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Abstract

High utility itemset mining has become an important and critical operation in the Data Mining field. High utility itemset mining
generates more profitable itemsets and the association among these itemsets, to make business decisions and strategies.
Although, high utility is important, it is not the sole measure to decide efficient business strategies such as discount offers. It is very
important to consider the pattern of itemsets based on the frequency as well as utility to predict more profitable itemsets. For
example, in a supermarket or restaurant, beverages like champagne or wine might generate high utility (profit), but also sell less
frequently compared to other beverages like soda or beer. In previous studies, it is observed that people who buy milk, bread, or
diapers from a supermarket, also tend to buy beer or soda. But the items like milk, diapers, beer, or soda generate less utility (profit
value) compared to beverages like champagne or wine. If we combine items like champagne or wine having high utility but less
frequency, with the frequently sold items like milk, diaper, or beer, we can increase the utility of the transaction by providing some
discount offers on champagne or wine. In this paper, we are integrating low-frequency itemsets with high-frequency itemsets, both
having low or high utility, and provide different association rules for this combination of itemsets. In this way, we can generate a
more accurate measure of pattern mining for various business strategies.
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Introduction

Applications of data mining [1] focus on either generating patterns, or prediction of customer behavior, to generate more profit or
decide strategies for the growth of a business. Earlier, market basket analysis focused only on the Frequent ltemset Mining (FIM)
[2-7]. Given a transaction database, FIM [2] is used to determine the frequently occurring items in a transaction database, which is
considered an important factor in making the business strategies. But the FIM [2] has a limitation that it assigns a similar profit, or
weight to all items. For example, consider an electronic retail shop, where, accessories like headphones and chargers are sold
frequently, but have low-profit value. The items like laptops and television sets have high-profit value, but, are sold with low-
frequency. The FIM gives an equal importance to all the accessories, and rejects high profit items like laptops and television sets
due to their low-frequency, which is not ideal for business strategies.

To overcome this limitation, a new approach was discovered known as the High Utility Itemset Mining (HUIM) [8-18]. HUIM [8-18]
considers the scenario, where items can appear more than once in a transaction, and have a different weight, or profit value
assigned for each item. HUIM [8-18] makes it possible to discover the combination of products with high profit, and help retailers or
businesses to build marketing strategies like discount offers to sell these products. Several algorithms like Two Phase [9], EFIM
(Efficient high utility ltemset Mining [10—12]), UP-Growth [13], UP-Growth+(Two phase algorithms) [14], and HUI-Miner [16] are
already developed to generate the high utility itemsets. However, there is a limitation that these algorithms consider only the utility
as a sole measure to generate high utility itemsets. This might result in the generation of itemsets which yield high-profit, but, are
weakly correlated [8—18], or have a low-frequency. A novel approach of the combination of the frequent itemset mining with the high
utility itemset mining can be introduced to generate more accurate patterns, and derive better business strategies. For example, in
supermarkets or restaurants, beverages like champagne, or wine generate high utility, but are sold with less frequency compared to
other beverages like beer, or soda. In the previous studies of association rules mining [2], it is observed that whenever customers
buy itemsets like milk, bread, or diapers, they also tend to buy beer. Based on the association rule mining, we can sell the
combination of low-frequency and high frequency items. Frequently sold items like milk, diapers, or beer which have low utility, can
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be combined with low-frequency items like champagne, or wine, which have high utility. This combination of low-frequency itemset
with high-frequency itemset can generate different association rules, which can be helpful to design effective business strategies.
For example, when any customer purchases high-frequency items like milk, diaper, or beer, various discount offers can be provided
on low-frequency items like champagne, or wine to attract these customers, and hence increase the sales and overall revenue of
the transaction.

This paper focuses on mining the association rules for the combination of low-frequency itemsets having low, or high utility, with the
high-frequency itemsets having low, or high utility. The key contributions to the designed algorithm are listed below.

-

. Evolutionary work is already done on the frequency and utility mining. We refer this work [2-9, 11-18] to generate the different combination of low-frequency
itemsets with the high-frequency itemsets having low, or high utility.

2. In this paper, the traditional measure of association rule mining [2] like Confidence and Support are used to calculate the association between low-frequency
itemsets (low or high utility) and high-frequency itemsets (low or high utility).

3. The experimental results show that the proposed algorithm is able to derive the required association rules to generate more accurate prediction, and business
strategies.

