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Abstract—The use of hardware encryption and new memory technologies such

as phase change memory (PCM) are gaining popularity in a variety of server

applications such as cloud systems. While PCM provides energy and density

advantages over conventional DRAM memory, it faces endurance challenges.

Such challenges are exacerbated when employing memory encryption as the

stored data is essentially randomized, losing data locality and reducing or

eliminating the effectiveness of energy and endurance aware encoding

techniques. This results in increasing dynamic energy consumption and

accelerated wear out. In this paper we propose counter advance, a technique to

leverage the process of encryption to improve reliability and lifetime while

maintaining low-energy and low-latency operation. Counter advance is compatible

with standard error-correction codes (ECC) and error correction pointers (ECP),

the standard for mitigating endurance faults in PCM. Counter advance achieves

the same fault tolerance using three ECP pointers for a 10
�4 cell failure rate

compared to the leading approach to consider energy savings and reliability for

encrypted PCM (SECRET) using five ECP pointers. At a failure rate of 10�2,

counter advance can achieve an uncorrectable bit error rate (UBER) of 10�10,

compared to < 10
�4 for SECRET, using six ECP pointers. This leads to a lifetime

improvement of 3.8� while maintaining comparable energy consumption and

access latency.

Index Terms—Emerging memories, reliability, stuck-at faults, and error correction

Ç

1 INTRODUCTION

FUTURE high performance servers are expected to utilize tiered
memory that employs new solid state technology like phase-
change memory (PCM). PCM is gaining popularity in these sys-
tems as evidenced by products like the Micron/Intel 3D XPoint
memory, due to their near DRAM read latency with improved
density, energy, and non-volatility [1], [2]. A challenge of PCM
is its high dynamic write power. Many proposed solutions to
this challenge leverage data locality where a newly written
value typically has high similarity to the currently stored data.
Thus, techniques like differential write [3] and flip-N-write [4]
leverage this similarity to reduce dynamic power. Additionally,
PCM has a challenge of limited write endurance (circa 10

8

writes) [5] before failing as a “stuck” cell. Cells “stuck-at” a par-
ticular value can be read but their state is immutable. The tech-
niques to reduce bit changes to save energy also improve the
effective memory endurance.

The non-volatility of PCM can be a further challenge if
physical security of the hardware is compromised. Dedicated
encryption in the memory is one proposed solution to help mit-
igate these risks. Unfortunately, when storing encrypted data,
locality is lost as the probability of any particular cell being a
‘1’ or ‘0’ becomes 50 percent. Thus, for each write, approxi-
mately 50 percent of the cells must be written, even if actual
value changes minimally. This leads to increased energy con-
sumption and faster wear out.

We propose counter advance, a technique to leverage the existing
encryption hardware to improve reliability in PCM with dedicated
counter-based encryption. Counter advance utilizes several obser-
vations: First, for stuck-at PCM cells, depending on the value to be
written and the state of each faulty cell, the data can either be stuck-
at the right value (stuck-at right, SA-R) or the wrong value (stuck-at
wrong, SA-W). Second, a new encryption of the same data item can
be generated by running the encryptionwith the next counter value.
Third, for each new encrypted candidate for storage, there is a
50 percent chance for each faulty cell that the data will be SA-R.
Thus, by exploring multiple counter values, a value that eliminates
(or minimizes) SA-W values may be obtained. In this case, even for
a rowwith some faulty cells due to endurance, the systemmay con-
tinue to operate, extending the useful lifetime of the memory.
Assuming a 27- to 32-bit counter, 108 to 109 writes per row, which
meets or exceeds the projected PCM cell endurance, can be achieved
for a single key. If multiple encryptions are used only to tolerate
faults, then the average counter advances per write will be < < 2.

In particular, we make the following contributions:

1) We present counter advance to improve the reliability and
lifetime of PCM storage subject to endurance faults.

2) We demonstrate an architecture to apply counter advance
in the context of the leading method to reduce energy for
counter encrypted PCM.

3) We demonstrate the combined capability of counter-
advance with ECC and ECP [6] protection to improve reli-
ability and minimize storage overheads.

4) We provide detailed analyses of counter advance for the
SPEC benchmark suite.

