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Abstract— Deep scaling in conjunction with increased process
variation has resulted in increasingly faulty memories. Emerging
memories, particularly phase-change and resistive memories, can
experience stuck-at faults due to limited endurance. Partition
and flip (PAF) schemes partition data into blocks and invert these
blocks as needed to ensure data that is written matches the stuck-
at cells. In this paper, we propose two novel correction schemes
that substantially enhance the fault-tolerance capabilities of
existing PAF techniques. First, dynamic partitioning increases
the number of possible configurations with equivalent auxiliary
bits. At high fixed error rates, the increase in configurations
results in improved write error rates for flip-N-write and Aegis
partitioning by 7%–72% and 5–53×, respectively. Our second
novel partitioning method, relaxed partitioning, dramatically and
effectively increases the partitioning search space by specifying
minimally overlapping configurations. Through Monte Carlo
simulations, data-aware dynamic partitioning tolerates 25%
and 27% more faults over its lifetime than Aegis with 36 and
43 auxiliary bits per 512-bit data block, respectively, while
relaxed partitioning achieves an extra 15% and 24% additional
improvement while requiring two fewer overhead bits per data
block.

Index Terms— Dynamic partitioning, emerging memories, reli-
ability, stuck-at faults.

I. INTRODUCTION

DRAM and Flash memory encounter significant chal-

lenges due to technology scaling. This scaling results in

increased process variation and leads to wider divergence of
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capacitance of memory cells. This results in more “weak” cells

that have either reduced data retention time or poor charge

sensing fidelity, which leads to increasing numbers of memory

faults [2], [3].

Emerging memories, such as phase-change memory (PCM)

and memristors (RRAM), provide great scalability, high den-

sity, and nonvolatility making them promising candidates to

replace DRAM and Flash in main memory or secondary

storage applications [4], [5]. Unfortunately, both PCM and

RRAM suffer from limited write endurance [6]. For example,

a typical PCM cell can sustain from 108 to 109 writes before

it becomes stuck at either ‘0’ or ‘1.’

Writes to PCM or RRAM cells typically require a RESET

operation. As the device is cycled through RESET and SET

operations, it becomes increasingly resistant to these opera-

tions, ultimately becoming impervious to the RESET opera-

tion. This results in being stuck-at a particular value. Process

variation exacerbates the situation. While each individual cell

has an optimal RESET current, each cell’s optimal RESET cur-

rent deviates from the group average due to process variation.

Cells with optimal RESET currents that are relatively far from

the average can quickly become impervious to the normalized

optimal RESET current, leading to early endurance failures.

We call these cells “weak cells.”

Stuck-at cells can still be accessed, but writes will always

produce a fault as the cell cannot be overwritten. However,

when attempting a write operation to a stuck-at bit, if the

written value is the same as the stuck-at value [stuck-at-right

(SA-R)], the fault does not result in an error, but if the two

values are opposed [stuck-at-wrong (SA-W)], the fault will

result in an error. In the latter case, the bit can always be stored

as its inverse, as long as it can be marked as the inverse using

auxiliary information. In this way, regardless of the stuck-at

state, the bit can still be stored.

Encoding and correction schemes can be used to mitigate

stuck-at faults; example methods for this approach include

error correction codes (ECC) [7], coset encoding [8], and

PRES [9]. ECC can protect against stuck-at faults; however,

ECC is typically employed to protect memory against tran-

sient or bus-related faults [10], [11], which are relatively

rare compared to stuck-at faults in PCM or RRAM. Error

correction pointers (ECPs) [12] were proposed for PCM,

where ECC was insufficient for stuck-at faults. ECP uses a

pointer to address the stuck-at bit and an extra spare data bit

to replace the faulty bit within its protected data block.
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Another method, to correct stuck-at faults in particular,

is partition-and-flip (PAF) [13]–[15]. PAF approaches attempt

to leverage the errorfree characteristic of SA-Rs and mask

errors through encoding to eliminate SA-Ws. They first use an

efficient method to partition SA-Rs and SA-Ws into different

groups and then invert groups with SA-Ws, recording the PAF

setting using auxiliary bits to allow the original data to be

restored. Flip-N-write [13] (FNW) is a simple example of a

PAF approach. Aegis [15] employs a more sophisticated par-

titioning method for better protection against stuck-at faults at

the expense of additional space and runtime overheads. Aegis

utilizes a method that requires partitioning a block into a prime

number of groups making it inefficient to encode. This results

in “wasting” possible configurations that can be encoded by

the auxiliary bits but that Aegis cannot utilize. In general, PAF

schemes can provide a similar tolerance of stuck-at faults with

lower auxiliary storage overhead requirements to schemes,

such as ECP or ECC [15].

In this paper, we propose a partitioning method that dynam-

ically changes the number of groups and size of each group

to mitigate more stuck-at faults in a data block. The dynamic

partitioning approach can be applied to existing PAF schemes

and provides an additional degree of freedom to improve their

effectiveness. In some cases, dynamic partitioning can leverage

the unused encoding states in schemes such as Aegis. Dynamic

partitioning relaxes the requirements of some PAF schemes

designed to create a fault correction guarantee. For example,

Aegis creates perfectly nonoverlapping configurations to allow

isolation of faults, which is the principle of Aegis and creates

a particular fault correction guarantee. However, as long

as a configuration exists such that all groups contain only

SA-R or SA-W faults, the data can be encoded and stored

correctly. Thus, dynamic partitioning creates more partitioning

choices to increase the search space to identify such a config-

uration. Moreover, we provide a relaxed partitioning method

to maximize the potential for a more diverse search space.

In particular, this paper makes the following contributions.

1) A novel dynamic partitioning scheme to enhance

stuck-at fault tolerance through variation of group size

is proposed for the PAF methodology.

2) A relaxed partitioning scheme that further improves the

effectiveness of dynamic partitioning is proposed that

relaxes the nonoverlapping requirement for a particular

group size.

3) A combined dynamic and relaxed partitioning approach

is proposed that utilizes both nonuniform group size

while relaxing the nonoverlapping requirement within

the same framework.

4) A detailed characterization of stuck-at fault toler-

ance, which illustrates the significant improvements of

dynamic partitioning and relaxed partitioning in the

context of faulty auxiliary bit storage.

The remainder of this paper is organized as follows.

In Section II, we provide a background and discuss the related

work on fault-tolerance schemes applied to stuck-at faults in

emerging memories. In Section III, we describe the dynamic

partitioning scheme in detail [1]. In Section IV, we introduce

relaxed partitioning to enhance fault-tolerance effectiveness.

Section V provides the experimental methodology and results

of the proposed schemes compared to the current leading

approaches. In Section VI, we relate conclusions and potential

future directions.

II. BACKGROUND

To discuss the details of previous work and our proposed

approaches, we must first define some terminology. Then,

we discuss prior work in both error correction and error

mitigation for limited endurance memories.

A. Preliminaries

To allow terms that could otherwise be vague or have

multiple meanings to be defined precisely for the description

of PAF schemes, we define the following terms.

Definition 1 (Block): A block is an n-bit unit of data that

is accessed as a single operation.

Definition 2 (Configuration): A configuration describes

one way that the bits of a block can be divided into equal

size groups. In particular, a configuration is a set of groups

such that all n-bits in the block are a member of exactly one

group and all groups have the same number of bits.1

Definition 3 (Partition): A partition describes a set of con-

figurations where the number of groups and group size is fixed.

