2358

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

Data Block Partitioning Methods to Mitigate
Stuck-At Faults in Limited Endurance Memories

Jiangwei Zhang™, Student Member, IEEE, Donald Kline, Jr.
Rami Melhem, Fellow, IEEE, and Alex K. Jones

Abstract—Deep scaling in conjunction with increased process
variation has resulted in increasingly faulty memories. Emerging
memories, particularly phase-change and resistive memories, can
experience stuck-at faults due to limited endurance. Partition
and flip (PAF) schemes partition data into blocks and invert these
blocks as needed to ensure data that is written matches the stuck-
at cells. In this paper, we propose two novel correction schemes
that substantially enhance the fault-tolerance capabilities of
existing PAF techniques. First, dynamic partitioning increases
the number of possible configurations with equivalent auxiliary
bits. At high fixed error rates, the increase in configurations
results in improved write error rates for flip-N-write and Aegis
partitioning by 7%-72% and 5-53x, respectively. Our second
novel partitioning method, relaxed partitioning, dramatically and
effectively increases the partitioning search space by specifying
minimally overlapping configurations. Through Monte Carlo
simulations, data-aware dynamic partitioning tolerates 25%
and 27% more faults over its lifetime than Aegis with 36 and
43 auxiliary bits per 512-bit data block, respectively, while
relaxed partitioning achieves an extra 15% and 24% additional
improvement while requiring two fewer overhead bits per data
block.

Index Terms— Dynamic partitioning, emerging memories, reli-
ability, stuck-at faults.

I. INTRODUCTION

RAM and Flash memory encounter significant chal-
lenges due to technology scaling. This scaling results in
increased process variation and leads to wider divergence of

Manuscript received February 2, 2018; revised May 16, 2018 and
June 21, 2018; accepted July 18, 2018. Date of publication August 13, 2018;
date of current version October 23, 2018. This work was supported in part
by the National Natural Science Foundation of China under Grant 61332003,
in part by the U.S. NSF Graduate Research Fellowship under Grant 1747452,
and in part by SHREC industry and agency members and the I/UCRC
Program of the National Science Foundation under Grant CNS-1738783. This
paper was presented at the 2017 IEEE/ACM International Conference on
Computer Aided Design [1]. (Corresponding author: Jiangwei Zhang.)

J. Zhang is with the National University of Defense Technology, Changsha
410073, China, and also with the ECE Department, University of Pittsburgh,
Pittsburgh, PA 15261 USA (e-mail: jiz148 @pitt.edu).

D. Kline, Jr., and A. K. Jones are with the ECE Department, Uni-
versity of Pittsburgh, Pittsburgh, PA 15261 USA (e-mail: dek61@pitt.edu;
akjones @pitt.edu).

L. Fang is with the National University of Defense Technology, Changsha
410073, China (e-mail: lfang@nudt.edu.cn).

R. Melhem is with the CS Department, University of Pittsburgh, Pittsburgh,
PA 15260 USA (e-mail: melhem @cs.pitt.edu).

This paper has supplementary downloadable material
http://ieeexplore.ieee.org., provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2018.2858186

available at

, Student Member, IEEE, Liang Fang,
, Senior Member, IEEE

capacitance of memory cells. This results in more “weak” cells
that have either reduced data retention time or poor charge
sensing fidelity, which leads to increasing numbers of memory
faults [2], [3].

Emerging memories, such as phase-change memory (PCM)
and memristors (RRAM), provide great scalability, high den-
sity, and nonvolatility making them promising candidates to
replace DRAM and Flash in main memory or secondary
storage applications [4], [5]. Unfortunately, both PCM and
RRAM suffer from limited write endurance [6]. For example,
a typical PCM cell can sustain from 10% to 10 writes before
it becomes stuck at either ‘0" or ‘1.

Writes to PCM or RRAM cells typically require a RESET
operation. As the device is cycled through RESET and SET
operations, it becomes increasingly resistant to these opera-
tions, ultimately becoming impervious to the RESET opera-
tion. This results in being stuck-at a particular value. Process
variation exacerbates the situation. While each individual cell
has an optimal RESET current, each cell’s optimal RESET cur-
rent deviates from the group average due to process variation.
Cells with optimal RESET currents that are relatively far from
the average can quickly become impervious to the normalized
optimal RESET current, leading to early endurance failures.
We call these cells “weak cells.”

Stuck-at cells can still be accessed, but writes will always
produce a fault as the cell cannot be overwritten. However,
when attempting a write operation to a stuck-at bit, if the
written value is the same as the stuck-at value [stuck-at-right
(SA-R)], the fault does not result in an error, but if the two
values are opposed [stuck-at-wrong (SA-W)], the fault will
result in an error. In the latter case, the bit can always be stored
as its inverse, as long as it can be marked as the inverse using
auxiliary information. In this way, regardless of the stuck-at
state, the bit can still be stored.

Encoding and correction schemes can be used to mitigate
stuck-at faults; example methods for this approach include
error correction codes (ECC) [7], coset encoding [8], and
PRES [9]. ECC can protect against stuck-at faults; however,
ECC is typically employed to protect memory against tran-
sient or bus-related faults [10], [11], which are relatively
rare compared to stuck-at faults in PCM or RRAM. Error
correction pointers (ECPs) [12] were proposed for PCM,
where ECC was insufficient for stuck-at faults. ECP uses a
pointer to address the stuck-at bit and an extra spare data bit
to replace the faulty bit within its protected data block.

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2155-6318
https://orcid.org/0000-0002-4414-1513
https://orcid.org/0000-0001-7498-0206

ZHANG et al.: DATA BLOCK PARTITIONING METHODS TO MITIGATE STUCK-AT FAULTS

Another method, to correct stuck-at faults in particular,
is partition-and-flip (PAF) [13]-[15]. PAF approaches attempt
to leverage the errorfree characteristic of SA-Rs and mask
errors through encoding to eliminate SA-Ws. They first use an
efficient method to partition SA-Rs and SA-Ws into different
groups and then invert groups with SA-Ws, recording the PAF
setting using auxiliary bits to allow the original data to be
restored. Flip-N-write [13] (FNW) is a simple example of a
PAF approach. Aegis [15] employs a more sophisticated par-
titioning method for better protection against stuck-at faults at
the expense of additional space and runtime overheads. Aegis
utilizes a method that requires partitioning a block into a prime
number of groups making it inefficient to encode. This results
in “wasting” possible configurations that can be encoded by
the auxiliary bits but that Aegis cannot utilize. In general, PAF
schemes can provide a similar tolerance of stuck-at faults with
lower auxiliary storage overhead requirements to schemes,
such as ECP or ECC [15].

In this paper, we propose a partitioning method that dynam-
ically changes the number of groups and size of each group
to mitigate more stuck-at faults in a data block. The dynamic
partitioning approach can be applied to existing PAF schemes
and provides an additional degree of freedom to improve their
effectiveness. In some cases, dynamic partitioning can leverage
the unused encoding states in schemes such as Aegis. Dynamic
partitioning relaxes the requirements of some PAF schemes
designed to create a fault correction guarantee. For example,
Aegis creates perfectly nonoverlapping configurations to allow
isolation of faults, which is the principle of Aegis and creates
a particular fault correction guarantee. However, as long
as a configuration exists such that all groups contain only
SA-R or SA-W faults, the data can be encoded and stored
correctly. Thus, dynamic partitioning creates more partitioning
choices to increase the search space to identify such a config-
uration. Moreover, we provide a relaxed partitioning method
to maximize the potential for a more diverse search space.
In particular, this paper makes the following contributions.

1) A novel dynamic partitioning scheme to enhance
stuck-at fault tolerance through variation of group size
is proposed for the PAF methodology.

2) A relaxed partitioning scheme that further improves the
effectiveness of dynamic partitioning is proposed that
relaxes the nonoverlapping requirement for a particular
group size.

3) A combined dynamic and relaxed partitioning approach
is proposed that utilizes both nonuniform group size
while relaxing the nonoverlapping requirement within
the same framework.

4) A detailed characterization of stuck-at fault toler-
ance, which illustrates the significant improvements of
dynamic partitioning and relaxed partitioning in the
context of faulty auxiliary bit storage.

The remainder of this paper is organized as follows.
In Section II, we provide a background and discuss the related
work on fault-tolerance schemes applied to stuck-at faults in
emerging memories. In Section III, we describe the dynamic
partitioning scheme in detail [1]. In Section IV, we introduce
relaxed partitioning to enhance fault-tolerance effectiveness.

2359

Section V provides the experimental methodology and results
of the proposed schemes compared to the current leading
approaches. In Section VI, we relate conclusions and potential
future directions.

II. BACKGROUND

To discuss the details of previous work and our proposed
approaches, we must first define some terminology. Then,
we discuss prior work in both error correction and error
mitigation for limited endurance memories.

A. Preliminaries

To allow terms that could otherwise be vague or have
multiple meanings to be defined precisely for the description
of PAF schemes, we define the following terms.

Definition 1 (Block): A block is an n-bit unit of data that
is accessed as a single operation.

Definition 2 (Configuration): A configuration describes
one way that the bits of a block can be divided into equal
size groups. In particular, a configuration is a set of groups
such that all n-bits in the block are a member of exactly one
group and all groups have the same number of bits.!

Definition 3 (Partition): A partition describes a set of con-
figurations where the number of groups and group size is fixed.

