
This paper appears in the 2017 IGSC Invited Papers on Sustainable Memories

Holistic Energy Efficient Crosstalk Mitigation in
DRAM

Donald Kline, Jr
Electrical and Computer Engineering

University of Pittsburgh

Email: dek61@pitt.edu

Rami Melhem
Computer Science

University of Pittsburgh

Email: melhem@cs.pitt.edu

Alex K. Jones
Electrical and Computer Engineering

University of Pittsburgh

Email: akjones@pitt.edu

Abstract—The scaling of DRAM to increasingly small geome-
tries has resulted in considerable challenges to both reliability
and energy consumption of memory systems. For example, this
aggressive scaling has resulted in increased vulnerability to both
bitline and wordline crosstalk. Moreover, deep scaling has also
introduced an understudied implication of dramatically increased
embodied energy, or energy due to manufacturing memory
integrated circuits. While many correction schemes have been
proposed targeting, often independently, metrics of reliability
and operational energy, recent studies have demonstrated that
the impacts of manufacturing on reliability and holistic energy
consumption must also be considered.

In this work, we propose a technique to evaluate memory
systems and their tradeoffs for reliability, embodied energy, and
operational energy. We use this technique to examine several
proposed correction schemes for DRAM faults. Further, we study
a novel bitline crosstalk error correction scheme, Periodic Flip
Encoding, which has considerable advantages in sustainability
and reliability at high error rates.

I. INTRODUCTION

Dynamic random access memory (DRAM) has been the

principal technology for main memory for decades. In re-

cent years, as computational devices constitute a growing

percentage of energy consumed in modern countries, many

companies and research teams have strived to minimize the

consumption of energy in the use phase of such DRAM

systems. While significant progress has been made in this

area, recent studies [1–4] have demonstrated that the embodied

energy of the manufacturing phase of these devices comprises

a significant and in some cases dominant fraction of the total

energy consumed over the lifetime of the device. Therefore,

modern day architectural design choices should consider both

the use phase and manufacturing impacts when determining

the best overall solution for energy.

An additional critical challenge of DRAM, which has be-

come pressing with deeply scaled geometries, is error avoid-

ance, detection, and correction. With the reduced tolerance of

coupling noise at shrinking dimensions, DRAM becomes more

susceptible to both bitline and wordline crosstalk. While word-

line crosstalk existed in what are now legacy technologies,

concerns about the row-hammering security vulnerability [5]

∗This work was supported in part by the NSF GRFP No. 1247842 and an
MCSI Faculty Fellowship.

have recently ignited significant interest in the subject. Pro-

posed solutions include the use of traditional error correction

schemes [6], per-row and groups of counters [7], probabilistic

refreshing [5], reducing the refresh interval, and runtime

testing to identify weak (prone to crosstalk) DRAM cells [8].

DRAM manufacturers have long used circuit-level tech-

niques to mitigate bitline crosstalk by improving inter-cell iso-

lation [9] and have also used post-production testing to check

for such disturbance errors [10]. While circuit-level techniques

reduce the bitline coupling noise, they complicate the layout,

decrease storage density, exacerbate wordline crosstalk, and in-

crease the risk of creating a short-circuit between non-adjacent

bitlines. Therefore, several DRAM manufacturers have opted

to abandon bitline twisting and other related techniques, and

instead use the open bitline structure at the expense of higher

bitline crosstalk noise [11, 12].

Given the increasing reliability concern of crosstalk as

well as the growing challenges related to scaling, any design

which claims to reduce or incur little additional energy must

evaluate potential memory system architectures, not only on

their reliability and their timing, but also on their holistic

energy footprint. Toward this goal, we make the following

contributions:

• We provide an analysis of the minimum required manu-

facturing overhead for each correction scheme to operate

reliably for different ratios of cells vulnerable to wordline

crosstalk.

• We provide a holistic energy analysis of several bitline

crosstalk mitigation schemes at different usage scenarios

and fault map overheads.

• We propose a dynamic mapping scheme which augments

bitline correction schemes to achieve the acceptable

threshold of error-free operation.