2 BACKGROUND

Counter-mode encryption [7] to secure main memory, depicted in
Fig. 1, was originally proposed for DRAM [8] by adding a cipher
into the memory controller and adding counter storage for each
memory row. Using a private key, a unique counter value, and the
row address, the cipher generates a one-time pad (OTP). The OTP
is XORed with the data to create an encrypted ciphertext. Decryp-
tion functions in the reverse, reading the data ciphertext and the
counter in plaintext from the memory row to recreate the OTP and
reverse the encryption process.

Unfortunately, encryption has the side effect of disrupting data
locality, as for each plaintext value written, a unique OTP is gener-
ated containing a random set of 0’s and 1’s. Because the OTP
changes for each write and the OTP is XOR’d with the plaintext,
small or large changes in the plaintext results in similarly random
ciphertext. This unpredictable output for each OTP is what gives
the encryption its strength. When applied to a memory technology
like PCM, standard energy saving techniques such as encoding
and differential write are defeated and the increase in bit changes
can lead to early cell wear-out.

SECRET or Smartly EnCRypted Energy EfficienT non-volatile
memories [9] addresses these challenges by allocating a dedicated
“epoch sub-counter” for blocks within the row. Thus, row writes
must only encrypt dirty blocks. The sub-counter maintains inde-
pendent count values for each block within an epoch. When a sub-
counter saturates, the epoch ends, the main counter is advanced,
all sub-counters are reset, and the entire row is encrypted and writ-
ten with the new count value. SECRET addresses reliability by allo-
cating ECP pointers [6] per row to tolerate faults.

3 COUNTER ADVANCE

Counter advance leverages the property that encryption of plaintext
with a new counter generates a new random ciphertext. Recall that
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data that matches the stuck-at value is SA-R and data opposed to
the stuck-at value is SA-W. When writing a ciphertext candidate in
the presence of stuck-at faults, each faulty cell has a 50 percent
probability of being SA-R, and similar for SA-W. Thus, by incre-
menting the counter, it is possible to improve fault tolerance by
finding a ciphertext candidate that maximizes SA-Rs.

Consider the example in Fig. 2 for a row with two stuck-at faults
such that, given the ciphertext, the first is SA-R and the second is
SA-W. Advancing the counter (Counter+1) resulted in the first
fault becoming SA-W and the second becoming SA-R. This is due
to the property that each fault in each ciphertext candidate has a 50
percent chance to be SA-R, but is equally likely to be SA-W.
Advancing the counter again (Counter+2) was unlucky, resulting
in two SA-Ws. The probability of finding an error free candidate
with f faults is 2�f , or 25 percent for f=2, which required multiple
advancements in the example. Both word-level encryption and
error correction can dramatically reduce the number of advance-
ments to find an error free candidate. For example with single bit
error correction (e.g., ECP-1), the example of Fig. 2 would have
been successful without counter advancement. If SECRET is used
with independent sub-counters per block and assuming all blocks
were dirty, blocks zero to two would have been written with
Counter and block three would have used Counter+1.

We explore counter advancewith block level encryption and error
correction in Fig. 3. Fig. 3a expands on Fig. 1 with sub-counters per
128-bit block in the style of SECRET [9]. Counter advance applied in
this context examines the stuck-at bits independently between blocks
and only advances the counter when SA-W bits appear. Stuck-at
faults can be determined by storing and reading patterns of all ‘1’s
and ‘0’s or using a fault cache [10]. It is straightforward to extend
block-level encryption with ECC as the parity bits (e.g., SECDED
(64,72) ECC) would not cross blocks. In this case, counter advance
could protect fewer SA-W errors and allow ECC protection to correct
others at the cost of reduced transient error protection.

ECP, in contrast, uses pointers that are shared by the blocks of a
given row. Block-level counter advance faces the trade off of using
a pointer or advancing the counter to mitigate a fault. Using a
pointer will reduce the availability of pointers to tolerate faults in
other blocks. The algorithm for selecting the appropriate write can-
didate for ECP with counter advance is shown in Fig. 3b.

Assuming a counter advancement epoch window w where
w ¼ 2

b and b is the number of bits for each sub-counter, w serves as
a threshold of how many counter values will be explored to accom-
plish a particular write successfully. If the encrypted data experien-
ces E errors (i.e., SA-Ws) but E is less than a threshold T , the write
proceeds with the current c value. Otherwise, if this is the “best”
candidate (i.e., fewest SA-Ws) so far it is retained. If c is still within
the epoch w, c is incremented and the next candidate is evaluated.
If c reaches the limit of the epoch without finding a candidate
within the error threshold, the best candidate is written if sufficient
ECP pointers are available, otherwise the write fails. In our evalua-
tion we consider two schemes: the counter minimization (CM)
approach sets T to the number of available ECP pointers, allowing
a write to proceed with the minimum counter value that discovers
a possible solution, while the pointer minimization (PM) approach
sets T=1 requiring a fault free solution to write immediately.