Thus, a configuration describes one way to divide the bits
of a block into groups. A partition describes several ways
to divide the bits of the block into groups of the same
size. For example, if a block consists of 32 bits, then there
are multiple configurations that divide the 32 bits into four
groups of eight bits each. A partition would consist of several
of these configurations. Another partition would consist of
configurations that divide the 32 bits into five groups of
seven bits each (where one group will have three virtual bits').

B. Error Mitigation for Limited Endurance Memories

Error correction codes (ECC) [7] are general approaches
that are used to protect memories from transient faults but
can also be applied to correct stuck-at faults. Among these,
single-error correction double-error detection (SECDED) ECC
(64, 72) based on Hamming codes is the most popular form
of ECC. When applied for stuck-at faults, it can recover one
SA-W and tolerate any number of SA-R within the original
64 data bits and the eight additional parity bits. When the
memory fault rate is <107, SECDED ECC is sufficient for
fault recovery [16] as the probability of more than one stuck-at
fault appearing in a data block is below 107!%2. As memories
with limited endurance start to experience early failures of
weak cells due to process variation, the fault rate can begin
to exceed 107°. This is exacerbated by spatial correlation
such that faults can be clustered within data blocks, quickly
exceeding ECC’s capability. Moreover, while data bits have a
relatively low probability of being written due to data locality,
ECC parity bits are written much more frequently, encouraging
faster wear, and further limiting fault-tolerance in this scenario.

f 1 is not divisible by the number of groups, additional virtual (unused)
bits may be added to make the groups even.

2360

ECP [12], [17] uses auxiliary bits to record the location of
one or more faulty bits within the row and includes the same
number of spare bits to store the correct data. For a 512-bit
data block, to protect f faulty bits, ECP requires 10f + 1
fault-free bits to ensure protection.

As previously discussed, Aegis [15] and FNW [13] are
PAF approaches to improve fault tolerance in the presence of
stuck-at faults. Additional PAF approaches include RDIS [18]
and SAFER [14]. RDIS transforms a 1-D data block into a
2-D matrix in an attempt to distribute SA-Rs and SA-Ws
into different groups. Each row or each column of this
matrix requires a small z-bit counter to conduct recursive
inversion. Given the large number of counters, this can result
in a significant overhead. For example, to guarantee 3-bit
correction, a 512-bit data block is logically organized into
a 32 x 16 matrix and requires 2-bit counters. The resulting
overhead is (32 + 16) x 2 = 96 bits or an 18.7% overhead.
RDIS can potentially correct more faults than its guarantee if
the additional faults happen to fall into the right groups.

SAFER assumes a particular number of available config-
urations with each group containing a pointer to the fault
within the group, similar to ECP. Whenever a new fault occurs,
the groups are repartitioned using the xor of the pointers to
the fault locations in the data blocks. The goal is to partition
the faults such that the number of stuck-at cells per group is
<I1. If the number of faults exceeds the number of groups,
correction may be possible, but it is not guaranteed.

Aegis uses a prime interleaving principal to create unique
configurations. It interprets a 1-D data block as a 2-D matrix.
Inspired by the principle that any two points in a line on a
Cartesian plane determine the slope of the line, Aegis uses dif-
ferent slopes to generate different configurations. If the matrix
has prime numbers of rows and columns and the number of
rows is greater than the number of columns, Aegis ensures that
all possible combinations of two bits, which are in the same
group of one configuration, would not be in the same group
of the other configurations. The slope k represents an integral
offset by a prime value (the length A of the X dimension
of the matrix) and a prime modulus value (the length B of
the Y dimension of the matrix) to form each group. This
ensures that for the first element of each group (its starting
position) results in unique group members for each different
slope value. In Fig. 1, as an example, we illustrate how to
partition a 32-bit data block into 7 x 5 matrices according
to Aegis for two slope values of k = 0, 1. The different
symbols represent the members of each group for the different
slopes, which except for the initial element, are different for
the different slopes. If there are f stuck-at faults in a data
block, Aegis guarantees that the faults will be partitioned into
different groups through this partitioning uniqueness when
there are at least (f(f — 1)/2) 4+ 1 possible slopes or group
configurations [15]. Compared to SAFER, Aegis creates a
better distribution of stuck-at faults with equivalent capacity
overhead.

To provide context of the overhead for these schemes,
to correct three faults, SAFER, Aegis, ECP, and RDIS require
14, 25, 31, and 96 bits, respectively. However, to correct six
faults, Aegis, SAFER, and ECP require 27, 55, and 61 bits,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

X Y
meeeee ONeg I O
BLLLT T B K@Y W
L1CC CCC LCo®A N
0000 A Y K
4 2 X X ®.,Em0d
AAAAA Amem
EEEER LK 1 J&
(0,0) A=5 (40 X (00 A5 (40 X
(a) (®)
Fig. 1. Example of Aegis partitioning [15] of a 32-bit block into

7 x 5 matrices with different slopes. Each bit is included in a configuration
as represented by a symbol. The symbols with dotted outlines correspond to
unused bits (i.e., 33-35th bits). There are seven configurations in the partition,
corresponding to seven slopes (i.e., 0 <k <6). (a) k =0. (b) k =1.

respectively. Thus, SAFER is effective for correcting relatively
few faults, and Aegis is effective for correcting larger numbers
of faults. More details on the capabilities and overheads of
these schemes are shown in Section V.

III. DYNAMIC PARTITIONING SCHEME

The goal of dynamic partitioning is to distribute stuck-at
faults to different groups by dynamically changing group sizes
and orientations within an existing PAF scheme. This can
improve the fault tolerance without increasing space overhead.
Thus, we define the following.

Definition 4 (Dynamic Partition): A dynamic partition
describes a set of partitions where each partition has a
different number of groups and group size.

A dynamic partition can be represented by splitting the
auxiliary bits into two segments: the first segment, S1, spec-
ifies how many unique partitions are used and the second
segment, S2, contains the auxiliary bits needed to specify
the makeup of the configurations within the partition and
subsequently flip each of the groups within that partition.
In Sections III-A and III-B, we demonstrate dynamic par-
titioning by applying the concept to existing PAF strategies
of block-based partitioning (i.e., FNW) and prime interleaved
partitioning (i.e., Aegis), respectively.

A. Dynamic Partitioning for FNW

FNW is traditionally implemented as a static block-based
partition. For example, a 32-bit data block with eight auxiliary
bits groups blocks of four adjacent bits. Each group has a
corresponding auxiliary bit, which indicates whether the entire
group is flipped or not to attempt to avoid writing any SA-W
in the block. FNW fails when there is at least one SA-R
and SA-W bit in the same group. Dynamic partition-based
FNW (FNWpy) is a simple and effective method to explain
the power of our dynamic partitioning scheme.

Fig. 2 shows how FNWpy would protect this 32-bit data
block assuming an allocation of 10 auxiliary bits. The auxiliary
bits are partitioned, such that the leading two bits (S1) are used
to identify the number of groups used in the partition and the

ZHANG et al.: DATA BLOCK PARTITIONING METHODS TO MITIGATE STUCK-AT FAULTS

8 groups
o "o NN EEN
6 groups

o NN

S1 S2

g8 9 10 11112 13 14 15

4
R w
W|R R W
16 17 18 19120 21 22 23124 25 26 27128 29 30 31

Fig. 2. Illustration of dynamic FNW protecting a 32-bit data block with
10 auxiliary bits. The smaller FNW partition size outperforms the larger one.

remaining eight bits (S2) control the inversion. The S1 bits
count down from the maximum number of partitions, in this
case eight. Thus, for the example, the data can be partitioned
into eight, seven, six, and five groups. S1=“00" represents an
eight-group partition (8-0) in the data block with the partition
of the data bits shown in the red dotted lines. Unfortunately,
groups containing bits 4-7 and 16—19 contain both SA-R and
SA-W, which prevents the success of this encoding (marked as
X). S1="10" represents a six-group partition where the lower
two flip bits are ignored. In this case, the partition divides the
SA-R and SA-W bits into separate groups, allowing encoding
to proceed. Here, the blocks end on the bolded numbers.

In general, for a large block, using a small number of bits
to indicate the partition (adjusting the group size) can be more
beneficial than using those bits to have a fixed partition with
more, smaller groups. More discussion of dynamic FNW can
be found here [1]. There are clear limitations to the FNW
policy even with dynamic partitions due to its block-based
nature, particularly as the number of faults increases. Thus,
we apply dynamic partitioning to another PAF scheme with
more partitioning flexibility, namely Aegis, in Section III-B.

B. Dynamic Partitioning for Aegis

The number of configurations available to Aegis is deter-
mined by the height of the 2-D rectangle used to organize
the bits in the data block. The partitioning of Aegis has two
restrictions on this rectangle height: it must be a prime number
and this prime number must be greater than or equal to the
width of the rectangle. As a result, any two bits in the same
group of one configuration will not be in the same group in
another configuration. Thus, this partitioning guarantees the
correction of a certain number of faults by partitioning each
fault into a different partition [15].

However, when the number of faults exceeds this guarantee,
it may still be possible to correct these faults if they are parti-
tioned to group SA-R’s and SA-W’s, but with Aegis, there is a
limited search space to accomplish this. The dynamic partition
strategy applied to Aegis does not limit itself to prime heights.
Instead, it uses multiple combinations of prime and nonprime
heights for a larger number of partition configurations. Thus,
our strategy can leverage the existing advantages of static
Aegis while allowing for many more partitioning options in

2361

a more flexible manner than partitioning schemes such as
SAFER and RDIS.