II. BACKGROUND AND RELATED WORK

Recent studies have shown that although scaling increases

transistor density, integrated circuit (IC) area within systems

is increasing due in part to dramatic increases in transistors

dedicated to processing (i.e., cores and hardware accelerators)

and in particular memory and storage in these systems [2]. The

significant contribution to manufacturing energy of (ICs) [1, 3]

in systems is supported further in recent sustainability reports

978-1-5386-3470-7/17/$31.00 c© 2017 IEEE

Figure 1. Carbon emissions (CO2 equivalent) of manufacturing/production
of ICs in “use phase optimized” systems from Apple Computer based on a
two year operational lifetime [13].

from Apple Computer (Figure 1). Systems without an inte-

grated display, the Mac Pro and Mac Mini, owe over two-

thirds of their impacts to manufacturing, ostensibly dominated

by ICs. Note that CO2 emissions tend to follow closely

with energy consumption making them analogous indicators

of trends. Using our own extension to the GreenChip tool

and methodology [4], we can combine embodied and oper-

ational energy of DRAM correction schemes, often required

for deeply scaled technologies due to increased crosstalk, to

provide a holistic evaluation of their overall energy impacts.

A. DRAM Crosstalk

Bitline crosstalk has traditionally been addressed with cir-

cuit techniques and wordline crosstalk has been primarily ad-

dressed with architecture approaches. Starting with the latter,

wordline crosstalk occurs when the toggling of the wordline

voltage for a particular row causes certain cells in nearby rows

to leak their charge at an accelerated rate. From a previous

study, it appears that the susceptibility to wordline crosstalk

is not always related to the retention time of the cells, but

can be caused by a variety of mechanisms that create “weak”

cells [5].

Bitline crosstalk, reemerging as a significant form of

crosstalk [14, 15], occurs in deeply scaled DRAM when a

weak cell is deflected due to capacitive coupling with its

adjacent bitlines [16]. This manifests with “bad patterns”

(traditionally “000” and “111”) in the data, where a bad

pattern over a weak cell can cause the inversion of this

middle bit (i.e., “010” or “101”) [17]. Until recently, the

issue of bitline crosstalk had been successfully mitigated

using bitline twisting [9]. Unfortunately, as the technology

node descends, bitline twisting exacerbates the occurrence of

wordline crosstalk, and thus there has been a trend toward open

bitlines [14] to alleviate this problem with wordline crosstalk.

To address crosstalk requires error mitigation through avoid-

ance or correction, which can impact holistic energy consump-

tion. We discuss this further in the next subsection.

B. Error Correction

Error Correction Codes (ECC) is a common, general pur-

pose error correction strategy used in memory and communi-

cation. ECC level one (ECC1) (single error correction, double

error detection or SECDED) uses a Hamming code that can

be computed through a series of XOR operations. Typically,

while in-DRAM ECC exists, chipkill ECC [18] is used in

most professional server settings for its ability to tolerate the

failure of an entire memory chip in addition to one error in

an individual row.

Error correcting pointers, or ECP [19], is a solution pro-

posed for PCM which has also been adapted for DRAM

[20, 21]. While ECP was designed for non-volatile memories

in which errors are the result of permanent cell failures that are

immediately detectable at write time, they have been adapted

to handle DRAM hard failures detected at manufacturing time.

ECP in DRAM circumvents the original requirement of non-

volatility by loading the ECP pointers from a file in secondary

storage at boot time [21].

Periodic Flip Encoding (PFE) [22] is a simple yet elegant

solution to attempt to eliminate sequences of “000” and “111”

in data overlapping with weak cells to be written to the

DRAM. PFE works by partitioning a data block into 3-bit

groups, which can be collectively manipulated by one of four

possible 3-bit patterns (“000,” “001,” “010,” and “100”). These

four patterns are represented by two encoding bits, which can

be applied to any block size. When encoding, the 3-bit pattern

that results in the least overlap of bad patterns with weak cells

after XORing with every 3-bit group is chosen for the block.

The XOR of the pattern with this original data at every 3-bit

interval then creates the code word to be written to the DRAM.

