2018 IEEE International Symposium on High Performance Computer Architecture

Enabling Fine-Grain Restricted Coset Coding Through
Word-Level Compression for PCM

Seyed Mohammad Seyedzadeh’, Alex K. Jones®, Rami Melhem"
Computer Science Department’, Electrical and Computer Engineering Department’
University of Pittsburgh
seyedzadeh@cs.pitt.edu, akjones@pitt.edu, melhem@cs.pitt.edu

Phase change memory (PCM) has recently emerged as
a promising technology to meet the fast growing demand
for large capacity memory in computer systems, replacing
DRAM that is impeded by physical limitations. Multi-level cell
(MLC) PCM offers high density with low per-byte fabrication
cost. However, despite many advantages, such as scalability
and low leakage, the energy for programming intermediate
states is considerably larger than programing single-level cell
PCM. In this paper, we study encoding techniques to reduce
write energy for MLC PCM when the encoding granularity
is lowered below the typical cache line size. We observe
that encoding data blocks at small granularity to reduce
write energy actually increases the write energy because
of the auxiliary encoding bits. We mitigate this adverse
effect by 1) designing suitable codeword mappings that use
Jewer auxiliary bits and 2) proposing a new Word-Level
Compression (WLC) which compresses more than 91% of the
memory lines and provides enough room to store the auxiliary
data using a novel restricted coset encoding applied at small
data block granularities.

Experimental results show that the proposed encoding at
16-bit data granularity reduces the write energy by 39%,
on average, versus the leading encoding approach for write
energy reduction. Furthermore, it improves endurance by 20%
and is more reliable than the leading approach. Hardware
synthesis evaluation shows that the proposed encoding can
be implemented on-chip with only a nominal area overhead.

1. Introduction

Scaling down process technology enables higher capacity
main memories by increasing the density of DRAM devices.
Unfortunately, this trend jeopardizes current DRAM main
memory designs, especially when scaling beyond 20nm
technology, because of fundamental obstacles related to high
power consumption and process variation problems [28, 29,
35]. Among several alternative technology candidates, Phase-
Change Memory (PCM) is emerging as promising due to its
desirable characteristics in terms of scalability, low access
latency and negligible standby power [22, 27].

To store data in PCM cells, some PCM prototypes consider
only two states per storage element, SET and RESET,
to produce a single level cell (SLC). However, the large
resistance range between SET and RESET has motivated a
split of that range into different states to enable multi-level
cells. Contrary to SLC that can represent a logic ‘1’ or ‘0’,
a MLC requires multiple programming write pulses to adjust
the cell resistance to one of many predetermined ranges. For
this reason, MLC PCM usually adopts an iterative program-
and-verify (P&V) technique [4, 6, 17] to achieve precise
resistance control.

The P&V technique first resets the cell and then iteratively
uses partial SET pulses and checks whether the predetermined

2378-203X/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCA.2018.00038

350

resistance range is reached. There are two main disadvantages
to this type of write programming. The first is that resetting
a cell before iteratively programming it negatively impacts
the cell endurance [7]. The second is that it increases write
energy in the system [8]. Specifically, the write energy of
MLC PCM has been reported to be 10 times more than that
of the SLC PCM [15, 34]. Moreover, when scaling below
20nm technology, the high energy needed to write a cell may
disturb neighboring cells that are idle—i.e., not changed by
the write. This phenomenon is known as write disturbance
in MLC PCM [16].

To reduce the write energy in PCM, improve endurance or
alleviate write disturbance, we will discuss in Section 1I-B
several already proposed solutions that are based on encoding
memory lines. Our goal in this work is to reduce write
energy in PCM with 4-level cells, which we can abstract as
2-bit symbols, by designing a simple and effective encoding
architecture that lowers the encoding granularity while still
incurring very low encoding overhead. Reducing the write
energy, however, should not adversely affect the endurance of
the PCM or its susceptibility to write disturbance. Based on
a comprehensive characterization, we base our contribution
on five observations related to the effect of encoding on the
write energy, endurance and write disturbance errors.

First, we observe that when the encoding data block
granularity is reduced, the number of auxiliary symbols
increases and the write energy resulting from auxiliary
symbols may neutralize or exceed the write energy savings
resulting from encoding the data. Second, we observe that
symbol frequency distribution in real workloads is not random,
and hence the choice of the alternative code words used for
encoding should take into consideration both the write energy
of each symbol as well as its frequency probability in real
workloads. Third, we observe that although current memory
line compression techniques can achieve a large compression
ratio, it can only compress a small fraction of the memory
lines. A lighter compression technique which achieves a
smaller compression ratio but successfully compresses more
lines is more suitable for accommodating the auxiliary
symbols needed for an encoding. Fourth, we observe that
words in a memory line have similar characteristics, and
hence, when applying code mappings to different subblocks
of a memory line, it is possible to use the same mappings
for all the subblocks in the line. This restricted encoding has
a minimal effect on the write energy but reduces the number
of auxiliary symbols. Fifth, we observe that an encoding that
reduces the write energy also reduces the number of written
cells as well as the number of written symbols causing write
disturbance. Hence, reducing the write energy through fine
encoding granularity also improves cell endurance and reduces
the probability of write disturbance.

Based on our observations, we propose WLCRC, a Word-

IEEE
computer
® psoaety

Level Compression Restricted Coset coding architecture that
achieves the best write energy savings at 16-bit encoding
granularity. This work makes the following contributions:

o We revisit codeword mappings that map high energy
states to low energy states and show that the selection of
suitable codeword mappings that take into consideration
the bit patterns frequently occurring in data directly
impacts the write energy.

We characterize the write energy for biased and random
workloads for coset coding techniques when the data
block granularity is changed between 512 and 8 bits.
Our analysis reveals the five observations mentioned
above that are useful for developing new mechanisms
to improve write energy, endurance and reliability.

We design a Word Level Compression (WLC) technique
that compresses more than 90% of the memory lines
while using very simple compression/decompression
logic.

We propose a new and low overhead fine-grained
‘restricted coset encoding’ that can be integrated with
WLC. Through light compression, WLC provides enough
room within memory lines for storing auxiliary symbols
of fine granularity restricted coset encoding.

II. Background and Motivation

In this section, we first provide some necessary background
on writing data in MLC PCM. Next, we discuss write energy,
endurance and write disturbance errors. Finally, we briefly
review related work and illustrate the motivation of our paper.

A. PCM

A single PCM cell is programed by switching the chalco-
genide material between a high resistance amorphous state
(RESET) and a low resistance crystalline state (SET) through
the application of a programming current. The cell in the SET
state requires a high intense programming current to change its
status to the RESET state. This current is considerably more
than the current required for switching the cell from RESET
to SET. Studies showed that the loss of cell endurance is
directly correlated to the high programming current [21, 36].

The large resistance contrast between the SET and RESET
states enables the exploitation of partially crystallized states to
store more than one bit per cell (Multi-level cell). In current
MLC PCM, the resistance range between the RESET and the
SET states is split into four regions that represent the logic
values ‘00°, ‘01°, ‘10°, and ‘11°. Since it is impractical to
precisely program MLC cells through a single pulse, industrial
prototypes and academic research resort to an iterative
program-and-verify (P&V) policy [24, 25]. Unfortunately,
P&V programming increases the write energy by a factors
reaching 10x that of programming a SLC [34].

The high heat resulting from resetting a cell, particularly
in MLC PCM, may disturb neighboring idle cells that are not
being programmed. Specifically, the generated heat reduces
the resistance of the idle cells and may unintentionally put
them in the SET state. This reliability bottleneck increases
when memory cells are scaled below 20nm technology where
cell-to-cell distance decreases considerably [1, 16, 19]. Note
that if all cells are updated in a write operation, there are no
idle cells and consequently no write disturbance. However,
because the endurance of a PCM cell is determined by the
number of writes to that cell, Differential Write [37] is used
and only cells which are actually changed are written.