Fig. 3 shows how a 32-bit data block is partitioned into
different configurations according to static (original) Aegis
and dynamic Aegis (Aegispy). For this block size, Aegis
uses 10 auxiliary bits for fault correction, including seven
flag (inversion) bits and three slope bits to indicate slopes
from O to B — 1. For each slope, the data block is partitioned
into a 7 x 5 matrix. The width (A) and the height (B) of
the various matrices are marked, while the available slopes
(k) are also shown. The numbers for the bits in the matrices
represent their group identifiers (IDs) for the slope shown in
red and recorded in the slope bits (“000”). The bits labeled
‘X’ are bits which are not in the 32-bit data block.

In the case shown, Aegispy uses two bits in S1 and the other
eight bits in S2. S2 is then partitioned into two subsegments:
the flag bits and slope bits. The two bits in S1 represent
the size of the matrix available, such as “10” for the 6 x 6
matrix. The number of slopes for each partition size is limited
by the bits left over after removing the flag bits needed for
the number of groups. For example, the 6 x 6 matrix has
two bits available as slope bits (four slopes), when, if an
additional auxiliary bit had been allocated, six different slopes
could have been applied. In contrast, for a 5 x 7 matrix,
the auxiliary bits permit three slope bits. Thus, the number
of groups possible (five) in this matrix orientation limits the
usable slopes from eight that could be encoded to five. Because
the group partitioning encoded in S1 ranges from eight down
to five, the number of available configurations is the sum of
all the different configurations possible in each matrix size,
which is 1 + 2 + 4 + 5, or a total of 12. Traditional Aegis
only has seven configurations.

Fig. 4 shows the encoding logic for a 32-bit data block
to determine the encoding vector. The initial height bits (S1)
and slope bits are applied to decoders in the ROM. For each
stuck-at fault location (address), the ROM will reveal the
group ID of the stuck-at fault. The primary goal is to locate
a configuration, where stuck-at faults are all isolated into
different groups with a secondary goal of isolating SA-R and
SA-W faults into separate groups. If there is no collision of
stuck-at faults within any group, to minimize write overheads,
anew ID is only initiated when a new fault appears and creates
a fault collision. If there is a collision of stuck-at faults within
a group ID, that configuration does not satisfy the primary goal
and the slope counter is incremented. If the slope surpasses
the maximum available value at the data in S1 (see Fig. 3),
the height counter is incremented and the slope is reset. If,
during the search, an ID is found that satisfies the secondary
goal of isolating SA-R and SA-W faults, we note it as a fall
back option should the search for the primary goal fail.

In this manner, we search the possible data patterns in
S1 and their correspondingly available slopes until we find
a configuration where no collision occurs, which tolerates all
the stuck-at faults in the block. If no such configuration is
found, the fall back configuration that isolates SA-Ws and
SA-Rs is used. The worst case encoding includes the traversal
of all possible configurations, but in practice for lower error
rates, this process occurs infrequently, and requires a very few

2362

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

~ k={0} k={0,1} k={0,1,2,3} k={0,1,2,3,4}
k={0,1,--,6}
i | BEEER
66XXX S E 65 XXX
L) 15|5(5/15 cccs 54321
w 44444 o BEEE m 48210 -
1 [, 1l 1 3 il 6 1]
~ SEEES ® 3333 ~ 2‘:;25 .3
HHH b .106:"54
00000 0000 A=6
A=5 A=5
DR IIIIIIII STHENEEEN: THEEEEN: o TTHEEEN
....... 000 — 8 Flag bits 7 Flag bits Slope bit ‘—'—‘51 6 Flag bits 2 Slope bits ;F_JSI 5 Flag bits 3 Slope bits
7 Flag bits 3 Slope bits 52 52 S2 S2
() (b)
Fig. 3. (a) Static partitioning and (b) dynamic partitioning for a 32-bit block within Aegis.
Fault:Addrese Inversion Vector |g|l|g|§|i|§|§|7—|
|01234 5 x 32 Decoder 3031| —PE
p— 5 —
3 goar. ;A
Height 0 WES6 2xa E C
Counter | | 8 H: Decode% L = ST i
2x4 1 : - \L |
Decoder,| v——:DﬁT W3S0 2} i 3
[] —P
——
2 T WSt
= :
R Wist B Slope = : —D 1
Counter 1 ,_D_l—— WIS] |
Slope o ° ‘ - 2 - . I 1‘
Counter oy DR WaST 1 3x8 | :
2| T e i Decodery ;D—Ti .
3x8 5| 5 E— WIS |
Decoders| L o) 6 L 1
. I WASA i ! 7 vy
6 ' . I I T 11
7 012345 3031
Group ID

01234567

Fig. 4. Aegispy logic to look up a group ID of a stuck-at fault for a specific
height (S1) and slope, shown for a 32-bit block. In this example, a 49 x 32
and 49 x 7 ROM are used as lookup tables.

search iterations. As a performance versus storage tradeoff,
an auxiliary bit can indicate a primary search failure and to
enter a gracefully degraded mode, such that all future searches
only isolate SA-R and SA-W faults.

In Fig. 5, we display the decoding logic to know which bits
among a 32-bit data block were written in their inverted forms.
Note that decoding is more efficient than encoding, because
only a single lookup is required. In each implementation,
we use a ROM-based lookup table to record the relationship
between the input and the output information. The ROM
capacity overhead is discussed in Section V.

IV. RELAXED PARTITIONING

The novelty of Aegis versus prior PAF schemes is that it
can provide a stronger guarantee of fault tolerance. Aegis uses
a unique partitioning such that each two bit pair in the same
group of one configuration must be in different groups in any
other configuration. This property allows Aegis to guarantee
correction of a number of faults based on the number of
groups in the partition. To ensure this unique partitioning,
Aegis requires a prime number of groups in its partition, which

Fig. 5. Aegispy logic to look up an inversion mask corresponding to the
height, slope, and group inversion. A 49 x 32 ROM is used as a lookup table.

is also the number of unique configurations that are recorded
as slopes within its auxiliary bits.

However, the number of configurations that can be recorded
by the slope bits in Aegis is always larger than the number
of Aegis’ configurations, meaning that Aegis always wastes
several additional possible configurations enumerated by the
slope bits. For example, consider a 512-bit data block, if the
number of sets in a configuration is 23, Aegis uses five slope
bits to record 23 configurations. However, these five bits can
encode up to 32 configurations, so nine “extra” configurations
could be recorded by these slope bits (2° — 23 = 9). If nine
useful relaxed (e.g., nearly nonoverlapping) configurations can
be determined, they can be encoded to fully leverage the
flexibility of these slope bits. Furthermore, if the relaxed
configurations are also efficient (nearly as efficient as the orig-
inal Aegis configurations) at distributing faults into different
groups, the fault tolerance could be dramatically improved by
adding additional slope bits.

In this section, we propose a systematic method to generate
relaxed configurations that guarantee that at most two bits in
the same group of a relaxed configuration will be in the same
group of an original Aegis configuration or another relaxed

ZHANG et al.: DATA BLOCK PARTITIONING METHODS TO MITIGATE STUCK-AT FAULTS

configuration. Each relaxed configuration is also partitioned
into a prime number of sets as Aegis. Thus, the relaxed config-
urations are compatible with Aegis configurations in hardware
implementation by merely adding them to the ROMs.

A. Relaxed Partitioning Design

We propose to relax the property in Aegis that each par-
tition configuration must have unique bit pairs. When we
allow configurations that permit one redundant bit pair per
group, the search space may be expanded with many useful
configurations. To accomplish this, we utilize the same integer
multiple of prime interleaving concept as Aegis, however, for
each element in the group the interleaving increases by a
constant value which we call the slope gap. The slope gap
transforms the equation determining the vertical position for
a group in each column in the rectangle representation of the
data from linear to quadratic.

To define the “slopes” of a quadratic curve for partitioning,
we use two variables: initial slope k and slope gap Ak.
Conceptually, k and Ak are coefficients to linear and quadratic
terms of the horizontal position used to describe the vertical
position. In essence, Ak is the ‘“acceleration” of the slope
increase. To define the vertical positions b; as a function of
horizontal positions a; for the ith element of a group with a
starting point in column ag in the matrix, the corresponding
“accumulated” slope is (i — 1)Ak. To calculate the vertical
position b; of the ith column, we include the initial starting
vertical position and compute the remainder over B to remain
in the bounds of the matrix. Thus, the vertical offset of the
column ag; can be computed as (E;;lo(k + ajAk)) mod B
which leads to

— 1)a; Ak
b; = (aik + %) mod B.)