When decoding, the auxiliary bits determine the 3-bit pattern,

which is again XORed with the block in the same manner to

retrieve the original data.

These error mitigation and correction strategies have dif-

ferent redundant storage and correction circuitry overheads

resulting in a tradeoff of both embodied and operational energy

overheads in addition to other factors such as reliability and

performance. All of these schemes can be used in concert

with a bank of additional redundant memory locations (row

sparing [23]) when error mitigation alone is insufficient; we

discuss this further in Section III.

III. REMAPPER DESIGN

Crosstalk correction schemes, including ECC, ECP, and

PFE, can use spare rows to augment their fault tolerance

capabilities when error correction alone is insufficient for

correctness. However, for data-dependent faults, such as bitline

crosstalk, remapping a row will only be necessary with certain

data words and not others. We assume a write failure occurs

when the data is compared with a memory fault and the

number of faults exceeds the protection of the error mitigation

scheme, requiring the employment of a spare row.

To facilitate dynamic spare row use, a rowmapping scheme

was designed to help address the data dependent employment

of row-sparing. This “remapper,” shown in Figure 2, stores

pointers to the original rows, coupled with pointers to the spare

row and a bit to indicate if the spare row is in use. Assuming a

4GB address space, the memory overhead is N(32+log(N)+
1) bits, where N is the number of spare rows. Thus, the first

four bytes are the original DRAM address of a row which

could not successfully write data due to bitline crosstalk, the

Figure 2. Remapper cache and next fit algorithm pointer.

next log(N) bits correspond to a spare row pointer in non-

addressable space with a final “in use” (valid) bit for the entry.

The spare rows are allocated using the next fit algorithm,

a popular option for managing heap space. Next fit requires

an additional pointer of size ⌈log(N)⌉ (shown in Figure 2) to

point to the next available location. When a new spare row is

requested to replace a faulty row during a write, the writing

into the spare row is checked. If the write is successful, the

“in use” bit is set, and the global pointer is incremented to the

next empty location. If the write fails, the next empty entry

in the table is attempted, until the pointer has circled back to

where it began the operation, at which point the write fails.

In order to minimize the runtime overhead of determining if

a row in the DRAM is in the remapper cache, we use a slightly

adjusted version of CiDRA [20] where a Bloom filter is used

to quickly determine if a row can be accessed directly (i.e., it

is not in a spare row). If a row hits in the Bloom filter on a

read, the remapper cache is searched to find the corresponding

spare row, which is subsequently read from DRAM. On a

write, the original row address is always attempted on the

hope the new data may not trigger bitline crosstalk faults and

the spare row can be freed to store data from another row. In

parallel with the write to the original address of the DRAM,

in the memory controller, the Bloom filter is searched for the

address. Upon a hit in the Bloom filter and a successful write

in the original row, the corresponding address in the remapper

cache is located and the “in use” bit is cleared.

IV. EVALUATION

To model weak cells of the memory, maps of weak cells

were created using a Bayesian distribution to mimic the

impact of process variation and include spatial correlation of

faults [10, 24]. We followed the model described in [10] to

generate maps of weak cells for a 4GB DRAM.

Given the nature of wordline crosstalk, we assume cells

susceptible to crosstalk can be detected at test time using

deep regression testing. These detected cells can then be used

to create a fault map of the memory. Given this assumption,

five 4GB fault maps were created for 10 different error rates,

using the method discussed in the previous paragraph. The

simulation for each error rate ran through every row, correction

scheme, and fault map, and for each row that failed after

performing the correction scheme, that row was replaced with

a spare row. The size of the necessary batch of spare rows for

each fault map and correction scheme was thus determined for

each error rate. The average of this overhead for the five fault

maps, added to the initial overhead required by the correction

scheme, then gave the minimum overhead required in order to

maintain the original capacity of 4GB at that error rate.