4 EVALUATION

To evaluate the effectiveness of counter advance we studied a 4 GB
main memory, with 64-bit words, and 512-bit rows organized in
4 KB pages using eleven SPEC CPU 2006 benchmarks [11]: bzip2,
cactus, gamess, gcc, gobmk, gromacs, leslie3d, mcf, namd, pearl,
and zeusmp. Each workload was executed for at least 1 billion
write accesses. Three bits were allocated as a sub-counter for each
block, setting w ¼ 8. High cell failure rates ( 10�3, and 10

�2) repre-
senting different points during the memory lifetime, as shown in
Fig. 4, were used as stimuli for counter advance. To model the
stuck-at faults, we created fault maps, including fault bits stuck at
‘0’ or ‘1,’ at these cell failure rates using Bayesian distribution to
mimic the impact of process variation with spatial correlation of
faults [12]. As process variation increases with scaling, the memory
will incur cell faults more quickly and better error correction will
be necessary to maintain effective lifetimes. For example, at a coef-
ficient of variation (CoV) of 0.2, increasing fault tolerance to handle
cell failures of 10�2 instead of 10�4 will extend the lifetime by 1.1�.
For CoV of 0.25 and 0.3 effective lifetime can be extended by 3.8�
and 16.4�, respectively, making operation in this failure range crit-
ical to reasonable memory lifetimes as scaling increases.

Fig. 5 shows a summary of the uncorrectable bit error rate
(UBER), defined as the number of bit errors that occur per bit

Fig. 1. Counter mode encryption in the memory controller.

Fig. 2. Counter advance example. Green indicates a SA-R fault and orange a SA-
W fault. Purple blocks are error free and red blocks contain an error.

Fig. 3. Block level counter advance architecture.
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written, for both row and block-level encryption with different
strengths of error correction used to protect the data and counter
bits. A “word-level” 64-bit block size was selected to match the
word size in modern architectures. With no error correction, word-
level counter advance (word CA) provides two orders of magni-
tude improvement in UBER compared to word-level encryption
alone, such as SECRET [9], for as high as a 10

�3 cell failure rate. As
error correction is employed the improvement is amplified, provid-
ing 3–5 orders of magnitude improvement by introducing one ECP
pointer (ECP1). At a cell failure rate of 10�3, an UBER of � 10

�10

required only ECP4 for word and row CA. Employing PM reduced
the requirement to ECP3. In contrast, SECRET with ECP6 can only
achieve a 10�7 UBER.

At a cell failure rate of 10�2, unsurprisingly, UBER is drastically
reduced. For ECP6, the protection proposed by SECRET [9],
counter advance achieves a 10�7 UBER versus 10�4 for ECP6 alone.
Relaxing counter advance to explore eight epochs allowed word
CA with PM to function at a < 10

�10 UBER with ECP6. This indi-
cates that while a device might operate using the CM approach ini-
tially to minimize counter advancements, it could switch into PM
and expand the searching window for gracefully degraded operation
mode when the cell failure rate became sufficiently high.

Counter advance is sensitive to block size. Small block sizes will
increase the flexibility to eliminate faults. Our block-size sensitivity
study indicates counter advance is nearly as effective for 64-bit
blocks as 32-bit blocks. 128-bit blocks have a noticeable degradation
(0.5-1 orders of magnitude UBER), particularly with ECC and ECP,
however, the counter advance improvements are still dramatic.

A logical concern about counter advance is the impact to perfor-
mance from evaluating multiple ciphertext candidates and the
potential to saturate the encryption counter more quickly. Fig. 6
shows the number of counter increments per write operation.
Word-level encryption naturally reduces the average counter
advancements per write (A) to A=0.98 compared to the row-level
baseline of A=1, as each write only advances the dirty words’ sub-
counters. This provides sufficient “room” for word-level fault-
induced counter advancements for lower fault rates (e.g., � 10

�4)
without exceeding the row-level counter lifetime. At 10�3, for
ECP �3, A < 1. At 10�2 there are significant fault-induced counter

advancements, owing to gracefully degraded operation. However,
increasing the number of epochs searched for larger numbers of
ECP pointers, especially ECP6, provides significant improvements
in protection, with only slight increases toA. To achieve an UBER of
10�10 only requiresA=1.2 with ECP6 after a cell failure rate of 10�2.

