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Abstract: Chalcogenide phase change materials based on germanium-antimony-tellurides
(GST-PCMs) have shown outstanding properties in non-volatile memory (NVM) technologies due to
their high write and read speeds, reversible phase transition, high degree of scalability, low power
consumption, good data retention, and multi-level storage capability. However, GST-based PCMs
have shown recent promise in other domains, such as in spatial light modulation, beam steering,
and neuromorphic computing. This paper reviews the progress in GST-based PCMs and methods
for improving the performance within the context of new applications that have come to light in
recent years.
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1. Introduction

Over the past few decades, chalcogenide phase change materials have received increased attention
for next-generation non-volatile memory [1–3] and high density optical recording [4–6]. Typically,
a chalcogenide material has two or more discrete states at which it exhibits distinguishable material
properties. The change in the state is driven by thermal excitation, usually via an electrical or optical
pulse. The significant difference between these states in electrical and optical properties upon the
reversible switching allows storing the rewritable digital bit information. The most ubiquitous phase
change material, GeSbTe (germanium-antimony-tellurium or GST), is a ternary compound consisting
of germanium, antimony, and tellurium that is capable of reversibly switching at high speeds between
its amorphous and crystalline states in response to thermal excitation. The crystallization temperature
of the alloy is between 100 ◦C and 150 ◦C and the melting point is about 600 ◦C (873 K). Due
to the non-volatility and high stability of both states, chalcogenide phase change materials have
been used in rewritable optical recording media for years [7–9]. In the optical recording media
application, a laser with controllable intensity and pulse duration is used to interact with the material,
namely, heat a small volume to switch the material between crystalline and amorphous states. The
information is then stored in the reflectivity of the phase change material layer. For electronic memories,
even though Flash memory is the currently leading technology for non-volatile memory devices,
the next generation of memory requires even higher speeds for write and erase processes, while
maintaining high endurance, good scalability, low cost, and high power efficiency. With developments
in lithography and discoveries in chalcogenide compounds, recently GST emerged as an important
candidate for the electronic nonvolatile memory devices [10–13]. Within longer-term prospects, new
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In 1979, Phillips proposed a theory explaining the effect of the number of bonds per atom
(coordination number) in chalcogenide alloys [19]. When the average coordination number for a
material is between 2 and 3 (preferably 2.45), the ability of this material to form an amorphous state is
high. By applying this theory into the phase-changing material GST, based on the assumption that the
average coordination number can be calculated from the maximum number of bonds for the atoms,
the Sb2Te3 easily tends to form an amorphous state due to the coordination number being around
2.4, while is close to the ideal value. GeTe is less apt to form into an amorphous state because the
coordination number is 3, which is relatively away from the ideal value [20]. Therefore, as a mixture of
GeTe and Sb2Te3, the Ge-Sb-Te material becomes less apt to form an amorphous state as the proportion
of GeTe increases, because of more GeTe content in the material, the greater difference between the
average coordination number to the ideal number. In GeTe and GeTe-rich compounds, as indicated in
the top region of the pseudobinary line, the number of excess vacancies move the Fermi energy to the
region of extended states, which results in a metallic behavior. For the vacancy-rich GST compounds
in the middle part of the line, the Fermi level lies in the region of localized states and the system
exhibits insulating behavior. At the bottom region of the line, it becomes increasingly difficult to obtain
a cubic phase experimentally. It has been found that Sb2Te3-rich compounds exhibit stable hexagonal
structures with very elongated primitive cells [21].

2.2. Switching Properties

In rewritable optical recording media and other PCM devices, the information storage utilizes
either the large electrical or optical contrast between the two states for binary representation. As the
operation for the typical memory devices shown in Figure 2, SET (conventionally linked to writing
a logic ‘1’) and RESET (writing a logic ‘0’) states are controlled by a Joule heating process and are
associated with amorphous-to-crystalline and crystalline-to-amorphous transitions, respectively. Since
crystallization is a slower process than amorphization, the SET process in a device requires heating the
material above its crystallization temperature for a sufficient length of time (tens to 100s of ns) so that
the atoms rearrange themselves in crystalline order. A medium level laser or current (blue curve) for
fairly long pulse times is used to re-crystallize the phase change material to its crystalline state. On the
other hand, the RESET or amorphization process needs a higher temperature with a shorter duration
to melt and convert the material to a liquid (amorphous) state then quickly quench the material such
that the atoms do not have time to arrange in a crystalline fashion. The typical time required for RESET
switching is shorter than a few tens of nanoseconds [22,23]. In this process, the temperature of the
material needs to drop down quickly, i.e., the fast quench should occur faster than the timescale for
thermal diffusion from cell to neighboring cell, preventing reorganization into a crystalline structure.
A much lower level laser or current with essentially no Joule heating is used for reading the state,
differentiating between amorphous (low reflectivity, high resistivity) and crystalline (high reflectivity,
low resistivity) states.

These two approaches for switching the phase of a phase-change device, electrical and optical
control, generate two formats of devices, driven by either electricity or light. For example, for PCRAM
devices as in Refs. [24–27], the phase change material, and a heater element are connected in series, with
the heater inducing localized Joule heating aimed at switching the volume near the interface region
(between the heater and phase change material elements). We will discuss the details of PCRAMs in
Section 3.1. Optical control is another effective approach that generally uses an optical pump beam
that is focused on the PCM film, leading to Joule heating by absorption, which induces the phase
transition. The rewritable optical disk is one of the well known optical control PCM applications [1,2].
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Figure 17. Measured (a) transmission and (b) reflection (at 45-deg incidence) compared to the calculated
results for the PASS and BLOCK states. Adapted with permission from Reference [15]. ©2018 IEEE.