While wordline crosstalk can be evaluated at chip test time,

bitline crosstalk is inherently data dependent, and therefore

must be evaluated at runtime. Thus, we used DRAM memory

traces of the PARSEC benchmarks [25]. Using these traces,

we implemented the remapper discussed in Section III to track

the additional accesses required, as well as to determine the

minimum number of spare rows necessary to ensure reliable

operation for each correction scheme. The timing, power,

and area overhead of the remapper cache was found using

CACTI [26]. The power results for the DRAM itself were

calculated by running the traces through DRAMSim2 [27].

The average delays in the remapper cache for each correction

scheme and error rate where added to the memory controller

delays in Sniper [28] to determine the IPC used in holistic

energy computations in Section IV-C. To estimate the use

phase energy cost of the correction mechanisms, each scheme

was synthesized in 45nm hardware using a Free PDK [29]

(with the exception of the counters, which used the synthesized

results from [7]). For bitline crosstalk, we analyzed spare rows

alone (ECP0), ECP1-ECP9, SECDED ECC, and PFE.

A. Wordline Crosstalk Overhead Evaluation

Figure 3 shows a storage overhead comparison of combining

row-sparing (avoidance) with error correction to ensure error-

free operation. ECC (SECDED 32,39) requires significant

initial overhead and is only effective for lower ratios of weak

cells, requiring considerable usage of spare rows when the

ratio of weak cells becomes extremely high (10−2). ECPk

increases both the number of spare rows and, when necessary,

the number of pointers per row, k, as the potential weak cell

rate increases, dramatically reducing storage overhead against

ECC. Row sparing alone (ECP0) protects with the lowest

storage overhead at potential weak cell rates ≤ 10−5.

In contrast, a tuned approach, which stores an activation

counter [7] to refresh the neighboring rows after reaching an

access threshold, provides the lowest storage overhead solution

for high potential weak cell rates. ECP1 bridges the gap

between counters and row-sparing alone. However, ECP, row

Figure 3. Minimum overhead required for wordline crosstalk fault avoidance
(correction overhead plus spare rows).

sparing, and counters cannot protect against less predictable

errors such as communication and single-event upsets, partic-

ularly of concern in server-grade systems. Thus, protection

against these faults can still benefit from ECC/chipkill in

concert with dedicated solutions for wordline crosstalk.

B. Bitline Crosstalk

Similar to Figure 3, Figure 4 displays the storage over-

head comparison of combining row-sparing (including the

dynamic remapper) with error correction for error-free oper-

ation. As with Figure 3, Figure 4 does not include underly-

ing ECC/chipkill which would be necessary for server-based

systems to protect against transient errors. Spare rows alone

(ECP0) provides the minimum overhead strategy up through

5·10−4, where ECP1 becomes the minimum. At 10−3, ECP2

is slightly more efficient in terms of overhead compared to

PFE, and beyond this point PFE is the most space efficient

error correction scheme.

Figure 5 shows the average DRAM accesses required per

remap for each correction scheme as the weak cell ratio

increases. Recall from Section III that if an original row cannot

successfully write a given data word due to the number of

faults (intersections of bad patterns with weak cells) exceeding

the correction capability, then the remapper cache is used to

find the next available spare row that can successfully write

the original data. This metric is directly proportional to the

performance penalty required to manage the spare rows and

maintain sufficient reliability. After a weak cell incidence rate

of larger than 10−3, ECC1 becomes unusable, rising quickly

to hundreds of attempts per spare row allocation. Even with

error rates as high as 10−2, PFE only requires on average

1.016 attempts of trying a spare row to find one which can

successfully write the data. Increasing the ECP pointers (k)

progressively reduces the amount of calculations required, but

even at ECP9 does not approach the efficiency of PFE.

Figure 4. Minimum overhead required for bitline crosstalk fault avoidance
(correction overhead plus spare rows). This excludes the contribution of the
fault map.

Figure 5. Average encoding attempts per spare row allocation.

C. Holistic Indifference Analysis

A holistic energy analysis is required to understand the

true energy tradeoffs of the different error correction schemes.

