This paper appears in the 2017 IGSC Invited Papers on Sustainable Memories

Holistic Energy Efficient Crosstalk Mitigation 1n
DRAM

Donald Kline, Jr
Electrical and Computer Engineering
University of Pittsburgh
Email: dek61 @pitt.edu

Abstract—The scaling of DRAM to increasingly small geome-
tries has resulted in considerable challenges to both reliability
and energy consumption of memory systems. For example, this
aggressive scaling has resulted in increased vulnerability to both
bitline and wordline crosstalk. Moreover, deep scaling has also
introduced an understudied implication of dramatically increased
embodied energy, or energy due to manufacturing memory
integrated circuits. While many correction schemes have been
proposed targeting, often independently, metrics of reliability
and operational energy, recent studies have demonstrated that
the impacts of manufacturing on reliability and holistic energy
consumption must also be considered.

In this work, we propose a technique to evaluate memory
systems and their tradeoffs for reliability, embodied energy, and
operational energy. We use this technique to examine several
proposed correction schemes for DRAM faults. Further, we study
a novel bitline crosstalk error correction scheme, Periodic Flip
Encoding, which has considerable advantages in sustainability
and reliability at high error rates.

I. INTRODUCTION

Dynamic random access memory (DRAM) has been the
principal technology for main memory for decades. In re-
cent years, as computational devices constitute a growing
percentage of energy consumed in modern countries, many
companies and research teams have strived to minimize the
consumption of energy in the use phase of such DRAM
systems. While significant progress has been made in this
area, recent studies [1-4] have demonstrated that the embodied
energy of the manufacturing phase of these devices comprises
a significant and in some cases dominant fraction of the total
energy consumed over the lifetime of the device. Therefore,
modern day architectural design choices should consider both
the use phase and manufacturing impacts when determining
the best overall solution for energy.

An additional critical challenge of DRAM, which has be-
come pressing with deeply scaled geometries, is error avoid-
ance, detection, and correction. With the reduced tolerance of
coupling noise at shrinking dimensions, DRAM becomes more
susceptible to both bitline and wordline crosstalk. While word-
line crosstalk existed in what are now legacy technologies,
concerns about the row-hammering security vulnerability [5]

*This work was supported in part by the NSF GRFP No. 1247842 and an
MCSI Faculty Fellowship.

Rami Melhem
Computer Science
University of Pittsburgh
Email: melhem@cs.pitt.edu

Alex K. Jones
Electrical and Computer Engineering
University of Pittsburgh
Email: akjones@pitt.edu

have recently ignited significant interest in the subject. Pro-
posed solutions include the use of traditional error correction
schemes [6], per-row and groups of counters [7], probabilistic
refreshing [5], reducing the refresh interval, and runtime
testing to identify weak (prone to crosstalk) DRAM cells [8].

DRAM manufacturers have long used circuit-level tech-
niques to mitigate bitline crosstalk by improving inter-cell iso-
lation [9] and have also used post-production testing to check
for such disturbance errors [10]. While circuit-level techniques
reduce the bitline coupling noise, they complicate the layout,
decrease storage density, exacerbate wordline crosstalk, and in-
crease the risk of creating a short-circuit between non-adjacent
bitlines. Therefore, several DRAM manufacturers have opted
to abandon bitline twisting and other related techniques, and
instead use the open bitline structure at the expense of higher
bitline crosstalk noise [11, 12].

Given the increasing reliability concern of crosstalk as
well as the growing challenges related to scaling, any design
which claims to reduce or incur little additional energy must
evaluate potential memory system architectures, not only on
their reliability and their timing, but also on their holistic
energy footprint. Toward this goal, we make the following
contributions:

e We provide an analysis of the minimum required manu-
facturing overhead for each correction scheme to operate
reliably for different ratios of cells vulnerable to wordline
crosstalk.

o We provide a holistic energy analysis of several bitline
crosstalk mitigation schemes at different usage scenarios
and fault map overheads.

o We propose a dynamic mapping scheme which augments
bitline correction schemes to achieve the acceptable
threshold of error-free operation.