Equation (1) can be easily extended by a constant b offset
v, where y refers to the yth group and y € [0, B). For each
point, (a, b) in the matrix can be described by

(a — DaAk
f) mod B. 2)

b= (y + ak +
Fig. 6 shows an example of these relaxed partitioning
configurations when the initial slope k is 0 or 1 and the slope
gap Ak is 1. For illustration purposes, we arrange the n-bit
data block into a matrix. The size of the matrix is A x B, where
B is the number of groups and A is the number of bits in each
group. B is a prime number and B > A. The matrix has the
same requirements as the matrix for static Aegis: given B, A is
the smallest integer that meets the requirement that A x B > n.
As B > A and A x B > n, then it follows that B > /n. Each
bit at position x in the data block is mapped to position (a,b)
in the matrix, where x = aA + b. In Fig. 6(a), k = 0 zeros
the first term of (1). Thus, for the zeroth group where ag = 0,
according to the second term of (1), bo = 0. Continuing the
example a; = 1,b1 =0, a0 = 2,bp = 1, a3 = 3,b3 = 3,
and a4 = 4, by = 6. Fig. 6(b) follows the example where both
terms of (1) contribute to the vertical location.
The quadratic curve governed by (2) has the property that
for any value Ak, no pair of bits will be in the same group

Y Y

Mo ®@mom OOEROomO

me(®® B (ooe

LCCoAN LICoAR A
24 2 K¢ X J N@
®® L0y ®.,000
AARB® Amp®d
LK _X@\ HeCAC

(0,0) A=s (40 X (00 A=5 (40) X

(a) (b)

Fig. 6. Example of relaxed partitioning for a 32-bit block using 7 x 5 matrices
with different initial slopes k =0, 1 at a given slope gap Ak = 1. Similar to
Fig. 1, each bit is represented by a symbol that represents to which group it
belongs and symbols with dotted outlines do not correspond to an actual bit.
(@) K=0, Ak=1,(b) K=1, Ak=1.

for any slope k. Moreover, when combined with traditional
Aegis (relaxed partitioning, Ak = 0), the aggregate of both
configurations guarantees that only one pair of bits from each
partition overlaps with any other configuration. We demon-
strate this property in the following theorems and proofs.

First, we demonstrate that the group offset y must be the
same for all elements of the same group.

Theorem 1: For points (a, b) in an A X B matrix governed
by (2), given an initial slope k € [0, B) and slope gap
Ak € [0, B), there is a unique y € [0, B).

Proof: For a point to satisfy (2), it must also satisfy
(a — DaAk

y=mB4b—ak— 3)

which is the reorganization of (2) solved for y. This equation
introduces the integer m from the m B term, derived from the
modB term of (2). First, since a, b, k, and Ak are integers,
then ¢ = b — ak — ((a — 1)aAk/2) is also an integer. Thus,
we can rewrite (3) as y =mB + c.

Let us assume that for any point (a, b), there are two values,
m1 and my, where m| # my, with the corresponding values
y1 and yj, respectively, where y; # y» that satisfy (3). In this
case,

Iy1 = y2l = |miB + ¢ — (m2B + ¢)| = |m1 — m2|B.

Since |m; — mo| > 1, then |y; — y2| > B. To guarantee
that y, y» € [0, B), then |y; — y2| € (0, B) must also hold.
However, the assumption that y; # y, violates the requirement
that yi, y2 € [0, B) meaning y; = y». O

According to Theorem 1, for each group’s anchor point of
the curve (0, b), b = y, which is on the y-axis. For each given
Ak, Ak € [0, B), quadratic partitioning generates a set of B
configurations. In fact, the set of configurations generated by
Aegis can be a special case of this expression, where Ak = 0.
Next, we demonstrate that for quadratic partitioning with any
particular Ak value, we generate nonoverlapping partitions.

Theorem 2: Given an A x B matrix, for each given Ak €
[0, B), where 0 < A < B and B is prime, any two points
in the same group in a configuration must not be in the same
group again in another configuration.

2364

Proof: Consider two points (aq, by) and (ag, bg) that are
in the same group of a configuration (defined by k = ko),
where by, bp can be represented as a function of a,,ap
using (2), where 0 < ko, y < B, and 0 < a, < ap < B. Let
us assume that these two points are also in the same group
in another configuration (defined by k’ # ko), which can be
similarly represented using (2), where 0 < k', y’ < B.

From this assumption, we can equate the right-hand side
of (2) for point a, in both configurations yielding

(y 4+ agk) mod B = (y' + a,k’) mod B (4)

noting that ((a, — 1)a, Ak/2) is the same for both sides and
has been canceled. Thus, we can reorganize (4) as follows:

y/_y:aa(k_k/)+ma3 (5)

where as before m, and mp are integers. Similarly, we can
generate the same equation for ag which can be equated
through y" — y resulting in (6) and simplified to (7)

ag(k — k') +myB = ag(k — k') + mpB 6)
(ag — aﬂ)(k - k/) = (mﬂ —mg)B. (7

As a4, ap € [0, A), k, k' € [0, B), a, # ag, and k # k', then
la, —apl € (0, A) and |k — k'| € (0, B). Recalling that B is
prime and neither a, — ag nor k —k’ can be a multiple of B,
then (7) cannot hold, thus proving the theorem. (]

For each Ak € [0, B), relaxed partitioning generates a set
of B configurations, so this scheme can generate B sets of
configurations. The sum of all these configurations is B.

Theorem 3: Among B? configurations generated by relaxed
partitioning, for an A x B matrix, where 0 < A < B and
B is prime, no more than two points in the same group
in one configuration may be in the same group in another
configuration.

Proof: Any three points (aq, by), (ag, bg), and (a,, b))
in the same group of a configuration (defined by k = ko and
Ak = Ako), where b,,bp, and b, can be represented as
a function of aq, ag, and a,, respectively, using (2), where
0 < ko, Ako, y < B, and 0 < a4, < ap < ay, < B. Let
us assume that these three points are also in the same group
in another configuration (defined by k' and Ak’ such that
Ak’ # Akg), which can be similarly represented using (2),
where 0 < k', Ak’, y < B.

Similar to Eq. (5) but reintroducing the ((aq — 1)aq Ak/2)
term which is now distinct between configurations we create
the following expression:

(Ak — Ak (ag — Dag
5 .

Similar to (7), we can generate the same equation for ag
which can be equated through y’ — y after simplification
resulting in

Yy —y=autk —kK)+myB+

(®)

(Ak— AK)(ag+ap—1)
2

(aa_aﬁ)[(k_k/)+ i|=(m5—ma)B.
©)

If ay,ap € [0, A), then |a, — ag| € (0, A), and if A < B,
then |aq — ap| cannot be a multiple of B. Because B is prime,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

then the remaining term in brackets must be a multiple of B
for (9) to hold. Therefore, we define 4,4 to be two times this
integer multiple of B, which is also an integer multiple of B
such that

2(k" — k) = (Ak — AK')(ag +ag — 1) —hepB. (10)

Equation (10) can be generated for points (a,, b,) and
(ay, by), and by setting them equivalent, we get the following:

(ap — ay)(Ak — AK') = (hay — hap)B. (11)

We can obtain the same contradiction from (11) as from (6).
As ag,a, € [0,A), Ak, Ak’ € [0,B), ag # a,, and
Ak # AK', then |ag —a,| € (0, A) and |Ak — AK’| € (0, B).
Recalling that B is prime and neither ag — a, nor Ak — Ak’
can be a multiple of B, then (11) cannot hold, thus proving
the theorem. 0

The encoding and decoding logic for the relaxed partitioning
scheme follows the same strategy as Aegis [15], but it requires
larger ROMs in order to accommodate the additional config-
urations from both linear and quadratic curves. We describe
the effectiveness of dynamic and relaxed partitioning and the
experimental evaluation in Section V.

V. EVALUATION

To validate our proposed dynamic partitioning and relaxed
partitioning strategies, we first conduct a Monte Carlo sim-
ulation for high error rates. We compare relaxed partitioning
Aegisgrg, dynamic versions FNWpy, Aegispy, and AegispyRrE
(dynamic partitioning combined with relaxed partitioning)
against static counterparts of FNW and Aegis as well as
baselines of ECP and ECC as well as other PAF strategies
in the literature [14], [18]. Both data-oblivious partitioning
and data-aware partitioning are studied. Data-oblivious par-
titioning attempts to segregate all stuck-at cells into differ-
ent groups, while data-aware partitioning considers grouping
together SA-R and SA-W cells based on the data to be stored.
We then evaluate FNWpy, Aegispy, Aegisrg, and AegispyRrE
in benchmark experiments where the auxiliary bits are also
potentially faulty. These experiments consider the stuck-at
fault rates of 107> and 10™*. We conduct a similar set of
experiments using probabilistic methods to further stress each
memory location to include a sensitivity study with stuck-at
faults rates from 1073 to 1079,

A. Experimental Methodology

We developed a PIN-based simulator [19] and implemented
ECC, ECP, FNW, FNWpy, Aegis, Aegispy, Aegisrg, and
AegispyRrg to evaluate their tolerance to stuck-at faults. The
PIN simulator evaluates the main memory writes by encod-
ing or partitioning the data block and the auxiliary bits
and recording a fault if the value of any fault bit being
written is opposite to its stuck-at value. To model the stuck-at
faults, a fault map, including fault bits stuck at ‘0” or ‘1,
is developed by using the Bayesian distribution to mimic the
impact of process variation and includes spatial correlation of
faults [20], [21]. For this paper, we followed the model
described in [20] to generate maps of weak cells for a 4-GB
PCM.

ZHANG et al.: DATA BLOCK PARTITIONING METHODS TO MITIGATE STUCK-AT FAULTS

1) Model Implementation Details: In our evaluation,
stuck-at faults can be tolerated in a data block for each of
the data-aware schemes as follows.

1) For a Hamming code-based error correction (ECC-1¢4),
one SA-W and any number of SA-Rs can be tolerated
in each data block or its parity bits.

2) For ECPf, f SA-Ws can be tolerated in the data block,
assuming that no SA-Ws compromise the auxiliary
bits.

3) For FNW, there is no group that has both SA-Ws
and SA-Rs in the group’s data and its corresponding
flag encoding) bit.