As this gracefully degraded mode would only occur very late in
the memory lifetime, these counter advancements would only sat-
urate the counter nominally sooner while extending the usable life
dramatically. If the system is reset with a new encryption key or
the data is moved for another reason (e.g., wear-leveling [13]), the
counter can also be reset. Moreover, given that writing is not typi-
cally on the performance critical path, our experiments indicate
that these additional encryptions (A=1.2) do not significantly
degrade performance.

5 ALTERNATIVE IMPLEMENTATIONS

Counter-mode encryption has a downside that it requires the stor-
age of a counter for each row. Unfortunately, this overhead cannot
be eliminated for counter-mode encryption. However, the storage
dedicated to the per-word sub-counters, initially proposed by
SECRET [9] to reduce energy and improve endurance, could be
retargeted to improve fault tolerance. This storage would be insuf-
ficient to add additional ECC, but could add two additional ECP
pointers. This comparison is shown in Figs. 5 and 6 by comparing
word CA with ECP-N to row CA with ECP-N+2. The results indi-
cate that for lower fault rates, row CA would provide an advantage
in fault tolerance at the cost of increased energy and reduced
endurance. As the fault rate increases, word CA in PM mode is
more fault tolerant while maintaining energy and endurance bene-
fits over row CA.

NIST has proposed to use AES XTS as a standard for disk
encryption [14]. While there are feasibility challenges to applying
XTS in memory while guaranteeing protection, XTS would elimi-
nate the need for counter storage in memory. XTS is based on
XOR-encrypt-XOR (XEX) [15]. In disks, XEX/XTS encrypts twice,
utilizing one key/encryption based on the sector and a second for
each block within the sector. By extending the second encryption
with an additional parameter supplied by the sub-counter, multi-
ple candidates can be generated per block to improve fault toler-
ance. Because the ciphertext candidates for both XTS and counter-
modes of AES have the same random properties, the results we
obtained from XTS encryption are the same as those reported in
Figs. 5 and 6.

6 RELATED WORK

SECRET is the current state of the art in energy reduction and
fault tolerance for encrypted PCM memory. However, SECRET
improves on prior proposals such as DEUCE, or Dual Counter
Encryption, which saves energy by distinguishing between dirty
and clean words and encrypting on the dirty words within the
epoch. DEUCE does not consider reliability and SECRET provides

Fig. 4. Cell fault rate for different coefficients of variation.

Fig. 5. UBER for various error rates. Counter advance explores one epoch (w=8), except where noted. Word CA+ECP is reported for CM with an error bar indicating PM.
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significant savings over DEUCE at the cost of additional sub-
counter bits [9]. A specifically fault-tolerant proposal is to use the
increasing counter value to serve as an indicator of PCM memory
cell age and using this information to adopt increasingly capable
ECC to combat memory faults [16]. Counter advance is comple-
mentary to this approach allowing use of lower overhead ECC for
a longer duration, or achieving a particular UBER with a lower
overall ECC storage. There has also been recent work to collabora-
tively design wearleveling with counter-mode encryption. The
counter storage size is reduced by resetting the counter when the
data is moved to a new location from the wear-leveling resulting in
improved overhead and latency [13]. Again counter advance is
complementary as the number of counter advancements to main-
tain reliability would require minimal impact to the total counter
advancement, which can retain the storage savings of this wear-
leveling approach.

7 CONCLUSION

Counter advance leverages the nature of block cipher encryption to
improve reliability of systems that use in memory encryption for
memory with endurance faults that manifest as stuck-at values.
Counter advance in the presence of SA-Ws generates additional
write candidates to maximize SA-Rs just by advancing the counter.
Counter advance is compatible with row or word-level writes and
provides multiplicative improvements in UBER compared to error
correction alone. Counter advance can achieve the same protection
as strong error correction (e.g., ECC or ECP5) with far fewer
pointers (e.g., ECP1) at moderate error rates. It can also maintain
an UBER of 10�10 with the same error correction as the leading
related work [9] for extremely high fault rates of 10�2. This can
lead to lifetimes being extended by 2-10� or more depending on
severity of process variation. We plan to explore the performance
impact, lifetime improvement, and examine other modes of
encryption in detail in our future work.
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