Thus, a configuration describes one way to divide the bits

of a block into groups. A partition describes several ways

to divide the bits of the block into groups of the same

size. For example, if a block consists of 32 bits, then there

are multiple configurations that divide the 32 bits into four

groups of eight bits each. A partition would consist of several

of these configurations. Another partition would consist of

configurations that divide the 32 bits into five groups of

seven bits each (where one group will have three virtual bits1).

B. Error Mitigation for Limited Endurance Memories

Error correction codes (ECC) [7] are general approaches

that are used to protect memories from transient faults but

can also be applied to correct stuck-at faults. Among these,

single-error correction double-error detection (SECDED) ECC

(64, 72) based on Hamming codes is the most popular form

of ECC. When applied for stuck-at faults, it can recover one

SA-W and tolerate any number of SA-R within the original

64 data bits and the eight additional parity bits. When the

memory fault rate is <10−6, SECDED ECC is sufficient for

fault recovery [16] as the probability of more than one stuck-at

fault appearing in a data block is below 10−12. As memories

with limited endurance start to experience early failures of

weak cells due to process variation, the fault rate can begin

to exceed 10−6. This is exacerbated by spatial correlation

such that faults can be clustered within data blocks, quickly

exceeding ECC’s capability. Moreover, while data bits have a

relatively low probability of being written due to data locality,

ECC parity bits are written much more frequently, encouraging

faster wear, and further limiting fault-tolerance in this scenario.

1If n is not divisible by the number of groups, additional virtual (unused)
bits may be added to make the groups even.
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ECP [12], [17] uses auxiliary bits to record the location of

one or more faulty bits within the row and includes the same

number of spare bits to store the correct data. For a 512-bit

data block, to protect f faulty bits, ECP requires 10 f + 1

fault-free bits to ensure protection.

As previously discussed, Aegis [15] and FNW [13] are

PAF approaches to improve fault tolerance in the presence of

stuck-at faults. Additional PAF approaches include RDIS [18]

and SAFER [14]. RDIS transforms a 1-D data block into a

2-D matrix in an attempt to distribute SA-Rs and SA-Ws

into different groups. Each row or each column of this

matrix requires a small z-bit counter to conduct recursive

inversion. Given the large number of counters, this can result

in a significant overhead. For example, to guarantee 3-bit

correction, a 512-bit data block is logically organized into

a 32×16 matrix and requires 2-bit counters. The resulting

overhead is (32 + 16) × 2 = 96 bits or an 18.7% overhead.

RDIS can potentially correct more faults than its guarantee if

the additional faults happen to fall into the right groups.

SAFER assumes a particular number of available config-

urations with each group containing a pointer to the fault

within the group, similar to ECP. Whenever a new fault occurs,

the groups are repartitioned using the xor of the pointers to

the fault locations in the data blocks. The goal is to partition

the faults such that the number of stuck-at cells per group is

≤1. If the number of faults exceeds the number of groups,

correction may be possible, but it is not guaranteed.

Aegis uses a prime interleaving principal to create unique

configurations. It interprets a 1-D data block as a 2-D matrix.

Inspired by the principle that any two points in a line on a

Cartesian plane determine the slope of the line, Aegis uses dif-

ferent slopes to generate different configurations. If the matrix

has prime numbers of rows and columns and the number of

rows is greater than the number of columns, Aegis ensures that

all possible combinations of two bits, which are in the same

group of one configuration, would not be in the same group

of the other configurations. The slope k represents an integral

offset by a prime value (the length A of the X dimension

of the matrix) and a prime modulus value (the length B of

the Y dimension of the matrix) to form each group. This

ensures that for the first element of each group (its starting

position) results in unique group members for each different

slope value. In Fig. 1, as an example, we illustrate how to

partition a 32-bit data block into 7 × 5 matrices according

to Aegis for two slope values of k = 0, 1. The different

symbols represent the members of each group for the different

slopes, which except for the initial element, are different for

the different slopes. If there are f stuck-at faults in a data

block, Aegis guarantees that the faults will be partitioned into

different groups through this partitioning uniqueness when

there are at least ( f ( f − 1)/2) + 1 possible slopes or group

configurations [15]. Compared to SAFER, Aegis creates a

better distribution of stuck-at faults with equivalent capacity

overhead.

To provide context of the overhead for these schemes,

to correct three faults, SAFER, Aegis, ECP, and RDIS require

14, 25, 31, and 96 bits, respectively. However, to correct six

faults, Aegis, SAFER, and ECP require 27, 55, and 61 bits,

Fig. 1. Example of Aegis partitioning [15] of a 32-bit block into
7 × 5 matrices with different slopes. Each bit is included in a configuration
as represented by a symbol. The symbols with dotted outlines correspond to
unused bits (i.e., 33–35th bits). There are seven configurations in the partition,
corresponding to seven slopes (i.e., 0 ≤ k ≤ 6). (a) k = 0. (b) k = 1.

respectively. Thus, SAFER is effective for correcting relatively

few faults, and Aegis is effective for correcting larger numbers

of faults. More details on the capabilities and overheads of

these schemes are shown in Section V.

III. DYNAMIC PARTITIONING SCHEME

The goal of dynamic partitioning is to distribute stuck-at

faults to different groups by dynamically changing group sizes

and orientations within an existing PAF scheme. This can

improve the fault tolerance without increasing space overhead.

Thus, we define the following.

Definition 4 (Dynamic Partition): A dynamic partition

describes a set of partitions where each partition has a

different number of groups and group size.

A dynamic partition can be represented by splitting the

auxiliary bits into two segments: the first segment, S1, spec-

ifies how many unique partitions are used and the second

segment, S2, contains the auxiliary bits needed to specify

the makeup of the configurations within the partition and

subsequently flip each of the groups within that partition.

In Sections III-A and III-B, we demonstrate dynamic par-

titioning by applying the concept to existing PAF strategies

of block-based partitioning (i.e., FNW) and prime interleaved

partitioning (i.e., Aegis), respectively.

A. Dynamic Partitioning for FNW

FNW is traditionally implemented as a static block-based

partition. For example, a 32-bit data block with eight auxiliary

bits groups blocks of four adjacent bits. Each group has a

corresponding auxiliary bit, which indicates whether the entire

group is flipped or not to attempt to avoid writing any SA-W

in the block. FNW fails when there is at least one SA-R

and SA-W bit in the same group. Dynamic partition-based

FNW (FNWDY) is a simple and effective method to explain

the power of our dynamic partitioning scheme.

Fig. 2 shows how FNWDY would protect this 32-bit data

block assuming an allocation of 10 auxiliary bits. The auxiliary

bits are partitioned, such that the leading two bits (S1) are used

to identify the number of groups used in the partition and the
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Fig. 2. Illustration of dynamic FNW protecting a 32-bit data block with
10 auxiliary bits. The smaller FNW partition size outperforms the larger one.

remaining eight bits (S2) control the inversion. The S1 bits

count down from the maximum number of partitions, in this

case eight. Thus, for the example, the data can be partitioned

into eight, seven, six, and five groups. S1=“00” represents an

eight-group partition (8–0) in the data block with the partition

of the data bits shown in the red dotted lines. Unfortunately,

groups containing bits 4–7 and 16–19 contain both SA-R and

SA-W, which prevents the success of this encoding (marked as

X). S1=“10” represents a six-group partition where the lower

two flip bits are ignored. In this case, the partition divides the

SA-R and SA-W bits into separate groups, allowing encoding

to proceed. Here, the blocks end on the bolded numbers.