4) For FNWpy, there is a configuration that no group of the
configuration has both SA-Ws and SA-Rs in the group
data and its corresponding flag bit. The auxiliary bits
(in S1) to record the group partitioning may not have
any SA-Ws.

5) For Aegis and Aegisgrg, there is a configuration that no
group of the configuration has both SA-Ws and SA-Rs
in the group data and its corresponding flag bit. The
slope bits may not have any SA-Ws.

6) For Aegispy and AegispyRrg, there is a configuration
that no group has both SA-Ws and SA-Rs in the group
data and its corresponding flag bit. The auxiliary bits
in S1 and the slope bits in S2 may not have any
SA-Ws.

Each of the above-mentioned conditions can also be applied
for data-oblivious by combining SA-R and SA-W into total
faults and replacing any mentions of SA-W with “faults.” The
data block size examined in the study was 512 bits. For FNW,
FNWpy, Aegispy, Aegisgrg, and Aegispyrg, we used 10, 15,
21, 28, 36 (33 for Aegisrg), and 43 (41 for Aegisrg) overhead
bits per data block to tolerate stuck-at faults. These overhead
ratios are 1.96%, 2.93%, 4.10%, 5.47%, 7.03% (6.45%), and
8.4% (8.01%). Aegis and Aegisrg require a minimum of 23-bit
encoding overhead for a 512-bit block to guarantee that each
possible slope would have valid partitioning, as discussed in
Section III-B. For fewer encoding bits, this correction cannot
be guaranteed as the group size is not sufficiently large to
guarantee independent slopes, however, it is still effective. For
comparison, we relax this requirement and also allow Aegis
to use 10, 15, and 21 auxiliary bits per data block, generated
in the same manner [15].

For comparison, we provide the results for ECC-144, which
requires 64 bits per data block, with an additional eight
parity bits per word for 1-bit error correction and 2-bit error
detection, corresponding to an overhead ratio of 12.5%.> ECP r
requires f x 10 4+ 1 bits per data block. We compare our
proposed schemes with ECPy, such that ECP requires the
minimum auxiliary bits that exceed the auxiliary bits of our
scheme (e.g., a 15-bit encoding would compare to ECP; that
requires 21 bits).

First, we conduct Monte Carlo simulations of dynamic par-
titioning and relaxed partitioning to observe their differences

2We also considered ECC-1,5¢ to achieve a similar overhead (auxiliary bits)
compared with Aegis and FNW. However, ECC performed so poorly it was
more appropriate to compare with the more common (64, 72) ECC at higher
overhead.

2365

TABLE 1
NUMBER OF CONFIGURATION OPTIONS
Aegis Aegisrg Aegispy Aegispyre
3 s 3 s 2 D-1 3 S;) D—1 : sS4 2
min(2°, B) | min(2°, B) | 37,70 min(2%, B;) | 3°,—, min(2%, B?)

in lifetime. To study the effect of aging, we assume that the
lifetime of each cell in PCM follows a normal endurance
failure distribution with a mean value of 10% writes with a
25% coefficient of variance. These simulations assume a 4-kB
operating system page size with a data block size of 512 bits.
Assuming an effective wear leveling method [22], [23], writes
with random data are assumed to be uniformly distributed over
the whole memory and differential write is adopted to reduce
the frequency of cells written for each operation. Under these
conditions, the simulations continuously issue page writes to a
memory protected by various PAF schemes including dynamic
and relaxed partitioning until there is an unrecoverable fault
to determine their average lifetime improvement.

In our subsequent experiments, we used our custom sim-
ulator to perform two kinds of evaluations on constant fault
maps. First, we evaluate the memory accesses for the PARSEC
benchmark suite [24] using our Pintool for different fault
maps. The entire benchmark suite is executed, and an error rate
is determined by accesses with uncorrectable errors compared
with total accesses. This evaluation provides a snapshot of the
correction capability of the PAF schemes for individual bench-
marks across the lifetime of the memory. Second, we calculate
what we call a “true random error rate,” which we define as
the error rate if a perfect distribution of all possible values was
applied to each location of a fault map through an exhaustive
search. This provides snapshots of the true correctness of
the memory for all possible data patterns at different points
throughout its lifetime. For each fault rate, we use the average
error rates for five fault maps to evaluate and compare the
effectiveness of the different fault recovery schemes.

2) Design Implementation: To guide the comparison
of dynamic encoding and relaxed partitioning for Aegis,
we implemented the encoding and decoding lookup
tables (ROMs) for Aegis, Aegispy, Aegisre, and AegiSpyRE
based on the number of configurations required, as shown
in Table I. The hardware was implemented for a 45-nm
CMOS by running the ROM lookup table designs in Synopsis
Design Compiler targeting a 45-nm FreePDK [25].

The numbers of configuration options for Aegis and
Aegisrg are both a function of the number of slope bits s and
the number of groups B. The numbers of configuration options
for Aegispy and Aegispyr are a summation of options within
all partitions, where D and B; are the number of partitions and
the number of groups for partition i, respectively.

Aegispy, Aegisrg, and AegispyRrg contain more config-
uration options for identical bit overhead and thus require
additional lookup table area and delay. We provide a detailed
study of the area and latency implications of the different
dynamic and relaxed versions of Aegis in Appendix A of the
Supplementary Material. The encoding latency reported is for
evaluating one data partitioning option, while encoding for

2366

=
(=3
(=]

Average Number of Recoverable Faults
S
(=} (=}
—_—
| iy
I >
A
N
W
13
oo
(o8]
(=)}
N
W
2,
, O
W
w
0,
¢)
W
(=}
|

Fig. 7.
(a) Data oblivious. (b) Data aware.

Aegis, Aegispy, Aegisrg, and Aegispyrg multiple encoding
options may need to be explored to find a successful encoding
which partitions SA-Rs and SA-Ws into separate groups.
Moreover, this process requires evaluation with each stuck-at
fault until an encoding is found which works for all stuck
at faults in the data block. However, encoding is not on the
critical path, and for lower error rates, it is rare to require
many encoding attempts.

Table I in Appendix A of the supplementary material also
enumerates the area and latency comparisons for decoding.
For both 28 and 36 auxiliary bits, Aegispy has a significant
increase in latency over Aegis, while 15 and 21 auxiliary bits
in Aegispy have approximately the same delay as 28 and
36 bits for Aegis, respectively. At 28 auxiliary bits and below,
Aegisrg tends to increase the ROM area more than Aegispy
as it typically adds fewer configurations by keeping the prime
interleaving interval higher, similar to Aegis. It fills in addi-
tional configurations allowed by the auxiliary bits with a small
number of mostly nonoverlapping partitions. Above 28 auxil-
iary bits, we can adjust the number of groups in a partitioning
in order to adjust the tradeoff between a number of options
and area/latency. In a later evaluation, we will demonstrate
that even for these iso-performance comparisons, Aegispy
can achieve improved reliability compared with Aegis, while
Aegisrg has a similar fault-correcting capability as Aegis at
28 auxiliary bits and below. As might be expected, AegispyrE
ROMs are considerably larger and require additional latency
compared with Aegispy or Aegisgrg, individually. However,
Aegispyrg tends to provide >5x the number of configuration
options of Aegisgg for relatively small (typically <1 ns)
increases in decoding and encoding latency.

B. Monte Carlo Simulations

Fig. 7 shows the average numbers of recovered faults in
a 4-kB page by Aegis, Aegispy, and Aegisgg partitioning
compared to ECP, SAFER, and RDIS-3, for data-oblivious
[Fig. 7(a)] and data-aware [Fig. 7(b)] partitioning. For compar-
ison purposes, we also show Aegispyrg which combines the
concept of dynamic and relaxed partitioning into one approach.
To ensure that the conclusions drawn from these results were
not skewed by examining the mean of these particular fault

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

(=3

(=3

(=]
N

200

415I|
OI

Average Number of Recoverable Faults
B D [}
(=1 =3 (=1
(=} (=] (=}
W
N
S
W
[
o]
W
(=)}
S
w
¢ —
(98]
W
%
|
%o, o
¢ —
I
N
S
w

S ‘o O b A0 D > (SHNY
> P 5 WP W S
‘(»Q Q/(' C@\% ‘<§$ ‘§" ve%%v&\% 5360* %%04-\%0* @cﬂ? %g@ .\%“? %QA‘%' QA?' QA‘&
Y Y Y o
P v vf
(b)

Faults corrected before failure in a 4-kB page for various fault mitigation schemes. The number of auxiliary bits per block is shown above its bar.

maps studied in the experiment, we conducted a stabilization
analysis of these trends. In particular, we examined these
trends shown in the figure for Aegis, Aegispy, Aegisrg, and
Aegispyrg for different fault maps with different features such
as a more even distribution of faults (easier to mitigate) and
those with more clustered faults (harder to mitigate). What
we found was that while the overall magnitude changed in
terms of faults mitigated, the relative trends remained the
same for each map and reflected the average trends reported.
The detailed experiment is shown in Appendix B in the
Supplementary Material.