351

B. Related Work

Several techniques have been proposed to confront high
write energy [11-13, 30-32], endurance and write disturbance
problems in PCM. The key concept behind all of them is to
reduce the number of state changes (write operations) that are
costly in terms of energy, endurance and write disturbance.
Data encoding is a common solution that effectively reduces
the number of costly cell programming operations. For
example, Flip-N-Write [7] was proposed for SLC PCM to
reduce the number of written cells in the memory. To improve
the lifetime of SLCs, FlipMin [14] was proposed based on the
concept of coset encoding [10]. The basic idea of FlipMin
is to perform a one-to-one mapping from the data block
to a coset of code word candidates. Then, the code word
candidate that optimizes the lifetime is selected to be written
in the memory. The initial coset candidates are build by the
dual code of a (72,64) Hamming generator matrix. Since the
initial coset candidates are essentially random binary vectors,
FlipMin is most effective for workloads operating on random
data [32].

To reduce write energy in MLC PCM and achieve low
encoding overhead, an encoding that uses six coset candidates
has been proposed in [34] with the goal of mapping the two
high energy states to the two low energy states.

To mitigate write disturbance errors in SLC and MLC
wordlines, a 3-to-4-bit encoding, DIN, was proposed in [16]
and was integrated with a 20-bit BCH code to correct
any two write disturbance errors in a verification step. To
make room for the extended code words, DIN uses memory
line compression to compresses a 512-bit line to 369-bits.
However, because of the required large compression ratio,
DIN is only able to compress and encode 30% of the memory
lines.

C. Motivation

Using simulation (see Section VII), we measured the
write energy when the coset encoding proposed in [34] is
used along with differential write. Figure 1(a) shows the
results for 200 million 512-bit random data lines when the
encoding granularity ranges between 8 and 512 bits. At a
given granularity of x-bits, each x-bits data block is separately
encoded using one of six coset candidates at the cost of adding
3-bits (two auxiliary symbols in MLC PCM) to identify the
candidate used. The figure breaks down the write energy
into the energy to write the data and the auxiliary symbols.
It shows that when the encoding granularity decreases, the
write energy and its dominant component, the data symbol
energy, decreases. On the other hand, the auxiliary symbol
energy gradually increases and reaches its maximum at the
granularity of 8-bits.

We also performed a similar study on real workloads to
investigate the relationship between the two components of
the write energy. Figure 1(b) shows that the energy for
the real (biased) workloads is considerably smaller than
the random workload case, which is due to data locality.
However the trend with varying granularity is the same for
both workloads. The main reason for energy reduction at
small data block granularity is the flexibility of encoding
smaller data blocks independently. Unfortunately, this benefit
comes at the expense of a high space overhead needed for
storing the auxiliary symbols. This overhead reaches 25% at
8-bit granularity (two auxiliary symbols for each four data
symbols).

| oblk 4aux blkraux |
5.E+04
-~ . .
3§ 4E0s j
> X i |
%0 5 3.E+04 =
23 : :
W e 26404 ‘o Our goal :
L o | !
";'- B LE04 T
. : :
0.E+00 -+ i
(a) 8 16 32 64 128 256 512
Data Block Granularity
l O-blk “A-aux -*-blk+aux]
1.2E404
—_v 1 1
3 S LOE+04 + .
g] | |
2 = 8.0E+03 o :
= = 1" '
i) : :
€ 3 6.0E+03 T - T
W ' Our goal '
3 @ 4.0E+03) ;
=8 A |
2 3 206403 E‘\\‘\AE\.‘__‘_‘
0.0E+00 | i
(b) 8 16 32 64 128 256 512
Data Block Granularity

Figure 1: Write energy analysis for (a) random workloads; (b) biased
workloads (SPEC2006 and PARSEC benchmarks).

Our goal in this paper is to take advantage of fine-grain
encoding granularity while reducing the overhead of auxiliary
symbols and introducing a light weight compression that
provides enough space in the memory line to store auxiliary
symbols.

III. Revisiting Coset Candidates

A 4-level cell can be programmed to any one of four
resistance states. We denote these states by S1, S2, S3 and
S4 and we assume that the states are numbered in the order
implied by the energy needed to bring a cell to that particular
state, with S1 requiring the least energy and S4 requiring the
most energy (see Table I). Specifically, programming into S1
is done using a RESET pulse, while programming it into S2

is done using a SET pulse, which consumes more energy.

Programming into S3 and S4 is done through iterative partial
SET pulses [18]. Note that to reach S2, S3, S4, the cell
must be first reset before applying the SET pulses. Every
two consecutive bits in a memory line are stored in one
cell. Hence, an encoding is a particular mapping of the four

symbols, ‘00’, ‘01’, ‘10’ and ‘11’ into the four cell states.

We assume that the default mapping of the four symbols
‘00, ‘10°, ‘11°, and ‘01’ is to the states S1, S2, S3 and S4,
respectively [16].

The coset candidates used in [34] to encode a memory line
are based on mapping the two most frequent symbols in a
memory line into the two low energy states while maintaining
the original data block as much as possible. Assuming that
any two of the four symbols can appear more frequently in
any particular memory line, the encoding provides CZ =6
different mappings of symbols to states, which is equivalent
to using six possible coset candidates in the encoding. Of
course, 3-bits (two symbols) are needed for each memory
line to record the particular candidate used in the encoding.

Note that the above logic used to select the six coset
candidates is suitable for random data since it assumes
that in any memory line, any two of the four symbols can
appear more frequently in that line. However, it is well
documented [2, 3, 9] that in real workloads, the two symbols
‘00’ and ‘11’ appear much more frequently than the other

352

two symbols because many data words contain long runs
of 0’s or 1’s. For example, zero is most commonly used to
initialize data, to represent NULL pointers or false Boolean
values, and to represent sparse matrices. On the other hand,
long sequences of 1’s appear in the representation of negative
signed numbers. We will take advantage of this knowledge to
propose four carefully selected coset candidates and compare
the performance of this encoding, called ‘4cosets,” with that
of the encoding proposed in [34], called ‘6cosets.” Note that
by reducing the number of coset candidates from six to four,
we reduce the auxiliary information needed to keep track
of the coset candidate used from four bits (two symbols) to
two bits (one symbol). Table I shows the symbol-to-state
mapping for the four proposed coset candidates. The first
candidate, C1, represents the default symbol-to-state mapping.
Candidates C2 and C4 map ‘11’ and ‘00’ to the two states
with the lowest write energy to take advantage of the fact
that sequences of consecutive 0’s and consecutive 1’s are
common in memory traces of real applications. Candidate C3
is chosen so that, when combined with C1, any of the four
symbols will be mapped to the two states with the low write
energy, either in C1 or in C3. This will be useful for random
patterns that do not exhibit any bias.

To compare the effectiveness of the proposed 4cosets
encoding with the 6cosets encoding proposed in [34], we
plot in Figure 2 the write energy for both encodings for 200
million random data blocks with granularity varying from
128-bits down to 8-bits. Because it uses more candidates
and has more options for reducing the write energy, 6cosets
achieves write energy reduction in the data symbols more than
4cosets. The energy consumption for the auxiliary symbols
is also lower for 6cosets than 4cosets despite the fact that
4cosets uses only one auxiliary symbol per data block while
6cosets uses two. The reason is that for 6cosets, we use
the six state combinations of the two auxiliary symbols that
require the least write energy among the 16 possible state
combinations of the two symbols. For 4cosets, all four states
of the auxiliary symbol, including the two high write energy
states, have to be used to identify the candidate used in the
encoding.

The advantage of 6cosets vanishes when we compare the
two schemes for real benchmarks as shown in Figure 3. The
figure shows that 6cosets still has an advantage with respect
to the write energy of data symbols. However, the energy to
write the auxiliary symbols is lower in 4cosets than in 6cosets
because it uses only one auxiliary symbol rather than two, and
it uses the two low energy states of the auxiliary symbol to
represent the most commonly used coset candidates, C1 and
C2. As a result, the total write energy in Figure 3 shows that
the two sources of the write energy make a suitable trade-off
such that the write energy of 4cosets is almost equal to that
of 6cosets for a wide range of data block granularities.

We conclude that both 4cosets and 6cosets consume
roughly the same write energy for real workloads. More
importantly, 4cosets reduces the number of auxiliary symbols

Table I: Four coset candidates for mapping two bit patterns to the four
energy states of a MLC PCM.