In general, for a large block, using a small number of bits

to indicate the partition (adjusting the group size) can be more

beneficial than using those bits to have a fixed partition with

more, smaller groups. More discussion of dynamic FNW can

be found here [1]. There are clear limitations to the FNW

policy even with dynamic partitions due to its block-based

nature, particularly as the number of faults increases. Thus,

we apply dynamic partitioning to another PAF scheme with

more partitioning flexibility, namely Aegis, in Section III-B.

B. Dynamic Partitioning for Aegis

The number of configurations available to Aegis is deter-

mined by the height of the 2-D rectangle used to organize

the bits in the data block. The partitioning of Aegis has two

restrictions on this rectangle height: it must be a prime number

and this prime number must be greater than or equal to the

width of the rectangle. As a result, any two bits in the same

group of one configuration will not be in the same group in

another configuration. Thus, this partitioning guarantees the

correction of a certain number of faults by partitioning each

fault into a different partition [15].

However, when the number of faults exceeds this guarantee,

it may still be possible to correct these faults if they are parti-

tioned to group SA-R’s and SA-W’s, but with Aegis, there is a

limited search space to accomplish this. The dynamic partition

strategy applied to Aegis does not limit itself to prime heights.

Instead, it uses multiple combinations of prime and nonprime

heights for a larger number of partition configurations. Thus,

our strategy can leverage the existing advantages of static

Aegis while allowing for many more partitioning options in

a more flexible manner than partitioning schemes such as

SAFER and RDIS.

Fig. 3 shows how a 32-bit data block is partitioned into

different configurations according to static (original) Aegis

and dynamic Aegis (AegisDY). For this block size, Aegis

uses 10 auxiliary bits for fault correction, including seven

flag (inversion) bits and three slope bits to indicate slopes

from 0 to B − 1. For each slope, the data block is partitioned

into a 7 × 5 matrix. The width (A) and the height (B) of

the various matrices are marked, while the available slopes

(k) are also shown. The numbers for the bits in the matrices

represent their group identifiers (IDs) for the slope shown in

red and recorded in the slope bits (“000”). The bits labeled

‘X’ are bits which are not in the 32-bit data block.

In the case shown, AegisDY uses two bits in S1 and the other

eight bits in S2. S2 is then partitioned into two subsegments:

the flag bits and slope bits. The two bits in S1 represent

the size of the matrix available, such as “10” for the 6 × 6

matrix. The number of slopes for each partition size is limited

by the bits left over after removing the flag bits needed for

the number of groups. For example, the 6 × 6 matrix has

two bits available as slope bits (four slopes), when, if an

additional auxiliary bit had been allocated, six different slopes

could have been applied. In contrast, for a 5 × 7 matrix,

the auxiliary bits permit three slope bits. Thus, the number

of groups possible (five) in this matrix orientation limits the

usable slopes from eight that could be encoded to five. Because

the group partitioning encoded in S1 ranges from eight down

to five, the number of available configurations is the sum of

all the different configurations possible in each matrix size,

which is 1 + 2 + 4 + 5, or a total of 12. Traditional Aegis

only has seven configurations.

Fig. 4 shows the encoding logic for a 32-bit data block

to determine the encoding vector. The initial height bits (S1)

and slope bits are applied to decoders in the ROM. For each

stuck-at fault location (address), the ROM will reveal the

group ID of the stuck-at fault. The primary goal is to locate

a configuration, where stuck-at faults are all isolated into

different groups with a secondary goal of isolating SA-R and

SA-W faults into separate groups. If there is no collision of

stuck-at faults within any group, to minimize write overheads,

a new ID is only initiated when a new fault appears and creates

a fault collision. If there is a collision of stuck-at faults within

a group ID, that configuration does not satisfy the primary goal

and the slope counter is incremented. If the slope surpasses

the maximum available value at the data in S1 (see Fig. 3),

the height counter is incremented and the slope is reset. If,

during the search, an ID is found that satisfies the secondary

goal of isolating SA-R and SA-W faults, we note it as a fall

back option should the search for the primary goal fail.

In this manner, we search the possible data patterns in

S1 and their correspondingly available slopes until we find

a configuration where no collision occurs, which tolerates all

the stuck-at faults in the block. If no such configuration is

found, the fall back configuration that isolates SA-Ws and

SA-Rs is used. The worst case encoding includes the traversal

of all possible configurations, but in practice for lower error

rates, this process occurs infrequently, and requires a very few
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Fig. 3. (a) Static partitioning and (b) dynamic partitioning for a 32-bit block within Aegis.

Fig. 4. AegisDY logic to look up a group ID of a stuck-at fault for a specific
height (S1) and slope, shown for a 32-bit block. In this example, a 49 × 32
and 49 × 7 ROM are used as lookup tables.

search iterations. As a performance versus storage tradeoff,

an auxiliary bit can indicate a primary search failure and to

enter a gracefully degraded mode, such that all future searches

only isolate SA-R and SA-W faults.

In Fig. 5, we display the decoding logic to know which bits

among a 32-bit data block were written in their inverted forms.

Note that decoding is more efficient than encoding, because

only a single lookup is required. In each implementation,

we use a ROM-based lookup table to record the relationship

between the input and the output information. The ROM

capacity overhead is discussed in Section V.

IV. RELAXED PARTITIONING

The novelty of Aegis versus prior PAF schemes is that it

can provide a stronger guarantee of fault tolerance. Aegis uses

a unique partitioning such that each two bit pair in the same

group of one configuration must be in different groups in any

other configuration. This property allows Aegis to guarantee

correction of a number of faults based on the number of

groups in the partition. To ensure this unique partitioning,

Aegis requires a prime number of groups in its partition, which

Fig. 5. AegisDY logic to look up an inversion mask corresponding to the
height, slope, and group inversion. A 49×32 ROM is used as a lookup table.

is also the number of unique configurations that are recorded

as slopes within its auxiliary bits.

However, the number of configurations that can be recorded

by the slope bits in Aegis is always larger than the number

of Aegis’ configurations, meaning that Aegis always wastes

several additional possible configurations enumerated by the

slope bits. For example, consider a 512-bit data block, if the

number of sets in a configuration is 23, Aegis uses five slope

bits to record 23 configurations. However, these five bits can

encode up to 32 configurations, so nine “extra” configurations

could be recorded by these slope bits (25 − 23 = 9). If nine

useful relaxed (e.g., nearly nonoverlapping) configurations can

be determined, they can be encoded to fully leverage the

flexibility of these slope bits. Furthermore, if the relaxed

configurations are also efficient (nearly as efficient as the orig-

inal Aegis configurations) at distributing faults into different

groups, the fault tolerance could be dramatically improved by

adding additional slope bits.

In this section, we propose a systematic method to generate

relaxed configurations that guarantee that at most two bits in

the same group of a relaxed configuration will be in the same

group of an original Aegis configuration or another relaxed
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configuration. Each relaxed configuration is also partitioned

into a prime number of sets as Aegis. Thus, the relaxed config-

urations are compatible with Aegis configurations in hardware

implementation by merely adding them to the ROMs.