From Fig. 7, we observe that the Aegis-based schemes
achieve much higher effectiveness than the other schemes,
including ECP, SAFER, and RDIS, with similar or even
(often dramatically) lower capacity overheads. Both FNW and
FNWpy are less effective than ECP with a similar overhead.
Among Aegis, Aegispy, and Aegisrg, AegisRg outperforms
the other schemes when there are (>33) auxiliary bits, fol-
lowed by Aegispy and Aegis in that order. For example,
data-oblivious Aegispy tolerated 12% and 19% more faults
than its static counterpart with 36 and 43 auxiliary bits,
respectively, while Aegisgrg recovered an extra 4% and 10%
faults over Aegispy with two fewer auxiliary bits. Similarly,
in Fig. 7(b), data-aware Aegispy tolerated 25% and 27% more
faults than static Aegis with 36 and 43 auxiliary bits, respec-
tively, while Aegisrg recovered an extra 15% and 24% faults
over Aegispy with two less overhead bits. With 28 auxiliary
bits, Aegispy tolerates 4% more faults than Aegisgg and 8%
more faults than Aegis. Aegisrg does not perform well in
this instance, because the encoding bits do not provide an
opportunity to record all the useful relaxed configurations
without requiring additional overhead.

In Fig. 8, a similar trend in lifetime improvement can be
observed although the gaps between different fault-tolerance
schemes are much smaller. Data-aware Aegisgg4! partitioning
tolerated 10.8x more faults than ECP4, while the lifetime
improvement is only 79% higher than ECP4. The reason is
that, when approaching the end of the lifetime, cell failure
rate increases exponentially, quickly exhausting the additional
fault-tolerance capability. Nonetheless, data-aware Aegisrg
still achieves a higher lifetime improvement with >33 aux-
iliary bits than the other data-aware schemes with a similar

ZHANG et al.: DATA BLOCK PARTITIONING METHODS TO MITIGATE STUCK-AT FAULTS

1200%

1000% 43 36 33 36

800%
600%
400%

51
41‘||
0'/.‘

Lifetime Improvement

200%

(a)
Fig. 8.

2367
1400%
o 41
— 836 B 5 1 =1 BY 1
E 1000%
o 45 54
3 800%
g 36
E 600%
[}
£ 400%
= 200%
0%
O B DD DD D DD
L RN S ® P
FEE O\ Qi&e & 1"3% ‘23‘@% 6;%&“%Q%&‘%&“%&é%é\%&%&&
LA S S S o V’QY@@V@\Y@@

Lifetime improvement (in terms of accesses) of a 4-kB page for various fault mitigation schemes compared with an unprotected page. The number

of auxiliary bits per block is shown above its bar. (a) Data oblivious. (b) Data aware.

40%
30%

20%

10%|II|I
0%
b(

Lifetime Improvement per Bit

b S Ao > D b D oAb D o W

Q Q AV S 85 X ol S

F S vfé& Q' z,"«}%vgf’f‘zg"f éfo&‘sz 63%033{9 & e&f-"%.\: Q&é;aﬁio
& S L AN

(@)

Fig. 9.

overhead. For example, in Fig. 8(a), Aegisrg improved the
lifetime by 9.3x compared to an unprotected page, compared
to only 9.0x and 9.2x improvements of Aegis and Aegispy,
respectively, while using three fewer auxiliary bits. A similar
trend is observed for data-aware partitioning [Fig. 8(b)].

The fault-tolerance per bit decreases as the number of
auxiliary bits increases, as shown in Fig. 9. Data-aware
Aegisgg [Fig. 9(b)] provides a 34% lifetime improvement per
bit when 33 auxiliary bits are used compared to 30% and
28% improvements for Aegispy and Aegis, respectively, when
36 auxiliary bits are used. A similar trend is observed for
data-oblivious schemes [Fig. 9(a)].

To further compare the effectiveness of the fault-tolerance
schemes, in Fig. 10, we show the probability of failure for the
recovery schemes with different numbers of faults within a
data block. For data-oblivious [Fig. 10(a)] before the number
of faults reaches the guaranteed tolerance threshold, the prob-
ability of failure remains zero. ECP completely fails when
its threshold is exceeded, while the other schemes gradually
increase their probability of failure as the number of faults
increases. With 28 auxiliary bits, the probabilities of failure
of Aegis, Aegispy, and Aegisrg almost overlap, and with
36 (or 33) auxiliary bits, Aegispy and Aegisgrg partitioning
show an advantage over Aegis, and furthermore, with 43
(or 41) auxiliary bits, Aegisgg exhibits a clear advantage.
For data-aware trends [Fig. 10(b)], the advantage of Aegisrg
becomes more significant. For Aegispyrg, the number of

40%
30%

20%

S

Q
ES

Lifetime Improvement per Bit

e S IR 5o
Q Q . %) ’\/ >
SFE <<) é) %§ & & @cf \%& \%04-\%6%. & \%Q-% 451% 8 3
BT S i S I R A R PENNXENMICN)
Yy Oy Y OY oV Y&% ng’o W

Lifetime improvement per bit of various fault mitigation schemes. (a) Data oblivious. (b) Data aware.

partitions in the data-oblivious case results in it surpassing the
correction capability of Aegisrg. However, in the data-aware
case, Aegisrg has more effective partitioning than AegispyRrg
due to its guarantee of no more than two points in the same
group in different configurations.

C. Benchmark Evaluation

In this section, we evaluate the effectiveness of the error mit-
igation strategies described in Section V-Al for the PARSEC
benchmark suite. We obtain the error rates for the initial stuck-
at-fault rates of 10~3 and 10~* shown in Figs. 11 and 12,
respectively. In each figure, the fault mitigation schemes are
compared to a baseline of ECC-1¢4 shown with a green line.

For the 1073 initial stuck-at-fault rate (Fig. 11), all the
schemes outperform ECC-1g4 even though it requires the
largest capacity overhead. While FNW does not dramatically
improve over ECC-1¢4, FNWpy does provide improvements
over static FNW for 10 and 15 auxiliary bit cases with larger
improvement margin for 28 auxiliary bits, amounting to a
64% and 90% improvement, respectively. Recalling that (apart
from 21 auxiliary bits), ECP ;s uses slightly more auxiliary bits
than the other schemes, ECP s outperforms both ECC-1¢4 and
FNWpy but it is far inferior to Aegis, which achieves more
than a 20x improvement over the next leading candidate.
However, our dynamic partitioning, Aegispy, far outstrips
Aegis. With 10 and 15 auxiliary bits, Aegispy achieves 5x and

2368

-—ECP4
— -ECP5
—ECP6
- -SAFER32
—-o-SAFER64
Aegis28
Aegis36
Aegisd3
Aegispy28
Aegispy36
Acgispy43
-B- Acgisgp28
-8 -Aegisge33
B Aegis g4
- Aegispy, ri28
— Acgispy, RE36
1 6 i 16 21 a6 e
Number of Faults in a 512-bit Block

(a)

100%

80%

60%

40%

Probability of Failure

20%

0%

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

-—ECP4
— ‘ECP5
—ECP6
- FNW
--FNW
——RDIS-3
Aegis28
Aegis36
Aegis43
Aegispy28
Aegispy36
Aegispy43
-B- Acgisg 28
& -Aegispp33
- Acgisgp41
X Aegisyy p28
—*-Acgisyy zp36
—H-Aegisyy 43

100%

80%

60%

40%

Probability of Failure

20%

0%

1 6 11 16 21 26 31 36
Number of Faults in a 512-bit Block

(b)

Fig. 10. Failure probability of a 512-bit data block with various numbers of faults under different fault-tolerance schemes. (a) Data oblivious. (b) Data aware.

Error Rates @Fault rate=10-

(No fault detected)
1.E-07
1.E-06

1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

11 21 31
10 15 21 28

Auxiliary bits

mECP ®wFNW w®wFNW,, m®Acgis ®Aegis,y ™ Aegisy: = Aegispy g

Fig. 11. Comparisons of different recovery schemes on the PARSEC
benchmarks for a 1073 fault rate.

372 x lower error rates than its static counterpart, respectively.
When there are 21 auxiliary bits, Aegispy completely recovers
from all the stuck-at faults in the fault maps, while static Aegis
still has a higher than 107 error rate. They both achieve
perfect protection when there are 28 auxiliary bits.

Interestingly, Aegisgg performs similar to Aegis in these
experiments, while Aegispyrg achieves notable improvements
including a 1.7x improvement over Aegispy for 15 auxil-
iary bits. The advantage of Aegispy over Aegisgrg in these
experiments appears to come from using a smaller initial
prime partitioning that allowed for many more configurations
to be explored. When the number of configurations is small,
adding more configurations has a big impact for tolerance.
When Aegis has large numbers of potential configurations,
the dynamic configurations are less impactful. This is why
for 15 auxiliary bits, Aegispyrg outperforms Aegispy as the
former adds many quadratic configurations to supplement the
dynamic configurations.

For an initial stuck-at-fault rate of 10~* (Fig. 12), we see
a similar trend as the 1073 case, except that ECC-1lgq is
more effective than FNW, and FNWpy prior to 28 auxiliary
bits. Unsurprisingly, Aegis, Aegispy, Aegispy.Rg, and Aegisrg
achieve perfect protection with fewer auxiliary bits, while only
static Aegis and Aegisgg with 10 auxiliary bits see any faults,
but they still achieve an uncorrectable error rate of 107°.
While for the same number of auxiliary bits, clearly Aegispy
and Aegispyrg provide better protection than static Aegis

Error Rates @Fault rate=10"*
(No fault detected)

1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
E+
LEX00- " 21 5 21 3
Auxiliary bits
m Aegis ® Aegispyy

mECP ®mFNW ®=FNW,, u Aegispe = Aegispy pp

Fig. 12. Comparisons of different recovery schemes on the PARSEC
benchmarks for a 104 fault rate.

and Aegisrg, a method to distinguish lower uncorrectable
error rates is necessary. We make this comparison with a
probabilistic study in Section V-D.