We leverage indifference analysis for evaluating sustainable

computing [4], to calculate the time when the total energy,

including manufacturing and use phase energy, of two dif-

ferent schemes to achieve the same reliability are equivalent

(indifference point) using Equation 1. The use phase pow-

ers in the denominator of the expression can be calculated

based on different usage scenarios (Equation 2) [4], where

rS is the sleep ratio, rA represents the active to idle ratio,

PD is the dynamic power, PS is the static power, and PL

is the sleep power. For each benchmark, we calculate the

indifference points for three active and sleep scenarios: a

high-performance-computer (HPC) (rA=0.95,rS=0.05), mo-

bile computing system (rA=0.9,rS=0.92), and cloud server

(rA=0.3,rS=0.05) [4].

tI =
M1 −M0

P0 − P1

(1)

P = (1− rS)(rA(PD + PS) + (1− rA)PS) + PL (2)

The IPC when using the correction scheme was calculated

using SNIPER [28] in conjunction with the simulated delays

including the encoding hardware and row remapper as required

to maintain correctness using the spare rows. The computed

IPC can then affect the indifference point calculation by

replacing rA in the power calculation (Equation 2) of system

1 with r′
A
= rA(

IPC0

IPC1

) [4]. This adjustment reduces the active

time of the system with the higher IPC, accounting for the fact

that it needs less time to complete an equivalent workload.

1) Wordline Crosstalk: The holistic energy analysis of

wordline crosstalk reveals that the additional static energy

in the use phase from the spare rows and correction bits

dominates in the comparison between correction schemes. As a

result, in all compared cases a higher embodied energy resulted

in a higher operational energy, producing a negative result for

Equation 1. A negative indifference result indicates that the

indifference time is actually infinite, or in other words there is

no use phase energy savings to recoup the additional manufac-

turing energy. Therefore, for the wordline crosstalk correction

schemes examined, it makes sense to always choose the

scheme with the lower initial manufacturing energy, because

it also happens to be correlated with a lower use phase energy.

Thus, the most energy efficient scheme results in the choice

indicated by Figure 3. For victim cell rates <= 10−5, row

sparing alone is the most energy efficient method to protect

against wordline crosstalk (assuming the victim cells can be

accurately profiled). For incidences of victim cells larger than

5·10−4, using a basic system of uniform counters is the most

energy efficient solution examined. Various improvements to

these basic counters, including those discussed in [7], could

potentially further increase this advantage.

2) Bitline Crosstalk: Similar to the results for wordline

crosstalk, for bitline crosstalk with both the 10−5 and 10−4

ratios of weak cells, we find that for all usage scenarios and

correction scheme comparisons the result of Equation 1 was

Figure 6. Indifference points (days) for ECP1 at a 10
−3 weak cell incidence

rate.

also negative, which corresponds to infinite time required to

make up the higher manufacturing cost. At the weak cell

rate of 10−3, ECP1 has the lowest manufacturing cost but

its less effective correction and many required attempts to

find suitable spare rows incurs significant use phase penalties.

The indifference point analysis for ECP1 versus the other

correction schemes at 10−3 weak cell rate and different usage

scenarios can be observed in Figure 6. Because ECP1 has

the lowest manufacturing cost an infinite indifference time

in Figure 6 corresponds to ECP1 always being the more

holistically energy efficient solution, while a time less than

infinite indicates the time after which the scheme is more

energy efficient than ECP1, due to lower use phase energy.

The comparison of ECP1 against ECC shows ECC has

a higher manufacturing cost, but due to the performance

penalty of ECP1 during attempts to use spare rows to maintain

correctness in the use cases of HPC and Mobile systems, ECC1

has a lower use phase energy. For the server scenario, ECC1

has both a higher use phase energy and manufacturing cost

than ECP1, resulting in an infinite indifference time, where

ECP1 is always the more energy efficient solution.

For the HPC scenario, both ECC1 and ECP2 recover their

embodied energy overhead compared to ECP1 in less than a

year, while PFE and ECP3 take less than two years. For these

correction schemes with a life-cycle of at least two years, this

indicates that at a 10−3 weak cell incidence rate in a high

performance scenario they are more energy efficient solutions

than ECP1. In contrast, for the server scenario of usage, PFE

and ECP3 are always less energy efficient than ECP1. While

ECC1, PFE, and ECPk where 2 ≤ k ≤ 5 all have positive

indifference times compared to ECP1 for the mobile scenario,

they are all at least 10 years. Therefore, for systems with

lifetimes less than 10 years, ECP1 is more efficient for the

mobile scenario at a weak cell incidence rate of 10−3.