A. Relaxed Partitioning Design

We propose to relax the property in Aegis that each par-

tition configuration must have unique bit pairs. When we

allow configurations that permit one redundant bit pair per

group, the search space may be expanded with many useful

configurations. To accomplish this, we utilize the same integer

multiple of prime interleaving concept as Aegis, however, for

each element in the group the interleaving increases by a

constant value which we call the slope gap. The slope gap

transforms the equation determining the vertical position for

a group in each column in the rectangle representation of the

data from linear to quadratic.

To define the “slopes” of a quadratic curve for partitioning,

we use two variables: initial slope k and slope gap �k.

Conceptually, k and �k are coefficients to linear and quadratic

terms of the horizontal position used to describe the vertical

position. In essence, �k is the “acceleration” of the slope

increase. To define the vertical positions bi as a function of

horizontal positions ai for the i th element of a group with a

starting point in column a0 in the matrix, the corresponding

“accumulated” slope is (i − 1)�k. To calculate the vertical

position bi of the i th column, we include the initial starting

vertical position and compute the remainder over B to remain

in the bounds of the matrix. Thus, the vertical offset of the

column ai can be computed as (�i−1
j=0(k + a j�k)) mod B

which leads to

bi =
(

ai k +
(ai − 1)ai�k

2

)

mod B. (1)

Equation (1) can be easily extended by a constant b offset

y, where y refers to the yth group and y ∈ [0, B). For each

point, (a, b) in the matrix can be described by

b =
(

y + ak +
(a − 1)a�k

2

)

mod B. (2)

Fig. 6 shows an example of these relaxed partitioning

configurations when the initial slope k is 0 or 1 and the slope

gap �k is 1. For illustration purposes, we arrange the n-bit

data block into a matrix. The size of the matrix is A×B , where

B is the number of groups and A is the number of bits in each

group. B is a prime number and B ≥ A. The matrix has the

same requirements as the matrix for static Aegis: given B , A is

the smallest integer that meets the requirement that A×B ≥ n.

As B ≥ A and A × B ≥ n, then it follows that B ≥
√

n. Each

bit at position x in the data block is mapped to position (a,b)

in the matrix, where x = a A + b. In Fig. 6(a), k = 0 zeros

the first term of (1). Thus, for the zeroth group where a0 = 0,

according to the second term of (1), b0 = 0. Continuing the

example a1 = 1, b1 = 0, a2 = 2, b2 = 1, a3 = 3, b3 = 3,

and a4 = 4, b4 = 6. Fig. 6(b) follows the example where both

terms of (1) contribute to the vertical location.

The quadratic curve governed by (2) has the property that

for any value �k, no pair of bits will be in the same group

Fig. 6. Example of relaxed partitioning for a 32-bit block using 7×5 matrices
with different initial slopes k = 0, 1 at a given slope gap �k = 1. Similar to
Fig. 1, each bit is represented by a symbol that represents to which group it
belongs and symbols with dotted outlines do not correspond to an actual bit.
(a) K = 0, �k = 1, (b) K = 1, �k = 1.

for any slope k. Moreover, when combined with traditional

Aegis (relaxed partitioning, �k = 0), the aggregate of both

configurations guarantees that only one pair of bits from each

partition overlaps with any other configuration. We demon-

strate this property in the following theorems and proofs.

First, we demonstrate that the group offset y must be the

same for all elements of the same group.

Theorem 1: For points (a, b) in an A × B matrix governed

by (2), given an initial slope k ∈ [0, B) and slope gap

�k ∈ [0, B), there is a unique y ∈ [0, B).

Proof: For a point to satisfy (2), it must also satisfy

y = m B + b − ak −
(a − 1)a�k

2
(3)

which is the reorganization of (2) solved for y. This equation

introduces the integer m from the m B term, derived from the

modB term of (2). First, since a, b, k, and �k are integers,

then c = b − ak − ((a − 1)a�k/2) is also an integer. Thus,

we can rewrite (3) as y = m B + c.

Let us assume that for any point (a, b), there are two values,

m1 and m2, where m1 �= m2, with the corresponding values

y1 and y2, respectively, where y1 �= y2 that satisfy (3). In this

case,

|y1 − y2| = |m1 B + c − (m2 B + c)| = |m1 − m2|B.

Since |m1 − m2| ≥ 1, then |y1 − y2| ≥ B . To guarantee

that y1, y2 ∈ [0, B), then |y1 − y2| ∈ (0, B) must also hold.

However, the assumption that y1 �= y2 violates the requirement

that y1, y2 ∈ [0, B) meaning y1 = y2. �

According to Theorem 1, for each group’s anchor point of

the curve (0, b), b = y, which is on the y-axis. For each given

�k, �k ∈ [0, B), quadratic partitioning generates a set of B

configurations. In fact, the set of configurations generated by

Aegis can be a special case of this expression, where �k = 0.

Next, we demonstrate that for quadratic partitioning with any

particular �k value, we generate nonoverlapping partitions.

Theorem 2: Given an A × B matrix, for each given �k ∈
[0, B), where 0 < A ≤ B and B is prime, any two points

in the same group in a configuration must not be in the same

group again in another configuration.
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Proof: Consider two points (aα, bα) and (aβ , bβ) that are

in the same group of a configuration (defined by k = k0),

where bα, bβ can be represented as a function of aα, aβ

using (2), where 0 ≤ k0, y < B , and 0 ≤ aα < aβ < B . Let

us assume that these two points are also in the same group

in another configuration (defined by k ′ �= k0), which can be

similarly represented using (2), where 0 ≤ k ′, y ′ < B .

From this assumption, we can equate the right-hand side

of (2) for point aα in both configurations yielding

(y + aαk) mod B = (y ′ + aαk ′) mod B (4)

noting that ((aα − 1)aα�k/2) is the same for both sides and

has been canceled. Thus, we can reorganize (4) as follows:

y ′ − y = aα(k − k ′) + mα B (5)

where as before mα and mβ are integers. Similarly, we can

generate the same equation for aβ which can be equated

through y ′ − y resulting in (6) and simplified to (7)

aα(k − k ′) + mα B = aβ(k − k ′) + mβ B (6)

(aα − aβ)(k − k ′) = (mβ − mα)B. (7)

As aα, aβ ∈ [0, A), k, k ′ ∈ [0, B), aα �= aβ , and k �= k ′, then

|aα − aβ | ∈ (0, A) and |k − k ′| ∈ (0, B). Recalling that B is

prime and neither aα − aβ nor k − k ′ can be a multiple of B ,

then (7) cannot hold, thus proving the theorem. �

For each �k ∈ [0, B), relaxed partitioning generates a set

of B configurations, so this scheme can generate B sets of

configurations. The sum of all these configurations is B2.

Theorem 3: Among B2 configurations generated by relaxed

partitioning, for an A × B matrix, where 0 < A ≤ B and

B is prime, no more than two points in the same group

in one configuration may be in the same group in another

configuration.