. Coset candidate mapings of symbols to states
State | Write energy [4] Coset C1 | Coset C2 | Coset C3 | Coset C4
S1 36+0 pJ 00 11 11 11
S2 36+20 pJ 10 00 01 00
S3 36+307 pJ 11 10 00 01
S4 36+547 pJ 01 01 10 10

—#—6cosets ~B-4cosets l

=&-6cosets

~B-4cosets l l =®-6cosets ~-4cosets l

I 126404 T 5.0e404 £ 5.0E+04
% 10E+04 % 4.0E+04 gﬂ’ 4.0E+04 M
ey [7)
g 8.0E+03 £ 3.0e+04 S 3.0E+04
U 6.0E+03 @ 2
8 £ 20e+04 £ 2.0E+04
£ 4.0E+03 z =
E 2.0E+03 z L0E04 T L0E:04
32 0.0E+00 2 0.0E+00 2 0.0E+00
8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
(a) Data Block Granularity (b) Data Block Granularity (C) Data Block Granularity

Figure 2: Write energy analysis for (a) auxiliary symbols, (b) data block symbols, (c) auxiliary + data block symbols. The reported write energy is the
average for 200 million random data blocks. The PCM memory line is 512-bits.

l —o—6cosets ~@-4cosets] l —®-6cosets ~B-4cosets] — l —o—6cosets ~@-4cosets]

3 4.0E+03 3 1.2E+04 2 1.2E+04
> > >

%0 3.0E+03 g_,n 1.0E+04 ‘%" 1.0E+04
S S 8.0E+03 S 8.0E+03
Y 2.0E+03 - o

£ £ 6.0£403 £ 6.0E+03
3 1OE+03 5 4.0E+03 ch 4.0E+03
5 0.0E+00 S 2.0E+03 B 2.06+03

8 6 32 61 128 ° 8 16 32 64 128 8 16 32 64 128

(a) (b)

Data Block Granularity

Data Block Granularity

(c)

Data Block Granularity

Figure 3: Write energy analysis for (a) auxiliary symbols, (b) data block symbols, (c) auxiliary + data block symbols. The reported write energy is the
average for SPEC2006 and PARSEC benchmarks. The PCM memory line is 512-bits.

by 50%, which is a large advantage when the memory line
is to be compressed to make room for the auxiliary symbols.

IV. Word Level Compression (WLC)

In the last section, we argued that by using 4cosets, rather
than 6cosets, the number of auxiliary symbols is reduced
by 50%. Still, the main obstacle for using fine data block
granularity (64-bits or smaller) is that it needs one auxiliary
symbol per data block. For example, at a 16-bit granularity,
a 512-bit (256 symbol) memory line needs 64 auxiliary bits
(32 auxiliary symbols), which is a 12.5% overhead. For 8-
bit and 32-bit granularities, the overhead is 25% and 6.5%,
respectively. The question that we answer in this section
is: can we find a lightweight compression scheme that 1)
successfully compresses a memory line with a high probability,
2) reduces the memory line size by 6.25%, 12.5% or 25%
to make room for the auxiliary symbols, and 3) does not
disturb the biased bit patterns in a memory line to preserve
the effectiveness of differential writes?

To answer the above question, we apply different existing
schemes for compressing 512-bit memory lines to different
SPEC2006 and PARSEC workloads. The results show that
FPC+BDI compression [2, 26] only compresses 30% of the
memory lines, which does not satisfy the first constraint
specified above. In contrast, the recently proposed Coverage-
Oriented Compression (COC) [20] highly compresses cache
lines by utilizing 28 different variable length compressors,
which satisfies the first constraint. Unfortunately, COC does
not satisfy the third constraint because its variable length
encoding disturbs the biased bit patterns in a memory line.

However, by inspecting each 64-bit memory word, we
found that the k& most significant bits (MSBs) of most
words, for some k, have the same binary value and thus
can be represented by only one bit. Following this new
observation, we propose a simple and low-overhead Word
Level Compression (WLC) that compresses a 512-bit memory
line as long as the k MSBs of all its eight 64-bit words are
compressible.

353

l @4-MSBs E5-MSBs O6-MSBs O7-MSBs E@8-MSBs E9-MSBs B COC OFPC+BDI

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

% Compressed Memory Lines
(More is Better)

lesl wrf zeus Ilbm asta mcf cann libg milc gcc omne sopl ave.

Figure 4: Comparison of the percentage of compressed memory lines by
WLC, COC [20] and FPC+BDI [26].

Figure 4 shows the percentage of memory lines compressed
by COC, BDI+FPC and WLC when £ is changed between 4
and 9. For 4MSBs, SMSBs and 6MSBs, WLC compresses
more than 91% of the memory lines. With the 6 MSBs
replaced by one bit in every 64-bit word, 5/64 = 7.8% of a
memory line is reclaimed and made available to store auxiliary
symbols. Clearly, this is enough to store the auxiliary symbols
for the 32-bit granularity, but not for smaller granularities.
Figure 4 also shows that for k > 6, WLC compresses 54%
of the memory lines. Although, with k = 9, we can save
8/64=12.5% of a memory line, which is enough to store the
auxiliary symbols for 16-bit granularity, only 48% of the
memory lines can be compressed and encoded at this value
of k while the remaining lines will be written without any
encoding. This motivates the idea of restricted coset encoding
to decrease further the amount of auxiliary information.

V. Restricted Coset Coding

In traditional coset encoding, a coset candidate is selected
independently for each data block to minimize the write
energy for that block. In this section, we introduce a restricted
coset encoding which mandates a correlation between the use
of coset candidates in a number of consecutive data blocks.
This restriction reduces the auxiliary information and does
not largely affect the energy minimization capability because
the bit patterns of consecutive words are usually similar.

~B4cosets =9-3cosets =A—3-r-cosets l

~@4cosets

=9o-3cosets =#=3-r-cosets

~B-4cosets ~9-3cosets =A—3-r-cosets

5 4.0E+03 T 116404
= 1.0E+04
3.0E+03 &
g oo § 9.0£+03
& 206403 S 8.0E403
£ £ 7.0E403
= 108403 3 6.0E+03
5 0.0E+00 8 5.0E+03
< &

8 16 32 64

Data Block Granularity

128

(a) (b)

16

Data Block Granularity

1.1E+04
1.0E+04
9.0E+03
8.0E+03
7.0E+03
6.0E+03
5.0E+03

(c)

Total Write Energy (pJ)

32 64 128 16 32 64

Data Block Granularity

128

Figure 5: Write energy analysis for (a) auxiliary symbols; (b) data symbols, (c) auxiliary + data symbols. The average write energy are reported for the

SPEC2006 and PARSEC benchmarks.

We illustrate the concept of restricted coset encoding by
a simple example. Assume that we only use the first three
coset candidates, C1, C2 and C3, discussed in Section III.
Instead of allowing the flexibility of using C1, C2 or C3
independently in each data block, we can group the cosets
into two groups, ‘C1,C2’ and ‘C1,C3’, and force any data
block in a memory line to either use one of C1 and C2 in
the encoding or to use one of C1 and C3. For example for
a 16-bit encoding granularity, there are 32 data blocks in
a 512-bit memory line. Restricted coset encoding proceeds
as follows: 1) use the two candidates C1 and C2 to encode
each of the 32 data blocks, 2) use the two candidates C1
and C3 to encode each of the 32 data blocks and 3) select
the better of the encodings produced in steps 1 and 2. Of
course, this restricted method needs one global auxiliary bit
per memory line to determine the coset group used in that
line, in addition to one auxiliary bit per data block, for a total
of 33 auxiliary bits (17 symbols) per memory line. This is
fewer than the unrestricted encoding which needs 64 auxiliary
bits (32 symbols) per memory line, two bits per data block.

To explain the ramification of restricting the use of cosets,
we recall from the previous section the justifications for
choosing the three candidates C1, C2 and C3. C2 is useful
for biased data with many sequences of consecutive 0’s or
1’s, while C3 is useful for non-biased data. Because of data
locality, we can expect consecutive words in the memory line
to either be all biased or not. In the former case, not using
C3 will not hurt much, and in the latter case, not using C2
will not hurt much.

To evaluate the effect of restricting the use of cosets on the
write energy, we plot in Figure 5 the write energy of 4cosets,
3cosets (that unrestrictedly uses candidates C1, C2 and C3)
and the restricted coset coding (called 3-r-cosets). We draw
two observations from this figure. First, 3cosets only slightly
increases the write energy over 4cosets. Second, reducing the
number of auxiliary information by the proposed restricted

method increases very little the write energy relative to 4cosets.