While ECP1 was the most energy efficient solution for weak

cell rates of 10−5, 10−4 and in some cases for 10−3, it is

never the most energy efficient solution for the 10−2 weak cell

incidence rate. Figure 7 shows the indifference times of ECP1

compared to the other correction schemes.The indifference

times are all less than 90 days.

Moreover, PFE consistently has the lowest use phase energy

overhead, due to its high correction capability and very low

use of spare rows. The indifference points for PFE at the

10−2 weak cell rate with different usage scenarios can be

observed in Figure 8. PFE always has a lower manufacturing

cost and correspondingly an infinite indifference time com-

pared to ECC. In comparison with correction schemes with

lower manufacturing energies (ECP1, ECP2), PFE recovers its

additional manufacturing cost within 20 days for each of the

three scenarios, clearly indicating the additional manufacturing

investment is worthwhile in terms of holistic energy efficiency.

For ECP3 and beyond, PFE has both a lower initial manufac-

turing energy and a lower use phase energy, indicating it is

always the more energy efficient choice.

D. Fault Map Overheads

The effectiveness of many error correction methodologies

can be enhanced by a knowledge of the location of faulty

rows, words, or individual cells. ArchShield uses a word-level

fault map in its error correction scheme [8]. SFaultMap is a

sustainability aware bit-level fault map designed for deeply

scaled memories [30]. These fault maps can dramatically

enhance the capabilities of error correction such as ECP and

PFE but can also have a significant impact on area, power,

and performance overheads of the memory system. Moreover,

as error rates tend to increase with scaling, the size of these

fault maps relative to the whole memory system will increase

significantly.

To see the impact of these fault maps, the manufacturing

cost (normalized to ECC) for several different fault map

overhead percentages for various correction schemes is shown

in Figure 9. For example, a relatively low area encoding

technique such as PFE that requires a 10% fault map can

increase its manufacturing cost to be on par with ECP8

without a fault map. Moreover, introducing a substantial fault

map (15% of the memory storage overhead or higher) can

change some of the indifference analyses from the previous

discussion. For example, ECP1 and PFE are no longer always

more efficient than ECC and each requires an indifference

analysis to determine which solution to use to minimize

holistic energy.

V. CONCLUSIONS AND FUTURE WORK

The analysis of wordline crosstalk indicates that below 10−5

incidence rate of susceptible cells, the most energy efficient

manufacturing scheme is to simply manufacture a small num-

ber of spare rows, test the rows and assign spares to those

which fail, and then use a mechanism such as CiDRA [20]

for low overhead access to spare rows at runtime. Below 10−5

weak cell incidence rate, using counters is the most efficient

solution in terms of manufacturing energy and space overhead.

In the context of bitline crosstalk, for both 10−5 and 10−4

weak cell incidence rates, then ECP1 is the most appealing

candidate in terms of holistic sustainability because of its low

manufacturing cost and use phase power. However, for weak

cell rates larger than 5 · 10−3, PFE is the clear and superior

choice for sustainability. The size of ancillary overheads from

fault tolerance schemes such as fault maps can be a significant

factor in determining the most sustainable choices. For PFE,

Figure 7. Indifference points (days) for ECP1 at the 10−2 weak cell incidence rate. Indifference times describe the point after which the compared schemes
are more energy efficient than ECP1.

Figure 8. Indifference points (days) for PFE at the 10−2 weak cell incidence
rate.

Figure 9. Manufacturing cost normalized to ECC1 for different fault map
overheads.

as long the fault map overhead less than 20% PFE can make

up its manufacturing deficits in less than a year (often less than

a week). However, to determine accurate indifference points

requires deeper analyses of these overheads, which we plan to

study in our future work.