II. BACKGROUND AND RELATED WORK

Recent studies have shown that although scaling increases
transistor density, integrated circuit (IC) area within systems
is increasing due in part to dramatic increases in transistors
dedicated to processing (i.e., cores and hardware accelerators)
and in particular memory and storage in these systems [2]. The
significant contribution to manufacturing energy of (ICs) [1, 3]
in systems is supported further in recent sustainability reports

978-1-5386-3470-7/17/$31.00 (© 2017 IEEE

& Production M Use Transport & Recycling

1200
1000
800 -

w

E-]

< 34 1 3 1
3 _—

S 600 p— = — B N j—
w & 400 —_— N -] —
£ 0 200 i B B B yi—
£ :’n 0 J— J— [— J— [— [S— [— [—
§ = 11" 13" Macmini 21.5" 13" 15" Mac Pro 27" iMac
g Macbook Macbook iMac Macbook Macbook (Retina)
K] Air Air Pro Pro

o

(Retina) (Retina)

Figure 1. Carbon emissions (CO2 equivalent) of manufacturing/production
of ICs in “use phase optimized” systems from Apple Computer based on a
two year operational lifetime [13].

from Apple Computer (Figure 1). Systems without an inte-
grated display, the Mac Pro and Mac Mini, owe over two-
thirds of their impacts to manufacturing, ostensibly dominated
by ICs. Note that CO- emissions tend to follow closely
with energy consumption making them analogous indicators
of trends. Using our own extension to the GreenChip tool
and methodology [4], we can combine embodied and oper-
ational energy of DRAM correction schemes, often required
for deeply scaled technologies due to increased crosstalk, to
provide a holistic evaluation of their overall energy impacts.

A. DRAM Crosstalk

Bitline crosstalk has traditionally been addressed with cir-
cuit techniques and wordline crosstalk has been primarily ad-
dressed with architecture approaches. Starting with the latter,
wordline crosstalk occurs when the toggling of the wordline
voltage for a particular row causes certain cells in nearby rows
to leak their charge at an accelerated rate. From a previous
study, it appears that the susceptibility to wordline crosstalk
is not always related to the retention time of the cells, but
can be caused by a variety of mechanisms that create “weak”
cells [5].

Bitline crosstalk, reemerging as a significant form of
crosstalk [14, 15], occurs in deeply scaled DRAM when a
weak cell is deflected due to capacitive coupling with its
adjacent bitlines [16]. This manifests with “bad patterns”
(traditionally “000” and “111”) in the data, where a bad
pattern over a weak cell can cause the inversion of this
middle bit (i.e., “010” or “101”) [17]. Until recently, the
issue of bitline crosstalk had been successfully mitigated
using bitline twisting [9]. Unfortunately, as the technology
node descends, bitline twisting exacerbates the occurrence of
wordline crosstalk, and thus there has been a trend toward open
bitlines [14] to alleviate this problem with wordline crosstalk.

To address crosstalk requires error mitigation through avoid-
ance or correction, which can impact holistic energy consump-
tion. We discuss this further in the next subsection.

B. Error Correction

Error Correction Codes (ECC) is a common, general pur-
pose error correction strategy used in memory and communi-
cation. ECC level one (ECC;) (single error correction, double
error detection or SECDED) uses a Hamming code that can
be computed through a series of XOR operations. Typically,

while in-DRAM ECC exists, chipkill ECC [18] is used in
most professional server settings for its ability to tolerate the
failure of an entire memory chip in addition to one error in
an individual row.

Error correcting pointers, or ECP [19], is a solution pro-
posed for PCM which has also been adapted for DRAM
[20, 21]. While ECP was designed for non-volatile memories
in which errors are the result of permanent cell failures that are
immediately detectable at write time, they have been adapted
to handle DRAM hard failures detected at manufacturing time.
ECP in DRAM circumvents the original requirement of non-
volatility by loading the ECP pointers from a file in secondary
storage at boot time [21].

Periodic Flip Encoding (PFE) [22] is a simple yet elegant
solution to attempt to eliminate sequences of “000” and “111”
in data overlapping with weak cells to be written to the
DRAM. PFE works by partitioning a data block into 3-bit
groups, which can be collectively manipulated by one of four
possible 3-bit patterns (“000,” “001,” “010,” and “100”). These
four patterns are represented by two encoding bits, which can
be applied to any block size. When encoding, the 3-bit pattern
that results in the least overlap of bad patterns with weak cells
after XORing with every 3-bit group is chosen for the block.
The XOR of the pattern with this original data at every 3-bit
interval then creates the code word to be written to the DRAM.
When decoding, the auxiliary bits determine the 3-bit pattern,
which is again XORed with the block in the same manner to
retrieve the original data.