The main advantage of restricting the coset candidates will be
clear in the next section where we use WLC to make room
in the memory line for embedding the auxiliary information.

VI. WLCRC: Integrating WLC with Restricted Coset
Encoding

In this section, we will use WLC to make enough room
in the memory line to store the auxiliary symbols of the
restricted coset encoding. Because of the reduction in the
auxiliary information needed for 3-r-cosets, WLC will be
able to provide the necessary room in 91% of memory lines
to embed the auxiliary symbols. A global bit (symbol) per
memory line will be used to flag the lines that cannot be

354

b63
b62
b61
b60
b59
b58
b57
b56
b55
b54
b53
b4
b3
b2
b1
b0

wWo
w1

W2
W3
W4
W5
W6
W7

(a)

Q

Word Level Compression (WLC)

SN
1 \

‘b63|b62Hb61‘bGO‘b59|b58‘b57‘ ‘b48‘b47‘ ‘bSZ‘bS‘I‘ ‘b16‘b15‘ ... | b0

Restricted Coset Coding (b)
Figure 6: (a) Word Level Compression (WLC), (b) Restricted coset coding
at 16-bit granularity.

compressed. Those lines will be written in memory without
encoding.

Figure 6(a) shows the WLC that compresses the 6 most
significant bits of each 64-bit word of a 512-bit memory line.
In this figure, each row represents the 64-bits, by;, ..., by, of
each of the eight words, w', i =0,...,7. WLC compresses the
memory line as long as all six MSBs, bg3,...,bsg, of each
word are ‘000000” or ‘111111°. Thus, it splits each word into
two parts: the five reclaimed bits, bg3,...,bs59, and the data
bits bsg,...,by, which are not changed by the compression.
When decompressing the word, bit bsg is extended to the
reclaimed bits, similar to sign extension. The five reclaimed
bits will be used to store the auxiliary bits of the 3-r-coset
encoding at 16-bit granularity.

Figure 6(b) shows the format of the restricted coset
encoding at a 16-bit granularity. Specifically, each 64-bit
word is divided into 4 data blocks, ‘bsg,..,.bag’, ‘b47,...,b32°,
‘b31,...,b16°, and ‘bys,...,by’. To record the coset restriction
used for encoding each 16-bit data block in a word, we use
bit be3 to determine which group of cosetcy c2, or cosetci c3,
is used to encode the four 16-bits data blocks in the 64-bit
word. Then, the four bits, bgpy,...,bs59, are used to identify
which coset candidate (restricted by the specified group) is
used in each data block. Algorithm 1 is a pseudo-code for
WLCRC-16 where the eight 64-bit words, w', i =0,...,7, are
independently encoded in parallel when the memory line is
compressible (Line 1-2). To encode a word, w', it is divided
into 4 sub-words w', j=0,...,3 (Line 3), and the sub-words
are encoded in parallel using the three cosets C1, C2 and

Algorithm 1: Pseudo-code for WLCRC-16 applied to a
compressible memory line.

1 begin

2 for w',i=0,...,7, in Parallel, do

3 Divide w' into four sub-words w?, j=0,...,3
4 Encode w§ using C1,C2 and C3 in parallel

costy a(w') 2‘3:0 min{cost; (wj-), costy (w’/)}
costy 3(w') : 2‘3:0 min{cqstl (wj-), Costg'(w:"/-)}
If (cost; 2(w') < cost; 3(w')) encode w' using
C1/C2 else encode w' using C1/C3.

C3. Then, the energy cost, costi(w'), of encoding w'; using
Ck is computed for j =0,...,3 and k= 1,2,3. This allows
the estimation of cost; 2(w') and cost; 3(w'), which are the
costs of encoding w' using C1 or C2 and using C1 or C3,
respectively (line 4). Finally, the encoding with minimum
cost is selected to be written in memory.

Note that, driven by the compressed format, we applied the
coset restriction to the data blocks in a 64-bit word, rather than
to the entire memory line, as described in the previous section.
Hence, our proposed encoding, called WLCRC, applies only
to data blocks at granularities of 8, 16, 32 and 64 bits.
However, to apply WLCRC at 8-bit granularity, eight bits
must be reclaimed by WLC from each word. To apply it
at 32-bit granularity, only three bits must be reclaimed. At
64-bit granularity, WLCRC is identical to the unrestricted
3cosets encoding in which also two bits need to be reclaimed.

Finally, we note that WLC can be integrated with un-
restricted 3cosets or 4cosets encodings, as long as WLC
can reclaim enough bits to embed the auxiliary bits for the
encoding. For example, to use WLC with 4cosets at data
block granularities of 8, 16, 32 or 64 bits, WLC has to
reclaim 16, 8, 4 and 2 bits per word, respectively. Note,
however, that according to Figure 4, as long as the number of
reclaimed bits per word is less than 6 (k-MSBs with k < 7),
WLC compresses 91% of the memory lines. Otherwise it
compresses fewer than 55% of the lines. In summary, the
selection of data block granularity and restricted/unrestricted
encoding is a trade-off between the encoding overhead and
the write energy reduction.

A. WLCRC Architecture

Figure 7 shows the on-chip architecture of WLCRC
compression+encoding and decoding+decompression for a
data block granularity of 16. The 512-bit line from the memory
controller is sent to the WLC module to check whether it is
compressible or not. If the line is compressible, WLC enables
the encoder to activate eight restricted coset encoding modules.
When differential write is used, each compressed 64-bit word
out of WLC is differentiated with the corresponding 64-bits
from the currently stored memory line and the difference is
used in a restricted coset module to compute the encoded word
to be written into memory. If WLC cannot compress the data
line, the uncompressed, unencoded line is compared with the
memory current data and the difference is written to memory.
One auxiliary bit is used to differentiate encoded from non-
encoded lines, which means that an additional symbol must be
stored with the 256 symbols of the memory line. Consequently,
the total encoding space overhead is < 0.4%. Note that the
leading 6cosets scheme stores two auxiliary symbols with

355

On-Chip

Old Data Block

New Data Block

Encoder
Restricted [WO
Restricted [W1]

icte

2]
3]

Compressed

ke

7

512

J Encoded

Memory Controller

Decoder

Off-chip PCM Main Memory

! | WLD

Decoded

Figure 7: On-chip WLCRC architecture for 16-bit granularity.

each memory line, which is double the space overhead of
WLCRC.

The eight 64-bit encoders operate in parallel. Each encoder
splits the word into 16-bit blocks and for each block, the
writing cost is estimated when each of the candidates, Cl1,
C2 or C3 is used for mapping the symbols to the cell’s states.
Note that to encode the four data blocks in parallel, the most
significant block, bsg, ..., bsg, contains 11 bits rather than 16
bits since bits bg3, ...,bs9 are not known before the encoding.
It is possible, however, to consider all 16 bits, b¢3, ..., b4, in
the encoding process if we encode the most significant block
after the encoding of the other three blocks is completed,
which will increase the encoding (and similarly the decoding)
delay. We chose the fully parallel solution.

The decoding follows the reverse structure of the encoding.
Specifically, it first checks whether the memory line has
been compressed/encoded or not. If yes, the decoder decodes
the eight words and then a WLD module decompresses the
decoded words. The decoding process is simple as the most
significant bit of each 64-bit word, bg3, determines the coset
group that had optimized that word in the encoding process.
Then, the four bits, bgy, ...,bs9 determine the coset candidate
that should be used to decode the corresponding 16-bit block.

B. Hardware Overhead

In this section, we evaluate the delay, power, area, and
energy of WLCRC-16. Verilog implementations were syn-
thesized using Synopsys Design Compiler targeting a 45nm
FreePDK standard cell library [33]. The WLCRC implemen-
tation assumes 512-bit memory lines requiring eight encoding
modules to simultaneously encode the compressed words by
WLC. We assume that the additional encoding bits added to
the 512-bit memory line are handled through a wider main
memory interface. Our results show that the WLCRC modules
incur an area overhead of 0.0498mm?, which is negligible
compared to the PCM main memory area. Moreover, the
delay of WLCRC modules is 2.63ns and 0.89ns during a
write and read, respectively. The energy consumption of the
WLCRC modules is 0.94pJ and 0.27pJ, per write and read
memory line access, which is negligible compared to the write
energy consumed by cell programming. Note that the WLC
compression/decompression portion of the design is very
small compared to the encoding/decoding portion, requiring
only 0.0002mm? area, 0.13ns delay, and 0.0017pJ of energy.