D. Probabilistic Evaluation

In this evaluation, we simulate all possible data patterns
in every row of the generated memory model and discover
the “true error rates” of a perfectly even data distribution to
distinguish lower error rates than exhibited through benchmark
evaluation. Using true error rates, first, we compare the effec-
tiveness of the error correction schemes with ISO auxiliary
bits. Second, we compare the effectiveness of the dynamic
schemes with their counterparts for an ISO performance com-
parison. The ISO performance comparison also provides an
advantage as it requires a lower auxiliary bit storage overhead
for Aegispy and AegispyRg.

1) ISO Auxiliary Bits Comparison: Figs. 13 and 14 show
the comparisons of the various recovery schemes at the initial
fault rates of 1073 and 10™*, respectively. ENWpy protected
23% and 22% more data patterns than static FNW with
21 auxiliary bits at the two fault rates, while the improvements
are 68% and 72% with 28 auxiliary bits, demonstrating the
value of the dynamic partitioning strategy. For Aegis, dynamic
partitioning is even more striking, with Aegispy obtaining
53x and 92x lower error rates at the two fault rates for
15 auxiliary bits. At the fault rate of 1073, Aegispy also

ZHANG et al.: DATA BLOCK PARTITIONING METHODS TO MITIGATE STUCK-AT FAULTS

Error Rates @Fault rate=10-
1.E-07

1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01

1.E+00

1 T 21 T 31
10 15 21 28
Auxiliary bits
mECP ®WFNW ®FNW,, ®Aegis WAegispy M Aegisyg B Aegispy re
Fig. 13. Comparisons of different recovery schemes at a fault rate

of 1073 using ISO auxiliary bits.
TABLE 1I

COMPARISONS OF FNWpy AND AEGISpy WITH THEIR STATIC
COUNTERPARTS FOR 28 AUXILIARY BITS. “NONE” MEANS
NO FAULT DETECTED FOR FIVE 256-MB FAULT MAPS

FR Both Dynamic | Static Neither
10-3 0.96 1.48-10—2(8.70-10~4(1.97-10—2
FNW
104 0998 |1.00-10-3|6.00-10~5|1.24-10~3
C|1073] 0.999987 [1.17-10-5(7.16:10~7|6.76:10—7
Aegis B B _
10~%|1-4.83-108(4.83-1078| none none

achieves 38 x and 14 x lower error rates over static Aegis with
21 and 28 auxiliary bits, respectively, while at the fault rate
of 10™*, Aegispy achieves perfect protection, but static Aegis
still obtains an unrecoverable fault rate of 6.5 x 10~ and
4.8 x 1078,

To illustrate the advantage of dynamic partitioning, we com-
pare the error rates of the static and dynamic schemes
in Table II. In Table II, FR is the initial fault rate, both refers
to faults corrected by both the static and dynamic schemes,
dynamic refers to faults only corrected by the dynamic scheme,
static refers to faults corrected only by the static scheme, and
neither refers to faults uncorrectable by either scheme. If the
dynamic column is much larger than the static column,
it illustrates the superiority of the dynamic scheme. For FNW,
the numbers for FNWpy are 21 x larger than static FNW on
average. For Aegis, Aegispy is 64 x better than static Aegis at
stuck-at fault 1073, while Aegispy achieves perfect protection,
but Aegis still fails to protect a few data patterns at stuck-at
fault 1074,

At the two fault rates for 15 auxiliary bits, AegispyRrg
significantly outperforms Aegispy, while for the 10, 21,
and 28 auxiliary bits, the gap is negligible. At the fault
rate of 1073, by adding relaxed configurations, AegispyRE
achieves 4x lower error rate over the original Aegispy,
while at the fault rate of 10_4, Aegispyrg achieves perfect
protection, but Aegispy still has an unrecoverable error rate
of 4.9 x 1078.

With 10 auxiliary bits, Aegispyrg has only 3 configura-
tions® more than that of Aegispy which has 12 configurations,
while with 15 auxiliary bits, Aegispyrg has 83 configurations

3These added relaxed configurations have a smaller number of groups,
so that their effectiveness is comparably low.

2369

Error Rates @Fault rate=10*

(No fault detected)
1.E-07

1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

1 21 31
10 15 21 28
Auxiliary bits

u Aegis W Aegispy

BECP ®FNW =FNWp, B Aegisy; W Aegispy g
Fig. 14. Comparisons of different recovery schemes at a fault rate of 1074

using ISO auxiliary bits.

TABLE III

IMPROVEMENT RATIO IN FAULT RATE OF AEGISpy OVER AEGIS FOR
DIFFERENT AUXILIARY BITS AT AN INITIAL STUCK-AT RATE OF 1073,
FOR EXAMPLE, 4.75 INDICATES THAT THE FAULT RATE OF AEGIS
DIVIDED BY THE FAULT RATE OF AEGISpy IS 4.75
AT THE RESPECTIVE AUXILIARY BITS

Aegis Aux
Aegispy Aux 10 15 21 28
10 6.41 1.71 0.15 0.05
15 — 54.07 4.75 1.60
21 — — 38.85 13.07
28 — — — 14.69

* Configurations within 10% decoding latency are in bold

more than that of Aegispy which has 112 configurations.
With 21 or more auxiliary bits, added relaxed configurations
have reduced the impact, because they do not augment the
protection of the auxiliary bits.

2) ISO Performance Comparison: Due to the marked supe-
riority of the dynamic strategy, Aegispy can achieve improved
effectiveness over its static counterpart while maintaining
performance (latency) with fewer auxiliary bits. In Table III,
we show the improvement of Aegispy over Aegis at the
initial fault rate of 10~ with equivalent or reduced auxiliary
bits. We mark configurations within 10% of decoding latency
overhead (see Table I in Appendix A of the supplementary
material) in bold and italics. For example, the error rate
of Aegispy with 15 auxiliary bits is 1.60x lower as the
rate of Aegis with 28 auxiliary bits at equivalent decoding
latency. Aegispyrg and FNWpy have a similar advantage over
Aegisrg and FNW, respectively.

E. Sensitivity Study for Lower Fault Rates

We further expand the range of the fault rate of the memory
model to the lower initial fault rates of 107> and 107° in
Figs. 15 and 16, respectively. At both fault rates, FNW fails
to improve over ECC-1¢4, only reaching equivalence to it for
FNWpy with 28 auxiliary bits, and performs worse than ECP ¢
as expected. Aegis and Aegispy continue to be dramatically
more effective than the other schemes with at least two and
three orders of magnitude improvement in uncorrectable error
rates than ECP 7, respectively. At the fault rate 1073, Aegispy
significantly outperforms static Aegis using 10 auxiliary bits

2370

Error Rates @Fault rate=10-

(No fault detected)
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

11 21
10 15 21 28

31

Auxiliary bits

BECP ®mFNW ®FNW,, ®Aecgis BAegis,y B Aegisp; u Aegispy pp
Fig. 15. Comparisons of different recovery schemes at a fault rate of 1073

using ISO auxiliary bits.

Error Rates @Fault rate=10°
(No fault detected)
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00 |
11 1'0 21 1'5 21 31 2%
Auxiliary bits
= Aegis ® Aegispyy

mECP ®mFNW ®=FNW,, u Aegisgg = Aegispy rp

Fig. 16. Comparisons of different recovery schemes at a fault rate
of 107 using ISO auxiliary bits.

with a 15x improvement. When there are at least 15 auxiliary
bits, Aegispy achieves perfect protection, while Aegis requires
28 auxiliary bits to achieve the same goal. At the fault rate of
107°, Aegis and Aegispy protect all possible accesses, while
the other schemes fail to achieve this goal. For both incident
fault rates, Aegisrg and Aegispy,rg achieve similar error rates
to static Aegis and Aegispy, respectively, resulting in similar
comparisons between static and dynamic versions.

F. Discussion

Aegispy and Aegisrg do not increase the number of guar-
anteed faults that can be corrected over Aegis, but they
do increase the practical fault tolerance. Aegispy provides
a significant tangible benefit over Aegis due to its use of
many more possible partitions compared with Aegis. However,
Aegisgg provides more potentially valuable configurations
within a particular partition, which has different benefits than
Aegispy. The results from Fig. 7 show that while Aegisrg does
not increase the guarantee over Aegis, it pushes the probability
of failure off significantly, particularly for higher numbers of
auxiliary bits. This is echoed in Fig. 10. This impact can also
be seen in Figs. 11, 13, and 14, where for 15 auxiliary bits,
using relaxed configurations helps Aegispy due to the higher
uniqueness of the added configurations. Because Aegisrg con-
tains all of the original Aegis configurations in addition to the
relaxed configurations, the original configurations contain the
same uniform diffusion of faults present in Aegis while bene-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

fiting from the new unique partitioning options. Thus, there is
benefit from adding more partitions with different sized groups
(Aegispy) on top of the fault correction guarantee, as well as
benefit from adding useful configurations within a partition
(Aegisrg), and these improvements can work together.