The rest of the paper is organized as follows: the section Related work focuses on related work, and background. The section
Proposed Approach describes the proposed algorithm in detail. The section Experimental Results shows the experimental results,
and the section Conclusions And Future Work concludes the work.

Related work

This section revisits the Association Rule Mining based on the frequency, and high utility itemset mining.

Apriori algorithm

Since the inception of association rules mining, many algorithms have been developed for the association rule and frequent itemset
mining. The Apriori algorithm was first introduced by Agarwal et al. [2] to find the frequent itemsets from a large transaction
database. The key concept behind the Apriori algorithm [2] is to eliminate the itemsets with support value less than the min.
support, subsets of such itemsets are also not frequent itemsets. The support of an itemset never exceeds support of its subsets,

this property is known as Anti-Monotone property. Consider following example of a transaction database with the frequent itemsets
and utility of each item presented in Tables 1 and 2, respectively.

Table 1. Transaction database with frequent items.

https://doi.org/10.1371/journal.pone.0198066.t001
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Table 2. Profit table.
https://doi.org/10.1371/journal.pone.0198066.t002

Association rules mining.

The Apriori algorithm [2] works in multiple phases, where frequent itemsets are determined in each phase from a transaction
database. In the first phase, support value of all items are calculated, and frequent items are discovered based on the support
value larger than or equal to the minimum threshold support. From the Table 1, we can see that the support value of all the items is
as follows: Sup(A) = 5, Sup(B) = 3, Sup(C) = 5, Sup(D) = 3, Sup(E) = 4, Sup(F) = 1, and Sup(G) = 2. If we consider the minimum
support value (min.Support) is 3, we can see that Sup(A), Sup(B), Sup(C), Sup(D), and Sup(E) = min.Support, and hence, the items
A, B, C, D, and E can be considered as the frequent itemsets. In the subsequent phases, individual items are joined together to
generate the candidate itemsets, which have the minimum support. Once all the candidate itemsets are generated having support
value greater than or equal to min.Support, we can determine the association rules for these candidate itemsets, based on the
confidence measure. The candidate itemsets are generated by joining items in the same transaction. The confidence measure is
used to generate the association rule for the candidate itemsets. The confidence measure takes into account the support value of
final itemset, and the support value of the itemset from which the final itemset is derived in the same transaction, also known as an
underlying itemset. The confidence measure is defined as the conditional probability of the support value of the final itemset to an
underlying itemset. It can also be defined as, the support value of the final itemset divided by the support value of an underlying
itemset. If the confidence value of a given association rule is greater than or equal to the min.Confidence, that association rule can
be used for identifying the frequent itemsets. From the transaction database in Table 1, the candidate itemsets (A,C), (B,C), (B,E),
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(C,D), (C,E), and (B,C,E) can be generated with the support value larger than or equal to 3. We can generate the association rules
like C — (C, E), or B— (B, C) based on the support, and confidence values. Traditional association rule mining generate a large
number of candidate itemsets for a large transaction database. Since the inception of the Apriori algorithm [2], a number of
algorithms are developed to optimize the Apriori algorithm [2]. The Apriori algorithm [2] requires several database scans for a large
transaction database, and hence, more time to generate the frequent itemsets. Many different tree structures are developed like
FP-tree, and the pattern growth algorithms like FP-Growth [3] etc., to avoid candidate itemset generation. We focus on mining
association rules using the FP-Growth algorithm [3] for our problem.

High utility mining

The Frequent ltemset Mining has an important limitation that it considers each item has a similar utility, or weight value, and gives
equal importance to every item in a transaction. To address this limitation, the Ultility Itemset Mining [8—26] was introduced. The
utility mining considers the case where, every item appears more than once and has some weight, or unit profit value assigned to it.
The itemsets with utility value greater than or equal to some threshold value are generated, and known as the High Utility ltemsets.
Utility of an item and itemset.

The utility of an item jj € T¢ in a transaction database is denoted by u(ij, T¢), and defined as,

uli;, To) = qliy, Te) = pli;)
1)

Similarly, the utility of an itemset X in a transaction is denoted by u(X, T;), and defined as,

wX.T)= > uli,Te)
BCATYCT,
@

Utility of transaction.