VII. Experimental Settings
A. Experimental Configuration

To conduct experiments, we developed a trace driven
simulator. The input traces to our simulator were collected
with Virtutech Simics [23]. As it is widely assumed that PCM
employs differential write, or writing bits only when the value
differs from the previously stored value, for each memory
write transaction the traces store both the value to be stored
as well as the value to be overwritten.

For trace generation, our simulations assume an §-core
4GHz chip multiprocessor. Each core has a 2MB private
L2 cache. We model a 32GB PCM main memory with two
channels; each channel has two DIMMs and each DIMM
has eight chips and 16 banks. In general, the read queue
is given a higher priority than the write queue. However,
to avoid starvation, when the write queue exceeds 80% of
capacity, writes are serviced ahead of reads. For write energy
evaluation, we scaled the write energy reported from an MLC
PCM prototype at the 90nm process node [4, 34]. All studied
schemes are implemented on top of differential write [37].
We used a ‘single’ RESET and multiple SET iteration-based
programming strategy [5] to increase programming accuracy
in our evaluation!. If the cell value does change and requires
a write, it consumes the RESET energy of about 36pJ. Then
depending on the cell value, SET operations may ensue to
change its resistance requiring between 20pJ and 547pJ.

The write disturbance error rates (DER) of MLC PCM
states when the adjacent cell is being written (modeled by the
RESET operation) are also extracted from the literature [16].
Thus, an idle cell in the minimum resistance state is assumed
to be error free as the high heat of the RESET process
will not increase its resistance. Note that the lowest energy
states, S1 and S2, are the highest and lowest resistance states,
respectively. RESET places the cell in the highest resistance
state (S1) and a short high write current can place the cell in
the lowest resistance state (S2) (immune to write disturbance),
similar to SLC PCM. States S3 and S4 require many more
precise SET operations to achieve a resistance between the
high and low energy state, making them require high write
energy as well as making them susceptible to write disturbance
when idle. All schemes are compatible with the standard
‘Verify-n-Restore’ approach [8] to correct disturbance errors
that may have occurred. Detailed simulation parameters are
recorded in Table II.

To evaluate endurance, we counts the average number of
updated cells per write request since fewer RESET operations
leads to higher cell endurance. To evaluate write disturbance,
we count the number of idle cells disturbed by neighboring
cells that need to be updated in the write request. The write
disturbance phenomenon happens during the RESET process
that generates high heat and can potentially disturb adjacent
cells in states S1, S3 and S4 with the probabilities shown in
Table II based on a 20nm technology node [16].

B. Workloads

In order to study the impact of our scheme on write energy
of MLC PCM, we selected memory intensive workloads.
In particular, we include twelve write-intensive benchmarks

! An alternative programming scheme is to use one SET pulse and multiple
RESET pulses [18]. Because of reliability concerns such as resistance drift
and difficulty in controlling the melting process, we selected the ‘one SET -
multiple RESETs’ scheme.

356

Table II: System configuration

CPU 8-core, 4GHz, single-issue

L2 Cache prlvatc.: ZMB,' 8-way
64B line, write-back

0GB 2 channels

MLC PCM 2 DIMMs per channel

. 16 banks per DIMM, 32-entry,

Main Memory
64B line write pausing scheduling
Set Energy [4, 34]|Disturbance Rate [16]

MLC PCM S1: OpJ DER: 12.3%

36pJ RESET S2: 20pJ DER: 0.0%

Energy S3: 307pJ DER: 27.6%
S4: 547p] DER: 15.2%

from SPEC CPU2006 and supplement them with canneal
from PARSEC. We selected only the canneal workload from
PARSEC because most PARSEC benchmarks are computation
intensive and in most cases also have a very small memory
footprint. To be consistent with the SPEC CPU workloads,
canneal was executed in our experiments in single-threaded
mode and with the largest ‘native’ data input that resulted in
a 940MB memory footprint. For SPEC CPU2006, we use the
large ‘reference’ inputs that are designed to stress the system.

VIII. Evaluation

To evaluate the effectiveness of WLC and the restricted
coset coding, we compared the following schemes:

Baseline: This scheme just uses standard differential write
for energy reduction when writing a 512-bit memory
line into MLC PCM.

FlipMin [14]: This scheme uses two symbols (four auxil-
iary bits) per memory line for 16 coset candidates,
generated using the technique in [32], operating on
a 512-bit memory line. Note that this scheme, as
well as the next scheme, FNW, were proposed for
SLC PCM and were adapted in our implementation
for MLC PCM.

[7]: This scheme selects the original data block or
its complement, depending on which one uses less
write energy. A single auxiliary bit is enough to
indicate that a data block is complemented. Thus,
to match the space overhead of FlipMin which
uses two symbols (four auxiliary bits) per 512-bits
memory line, we partition the memory line into
128-bit blocks that can be inverted independently
with FNW.

[16]: This scheme uses a 3-to-4-bit code word map-
ping to remove high energy states. Write disturbance
errors are mitigated by a 20-bit BCH code to correct
two write errors in the write verification process.
To avoid the space overhead of this encoding, it is
applied only to 512-bit memory lines that can be
compressed with FPC+BDI to at most 369 bits. DIN
was originally proposed to reduce write disturbance.

6cosets [34]: This scheme uses six coset candidates to map
any two of the four symbols to the low energy states
S1 and S2. Thus, it also incurs a space overhead
of two auxiliary symbols (four bits) per 512-bit
memory line.

FNW

DIN

COC [20]+4cosets: This scheme uses COC along with
directly applying the four coset candidates shown in
Table I. The encoding is applied at 16-bit or 32-bit
granularity for lines that are compressed to at most
448 bits or 480 bits, respectively.

WLC+4cosets: This scheme uses WLC along with directly

applying the four coset candidates shown in Table I.

It requires a space overhead of one symbol per
memory line to indicate if the memory line is
compressible or not. Unless stated otherwise (in
Section IX), the default WLC+4cosets encoding
granularity is 32-bit blocks.

WLCRC: This scheme, WLC with the restricted coset
encoding, uses the first three coset candidates shown
in Table 1. The default WLCRC granularity is for
16-bit blocks, denoted as WLCRC-16.

Note that for COC+4cosets, WLC+4cosets and WLCRC-16
encoding techniques, when COC and WLC cannot sufficiently
compress the block, the original, uncompressed 512-bit
memory line is written. Because the auxiliary symbol must
only record the compression state, even though it can store
four states, we select only the two lowest energy states for
this purpose. Moreover, since COC and WLC compress more
than 90% of memory lines, we flagged the ‘compressed’ state
with the lowest energy state.

In the following sections, we compare these enumerated
schemes for their write energy, their average number of
updated cells per write request, and their average number
of write disturbance errors per write request for as close to
an ISO-overhead comparison as possible. In general, these
schemes are categorized into two groups. The first group,
including FlipMin, FNW, and 6cosets, augments the encoding
space for an entire memory line to reduce the energy, while the
second group, including DIN, COC+4cosets, WLC+4cosets,
and WLCRC-16, use compression techniques in order to
allow encoding at a finer block granularity to reduce write
energy.

A. Write Energy

Figure 8 compares the write energy for different schemes.

While FNW is superior to FlipMin, in part due to its ability
to operate on a smaller block size, 6cosets performs the
best among the schemes designed to operate on the full
memory line. Interestingly, on average DIN, which operates
on the smallest block size, performs close to 6cosets, but
its effectiveness is much more benchmark dependent. This
is likely due to the varied effectiveness of the FPC+BDI
compression that enables DIN encoding within each particular
workload.