Given the overheads from the size of the encoding/decoding
ROMs and latencies shown in Table I in Appendix A of
the supplementary material, the choice of encoding scheme
from classic Aegis to AegispyRrEg also provides an interesting
tradeoff for the system designer. In the previously discussed
practical range of memory overhead (e.g., 15 auxiliary bits),
Aegispyrg dramatically improves error rates but increases the
ROM size and latency. This creates a choice between a smaller
memory overhead (fewer auxiliary bits) with a larger overhead
in the memory controller (larger slower ROM) compared with
a higher memory overhead (larger numbers of auxiliary bits).
Thus, the former scenario employing AegispyRrg in order to
achieve an improvement in fault tolerance and system lifetime
becomes an attractive choice for the full system design.

VI. CONCLUSION

Endurance limitations are a significant challenge for mass
commercialization of several emerging nonvolatile memories,
including PCM and RRAM. This is especially problematic
when more cells become potentially faulty due to technology
scaling and resulting process variation. We presented our pro-
posed dynamic partitioning approach to mitigate stuck-at faults
in these emerging memories. Dynamic partitioning recovers
more stuck-at faults in a data block by increasing the number
of possible partitions, thus improving over static PAF schemes.

Furthermore, we also presented our relaxed partitioning
scheme that provides more cost-effective configurations with
a limited partitioning overlap. Our results, including Monte
Carlo simulations, benchmark analyses, and probabilistic eval-
uations, show that dynamic partitioning significantly improves
the effectiveness of FNW and Aegis over their static counter-
parts by generating more efficient configurations. The results
also illustrate that relaxed partitioning can further improve the
memory lifetime over dynamic Aegis with equal or reduced
space overhead.

As there are some relatively infrequent cases where the
static scheme can correct faults uncorrectable in our dynamic
approach, it is possible to incorporate a static scheme into
our dynamic scheme by using one extra bit as a record in
each data block. Our evaluation shows that the extra tolerance
provided by the original static scheme is negligible compared
to the uncorrectable error rate. However, this could be explored
further in the future work.

REFERENCES

[1] J. Zhang, D. Kline, Jr., L. Fang, R. Melhem, and A. K. Jones, “Dynamic
partitioning to mitigate stuck-at faults in emerging memories,” in Proc.
ICCAD, Nov. 2017, pp. 651-658.

[2] K. Kim, “Technology for sub-50nm DRAM and NAND flash manufac-
turing,” in IEDM Tech. Dig., Dec. 2005, pp. 323-326.

[3] S. Li, P. Wang, N. Xiao, G. Sun, and F. Liu, “SPMS: Strand based
persistent memory system,” in Proc. DATE, Mar. 2017, pp. 622-625.

[4] O. Zilberberg, S. Weiss, and S. Toledo, “Phase-change memory:
An architectural perspective,” ACM Comput. Surv., vol. 45, p. 29,
Jun. 2013.

ZHANG et al.: DATA BLOCK PARTITIONING METHODS TO MITIGATE STUCK-AT FAULTS

[5]

[6]

[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

J. Zhang et al., “A generalized model of TiO,-based memristive devices
and its application for image processing,” Chin. Phys. B, vol. 26,
pp. 70-81, Aug. 2017.

C. J. Xue, G. Sun, Y. Zhang, J. J. Yang, Y. Chen, and H. Li,
“Emerging non-volatile memories: Opportunities and challenges,” in
Proc. CODES+ISSS, Oct. 2011, pp. 325-334.

R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147-160, Apr. 1950.

A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to extend
the lifetime of memory,” in Proc. HPCA, Feb. 2013, pp. 222-233.

S. M. Seyedzadeh, R. Maddah, D. Kline, A. K. Jones, and R. Melhem,
“Improving bit flip reduction for biased and random data,” IEEE Trans.
Comput., vol. 65, no. 11, pp. 3345-3356, Nov. 2016.

Z. Wu and S. Chen, “nMOS transistor location adjustment for n-hit
single-event transient mitigation in 65-nm CMOS bulk technology,”
IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 418-425, Jan. 2018.

Z. Wu, S. Chen, J. Yu, J. Chen, P. Huang, and R. Song, “Recoil-
ion-induced single event upsets in nanometer CMOS SRAM under
low-energy proton radiation,” IEEE Trans. Nucl. Sci., vol. 64, no. 1,
pp. 654-664, Jan. 2017.

S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” ACM SIGARCH Comput.
Archit., vol. 38, no. 3, pp. 141-152, Jun. 2010.

S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique
to improve PRAM write performance, energy and endurance,” in Proc.
MICRO, Dec. 2009, pp. 347-357.

N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee,
“Safer: Stuck-at-fault error recovery for memories,” in Proc. MICRO,
Dec. 2010, pp. 115-124.

J. Fan, S. Jiang, J. Shu, Y. Zhang, and W. Zhen, “Aegis: Partitioning data
block for efficient recovery of stuck-at-faults in phase change memory,”
in Proc. MICRO, Dec. 2013, pp. 433-444.

P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural
framework for assisting DRAM scaling by tolerating high error rates,”
ACM SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 72-83, 2013.
J. Zhang, D. Kline, L. Fang, R. Melhem, and A. K. Jones, “Yoda: Judge
me by my size, do you?” in Proc. ICCD, Nov. 2017, pp. 395-398.

R. Melhem, R. Maddah, and S. Cho, “RDIS: A recursively defined
invertible set scheme to tolerate multiple stuck-at faults in resistive
memory,” in Proc. DSN, Jun. 2012, pp. 1-12.

C.-K. Luk et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” ACM SIGPLAN Notices, vol. 40, no. 6,
pp. 190-200, 2005.

Z. Al-Ars, “DRAM fault analysis and test generation,” Doctoral thesis,
Delft Univ. Technol., Delft, The Netherlands, 2005.

T. Yuan, S. Z. Ramadan, and S. J. Bae, “Yield prediction for integrated
circuits manufacturing through hierarchical Bayesian modeling of spatial
defects,” IEEE Trans. Rel., vol. 60, no. 4, pp. 729-741, Dec. 2011.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of PCM-based main memory
with start-gap wear leveling,” in Proc. MICRO, vol. 14, Dec. 2009,
pp. 14-23.

J. Zhang, D. Kline, Jr., L. Fang, R. Melhem, and A. K. Jones,
“RETROFIT: Fault-aware wear leveling,” I[EEE Comput. Archit. Lett.,
vol. 17, no. 2, pp. 167-170, Jul./Dec. 2018.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. PACT,
Oct. 2008, pp. 72-81.

J. E. Stine et al., “FreePDK: An open-source variation-aware design
kit,” in Proc. MSE, Jun. 2007, pp. 173-174.

Jiangwei Zhang (S’17) received the M.E. degree in
electronic science and technology from the National
University of Defense Technology, Changsha,
China, in 2014, where he is currently working
toward the Ph.D. degree.

From 2016 to 2018, he was a Visiting
Ph.D. Student with the Department of Electrical
and Computer Engineering, University of Pittsburgh,
Pittsburgh, PA, USA. His current research interests
include memory reliability, emerging memories,
and image processing.

2371

Donald Kline, Jr. (S’13) received the B.S. degree
in computer engineering and the M.S. degree in
electrical engineering from the University of Pitts-
burgh, Pittsburgh, PA, USA, in 2015 and 2017,
respectively, where he is currently working toward
the Ph.D. degree in electrical and computer engi-
neering under the guidance of Dr. A. Jones and
Dr. R. Melhem.

He is currently an NSF Graduate Research Fellow
with the University of Pittsburgh. His current
research interests include computer architecture,

emerging memories, reliability, compilers, and machine learning.

-

Liang Fang received the Ph.D. degree in computer
science from the National University of Defense
Technology, Changsha, China, in 1995.

From 2005 to 2006, he was a Visiting Professor
with the Max-Plunck Institute of Microstructure
Physics, Halle, Germany. He is currently a Professor
with the School of Computer, National University of
Defense Technology. His research interests include
microelectronics devices, high-performance micro-
processors, single-electron transistors, graphene
transistor, carbon nanotube computers, resistive

switching memory, and quantum computing.

Rami Melhem (F’00) received the B.E. degree in
electrical engineering from Cairo University, Giza,
Egypt, in 1976, and the M.A. degree in mathematics
and the M.S. degree in computer science and the
Ph.D. degree in computer science from the Univer-
sity of Pittsburgh, Pittsburgh, PA, USA, in 1981 and
1983, respectively.

He is currently a Professor and the Past Chair
(2000-2009) of the Computer Science Department
at the University of Pittsburgh. Formerly, he was
an Assistant Professor with Purdue University, West

Lafayette, IN, USA. His current research interests include power management,
parallel computer architectures, real-time and fault-tolerant systems, optical
networks, and high performance.

Dr. Melhem is a member of the ACM. He served and is serving on
program committees of numerous conferences and Editorial Boards of several
journals, including the IEEE TRANSACTIONS ON COMPUTERS and the
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.

Alex K. Jones (SM’08) received the B.S. degree
in physics from the College of William and Mary,
Williamsburg, VA, USA, in 1998, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from Northwestern University, Evanston, IL, USA,
in 2000 and 2002, respectively.

He is a Sustainability Faculty Fellow, and Pro-
fessor of electrical and computer engineering and
computer science (by courtesy) with the Univer-
sity of Pittsburgh, Pittsburgh, PA, USA. His cur-
rent research interests include compilation tech-

niques for configurable systems and architectures, sustainable computing, and
fault-tolerant computing. He has authored over 150 publications in these areas.
His research is funded by the U.S. National Science Foundation, DARPA, and

industry.