REFERENCES

[1] A. Jones, Y. Chen, W. Collinge, H. Xu, L. Schaefer, A. Landis, and
M. Bilec, “Considering fabrication in sustainable computing,” ICCAD,
2013.

[2] M. A. Yao, T. G. Higgs, M. J. Cullen, S. Stewart, and T. A. Brady,
“Comparative assessment of life cycle assessment methods used for
personal computers.,” Env. Sci. & Tech., Vol. 44, No. 19, 2010.

[3] P. Teehan and M. Kandlikar, “Comparing Embodied Greenhouse Gas
Emissions of Modern Computing and Electronics Products,” Env. Sci.

& Tech., Vol. 47, No. 9, 2013.
[4] D. Kline Jr, N. Parshook, X. Ge, E. Brunvand, R. Melhem, P. K.

Chrysanthis, and A. K. Jones, “Holistically Evaluating the Environmen-
tal Impacts in Modern Computing Systems,” IGSC, 2016.

[5] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” ISCA, 2014.

[6] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” Google Project Zero Blog.

[7] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-Based Tree
Structure for Row Hammering Mitigation in DRAM,” IEEE Computer

Architecture Letters.
[8] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural

framework for assisting DRAM scaling by tolerating high error rates,”
ISCA, 2013.

[9] T. Yoshihara and et al., “A twisted bit line technique for multi-Mb
DRAMs,” ISSCC 1998.

[10] Z. Al-Ars, DRAM fault analysis and test generation. TU Delft, Delft
University of Technology, 2005.

[11] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM design and organization
for energy-constrained multi-cores,” SIGARCH Comput. Archit. News

2010.
[12] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A

Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM,” in CAL 2016.

[13] Apple Inc., “Environmental Report.” [Available Online]: http://www.
apple.com/environment/reports/, 2015.

[14] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern DRAM devices: Implications
for retention time profiling mechanisms,” ISCA, pp. 60–71, 2013.

[15] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level
Technique to Detect Data-Dependent Failures in DRAM,” DSN, 2016.

[16] Z. Yang and S. Mourad, “Crosstalk induced fault analysis and test in
DRAMs,” Journal of Electronic Testing, Vol. 22, pp. 173–187, 2006.

[17] Y. Konishi and et al, “Analysis of coupling noise between adjacent bit
lines in megabit DRAMs,” Journal of Solid-State Circuits 1989.

[18] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC
server main memory,” IBM Microelectronics Division, pp. 1–23, 1997.

[19] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC,
for hard failures in resistive memories,” ISCA, pp. 141–152, 2010.

[20] Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H.
Ahn, “CiDRA: A cache-inspired DRAM resilience architecture,” HPCA,
pp. 502–513, 2015.

[21] C.-H. Lin, D.-Y. Shen, Y.-J. Chen, C.-L. Yang, and M. Wang, “SECRET:
Selective error correction for refresh energy reduction in DRAMs,”
ICCD, pp. 67–74, 2012.

[22] M. Seyedzadeh, D. Kline Jr, R. Melhem, and A. K. Jones, “Mitigating
Bitline Crosstalk Noise in DRAM Memories,” MEMSYS, 2017.

[23] M. Horiguchi and K. Itoh, Nanoscale memory repair. Springer Science
& Business Media, 2011.

[24] T. Yuan, S. Z. Ramadan, and S. J. Bae, “Yield prediction for integrated
circuits manufacturing through hierarchical Bayesian modeling of spatial
defects,” Transactions on Reliability 2011.

[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” PACT, 2008.

[26] S. J. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access and
cycle time model,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 5,
pp. 677–688, 1996.

[27] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Comp. Arch. Let., Vol. 10,
No. 1, pp. 16–19, 2011.

[28] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-core
Simulation,” SC, 2011.

[29] J. E. Stine et al., “FreePDK: An open-source variation-aware design
kit,” MSE, pp. 173–174, 2007.

[30] D. Kline Jr, R. Melhem, and A. K. Jones, “Sustainable Fault Manage-
ment and Error Correction for Next-Generation Main Memories,” IGSC,
2017.