In contrast, word level compression is extremely effective
and consistent in reducing energy. In particular, WLC+4cosets
provides a 46% improvement over the baseline and 32%
improvement over the leading 6cosets approach. Further de-
creasing the block granularity at the expense of the coset flexi-
bility provides a significant additional improvement. WLCRC-
16 reduces the write energy by 10% over WLC+4cosets
and increases the improvement over the baseline to 52%
while providing an overall improvement of 39%, 39%, and
48% versus 6cosets, DIN, and FlipMin, respectively. For
all workloads, including non-intensive memory applications,
WLCRC-16 reduces the write energy on average versus other
schemes. Moreover, Figure 8 shows that, as expected, write
energy grows considerably for intensive workloads, such as
milc, lesl, and sopl, while the effectiveness of WLC and, in
particular, WLCRC-16 scales very well. For the high energy
benchmark wrf where 6cosets is not effective but DIN is
effective, WLC-based schemes are still the best approach.

The effectiveness of the proposed techniques comes from
several factors. First, they employ coset candidates that best
map commonly occurring bit sequences to low energy states
for different types of workloads. Second, WLC+4cosets and
WLCRC achieve a small data block granularity for encoding,
which can more precisely select the best coset candidates
to map symbol encoding. Third, WLC compression can be
applied to more than 91% of the memory lines in these
representative workloads, making coset encoding possible
in a very high percentage of blocks. Fourth, contrary to
compression techniques that significantly change the content
of compressed data blocks even for relatively small changes
in actual data, WLC only compresses a small fraction of
the 64-bit word to create room for the coset auxiliary bits,
retaining much of the temporal locality that makes differential
writes effective. In contrast 6cosets and FlipMin operate at a
large data block granularity (512-bits) since they require a
substantial increase in auxiliary information to operate at a
granularity similar to WLC-based encoding. The additional
auxiliary bits tend to work against the energy saved in the
data block due to the random nature of the encoding. For
example, decreasing the granularity for 6cosets from 512-bits
to 16-bits increases the write energy ratio of the auxiliary
symbols to the data symbols from 0.78% to 12.5%. The
restricted coset method further decreases the number of
auxiliary symbols, making encoding improvements to the
data block more impactful.

In contrast to DIN, which requires 25% compression of
the memory line to accommodate 3-bit to 4-bit expansion,
restricted coset encoding requires only 7.8% compression.
Figure 4 shows that more than 70% of memory lines cannot
be compressed for DIN while 91% of memory lines are

| B Baseline BEFlipMin EFNW EDIN O6cosets OCOC+4cosets OWLC+4cosets OWLCRC-16 |
_ 3.5E+04
8 3.0e+04
= 2.5E+04
= 2.0E+04
] o
S 15E+04 52%
E o l]mlﬂh - i
-
‘T 5.0E+03
= 0.0e400 | I _Eh_-ﬂ]:n-:l]:n

lesl milc wrf sopl zeus lbm gecc Ave. asta mcf cann libq | omne | Ave. | Ave.

High Memory Intensity (HMI)

Low Memory Intensity (LMI) (H+L)MI

Figure 8: Comparison of write energy for various schemes on SPEC CPU2006 and PARSEC inputs.

357

compressible with WLC. Moreover, the compression and
BCH encoding employed by DIN increase symbol flips in
the memory line, limiting the possible energy savings.

The 10% write energy reduction of WLCRC-16 versus
WLC+4cosets is primarily due to the latter’s need to operate
on 32-bit blocks. For WLC+4cosets to operate at 16-bit
granularity would require WLC to reclaim eight bits every 64-
bit words rather than five bits for WLCRC-16. Unfortunately,
the number of compressible memory lines reduces from 91%
to 48% when eight rather than five bits are to be reclaimed
by WLC, making WLCRC-16 much more effective.

While COC+4cosets is somewhat effective in reducing the
write energy for high memory intensity workloads, it tends to
increase the write energy for low memory intensity workloads.
Our analysis of the COC-4cosets encoded memory lines
shows that it uses 16-bit data block granularity for most write
requests. However, since PCM uses differential write to update
only modified bits, it is important to ensure that compressors
not increase the bit entropy of consecutive write requests.
Because COC was not designed to preserve bit entropy, it
often switches between the 28 different compressors, changing
the data bit patterns from the original. In contrast, WLCRC-
16 does not change the bits in the data except in only a few
locations, which allows the differential write to take advantage
of data locality. This is why, on average, WLCRC-16 uses
39% less energy than COC+4cosets.

In summary, novelty of the WLC is that it is a simple
compression mechanism that can, with high probability,
compress memory lines enough to make room for auxiliary
encoding bits, while preserving the bit location/locality of
most of the bits. This is a crucial property for effective
differential writes.

B. Endurance

PCM main memory employs differential write to decrease
the number of written cells primarily to save energy. However,
the reduced numbers of writes also benefits endurance.
Reducing the number of cells that are changed through
intelligent encoding, such as WLC+4cosets and WLCRC-
16, can further improve endurance. Figure 9 shows the
average number of updated cells per write request. It shows
that WLCRC-16 reduces the number of updated cells by
20%, 17%, 16% and 11% versus the baseline, FlipMin,
COC+4cosets and 6¢cosets schemes, respectively. However,
the improvement or degradation in endurance varies highly
for different benchmarks. For some workloads, such as wrf,
zeus, gcc, and sopl, WLCRC-16 not only reduces write energy
but also reduces the average number of updated cells, thus
improving endurance. For other workloads such as lesl, lbm,
mcf, and cann, WLCRC-16 more frequently maps high energy
states to low energy states to reduce write energy but causes

an increase in the number of updated cells compared to other
schemes, thus harming endurance. Therefore, WLCRC-16
makes a trade-off between write energy and the number
of updated cells for this group of workloads. However, on
average WLCRC-16’s endurance is considerably better than
6cosets, COC+4cosets and DIN and is on par with FNW.

C. Write Disturbance

Write disturbance errors occur during the RESET process.
The high heat of RESET (melting the material) can change
the resistance of nearby idle cells that are not part of the
actual write request. Write disturbance is unidirectional, so it
can only decrease the resistance of other cells. Cells with the
minimum resistance (S2) are thus immune to write disturbance.
However, any RESET operation adjacent to a cell in states
S1, S3, or S4 may still incur write disturbance.

Our results shown in Figure 10 indicate that all schemes
on average face write disturbance errors ranging from three to
four every request to write a 512-bit memory line. For more
memory intensive workloads such as les! and milc, the average
number of write disturbance errors across all schemes ranges
between seven and nine. DIN compressed data blocks increase
the number of cells written which increases write disturbance
to be the highest among all the approaches. However, its 20-bit
BCH code offsets this somewhat by correcting two disturbance
errors. WLC+4cosets and WLCRC perform generally well,
averaging around the minimum point for all benchmarks.

Part of the trends observed in Figure 10 is the correlation
between disturbance faults and the number of updated cells per
write operation. When more cells are written, the likelihood
of disturbing adjacent idle cells increases.

Since PCM uses differential writes, a memory line is always
read before it is written. This allows for the detection of write
errors by a "read-after-write" process, thus avoiding silent data
corruption (SDC) due to write disturbance. It also allows for
an iterative verify-and-restore (VnR) process [8] which iterates
until data is correctly written, thus eliminating detected
uncorrectable errors (DUE). Consequently, any available
Chipkill capability can be used for non-write-disturbance
errors. It was shown in [16] that write disturbance errors can
be completely removed if 3-5 iterations of VnR are used.
Moreover, only the cells that are neighbors of the written
cells are involved in each VnR iteration, which limits the
effect on memory bandwidth and avoids resource starvation.
As indicated in [16], minimizing the probability of write
disturbance (which WLCRC does) will improve performance
because of the reduction in the number of VnR iterations.
Finally, we note that although the different schemes differ in
the average number of disturbances per line, the maximum
number of disturbances per line changes very little across
schemes (ranges between 15 and 17).

M Baseline BFlipMin EFNW__ EDIN Oé6cosets OCOC+4cosets OWLC+4cosets OWLCRC-16 |
n — 180
< 3 160
8 g 140
3z T 120
= 100
§ £ g O%
Q 60
SE w
g a 28 4 h-ﬂ:tldz[l:n
I o

les| milc wrf sopl zeus

High Memory Intensity (HMI)

Ave. asta mcf cann libg | omne

Low Memory Intensity (LMI) (H+L)MI

Figure 9: Average number of updated cells per memory line for SPEC CPU2006 and PARSEC inputs.