3.2.2. Meta-Surfaces

Metasurfaces or two-dimensional metamaterials where light does not typically penetrate through
the surfaces have been demonstrated to have usefulness in lenses, hologram and polarization
control [92,93]. However, optical loss is a common theme for all those devices, due to the metal elements
in conventional metasurface devices. Another limitation is that conventional metasurfaces-based
devices are not cost-effective since once a device is made, it only works for a certain functionality and
wavelength. Therefore, there has been considerable interest recently in developing tunable all-dielectric
metasurfaces for light modulation applications by using the phase change materials [94–97] instead of
metallic elements used in earlier works.

4. Doping

GST is promising in both electrical and optical fields as discussed in the previous chapters,
however, there are several issues that come to play in real applications, such as the stability of the
amorphous state, power consumption and resistivity contrast in RF devices. One method to solve the
problems is through doping other elements inside the GST material. A variety of elements such as
C [98,99], O [100], N [100], Ni [101], Si [102], Al [103,104], Ti [105], W [52] and Cu [106] have been used
to improve the device performance.

4.1. Resistivity at Amorphous State

GST has a quite large resistivity at amorphous state-several hundred Ω·m—which can limit the
potential applications in the electrical devices, especially for high speeds applications. The large
resistivity requires a high voltage or long wait time to dissipate sufficient power in the devices to
induce the transition, as well as resulting in a large impedance difference between the amorphous
and crystalline phases. In the past few years, different dopant elements have been studied to modify
the electrical properties of the host GST materials. The dopant can exist in the grain boundaries to
suppress the grain growth, which results in a higher transition temperature.

4.2. Amorphous State Stability

One of the main issues faced by PCRAMs and other GST-based devices is the instability of the
amorphous state after repeated cycling of the phase transition. One of the methods to improve the
stability is by incorporating dopant in the GST structure, such as Sn [107]. The reason for the improved
stability of the amorphous state is that the material effectively becomes a multi-element material
consisting of four or more elements, which can effectively suppress the movement of atoms due to
different atomic radiuses and hence, increase the activation energy [20].
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4.3. Operation Speed

Another challenge remaining in PCRAM technology, especially for high-speed cache-memory,
is the operation speed. Generally, as the film goes thinner, the crystallization speed drops and
phase transition temperature increases [29]. To increase the crystallization speed for very thin films,
Yamada et al. [8] reported the Sn dopant in Ge2Sb2Te5 which could increase the crystallization speed
and even a 5 nm thick film showed a crystallization time less than 50 ns. Since SnTe has a lower
crystallization temperature and a higher melting point than GeTe, the probability of nucleation will
be higher in amorphous SnTe than GeTe. Which means the crystallization process in GST can be
accelerated by substituting Sn for Ge. Furthermore, since both SnTe and Ge2Sb2Te5 have a stable
NaCl structure after crystallization, they tend to form a single-phase crystal after crystallization. It is
strongly expected that Sn replaces Ge substitutionally, which is supported by the fact that both Sn and
Ge belong to Group IV in the periodic table and possess relatively close atomic radii.

In 2017, Rao et al. introduced ScSbTe alloy to speed up the crystallization kinetics from tens
of nanoseconds of GST down to 700 picoseconds, which comes from the reduced stochasticity of
nucleation through geometrically matched and robust Sc-Te chemical bonds that stabilize crystal
precursors in the amorphous state [108]. In other words, this compound geometrically matched very
well to the base-alloy rock-salt crystalline product Sb2Te3, and the Sc2Te3 bond is more robust as
compared with Sb2Te3.

5. Deposition Methods

Different deposition methods affect the film composition, density, and stress hence the electrical
and optical properties. Therefore, it is necessary to review the fabrication methods for GST. Sputtering
(Section 5.1) and Pulsed Laser Deposition (PLD) (Section 5.2) tend to provide films with good density.
A good conformal step coverage in fabrication means the created thin films have the same vertical
and horizontal thickness. The non-conformal step coverage is good for lift-off to create GST optical
device, while the conformal step coverage is critical in creating confined cell structures. Therefore,
it is necessary to introduce the deposition methods for GST films that can provide a non-conformal
step coverage or a good conformal step coverage. to have access to both conformal and nonconformal
deposition methods. Evaporation (Section 5.3) is a typical directional deposition technique to create
non-conformal step coverage which is preferred by the lift-off process. The techniques can provide
good conformal step coverage include chemical vapor deposition (CVD) (Section 5.4), atomic layer
deposition (ALD) (Section 5.5), and plasma enhanced chemical vapor deposition (PECVD). Evaporation
is a typical directional deposition which is preferred by the lift-off process.

5.1. Sputtering

Sputtering is a widely used deposition method for a wide variety of thin films. It is particularly
suited for GST because of its multi-element composite nature. Sputtering can produce high-quality
dense films with preservation of the stoichiometry upon deposition. In sputtering, a target with
the correct GST composition is typically used as the material source, see Figure 18a. Ar+ atoms are
accelerated by an electrical field towards the target where the atomic species are sputtered out. These
atoms and clusters land on the substrate to form the thin films. One of the strengths in sputtering is
the preservation of the target stoichiometry, which occurs only after a certain length of time (known
as target conditioning) to account for the different sputter yields of the constituent elements of the
target. The sputtered films properties can be controlled by adjusting the working pressure, power,
and the plasma gas. During DC sputtering, a higher argon pressure leads to a lower phase transition
temperature [109], see Figure 18b. The argon gas also has an effect on the sputtered thin film surface
morphology, Bakan et al. [110] reported the sputtered GST film tends to form cracks with a higher
Ar flow rate (higher pressure), presumably due to the accumulation of stress. Therefore, the higher
quality GST can be deposited by sputtering at a lower argon pressure.
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