The transaction utility of a transaction T is denoted by TU(T,), and defined as,

TU(T) = Y ulX,T.)
XCT,
(3)

The total utility denoted by TU in a database D is defined as,

TU = TU(T.)
r.ed
@

From our earlier example, Table 2 shows the utility value (unit profit) for each item in a transaction database. We can calculate the
utility of each item as follows, the utility of an item Ain Ty is u(A, Ty) = 6 x 2= 10. The utility of itemset (A, C) in T is u((A, C), Ty) =
U(A, Ty) +u(C, Tp) =5x 2+ 1x 6= 16. Similarly, the utility of itemset (A, C) in every transaction can be calculated, and known as
the Utility of itemset in a transaction database, u((A, C) = u((A, C), T4) + u((A, C), To) + u((A, C), Tg) = u(A, T¢) + u(C, T4) + u(A, Ty)
+u(C Ty +u(A T3)+u(C, T3)=5x1+1+5x2+1x6+5x1+1=28

High utility itemset.

An itemset X in a transaction database D is a high utility itemset (HUYI), if its utility is greater than or equal to the user specified
minimum threshold, where minimum threshold is specified as min.util,

HUF — {X|u(X) = min.uil}
(5)

If the min.util = 30, we can calculate the high utility itemsets form transaction database shown in (Tables 1 and 2) as follows, u(B,C)
=30, u(A,C,E) = 31, u(B,C,D) = 34, u(B,C,E) = 31, u(B,D,E) = 36, u(B,C,D,E) = 40,u(A,F) = 30, u(B,F) = 35, u(C,F) = 34, u(D,F) =
31, u(E,F) = 42, u(A,B,F) = 33, u(A,C,F) = 39, u(A,D,F) = 36, u(A,E,F) = 47, u(A,B,C,F) = 41, u(A,B,D,F) = 51, u(A,B,E,F) = 42,
U(A,C,D,F) = 49, u(A,C,E,F) = 40, u(A,D,E,F) = 50, and u(A,B,C,D,E,F) = 56 are high utility itemsets.

Transaction weighted utilization.
The High Utility Mining uses an important property known as transaction weighted utilization, for pruning the search space. The

transaction weighted utilization (TWU) of an itemset is the sum of the transaction utility of all transactions in which the itemset X is
present. The transaction weighted utilization of an itemset X in the database D is denoted by TWU(X), and defined as,

TWU(X) = z TU(T,)
XCT.eD
(6)

An itemset X in a database D is a high transaction weighted utility (HTWUI), if its TWU is greater than or equal to the user specified
minimum threshold, where the minimum threshold TU is multiplied by threshold ratio & as;
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HTWUI — {X|TWU(X) = TU x 6}
m

The transaction utility can be calculated for transactions T = U(A, T1) + U(C, T1) + U(D, T1) =8, To = U(A, To) + U(C, To) + U(E,
To) + U(G, Tp) = 27, similarly, T3 = 55, T4 = 20, and T5 = 11 from the transaction database shown in Tables 1 and 2, respectively.
The transaction weighted utilization (TWU) of itemset (A, C) can be calculated as follows, TWU(A, C) = TU(T1) + TU(T,) + TU(T3) =
90. The transaction weighted utilization of other itemsets can be calculated in a similar manner. The high utility mining uses another
important property known as, an anti-monotone property, to prune the search space used in the Apriori algorithm [2]. For any
itemset, if TWU(X) < min.util, then, X is a low utility itemset including all of its supersets. Many efficient algorithms are developed to
find the high utility itemsets using the same property for pruning the search space. The algorithms such as Two Phase [9], UP-
Growth [13], and UP-Growth+ operate in two phases. In the first phase, these algorithms find the candidate high utility itemsets,
and filter out the low utility itemsets to find the exact high utility itemsets by scanning the transaction database multiple times. More
efficient algorithms are developed recently, which calculates the high utility itemsets in a single phase. The algorithms like HUI-
Miner [16], EFHM [21], and FHM [22] work in a single phase to find the exact high utility itemsets. We calculate the utility of the
itemsets based on the High Frequency, and Low Frequency itemsets generated using the FP-Growth algorithm [3].

Our contributions

Our aim is to design a framework, which generates different association rules for different combination of itemsets. The itemsets
are generated based on the frequency as well as utility, hence, we can get more valuable association rules from these itemsets. We
integrate the concept of Frequency ltemset Mining, and Utility Itemset Mining to generate the four type of itemsets, and eventually
the association rules. We use the FP-Growth algorithm [3] to generate different type of itemsets, since the FP-Growth works in a
single phase, and does not require multiple scan of transaction database. The FP-Growth algorithm [3] can be modified to generate
different type of itemsets, and these itemsets can be used to generate different association rules. The key features of our
contribution include the following major aspects:

1. Initially, we need to derive the 1 - itemsets from the transaction database and derive their frequency, and utility values.