358

B Baseline BFlipMin BFNW EDIN

O6cosets

OCOC+4cosets OWLC+4cosets OWLCRC-16

=
o

Ave Write
Disturbance Errors
o N £~ ()] [e.]

lesl milc wrf sopl zeus

High Memory Intensity (HMI)

TN (Iem—

ve. asta mcf cann libg | omne | Ave

Low Memory Intensity (LMI) (H+L)MI

Figure 10: Average number of write disturbance errors per memory line for SPEC CPU2006 and PARSEC inputs.

In summary, WLCRC improves write energy while achiev-
ing comparable endurance and write disturbance compared to
the schemes specifically designed to improve these metrics.

D. Multi-objective Optimization

The results in Figures 8 and 9 show that, for some
applications with unbiased patterns, such as les! and [bm,
minimizing the write energy may increase the number of
updated cells and result in degraded endurance. The main
reason is that sometimes the coset candidate that minimizes
energy actually increases the number of cells written into low
energy states to avoid a relatively smaller number of writes
into high energy states. It is possible, however, to select the
encoding cosets based on a function that combines energy and
endurance, thus sacrificing some energy improvement to attain
better endurance. For example, recalling line 5 of Algorlthm 1,
if the difference between cost; »(w') and cost; 3(w') is smaller
than a threshold, 7', then the encoding choice can be made
based on the number of written symbols rather than energy.

We applied this multi-objective scheme to WLCRC-16
and successfully improved the endurance with a negligible
sacrifice in energy saving. For example, when WLCRC-16
with T=1% is applied to lesl and Ibm, the average number
of updated cells is reduced from 153 to 133 and from 55
to 49, respectively, while the write energy increased by less
than 1%. When we applied WLCRC-16 with T=1% to all
benchmarks, the number of updated cells decreased by 19%
(52 to 42) on average, while increasing the write energy
from 6777p] to 6885p]. Relative to the baseline, applying
the multi-objective optimization to WLCRC-16 increases the
endurance improvement from 20% to 35% while resulting in
a nominal degradation of the write energy improvement from
52% to 51.4%, on average.

IX. Sensitivity to Granularity

To better understand the interaction between WLC and
coset encoding, we analyze the impacts of data block
granularity on write energy, the number of updated cells and
write disturbance errors. To clarify the difference of reducing
one coset candidate and restricting the coset configurability,
we also include a 3cosets approach that is as flexible as
4cosets from an encoding perspective but has the same coset
candidates as the restricted coset (C1-C3 from Table I). We
also report separately the energy to write the auxiliary and
the data symbols.

A. Impact of Granularity on Write Energy

Figure 11 shows the write energy when WLC is used
with 4cosets, 3cosets and 3-r-cosets for four data block
granularities. WLCRC-16 (restricted coset with 16-bit block

359

B 4cosets-blk
4cosets-aux

@ 3cosets-blk
M 3cosets-aux WLCRC-aux

11%
DI ID
8 16 32 64

Figure 11: Write energy comparison for four different data block granularities
8, 16, 32, and 64.

O WLCRC-blk

2 2.0E+03
= 0.0E+00

size), achieves the minimum write energy of 6777pJ on
average of all the workloads. This is 10% and 11% lower than
4cosets and 3cosets, respectively, at their minimum energy
point, which is for a data block granularity of 32 bits.

To understand why 4cosets and 3cosets require more energy
for a 16-bit data block than at a 32-bit block size, as well
as more energy than WLCRC at a 16-bit block size, we
examine the percentage of compressed memory lines by each
scheme. Recall that WLCRC-16 uses one global auxiliary bit
per memory line and five auxiliary bits to encode the four
independent blocks of each 64-bit word. Thus, WLCRC-16
requires only six bits of compression per word to be applied
and this allows for 91% memory lines to be encoded. In
contrast, 4cosets and 3cosets at 16-bit granularity force WLC
to provide 8-bits of storage for auxiliary bits in addition to 1
bit for the compressed leading bits, requiring the reclamation
of 9-bits. As a result, the percentage of lines that can be
encoded drops to 48%. Of course, since both 4cosets-32
and 3-coset-32 require five bits to store auxiliary bits in the
reclaimed part, WLC can be applied on 91% of lines. This
advantage to the application of compression outweighs the
encoding advantage of 4cosets-16 and 3cosets-16, respectively,
making 32-bit block granularity the minimum energy point
for those approaches.

Of course WLCRC-32 is less effective than WLCRC-16
because it can be applied to the same number of memory
lines, but has a coarser granularity of encoding that is less
flexible for achieving low-energy states.

To further increase the granularity to an 8-bit data block,
the reclaimed part must grow to include more than eight bits.
Specifically, WLCRC-8 requires seven auxiliary bits to split
the word into seven parts noting that the most-significant
(eighth) byte will need to be compressed away using WLC
to reserve space for the auxiliary bits. When combined with
the restricted auxiliary bit, WLC compresses five symbols
per word for WLCRC-8, which is only possible for 46% of
memory lines. The flexibility of encoding cannot offset the
lost compression effectiveness relative to WLCRC-16.

O WLCRC-blk
WLCRC-aux

W 4cosets-blk @ 3cosets-blk

4cosets-aux [3cosets-aux

G v 60
e 3 NN SN NN
O 45
o)
£z |
s 830 |
(T
Z3 15
g o
> o
8 16 32 64

Figure 12: Comparison of average updated cells per memory line for four
different data block granularities: 8, 16, 32, and 64.

Figure 11 also breaks down the write energy into energy
from the auxiliary part and the data part, independently. Note
that the average data block energy is reported based the
average write energy of data blocks of compressed words +
incompressible memory lines. The auxiliary part reaches a
maximum of 5.5% of the total write energy for WLCRC-16,
which is less than the 7.8% of the space the auxiliary part
requires. The main reason for the low write energy of the
auxiliary part is that the restricted cosets incur less bit changes
in the auxiliary part compared to unrestricted cosets. When
group cosets switch between C1, C2 and C1, C3 (as shown in
Figure I), the coset candidate C1 which is the most frequent
coset, exists in both groups. We allocate the auxiliary bit ‘0’
to the coset candidate C1 that causes the most symbols in the
reclaimed part to remain in the low energy states of S1 or S2.
For 4cosets, we allocate energy states S1, S2, S3 and S4 to
coset candidates C1, C2, C3 and C4. Since coset candidates
C1 and C2 are the two most frequent candidates, it keeps the
auxiliary part in the low energy states, S1 and S2, for the
most of the write requests. 3cosets does not employ C4 (S4)
similarly minimizing the high energy states.

We conclude that the use of WLC to make space for
encoding auxiliary bits in the reclaimed part is effective for
minimizing write energy. Moreover, the selection of WLCRC-
16 is supported as the best trade-off of encoding and block
size granularity to minimize write energy.

B. Impact of Granularity on Endurance

Figure 12 shows the number of updated cells (a metric
of endurance) as data block granularity scales. At 16-bit
granularity, WLCRC reduces the number of updated cells by
8%, on average compared to WLC+4cosets and WLC+3cosets.
In this case, for smaller block granularities (i.e., eight bits)
the restricted coset reduces the number of updated cells. For
example, at 16-bit granularity, the average number of updated
cells in a memory line for WLCRC is 10% less than for
WLC+4cosets and WLC+3cosets, while the auxiliary parts
update roughly the same number of cells. As the data block
granularity increases to 64, all schemes require similar number
of updated cells, which is about 10% fewer than WLCRC-16.

C. Impact of Granularity on Disturbance

Figure 13 shows the average write disturbance errors
for different data block granularities. The average write
disturbance errors is approximately three per memory line.
However, when data block granularity becomes more coarse,
the number of symbol flips decreases, which results in fewer
write disturbance errors. One observation from this figure is

360

B 3cosets-blk
[3cosets-aux

OWLCRC-blk
¥ WLCRC-aux

B 4cosets-blk
4cosets-aux

'"""'V//A [N
16 32

Figure 13: Comparison of the write disturbance errors per memory line for
four different data block granularities: 8, 16, 32, and 64.