These error mitigation and correction strategies have dif-
ferent redundant storage and correction circuitry overheads
resulting in a tradeoff of both embodied and operational energy
overheads in addition to other factors such as reliability and
performance. All of these schemes can be used in concert
with a bank of additional redundant memory locations (row
sparing [23]) when error mitigation alone is insufficient; we
discuss this further in Section III.

III. REMAPPER DESIGN

Crosstalk correction schemes, including ECC, ECP, and
PFE, can use spare rows to augment their fault tolerance
capabilities when error correction alone is insufficient for
correctness. However, for data-dependent faults, such as bitline
crosstalk, remapping a row will only be necessary with certain
data words and not others. We assume a write failure occurs
when the data is compared with a memory fault and the
number of faults exceeds the protection of the error mitigation
scheme, requiring the employment of a spare row.

To facilitate dynamic spare row use, a rowmapping scheme
was designed to help address the data dependent employment
of row-sparing. This “remapper,” shown in Figure 2, stores
pointers to the original rows, coupled with pointers to the spare
row and a bit to indicate if the spare row is in use. Assuming a
4GB address space, the memory overhead is N (324log(N)+
1) bits, where N is the number of spare rows. Thus, the first
four bytes are the original DRAM address of a row which
could not successfully write data due to bitline crosstalk, the

‘ N Entries in the Remapper Cache ‘
In Original Row Address Spare Row DRAM
Use? (32 bits) (Log N bits) (4GB)
0 0000 0000 00
1 1234 0000 01
0 1235 0000 02
1 1233 0000 03 Hows
0 9876 4000 04

(X X J
02

Figure 2. Remapper cache and next fit algorithm pointer.

next log(N) bits correspond to a spare row pointer in non-
addressable space with a final “in use” (valid) bit for the entry.

The spare rows are allocated using the next fit algorithm,
a popular option for managing heap space. Next fit requires
an additional pointer of size [log(/N)] (shown in Figure 2) to
point to the next available location. When a new spare row is
requested to replace a faulty row during a write, the writing
into the spare row is checked. If the write is successful, the
“in use” bit is set, and the global pointer is incremented to the
next empty location. If the write fails, the next empty entry
in the table is attempted, until the pointer has circled back to
where it began the operation, at which point the write fails.

In order to minimize the runtime overhead of determining if
a row in the DRAM is in the remapper cache, we use a slightly
adjusted version of CiDRA [20] where a Bloom filter is used
to quickly determine if a row can be accessed directly (i.e., it
is not in a spare row). If a row hits in the Bloom filter on a
read, the remapper cache is searched to find the corresponding
spare row, which is subsequently read from DRAM. On a
write, the original row address is always attempted on the
hope the new data may not trigger bitline crosstalk faults and
the spare row can be freed to store data from another row. In
parallel with the write to the original address of the DRAM,
in the memory controller, the Bloom filter is searched for the
address. Upon a hit in the Bloom filter and a successful write
in the original row, the corresponding address in the remapper
cache is located and the “in use” bit is cleared.

IV. EVALUATION

To model weak cells of the memory, maps of weak cells
were created using a Bayesian distribution to mimic the
impact of process variation and include spatial correlation of
faults [10, 24]. We followed the model described in [10] to
generate maps of weak cells for a 4GB DRAM.

Given the nature of wordline crosstalk, we assume cells
susceptible to crosstalk can be detected at test time using
deep regression testing. These detected cells can then be used
to create a fault map of the memory. Given this assumption,
five 4GB fault maps were created for 10 different error rates,
using the method discussed in the previous paragraph. The
simulation for each error rate ran through every row, correction
scheme, and fault map, and for each row that failed after
performing the correction scheme, that row was replaced with

a spare row. The size of the necessary batch of spare rows for
each fault map and correction scheme was thus determined for
each error rate. The average of this overhead for the five fault
maps, added to the initial overhead required by the correction
scheme, then gave the minimum overhead required in order to
maintain the original capacity of 4GB at that error rate.

