

who scored more than 0.853. We next considered the less-

prepared undergraduate students.  

Analysis of the pre-test score per problem found no difference in 

the prior knowledge of the control (N=281) and test (N=177) 

groups.   

Analysis of the concepts learned found that the experimental 

group learned significantly more concepts than the control 

group [F(1,379) = 6.859, p = 0.009] as shown in the table below, 

i.e., students learned significantly more with visualization than 

without. 

Concepts Learned N Mean 



Control 233 3.568 ± .377 

Test 147 4.326 ± .427 

Analysis of the number of practice problems solved per learned 

concept yielded no significant results.  

3.7 Better-prepared Students  
Finally, we considered the better-prepared students: those whose 

normalized score was over the cohort average of 0.853, but 

under 1.0. We excluded the students who had scored 1.0 since 

they knew all the concepts, and could not benefit from using the 

tutor.   

Analysis of the pre-test score per problem found that there was 

no difference in the prior knowledge of the control (N=249) and 

test (N=246) groups.   

Analysis of the concepts learned and the number of practice 

problems solved per learned concept yielded no significant 

results.  

4. DISCUSSION 
The following table summarizes the results of the various cases 

that we analyzed in the previous section. The rows correspond 

to the 7 cases we considered: All the students, C++ students, 

Java students, the students who needed the tutor, the students 

who benefited from using the tutor, the less-prepared students 

and the better-prepared students. For each of Pretest Score, 

Concepts Learned and Problems per Learned concept, the 

columns list Treatment (T), Sex (S) and Representation (R). A 

cell contains a check mark if a statistically significant result was 

found for it, e.g., when all the students were considered, a 

significant difference was found between the sexes (S) on the 

Pretest Sore.   

 Pretest Score Concepts 

Learned 

Problems per 

Concept  

 T S R T S R T S R 

All  √ √ √      

C++ √ √ √ √ √  √ √  

Java  √ √       

Need    √      

Benefit   √ √      

Less    √      

Better          

From the Pretest Score (T) column of the table, it is clear that 

the prior preparation of the control and experimental groups was 

statistically comparable in all but one case. Yet, from the 

Concepts Learned (T) column of the table, it is clear that 

visualization helped the students learn significantly more 

concepts in most cases. It helped the students learn more 

concepts, whether the students needed to use the tutor or 

benefited from using the tutor. However, it only benefited the 

less-prepared students, not the better-prepared ones.  

From the Problems per Concept (T) column of the table, it is 

clear that visualization did not help the students learn faster, as 

measured by the number of practice problems solved per 

learned concept. In the one instance when a significant 

difference was found for treatment (C++), learning was slower 

with visualization than without!  

Considering the lack of significant differences in S and R 

columns of Concepts Learned and Problems per Concept, we 

can state that 1) the tutor was not biased towards either sex or 

racial group; and 2) both the sexes and racial groups benefited 

the same from using the tutor. In the one case (C++) when a 

significant difference was found for sex, female students learned 

more concepts, although at a slower pace than male students. 

From (S) and (R) columns of Pretest Score, we can summarize 

that regrettably, female students were often less-prepared before 

using the tutor than male students and underrepresented 

students were often less-prepared than traditionally represented 

students. In the prior study, arithmetic expressions were used 

[6]. Since many of the concepts covered as arithmetic 

expressions in programming languages are typically also 

covered in K-12 math, it is harder to localize the reason for the 

differences in the prior preparation of the sexes and racial 

groups, if any. Assignment expressions on the other hand are 

concepts unique to programming languages – it is safe to 

assume that they are not covered in K-12 math. Any prior 

knowledge of assignment expressions is acquired by the 

students in class or through programming activity. This leads to 

one of two explanations for the lower prior-preparation of 

female and underrepresented students: 

 Although introductory programming courses typically 

assume that students will not have had any prior 

programming experience, this may not be entirely accurate. 

Male and traditionally represented students may be 

entering the introductory programming course with more 

exposure to programming concepts than their counterparts. 

If so, providing additional encouragement to female and 

underrepresented students in high school to engage in 

programming activities may redress this difference.  

 Somehow, male and traditionally represented students learn 

better from classroom instruction of introductory 

programming concepts than their counterparts. If so, 

Computer Science educators and education researchers 

may want to isolate the instructional strategies for 

introductory programming that are effective across sexes 

and races and propagate them.   

Since this is a reproducibility study, comparison of the results 

from this study with those from the previous study [6] are in 

order. Primary results of the prior study were that “visualization 

helped students learn more concepts; visualization did not 

increase the speed of learning; the benefits of visualization 

accrued primarily to less-prepared students; and visualization 

may affect different demographic subgroups differently”. All 

the results were reproduced in the current study except the last 

one – the population size of the current study was not large 

enough to confirm/refute whether visualization affected 

different demographic subgroups (e.g., underrepresented female 

students) differently. Students find the subject of this study, viz., 

assignment expressions to be harder than arithmetic expressions, 

the subject of the prior study. So, in addition to confirming the 

results of the earlier study, this study extended those results to 

harder topics.   



So, why was visualization found to be effective in both the 

studies, especially for the less-prepared students, when the form 

of visualization was “viewing”, one of the least effective forms 

of engagement [7]? It could be because students also 

“constructed” their answer using the same visualization scheme 

before submitting it, and “constructing” is considered to be one 

of the highest levels of engagement [7]. Using the same 

visualization scheme to both view feedback and construct 

answers may hold the key to improving the effectiveness of 

visualization in software tutors. For instance, just as drawing 

underbraces was found to be effective for evaluating 

expressions, the following student-constructed visualization 

techniques might turn out to be effective for other program 

comprehension tasks: drawing boxes around code segments to 

clarify scope; drawing arrows across code to trace the flow of 

control and data; and superimposing state diagram on the code 

to track and debug the lifecycle of variables. Future work 

includes evaluating the effectiveness of these student-

constructed visualization techniques in online tutors.    
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Figure 1 (© Amruth N. Kumar): Screen shot of the feedback provided by Assignment Expression Tutor. Both graphic visualization 

(between the two pink lines) and text explanation (after the second pink line) are shown. Courtesy: problets.org. 