NNNN| 7774]

NN

Ave Write
Disturbance Errors

8 64

2 60%
£ o 50%

o [=

> 3 40%

o2

a @ 30%

E o

— 0,

= 2 20%

2 2 10%

c B

w o 0%

& = (36+547)p) | S4 = (36+273)p) | S4 = (36+135)p)| S4 = (36+80)p)
S

= = (36+307)pJ | S3 = (36+152)pJ | S3 = (36+75)p) | S3 = (36+50)p)

Intermedite State Energy

Figure 14: Sensitivity of WLCRC-16 to energy levels.

that the data blocks incur a considerably higher number of
write disturbance errors compared to the auxiliary part for
WLC-based techniques. Of course this is due to the incidence
of 25% bit flips, on average, of the data block. However, the
disturbance errors from the auxiliary bits in the reclaimed
part do not change dramatically across different block sizes,
as the larger reclaimed parts are only applied when WLC is
successful.

X. Sensitivity to Energy Levels

The analysis in this paper is based on the MLC PCM write
energy levels previously reported in the literature [4, 34]
shown in Table II. However, subsequent improvements to
MLC PCM devices along with better iterative programming
approaches may have significantly reduced the energy of
writing to intermediate states. To estimate the effect of these
write energy improvements on the effectiveness of WLCRC-
16, we repeated our experiments with the write energy to
high energy states (i.e., S4 and S3) reduced as reported in
Figure 14, while keeping the energy of S1 and S2 unchanged.
The results show that when the write energy cost of these
high energy states is reduced by more than 6x, WLCRC-16
still reduces the write energy by 32% relative to the baseline.

XI. Conclusion

The goal of this work is to increase the effectiveness of
energy-reduction encoding techniques for PCM by reducing
the encoding granularity. We first show that although reducing
the encoding granularity reduces the write energy of the data
blocks, it considerably increases the auxiliary encoding bits
and consequently the energy to write these bits. We thus
introduce a new encoding that takes into consideration the bit
patterns of workloads to reduce the total PCM write energy.

Specifically, we propose a novel restricted coset encoding
that largely reduces the number of auxiliary bits compared
to known coset encodings while achieving similar write
energy reduction. Furthermore, we introduce a new Word-
Level Compression (WLC) technique that compresses 91%
of the memory lines while reclaiming enough space in the
compressed lines to fit the auxiliary bits. Finally, we design a
new and low hardware overhead architecture, WLCRC, that
integrates WLC and restricted coset encoding to effectively
reduce the write energy in MLC PCM. Hardware synthesis
indicates that WLCRC encoders and decoders incur low area,
latency, and energy overheads.

Our experimental results on real workloads show that
WLCRC at 16-bit block granularity improves the write energy
by about 52% and 39%, on average, compared to the baseline
and the leading write-minimization approach, respectively.
It also improves cell endurance and reliability although no
specific provisions are made during the encoding to optimize
these metrics. In our future work, we plan to extend the
WLCRC encoding to be write-disturbance aware, in addition
to being write-energy aware. In fact, WLCRC is a general
scheme that may be applied to reduce the encoding granularity,
whenever coset encoding is relevant.

XII. Acknowledgements

We thank the anonymous reviewers for their feedback. This
work is supported by CS50 merit pre-doctoral fellowship
award from the university of Pittsburgh.

References

S. J. Ahn, Y. Song, H. Jeong, B. Kim, Y.-S. Kang, D.-H. Ahn, Y. Kwon,
S. W. Nam, G. Jeong, H. Kang et al., “Reliability perspectives for high
density pram manufacturing,” in /JEDM, 2011.

A. R. Alameldeen and D. A. Wood, “Frequent pattern compression:
A significance-based compression scheme for 12 caches,” in Techical
Report, 2004.

S. Balakrishnan and G. S. Sohi, “Exploiting value locality in physical
register files,” in MICRO, 2003.

F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani,
E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. M. A. Calvi
et al., “A bipolar-selected phase change memory featuring multi-level
cell storage,” in IEEE Journal of Solid-State Circuits, 2009.

S. Braga, A. Sanasi, A. Cabrini, and G. Torelli, “Voltage-driven partial-
reset multilevel programming in phase-change memories,” in IEEE
Transactions on Electron Devices, 2010.

A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven
multilevel programming in phase change memories,” in MTDT, 2009.

S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to
improve pram write performance, energy and endurance,” in MICRO,
2009

X. Dong and Y. Xie, “Adams: Adaptive mlc/slc phase-change memory
design for file storage,” in ASP-DAC, 2011.

M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in ACM SIGARCH Computer Architecture News, 2005.

G. D. Forney, “Coset codes. i. introduction and geometrical classifica-
tion,” in IEEE Transactions on Information Theory, 1988.

M. Imani, S. Patil, and T. Rosing, “Low power data-aware stt-ram
based hybrid cache architecture,” in ISQED, 2016.

M. Imani, A. Rahimi, Y. Kim, and T. Rosing, “A low-power hybrid
magnetic cache architecture exploiting narrow-width values,” in NVMSA,
2016.

M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in HPCA, 2017.

A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to
extend the lifetime of memory,” in HPCA, 2013.

A. Jadidi, M. Arjomand, M. K. Tavana, D. R. Kaeli, M. T. Kandemir,
and C. R. Das, “Exploring the potential for collaborative data com-
pression and hard-error tolerance in pcm memories,” in DSN, 2017.

[1]

[2]

[3]
[4]

[5]

[6]
[71

[8]
[9]
[10]
[11]

[12]

[13]
[14]

[15]

361

[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

L. Jiang, Y. Zhang, and J. Yang, “Mitigating write disturbance in
super-dense phase change memories,” in DSN, 2014.

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving
write operations in mlc phase change memory,” in HPCA, 2012.

M. Joshi, W. Zhang, and T. Li, “Mercury: A fast and energy-efficient
multi-level cell based phase change memory system,” in HPCA, 2011.
B. Kim, Y. Song, S. Ahn, Y. Kang, H. Jeong, D. Ahn, S. Nam, G. Jeong,
and C. Chung, “Current status and future prospect of phase change
memory,” in ASICON, 2011.

J. Kim, M. Sullivan, S.-L. Gong, and M. Erez, “Frugal ecc: Efficient and
versatile memory error protection through fine-grained compression,”
in SC, 2015.

K. Kim and S. J. Ahn, “Reliability investigations for manufacturable
high density pram,” in Reliability Physics, 2005.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in ACM SIGARCH
Computer Architecture News, 2009.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” in Journal of Computer, 2002.

T. Nirschl, J. Philipp, T. Happ, G. W. Burr, B. Rajendran, M.-H. Lee,
A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen ef al., “Write strategies
for 2 and 4-bit multi-level phase-change memory,” in I[EDM, 2007.
A. Pantazi, A. Sebastian, N. Papandreou, M. Breitwisch, C. Lam,
H. Pozidis, and E. Eleftheriou, “Multilevel phase change memory
modeling and experimental characterization,” in EPCOS, 2009.

G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in PACT, 2012.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen,
R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung ef al.,
“Phase-change random access memory: A scalable technology,” in IBM
Journal of Research and Development, 2008.

S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-based tree
structure for row hammering mitigation in dram,” in CAL, 2017.

S. M. Seyedzadeh, D. Kline Jr, A. K. Jones, and R. Melhem, “Mitigating
bitline crosstalk noise in dram memories,” in MEMSYS, 2017.

S. M. Seyedzadeh, R. Maddah, A. Jones, and R. Melhem, “Pres:
Pseudo-random encoding scheme to increase the bit flip reduction in
the memory,” in DAC, 2015.

S. M. Seyedzadeh, R. Maddah, A. Jones, and R. Melhem, “Leveraging
ecc to mitigate read disturbance, false reads and write faults in stt-ram,”
in DSN, 2016.

S. M. Seyedzadeh, R. Maddah, D. Kline, A. K. Jones, and R. Melhem,
“Improving bit flip reduction for biased and random data,” in TC, 2002.

N. C. S. Univ, “Freepdk45,” http://www.eda.ncsu.edu/wiki/.

J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie, “Energy-efficient
multi-level cell phase-change memory system with data encoding,” in
ICCD, 2011.

M. Zhang, L. Zhang, L. Jiang, Z. Liu, and F. T. Chong, “Balancing
performance and lifetime of mlc pcm by using a region retention
monitor,” in HPCA, 2017.

W. Zhang and T. Li, “Characterizing and mitigating the impact of
process variations on phase change based memory systems,” in MICRO,
2009.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in
ACM SIGARCH computer architecture news, 2009.