While wordline crosstalk can be evaluated at chip test time,
bitline crosstalk is inherently data dependent, and therefore
must be evaluated at runtime. Thus, we used DRAM memory
traces of the PARSEC benchmarks [25]. Using these traces,
we implemented the remapper discussed in Section III to track
the additional accesses required, as well as to determine the
minimum number of spare rows necessary to ensure reliable
operation for each correction scheme. The timing, power,
and area overhead of the remapper cache was found using
CACTI [26]. The power results for the DRAM itself were
calculated by running the traces through DRAMSim2 [27].
The average delays in the remapper cache for each correction
scheme and error rate where added to the memory controller
delays in Sniper [28] to determine the IPC used in holistic
energy computations in Section IV-C. To estimate the use
phase energy cost of the correction mechanisms, each scheme
was synthesized in 45nm hardware using a Free PDK [29]
(with the exception of the counters, which used the synthesized
results from [7]). For bitline crosstalk, we analyzed spare rows
alone (ECPy), ECP;-ECPy, SECDED ECC, and PFE.

A. Wordline Crosstalk Overhead Evaluation

Figure 3 shows a storage overhead comparison of combining
row-sparing (avoidance) with error correction to ensure error-
free operation. ECC (SECDED 32,39) requires significant
initial overhead and is only effective for lower ratios of weak
cells, requiring considerable usage of spare rows when the
ratio of weak cells becomes extremely high (10=2). ECPy
increases both the number of spare rows and, when necessary,
the number of pointers per row, k, as the potential weak cell
rate increases, dramatically reducing storage overhead against
ECC. Row sparing alone (ECPg) protects with the lowest
storage overhead at potential weak cell rates < 1075,

In contrast, a tuned approach, which stores an activation
counter [7] to refresh the neighboring rows after reaching an
access threshold, provides the lowest storage overhead solution
for high potential weak cell rates. ECP; bridges the gap
between counters and row-sparing alone. However, ECP, row

N
o

ECP1 ECP2 ECP3 ECP7 ECP11

w
o

ECPO

N
o

[y
o

Percent IC Overhead

o
|

0.00001 0.0001 0.001
Ratio of Faulty Cells

—ECPO ®ECP_Best —ECC1 —Activation Counters

0.01

Figure 3. Minimum overhead required for wordline crosstalk fault avoidance
(correction overhead plus spare rows).

sparing, and counters cannot protect against less predictable
errors such as communication and single-event upsets, partic-
ularly of concern in server-grade systems. Thus, protection
against these faults can still benefit from ECC/chipkill in
concert with dedicated solutions for wordline crosstalk.

B. Bitline Crosstalk

Similar to Figure 3, Figure 4 displays the storage over-
head comparison of combining row-sparing (including the
dynamic remapper) with error correction for error-free oper-
ation. As with Figure 3, Figure 4 does not include underly-
ing ECC/chipkill which would be necessary for server-based
systems to protect against transient errors. Spare rows alone
(ECPy) provides the minimum overhead strategy up through
5-10~%, where ECP; becomes the minimum. At 10~2, ECPy
is slightly more efficient in terms of overhead compared to
PFE, and beyond this point PFE is the most space efficient
error correction scheme.

Figure 5 shows the average DRAM accesses required per
remap for each correction scheme as the weak cell ratio
increases. Recall from Section III that if an original row cannot
successfully write a given data word due to the number of
faults (intersections of bad patterns with weak cells) exceeding
the correction capability, then the remapper cache is used to
find the next available spare row that can successfully write
the original data. This metric is directly proportional to the
performance penalty required to manage the spare rows and
maintain sufficient reliability. After a weak cell incidence rate
of larger than 103, ECC; becomes unusable, rising quickly
to hundreds of attempts per spare row allocation. Even with
error rates as high as 1072, PFE only requires on average
1.016 attempts of trying a spare row to find one which can
successfully write the data. Increasing the ECP pointers (k)
progressively reduces the amount of calculations required, but
even at ECPgy does not approach the efficiency of PFE.

o

ECP1 ECP2 ECP4 ECP7

=N W b~ U
o O ©

[=)

Percent IC Overhead

=)

.00001 0.0001 0.001 0.01

Ratio of Faulty Cells
<-PFE +ECC1 < Best_ECP -+ECPO
Figure 4. Minimum overhead required for bitline crosstalk fault avoidance
(correction overhead plus spare rows). This excludes the contribution of the
fault map.

w 100

f=

E "

€ 8 50

5 g

]

o o

c<< 0

E 0.00001 0.0001 0.001 0.01

Ratio of Faulty Cells

-—ECC1 —PFE —ECP1 —ECP3 —ECP5 —ECP9

Figure 5. Average encoding attempts per spare row allocation.