Proof: Any three points (aα, bα), (aβ , bβ), and (aγ , bγ )

in the same group of a configuration (defined by k = k0 and

�k = �k0), where bα, bβ, and bγ can be represented as

a function of aα, aβ , and aγ , respectively, using (2), where

0 ≤ k0,�k0, y < B , and 0 ≤ aα < aβ < aγ < B . Let

us assume that these three points are also in the same group

in another configuration (defined by k ′ and �k ′ such that

�k ′ �= �k0), which can be similarly represented using (2),

where 0 ≤ k ′,�k ′, y ′ < B .

Similar to Eq. (5) but reintroducing the ((aα − 1)aα�k/2)

term which is now distinct between configurations we create

the following expression:

y ′ − y = aα(k − k ′) + mα B +
(�k − �k ′)(aα − 1)aα

2
. (8)

Similar to (7), we can generate the same equation for aβ

which can be equated through y ′ − y after simplification

resulting in

(aα−aβ)

[

(k−k ′)+
(�k−�k ′)(aα+aβ −1)

2

]

=(mβ −mα)B.

(9)

If aα, aβ ∈ [0, A), then |aα − aβ | ∈ (0, A), and if A ≤ B ,

then |aα −aβ | cannot be a multiple of B . Because B is prime,

then the remaining term in brackets must be a multiple of B

for (9) to hold. Therefore, we define hαβ to be two times this

integer multiple of B , which is also an integer multiple of B

such that

2(k ′ − k) = (�k − �k ′)(aα + aβ − 1) − hαβ B. (10)

Equation (10) can be generated for points (aα, bα) and

(aγ , bγ ), and by setting them equivalent, we get the following:

(aβ − aγ )(�k − �k ′) = (hαγ − hαβ )B. (11)

We can obtain the same contradiction from (11) as from (6).

As aβ , aγ ∈ [0, A), �k,�k ′ ∈ [0, B), aβ �= aγ , and

�k �= �k ′, then |aβ − aγ | ∈ (0, A) and |�k − �k ′| ∈ (0, B).

Recalling that B is prime and neither aβ − aγ nor �k − �k ′

can be a multiple of B , then (11) cannot hold, thus proving

the theorem. �

The encoding and decoding logic for the relaxed partitioning

scheme follows the same strategy as Aegis [15], but it requires

larger ROMs in order to accommodate the additional config-

urations from both linear and quadratic curves. We describe

the effectiveness of dynamic and relaxed partitioning and the

experimental evaluation in Section V.

V. EVALUATION

To validate our proposed dynamic partitioning and relaxed

partitioning strategies, we first conduct a Monte Carlo sim-

ulation for high error rates. We compare relaxed partitioning

AegisRE, dynamic versions FNWDY, AegisDY, and AegisDY,RE

(dynamic partitioning combined with relaxed partitioning)

against static counterparts of FNW and Aegis as well as

baselines of ECP and ECC as well as other PAF strategies

in the literature [14], [18]. Both data-oblivious partitioning

and data-aware partitioning are studied. Data-oblivious par-

titioning attempts to segregate all stuck-at cells into differ-

ent groups, while data-aware partitioning considers grouping

together SA-R and SA-W cells based on the data to be stored.

We then evaluate FNWDY, AegisDY, AegisRE, and AegisDY,RE

in benchmark experiments where the auxiliary bits are also

potentially faulty. These experiments consider the stuck-at

fault rates of 10−3 and 10−4. We conduct a similar set of

experiments using probabilistic methods to further stress each

memory location to include a sensitivity study with stuck-at

faults rates from 10−3 to 10−6.

A. Experimental Methodology

We developed a PIN-based simulator [19] and implemented

ECC, ECP, FNW, FNWDY, Aegis, AegisDY, AegisRE, and

AegisDY,RE to evaluate their tolerance to stuck-at faults. The

PIN simulator evaluates the main memory writes by encod-

ing or partitioning the data block and the auxiliary bits

and recording a fault if the value of any fault bit being

written is opposite to its stuck-at value. To model the stuck-at

faults, a fault map, including fault bits stuck at ‘0’ or ‘1,’

is developed by using the Bayesian distribution to mimic the

impact of process variation and includes spatial correlation of

faults [20], [21]. For this paper, we followed the model

described in [20] to generate maps of weak cells for a 4-GB

PCM.
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1) Model Implementation Details: In our evaluation,

stuck-at faults can be tolerated in a data block for each of

the data-aware schemes as follows.

1) For a Hamming code-based error correction (ECC-164),

one SA-W and any number of SA-Rs can be tolerated

in each data block or its parity bits.

2) For ECP f , f SA-Ws can be tolerated in the data block,

assuming that no SA-Ws compromise the auxiliary

bits.

3) For FNW, there is no group that has both SA-Ws

and SA-Rs in the group’s data and its corresponding

flag encoding) bit.

4) For FNWDY, there is a configuration that no group of the

configuration has both SA-Ws and SA-Rs in the group

data and its corresponding flag bit. The auxiliary bits

(in S1) to record the group partitioning may not have

any SA-Ws.

5) For Aegis and AegisRE, there is a configuration that no

group of the configuration has both SA-Ws and SA-Rs

in the group data and its corresponding flag bit. The

slope bits may not have any SA-Ws.

6) For AegisDY and AegisDY,RE, there is a configuration

that no group has both SA-Ws and SA-Rs in the group

data and its corresponding flag bit. The auxiliary bits

in S1 and the slope bits in S2 may not have any

SA-Ws.

Each of the above-mentioned conditions can also be applied

for data-oblivious by combining SA-R and SA-W into total

faults and replacing any mentions of SA-W with “faults.” The

data block size examined in the study was 512 bits. For FNW,

FNWDY, AegisDY, AegisRE, and AegisDY,RE, we used 10, 15,

21, 28, 36 (33 for AegisRE), and 43 (41 for AegisRE) overhead

bits per data block to tolerate stuck-at faults. These overhead

ratios are 1.96%, 2.93%, 4.10%, 5.47%, 7.03% (6.45%), and

8.4% (8.01%). Aegis and AegisRE require a minimum of 23-bit

encoding overhead for a 512-bit block to guarantee that each

possible slope would have valid partitioning, as discussed in

Section III-B. For fewer encoding bits, this correction cannot

be guaranteed as the group size is not sufficiently large to

guarantee independent slopes, however, it is still effective. For

comparison, we relax this requirement and also allow Aegis

to use 10, 15, and 21 auxiliary bits per data block, generated

in the same manner [15].

For comparison, we provide the results for ECC-164, which

requires 64 bits per data block, with an additional eight

parity bits per word for 1-bit error correction and 2-bit error

detection, corresponding to an overhead ratio of 12.5%.2 ECP f

requires f × 10 + 1 bits per data block. We compare our

proposed schemes with ECP f , such that ECP requires the

minimum auxiliary bits that exceed the auxiliary bits of our

scheme (e.g., a 15-bit encoding would compare to ECP2 that

requires 21 bits).

First, we conduct Monte Carlo simulations of dynamic par-

titioning and relaxed partitioning to observe their differences

2We also considered ECC-1256 to achieve a similar overhead (auxiliary bits)
compared with Aegis and FNW. However, ECC performed so poorly it was
more appropriate to compare with the more common (64, 72) ECC at higher
overhead.