C. Holistic Indifference Analysis

A holistic energy analysis is required to understand the
true energy tradeoffs of the different error correction schemes.
We leverage indifference analysis for evaluating sustainable
computing [4], to calculate the time when the total energy,
including manufacturing and use phase energy, of two dif-
ferent schemes to achieve the same reliability are equivalent
(indifference point) using Equation 1. The use phase pow-
ers in the denominator of the expression can be calculated
based on different usage scenarios (Equation 2) [4], where
rg is the sleep ratio, r4 represents the active to idle ratio,
Pp is the dynamic power, Pg is the static power, and Pr,
is the sleep power. For each benchmark, we calculate the
indifference points for three active and sleep scenarios: a
high-performance-computer (HPC) (r4=0.95,r5=0.05), mo-
bile computing system (r4=0.9,r5=0.92), and cloud server
(r4=0.3,r5=0.05) [4].

My — M
tr = Py P (1)
P=(1—-rs)(ra(Pp+ Ps) +(L—ra)Ps)+PL (2

The IPC when using the correction scheme was calculated
using SNIPER [28] in conjunction with the simulated delays
including the encoding hardware and row remapper as required
to maintain correctness using the spare rows. The computed
IPC can then affect the indifference point calculation by
replacing r4 in the power calculation (Equation 2) of system
1 with 7y = r4(ﬁzgi’) [4]. This adjustment reduces the active
time of the system with the higher IPC, accounting for the fact
that it needs less time to complete an equivalent workload.

1) Wordline Crosstalk: The holistic energy analysis of
wordline crosstalk reveals that the additional static energy
in the use phase from the spare rows and correction bits
dominates in the comparison between correction schemes. As a
result, in all compared cases a higher embodied energy resulted
in a higher operational energy, producing a negative result for
Equation 1. A negative indifference result indicates that the
indifference time is actually infinite, or in other words there is
no use phase energy savings to recoup the additional manufac-
turing energy. Therefore, for the wordline crosstalk correction
schemes examined, it makes sense to always choose the
scheme with the lower initial manufacturing energy, because
it also happens to be correlated with a lower use phase energy.
Thus, the most energy efficient scheme results in the choice
indicated by Figure 3. For victim cell rates <= 107>, row
sparing alone is the most energy efficient method to protect
against wordline crosstalk (assuming the victim cells can be
accurately profiled). For incidences of victim cells larger than
5-10~%, using a basic system of uniform counters is the most
energy efficient solution examined. Various improvements to
these basic counters, including those discussed in [7], could
potentially further increase this advantage.

2) Bitline Crosstalk: Similar to the results for wordline
crosstalk, for bitline crosstalk with both the 10~° and 10—*
ratios of weak cells, we find that for all usage scenarios and
correction scheme comparisons the result of Equation 1 was

37,956 273,727
Infinity

/s

o 8000
vs ECC1 vs PFE vsECP2 vsECP3 vsECP4 vsECP5 vsECP6

B HPC M Server Mobile

Figure 6. Indifference points (days) for ECP; at a 10~ weak cell incidence
rate.

also negative, which corresponds to infinite time required to
make up the higher manufacturing cost. At the weak cell
rate of 1073, ECP; has the lowest manufacturing cost but
its less effective correction and many required attempts to
find suitable spare rows incurs significant use phase penalties.
The indifference point analysis for ECP; versus the other
correction schemes at 10~3 weak cell rate and different usage
scenarios can be observed in Figure 6. Because ECP; has
the lowest manufacturing cost an infinite indifference time
in Figure 6 corresponds to ECP; always being the more
holistically energy efficient solution, while a time less than
infinite indicates the time after which the scheme is more
energy efficient than ECP;, due to lower use phase energy.

The comparison of ECP; against ECC shows ECC has
a higher manufacturing cost, but due to the performance
penalty of ECP; during attempts to use spare rows to maintain
correctness in the use cases of HPC and Mobile systems, ECC;
has a lower use phase energy. For the server scenario, ECCy
has both a higher use phase energy and manufacturing cost
than ECPq, resulting in an infinite indifference time, where
ECP; is always the more energy efficient solution.