TABLE I

NUMBER OF CONFIGURATION OPTIONS

in lifetime. To study the effect of aging, we assume that the

lifetime of each cell in PCM follows a normal endurance

failure distribution with a mean value of 108 writes with a

25% coefficient of variance. These simulations assume a 4-kB

operating system page size with a data block size of 512 bits.

Assuming an effective wear leveling method [22], [23], writes

with random data are assumed to be uniformly distributed over

the whole memory and differential write is adopted to reduce

the frequency of cells written for each operation. Under these

conditions, the simulations continuously issue page writes to a

memory protected by various PAF schemes including dynamic

and relaxed partitioning until there is an unrecoverable fault

to determine their average lifetime improvement.

In our subsequent experiments, we used our custom sim-

ulator to perform two kinds of evaluations on constant fault

maps. First, we evaluate the memory accesses for the PARSEC

benchmark suite [24] using our Pintool for different fault

maps. The entire benchmark suite is executed, and an error rate

is determined by accesses with uncorrectable errors compared

with total accesses. This evaluation provides a snapshot of the

correction capability of the PAF schemes for individual bench-

marks across the lifetime of the memory. Second, we calculate

what we call a “true random error rate,” which we define as

the error rate if a perfect distribution of all possible values was

applied to each location of a fault map through an exhaustive

search. This provides snapshots of the true correctness of

the memory for all possible data patterns at different points

throughout its lifetime. For each fault rate, we use the average

error rates for five fault maps to evaluate and compare the

effectiveness of the different fault recovery schemes.

2) Design Implementation: To guide the comparison

of dynamic encoding and relaxed partitioning for Aegis,

we implemented the encoding and decoding lookup

tables (ROMs) for Aegis, AegisDY, AegisRE, and AegisDY,RE

based on the number of configurations required, as shown

in Table I. The hardware was implemented for a 45-nm

CMOS by running the ROM lookup table designs in Synopsis

Design Compiler targeting a 45-nm FreePDK [25].

The numbers of configuration options for Aegis and

AegisRE are both a function of the number of slope bits s and

the number of groups B . The numbers of configuration options

for AegisDY and AegisDY,RE are a summation of options within

all partitions, where D and Bi are the number of partitions and

the number of groups for partition i , respectively.

AegisDY, AegisRE, and AegisDY,RE contain more config-

uration options for identical bit overhead and thus require

additional lookup table area and delay. We provide a detailed

study of the area and latency implications of the different

dynamic and relaxed versions of Aegis in Appendix A of the

Supplementary Material. The encoding latency reported is for

evaluating one data partitioning option, while encoding for



2366 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

Fig. 7. Faults corrected before failure in a 4-kB page for various fault mitigation schemes. The number of auxiliary bits per block is shown above its bar.
(a) Data oblivious. (b) Data aware.

Aegis, AegisDY, AegisRE, and AegisDY,RE multiple encoding

options may need to be explored to find a successful encoding

which partitions SA-Rs and SA-Ws into separate groups.

Moreover, this process requires evaluation with each stuck-at

fault until an encoding is found which works for all stuck

at faults in the data block. However, encoding is not on the

critical path, and for lower error rates, it is rare to require

many encoding attempts.

Table I in Appendix A of the supplementary material also

enumerates the area and latency comparisons for decoding.

For both 28 and 36 auxiliary bits, AegisDY has a significant

increase in latency over Aegis, while 15 and 21 auxiliary bits

in AegisDY have approximately the same delay as 28 and

36 bits for Aegis, respectively. At 28 auxiliary bits and below,

AegisRE tends to increase the ROM area more than AegisDY

as it typically adds fewer configurations by keeping the prime

interleaving interval higher, similar to Aegis. It fills in addi-

tional configurations allowed by the auxiliary bits with a small

number of mostly nonoverlapping partitions. Above 28 auxil-

iary bits, we can adjust the number of groups in a partitioning

in order to adjust the tradeoff between a number of options

and area/latency. In a later evaluation, we will demonstrate

that even for these iso-performance comparisons, AegisDY

can achieve improved reliability compared with Aegis, while

AegisRE has a similar fault-correcting capability as Aegis at

28 auxiliary bits and below. As might be expected, AegisDY,RE

ROMs are considerably larger and require additional latency

compared with AegisDY or AegisRE, individually. However,

AegisDY,RE tends to provide ≥5× the number of configuration

options of AegisRE for relatively small (typically ≤1 ns)

increases in decoding and encoding latency.

B. Monte Carlo Simulations

Fig. 7 shows the average numbers of recovered faults in

a 4-kB page by Aegis, AegisDY, and AegisRE partitioning

compared to ECP, SAFER, and RDIS-3, for data-oblivious

[Fig. 7(a)] and data-aware [Fig. 7(b)] partitioning. For compar-

ison purposes, we also show AegisDY,RE which combines the

concept of dynamic and relaxed partitioning into one approach.

To ensure that the conclusions drawn from these results were

not skewed by examining the mean of these particular fault

maps studied in the experiment, we conducted a stabilization

analysis of these trends. In particular, we examined these

trends shown in the figure for Aegis, AegisDY, AegisRE, and

AegisDY,RE for different fault maps with different features such

as a more even distribution of faults (easier to mitigate) and

those with more clustered faults (harder to mitigate). What

we found was that while the overall magnitude changed in

terms of faults mitigated, the relative trends remained the

same for each map and reflected the average trends reported.

The detailed experiment is shown in Appendix B in the

Supplementary Material.

From Fig. 7, we observe that the Aegis-based schemes

achieve much higher effectiveness than the other schemes,

including ECP, SAFER, and RDIS, with similar or even

(often dramatically) lower capacity overheads. Both FNW and

FNWDY are less effective than ECP with a similar overhead.

Among Aegis, AegisDY, and AegisRE, AegisRE outperforms

the other schemes when there are (≥33) auxiliary bits, fol-

lowed by AegisDY and Aegis in that order. For example,

data-oblivious AegisDY tolerated 12% and 19% more faults

than its static counterpart with 36 and 43 auxiliary bits,

respectively, while AegisRE recovered an extra 4% and 10%

faults over AegisDY with two fewer auxiliary bits. Similarly,

in Fig. 7(b), data-aware AegisDY tolerated 25% and 27% more

faults than static Aegis with 36 and 43 auxiliary bits, respec-

tively, while AegisRE recovered an extra 15% and 24% faults

over AegisDY with two less overhead bits. With 28 auxiliary

bits, AegisDY tolerates 4% more faults than AegisRE and 8%

more faults than Aegis. AegisRE does not perform well in

this instance, because the encoding bits do not provide an

opportunity to record all the useful relaxed configurations

without requiring additional overhead.

In Fig. 8, a similar trend in lifetime improvement can be

observed although the gaps between different fault-tolerance

schemes are much smaller. Data-aware AegisRE41 partitioning

tolerated 10.8× more faults than ECP4, while the lifetime

improvement is only 79% higher than ECP4. The reason is

that, when approaching the end of the lifetime, cell failure

rate increases exponentially, quickly exhausting the additional

fault-tolerance capability. Nonetheless, data-aware AegisRE

still achieves a higher lifetime improvement with ≥33 aux-

iliary bits than the other data-aware schemes with a similar
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Fig. 8. Lifetime improvement (in terms of accesses) of a 4-kB page for various fault mitigation schemes compared with an unprotected page. The number
of auxiliary bits per block is shown above its bar. (a) Data oblivious. (b) Data aware.