For the HPC scenario, both ECC; and ECP; recover their
embodied energy overhead compared to ECP; in less than a
year, while PFE and ECPj3 take less than two years. For these
correction schemes with a life-cycle of at least two years, this
indicates that at a 10~3 weak cell incidence rate in a high
performance scenario they are more energy efficient solutions
than ECP;. In contrast, for the server scenario of usage, PFE
and ECP3 are always less energy efficient than ECP;. While
ECC,, PFE, and ECP; where 2 < k < 5 all have positive
indifference times compared to ECP; for the mobile scenario,
they are all at least 10 years. Therefore, for systems with
lifetimes less than 10 years, ECP; is more efficient for the
mobile scenario at a weak cell incidence rate of 1073,

While ECP; was the most energy efficient solution for weak
cell rates of 1072, 10~ and in some cases for 1073, it is
never the most energy efficient solution for the 10~2 weak cell
incidence rate. Figure 7 shows the indifference times of ECP;
compared to the other correction schemes.The indifference
times are all less than 90 days.

Moreover, PFE consistently has the lowest use phase energy
overhead, due to its high correction capability and very low
use of spare rows. The indifference points for PFE at the

1072 weak cell rate with different usage scenarios can be
observed in Figure 8. PFE always has a lower manufacturing
cost and correspondingly an infinite indifference time com-
pared to ECC. In comparison with correction schemes with
lower manufacturing energies (ECPy, ECP»), PFE recovers its
additional manufacturing cost within 20 days for each of the
three scenarios, clearly indicating the additional manufacturing
investment is worthwhile in terms of holistic energy efficiency.
For ECP3 and beyond, PFE has both a lower initial manufac-
turing energy and a lower use phase energy, indicating it is
always the more energy efficient choice.

D. Fault Map Overheads

The effectiveness of many error correction methodologies
can be enhanced by a knowledge of the location of faulty
rows, words, or individual cells. ArchShield uses a word-level
fault map in its error correction scheme [8]. SFaultMap is a
sustainability aware bit-level fault map designed for deeply
scaled memories [30]. These fault maps can dramatically
enhance the capabilities of error correction such as ECP and
PFE but can also have a significant impact on area, power,
and performance overheads of the memory system. Moreover,
as error rates tend to increase with scaling, the size of these
fault maps relative to the whole memory system will increase
significantly.

To see the impact of these fault maps, the manufacturing
cost (normalized to ECC) for several different fault map
overhead percentages for various correction schemes is shown
in Figure 9. For example, a relatively low area encoding
technique such as PFE that requires a 10% fault map can
increase its manufacturing cost to be on par with ECPg
without a fault map. Moreover, introducing a substantial fault
map (15% of the memory storage overhead or higher) can
change some of the indifference analyses from the previous
discussion. For example, ECP; and PFE are no longer always
more efficient than ECC and each requires an indifference
analysis to determine which solution to use to minimize
holistic energy.

V. CONCLUSIONS AND FUTURE WORK

The analysis of wordline crosstalk indicates that below 10~°
incidence rate of susceptible cells, the most energy efficient
manufacturing scheme is to simply manufacture a small num-
ber of spare rows, test the rows and assign spares to those
which fail, and then use a mechanism such as CiDRA [20]
for low overhead access to spare rows at runtime. Below 1075
weak cell incidence rate, using counters is the most efficient
solution in terms of manufacturing energy and space overhead.

In the context of bitline crosstalk, for both 10~° and 10—*
weak cell incidence rates, then ECP; is the most appealing
candidate in terms of holistic sustainability because of its low
manufacturing cost and use phase power. However, for weak
cell rates larger than 5 - 103, PFE is the clear and superior
choice for sustainability. The size of ancillary overheads from
fault tolerance schemes such as fault maps can be a significant
factor in determining the most sustainable choices. For PFE,

Figure 7. Indifference points (days) for ECP1 at the 102 weak cell incidence rate.

iy
N D O ®® O
o o o o o

vs ECC1

vs PFE

vs ECP3

vs ECP2

o

Inddiference Time (Days)

vs ECP4

M HPC M Server

are more energy efficient than ECPy.

Infinity
Fa
é 15
[
E10
=
[
25
<
2, - -
e}
£ vs ECC1 vs ECP1 vs ECP2 vs ECP3+

W HPC M Server M Mobile
Figure 8. Indifference points (days) for PFE at the 10~2 weak cell incidence

rate.

12

PFE ECP1 ECP2 ECP3 ECP4 ECP5 ECP6 ECP7 ECP8 ECP9

H0% ®m5% H10%

Figure 9. Manufacturing cost normalized to ECC; for different fault map
overheads.

as long the fault map overhead less than 20% PFE can make
up its manufacturing deficits in less than a year (often less than
a week). However, to determine accurate indifference points
requires deeper analyses of these overheads, which we plan to
study in our future work.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

REFERENCES

A. Jones, Y. Chen, W. Collinge, H. Xu, L. Schaefer, A. Landis, and
M. Bilec, “Considering fabrication in sustainable computing,” ICCAD,
2013.

M. A. Yao, T. G. Higgs, M. J. Cullen, S. Stewart, and T. A. Brady,
“Comparative assessment of life cycle assessment methods used for
personal computers.,” Env. Sci. & Tech., Vol. 44, No. 19, 2010.

P. Teehan and M. Kandlikar, “Comparing Embodied Greenhouse Gas
Emissions of Modern Computing and Electronics Products,” Env. Sci.
& Tech., Vol. 47, No. 9, 2013.

D. Kline Jr, N. Parshook, X. Ge, E. Brunvand, R. Melhem, P. K.
Chrysanthis, and A. K. Jones, “Holistically Evaluating the Environmen-
tal Impacts in Modern Computing Systems,” IGSC, 2016.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” ISCA, 2014.

M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” Google Project Zero Blog.

S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-Based Tree
Structure for Row Hammering Mitigation in DRAM,” IEEE Computer
Architecture Letters.

P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural
framework for assisting DRAM scaling by tolerating high error rates,”
ISCA, 2013.

[9]
[10]

[11]

(12]

(13]

[14]

[15]
[16]
(171
(18]
[19]

[20]

[21]

[22]
(23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]

—_— — . _— | - - Il
vs ECP5 vs ECP6 vs ECP7 vs ECP8 vs ECP9
Mobile

Indifference times describe the point after which the compared schemes

T. Yoshihara and et al., “A twisted bit line technique for multi-Mb
DRAMs,” ISSCC 1998.

Z. Al-Ars, DRAM fault analysis and test generation. TU Delft, Delft
University of Technology, 2005.

A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM design and organization
for energy-constrained multi-cores,” SIGARCH Comput. Archit. News
2010.

S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A
Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM,” in CAL 2016.

Apple Inc., “Environmental Report.” [Available Online]: http://www.
apple.com/environment/reports/, 2015.

J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern DRAM devices: Implications
for retention time profiling mechanisms,” ISCA, pp. 60-71, 2013.

S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level
Technique to Detect Data-Dependent Failures in DRAM,” DSN, 2016.
Z. Yang and S. Mourad, “Crosstalk induced fault analysis and test in
DRAMS,” Journal of Electronic Testing, Vol. 22, pp. 173-187, 2006.
Y. Konishi and et al, “Analysis of coupling noise between adjacent bit
lines in megabit DRAMSs,” Journal of Solid-State Circuits 1989.

T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC
server main memory,” IBM Microelectronics Division, pp. 1-23, 1997.
S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC,
for hard failures in resistive memories,” ISCA, pp. 141-152, 2010.

Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H.
Ahn, “CiDRA: A cache-inspired DRAM resilience architecture,” HPCA,
pp- 502-513, 2015.

C.-H. Lin, D.-Y. Shen, Y.-J. Chen, C.-L. Yang, and M. Wang, “SECRET:
Selective error correction for refresh energy reduction in DRAMs,”
ICCD, pp. 67-74, 2012.

M. Seyedzadeh, D. Kline Jr, R. Melhem, and A. K. Jones, “Mitigating
Bitline Crosstalk Noise in DRAM Memories,” MEMSYS, 2017.

M. Horiguchi and K. Itoh, Nanoscale memory repair. Springer Science
& Business Media, 2011.

T. Yuan, S. Z. Ramadan, and S. J. Bae, “Yield prediction for integrated
circuits manufacturing through hierarchical Bayesian modeling of spatial
defects,” Transactions on Reliability 2011.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” PACT, 2008.

S. J. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access and
cycle time model,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 5,
pp- 677-688, 1996.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Comp. Arch. Let., Vol. 10,
No. 1, pp. 16-19, 2011.

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-core
Simulation,” SC, 2011.

J. E. Stine et al., “FreePDK: An open-source variation-aware design
kit,” MSE, pp. 173-174, 2007.

D. Kline Jr, R. Melhem, and A. K. Jones, “Sustainable Fault Manage-
ment and Error Correction for Next-Generation Main Memories,” IGSC,
2017.