Fig. 9. Lifetime improvement per bit of various fault mitigation schemes. (a) Data oblivious. (b) Data aware.

overhead. For example, in Fig. 8(a), AegisRE improved the

lifetime by 9.3× compared to an unprotected page, compared

to only 9.0× and 9.2× improvements of Aegis and AegisDY,

respectively, while using three fewer auxiliary bits. A similar

trend is observed for data-aware partitioning [Fig. 8(b)].

The fault-tolerance per bit decreases as the number of

auxiliary bits increases, as shown in Fig. 9. Data-aware

AegisRE [Fig. 9(b)] provides a 34% lifetime improvement per

bit when 33 auxiliary bits are used compared to 30% and

28% improvements for AegisDY and Aegis, respectively, when

36 auxiliary bits are used. A similar trend is observed for

data-oblivious schemes [Fig. 9(a)].

To further compare the effectiveness of the fault-tolerance

schemes, in Fig. 10, we show the probability of failure for the

recovery schemes with different numbers of faults within a

data block. For data-oblivious [Fig. 10(a)] before the number

of faults reaches the guaranteed tolerance threshold, the prob-

ability of failure remains zero. ECP completely fails when

its threshold is exceeded, while the other schemes gradually

increase their probability of failure as the number of faults

increases. With 28 auxiliary bits, the probabilities of failure

of Aegis, AegisDY, and AegisRE almost overlap, and with

36 (or 33) auxiliary bits, AegisDY and AegisRE partitioning

show an advantage over Aegis, and furthermore, with 43

(or 41) auxiliary bits, AegisRE exhibits a clear advantage.

For data-aware trends [Fig. 10(b)], the advantage of AegisRE

becomes more significant. For AegisDY,RE, the number of

partitions in the data-oblivious case results in it surpassing the

correction capability of AegisRE. However, in the data-aware

case, AegisRE has more effective partitioning than AegisDY,RE

due to its guarantee of no more than two points in the same

group in different configurations.

C. Benchmark Evaluation

In this section, we evaluate the effectiveness of the error mit-

igation strategies described in Section V-A1 for the PARSEC

benchmark suite. We obtain the error rates for the initial stuck-

at-fault rates of 10−3 and 10−4 shown in Figs. 11 and 12,

respectively. In each figure, the fault mitigation schemes are

compared to a baseline of ECC-164 shown with a green line.

For the 10−3 initial stuck-at-fault rate (Fig. 11), all the

schemes outperform ECC-164 even though it requires the

largest capacity overhead. While FNW does not dramatically

improve over ECC-164, FNWDY does provide improvements

over static FNW for 10 and 15 auxiliary bit cases with larger

improvement margin for 28 auxiliary bits, amounting to a

64% and 90% improvement, respectively. Recalling that (apart

from 21 auxiliary bits), ECP f uses slightly more auxiliary bits

than the other schemes, ECP f outperforms both ECC-164 and

FNWDY but it is far inferior to Aegis, which achieves more

than a 20× improvement over the next leading candidate.

However, our dynamic partitioning, AegisDY, far outstrips

Aegis. With 10 and 15 auxiliary bits, AegisDY achieves 5× and
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Fig. 10. Failure probability of a 512-bit data block with various numbers of faults under different fault-tolerance schemes. (a) Data oblivious. (b) Data aware.

Fig. 11. Comparisons of different recovery schemes on the PARSEC

benchmarks for a 10−3 fault rate.

372× lower error rates than its static counterpart, respectively.

When there are 21 auxiliary bits, AegisDY completely recovers

from all the stuck-at faults in the fault maps, while static Aegis

still has a higher than 10−5 error rate. They both achieve

perfect protection when there are 28 auxiliary bits.

Interestingly, AegisRE performs similar to Aegis in these

experiments, while AegisDY,RE achieves notable improvements

including a 1.7× improvement over AegisDY for 15 auxil-

iary bits. The advantage of AegisDY over AegisRE in these

experiments appears to come from using a smaller initial

prime partitioning that allowed for many more configurations

to be explored. When the number of configurations is small,

adding more configurations has a big impact for tolerance.

When Aegis has large numbers of potential configurations,

the dynamic configurations are less impactful. This is why

for 15 auxiliary bits, AegisDY,RE outperforms AegisDY as the

former adds many quadratic configurations to supplement the

dynamic configurations.

For an initial stuck-at-fault rate of 10−4 (Fig. 12), we see

a similar trend as the 10−3 case, except that ECC-164 is

more effective than FNW, and FNWDY prior to 28 auxiliary

bits. Unsurprisingly, Aegis, AegisDY, AegisDY,RE, and AegisRE

achieve perfect protection with fewer auxiliary bits, while only

static Aegis and AegisRE with 10 auxiliary bits see any faults,

but they still achieve an uncorrectable error rate of 10−5.

While for the same number of auxiliary bits, clearly AegisDY

and AegisDY,RE provide better protection than static Aegis

Fig. 12. Comparisons of different recovery schemes on the PARSEC

benchmarks for a 10−4 fault rate.

and AegisRE, a method to distinguish lower uncorrectable

error rates is necessary. We make this comparison with a

probabilistic study in Section V-D.

D. Probabilistic Evaluation

In this evaluation, we simulate all possible data patterns

in every row of the generated memory model and discover

the “true error rates” of a perfectly even data distribution to

distinguish lower error rates than exhibited through benchmark

evaluation. Using true error rates, first, we compare the effec-

tiveness of the error correction schemes with ISO auxiliary

bits. Second, we compare the effectiveness of the dynamic

schemes with their counterparts for an ISO performance com-

parison. The ISO performance comparison also provides an

advantage as it requires a lower auxiliary bit storage overhead

for AegisDY and AegisDY,RE.

1) ISO Auxiliary Bits Comparison: Figs. 13 and 14 show

the comparisons of the various recovery schemes at the initial

fault rates of 10−3 and 10−4, respectively. FNWDY protected

23% and 22% more data patterns than static FNW with

21 auxiliary bits at the two fault rates, while the improvements

are 68% and 72% with 28 auxiliary bits, demonstrating the

value of the dynamic partitioning strategy. For Aegis, dynamic

partitioning is even more striking, with AegisDY obtaining

53× and 92× lower error rates at the two fault rates for

15 auxiliary bits. At the fault rate of 10−3, AegisDY also
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Fig. 13. Comparisons of different recovery schemes at a fault rate

of 10−3 using ISO auxiliary bits.

TABLE II

COMPARISONS OF FNWDY AND AEGISDY WITH THEIR STATIC

COUNTERPARTS FOR 28 AUXILIARY BITS. “NONE” MEANS

NO FAULT DETECTED FOR FIVE 256-MB FAULT MAPS

achieves 38× and 14× lower error rates over static Aegis with

21 and 28 auxiliary bits, respectively, while at the fault rate

of 10−4, AegisDY achieves perfect protection, but static Aegis

still obtains an unrecoverable fault rate of 6.5 × 10−7 and

4.8 × 10−8.

To illustrate the advantage of dynamic partitioning, we com-

pare the error rates of the static and dynamic schemes

in Table II. In Table II, FR is the initial fault rate, both refers

to faults corrected by both the static and dynamic schemes,

dynamic refers to faults only corrected by the dynamic scheme,

static refers to faults corrected only by the static scheme, and

neither refers to faults uncorrectable by either scheme. If the

dynamic column is much larger than the static column,

it illustrates the superiority of the dynamic scheme. For FNW,

the numbers for FNWDY are 21× larger than static FNW on

average. For Aegis, AegisDY is 64× better than static Aegis at

stuck-at fault 10−3, while AegisDY achieves perfect protection,

but Aegis still fails to protect a few data patterns at stuck-at

fault 10−4.

At the two fault rates for 15 auxiliary bits, AegisDY,RE

significantly outperforms AegisDY, while for the 10, 21,

and 28 auxiliary bits, the gap is negligible. At the fault

rate of 10−3, by adding relaxed configurations, AegisDY,RE

achieves 4× lower error rate over the original AegisDY,

while at the fault rate of 10−4, AegisDY,RE achieves perfect

protection, but AegisDY still has an unrecoverable error rate

of 4.9 × 10−8.

With 10 auxiliary bits, AegisDY,RE has only 3 configura-

tions3 more than that of AegisDY which has 12 configurations,

while with 15 auxiliary bits, AegisDY,RE has 83 configurations

3These added relaxed configurations have a smaller number of groups,
so that their effectiveness is comparably low.

Fig. 14. Comparisons of different recovery schemes at a fault rate of 10−4

using ISO auxiliary bits.

TABLE III

IMPROVEMENT RATIO IN FAULT RATE OF AEGISDY OVER AEGIS FOR

DIFFERENT AUXILIARY BITS AT AN INITIAL STUCK-AT RATE OF 10−3 .
FOR EXAMPLE, 4.75 INDICATES THAT THE FAULT RATE OF AEGIS

DIVIDED BY THE FAULT RATE OF AEGISDY IS 4.75
AT THE RESPECTIVE AUXILIARY BITS

more than that of AegisDY which has 112 configurations.

With 21 or more auxiliary bits, added relaxed configurations

have reduced the impact, because they do not augment the

protection of the auxiliary bits.

2) ISO Performance Comparison: Due to the marked supe-

riority of the dynamic strategy, AegisDY can achieve improved

effectiveness over its static counterpart while maintaining

performance (latency) with fewer auxiliary bits. In Table III,

we show the improvement of AegisDY over Aegis at the

initial fault rate of 10−3 with equivalent or reduced auxiliary

bits. We mark configurations within 10% of decoding latency

overhead (see Table I in Appendix A of the supplementary

material) in bold and italics. For example, the error rate

of AegisDY with 15 auxiliary bits is 1.60× lower as the

rate of Aegis with 28 auxiliary bits at equivalent decoding

latency. AegisDY,RE and FNWDY have a similar advantage over

AegisRE and FNW, respectively.

E. Sensitivity Study for Lower Fault Rates

We further expand the range of the fault rate of the memory

model to the lower initial fault rates of 10−5 and 10−6 in

Figs. 15 and 16, respectively. At both fault rates, FNW fails

to improve over ECC-164, only reaching equivalence to it for

FNWDY with 28 auxiliary bits, and performs worse than ECP f

as expected. Aegis and AegisDY continue to be dramatically

more effective than the other schemes with at least two and

three orders of magnitude improvement in uncorrectable error

rates than ECP f , respectively. At the fault rate 10−5, AegisDY

significantly outperforms static Aegis using 10 auxiliary bits
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Fig. 15. Comparisons of different recovery schemes at a fault rate of 10−5

using ISO auxiliary bits.

Fig. 16. Comparisons of different recovery schemes at a fault rate

of 10−6 using ISO auxiliary bits.

with a 15× improvement. When there are at least 15 auxiliary

bits, AegisDY achieves perfect protection, while Aegis requires

28 auxiliary bits to achieve the same goal. At the fault rate of

10−6, Aegis and AegisDY protect all possible accesses, while

the other schemes fail to achieve this goal. For both incident

fault rates, AegisRE and AegisDY,RE achieve similar error rates

to static Aegis and AegisDY, respectively, resulting in similar

comparisons between static and dynamic versions.

F. Discussion

AegisDY and AegisRE do not increase the number of guar-

anteed faults that can be corrected over Aegis, but they

do increase the practical fault tolerance. AegisDY provides

a significant tangible benefit over Aegis due to its use of

many more possible partitions compared with Aegis. However,

AegisRE provides more potentially valuable configurations

within a particular partition, which has different benefits than

AegisDY. The results from Fig. 7 show that while AegisRE does

not increase the guarantee over Aegis, it pushes the probability

of failure off significantly, particularly for higher numbers of

auxiliary bits. This is echoed in Fig. 10. This impact can also

be seen in Figs. 11, 13, and 14, where for 15 auxiliary bits,

using relaxed configurations helps AegisDY due to the higher

uniqueness of the added configurations. Because AegisRE con-

tains all of the original Aegis configurations in addition to the

relaxed configurations, the original configurations contain the

same uniform diffusion of faults present in Aegis while bene-

fiting from the new unique partitioning options. Thus, there is

benefit from adding more partitions with different sized groups

(AegisDY) on top of the fault correction guarantee, as well as

benefit from adding useful configurations within a partition

(AegisRE), and these improvements can work together.

Given the overheads from the size of the encoding/decoding

ROMs and latencies shown in Table I in Appendix A of

the supplementary material, the choice of encoding scheme

from classic Aegis to AegisDY,RE also provides an interesting

tradeoff for the system designer. In the previously discussed

practical range of memory overhead (e.g., 15 auxiliary bits),

AegisDY,RE dramatically improves error rates but increases the

ROM size and latency. This creates a choice between a smaller

memory overhead (fewer auxiliary bits) with a larger overhead

in the memory controller (larger slower ROM) compared with

a higher memory overhead (larger numbers of auxiliary bits).

Thus, the former scenario employing AegisDY,RE in order to

achieve an improvement in fault tolerance and system lifetime

becomes an attractive choice for the full system design.

VI. CONCLUSION

Endurance limitations are a significant challenge for mass

commercialization of several emerging nonvolatile memories,

including PCM and RRAM. This is especially problematic

when more cells become potentially faulty due to technology

scaling and resulting process variation. We presented our pro-

posed dynamic partitioning approach to mitigate stuck-at faults

in these emerging memories. Dynamic partitioning recovers

more stuck-at faults in a data block by increasing the number

of possible partitions, thus improving over static PAF schemes.

Furthermore, we also presented our relaxed partitioning

scheme that provides more cost-effective configurations with

a limited partitioning overlap. Our results, including Monte

Carlo simulations, benchmark analyses, and probabilistic eval-

uations, show that dynamic partitioning significantly improves

the effectiveness of FNW and Aegis over their static counter-

parts by generating more efficient configurations. The results

also illustrate that relaxed partitioning can further improve the

memory lifetime over dynamic Aegis with equal or reduced

space overhead.

As there are some relatively infrequent cases where the

static scheme can correct faults uncorrectable in our dynamic

approach, it is possible to incorporate a static scheme into

our dynamic scheme by using one extra bit as a record in

each data block. Our evaluation shows that the extra tolerance

provided by the original static scheme is negligible compared

to the uncorrectable error rate. However, this could be explored

further in the future work.
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