2. After all the 1 — jitemsets are derived from transaction database, we generate k - itemsets by using the FP-tree created for the FP-Growth algorithm [3]. We
classify these itemsets as High Frequency, or Low Frequency itemsets based on the frequency value min_supp of k — itemsets.

3. Once the High Frequency and Low Frequency k-itemsets are generated by using the FP-Growth algorithm [3], we classify these itemsets into four different
type of itemsets based on the utility value min_util of those itemsets. The four type of itemsets are as follows:
a. High Frequency High Utility HFHU itemsets

b. High Frequency Low Ulility HFLU itemsets
c. Low Frequency High Utility LFHU itemsets
d. Low Frequency Low Utility LFLU itemsets

4. After the generation of four type of itemsets, we derive the association rules for the different combination of these itemsets based on the Confidence min_conf
measure.

Whole process is summarized in two phases, in the first phase four different type of itemsets HFHU, HFLU, LFHU, and LFLU can
be generated by using modified FP-Growth algorithm [3]. Fig_1 represents the first phase of the process. In second phase, the
association rules for the combination of high frequency itemsets with the low-frequency itemsets can be generated. Fig 2
represents the second phase of the process.

Fig 1. Phase 1—Proposed method.
https://doi.org/10.1371/journal.pone.0198066.9001
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Fig 2. Phase 2—Proposed method.
https://doi.org/10.1371/journal.pone.0198066.9g002

Proposed combination approach

In this section, we define a method to combine the low-frequency itemsets with the high frequency itemsets [27-29], both having
low, or high utility to generate new association rules.

Problem statement

The frequency and utility are important measures in mining useful information from a transaction database. However, the high utility,
or high frequency can not be the sole measure in mining this important information from a transaction database. The combination of
frequency with utility can be useful to extract more valuable information. Our proposed algorithm combines the low-frequency
itemsets with high-frequency itemsets, both having low, or high utility to derive different association rules. These association rules
can be used by supermarkets, or retail stores to increase sales, and hence the profit from rarely sold items, which may or may not
have high utility values.

Definitions.

Consider the example of Tables 1 and 2, let D = (T4, To, T3,..... T;) be a transaction database, and I = (i, i», i3...in) be a set of all
the items in the database. The transaction T, € D is a subset of / with a distinct identifier TID. For a transaction T, each item is
associated with a positive integer in the utility table known as external utility, and denoted as p(ix, T¢). Also, each itemin a
transaction T is associated with a positive integer, known as internal utility, or quantity utility, and denoted as q(ix, T¢).

Definition 1.
The Frequency Itemset Mining uses an important measure known as the support of an itemset X. The support of an itemset X is
defined as, the frequency of an item or itemset in all transactions (number of times an item or itemset present in all transactions),

divided by the total number of transactions N(D) in the database D, and is denoted as supp(X).

supp( X} = Supp.count(X )/ N(D)
(8)

Definition 2.
The Association Rule Mining (A,B) — C uses an important measure known as the confidence of an itemset (A,B,C) € X. The
Confidence of an itemset X is defined as, the conditional probability of the frequency of a final itemset (A, B, C) derived from an

underlying itemset (A, B), with the frequency of an underlying itemset (A, B) in all transactions, and is denoted as Conf(X).

Conf(X) = Supp.count{ A, B, C')/Supp.count( A, B)
(9)

Definition 3.

The utility of an itemset in a transaction is defined as, the internal utility of an itemset x external utility of an itemset, and is denoted
as follows:

wX.T.)= Y pli)x qli, T.)
ieXnyel,
(10)
Definition 4.

An itemset is known as a High Ultility Itemset, if it has the utility no less than a user specified minimum utility threshold, and is
denoted as min.Util. Otherwise, an itemset is known as low utility itemset.

Mining Association rules for Low Frequency itemsets
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In this section, the proposed algorithm is described in detail to derive the association rule for the low-frequency itemsets in a
transaction database. We use the FP-Growth algorithm [3] to generate the candidate itemsets, find the frequency, utility, and then
generate different association rule for all the candidate itemsets. The FP-Growth algorithm [3] creates a novel tree structure known
as FP-tree to generate the candidate itemsets. The FP-Growth algorithm [3] also calculates the support and confidence values. The
association rules are generated based on the min.Support and min.Confidence, to define the association between different
candidate itemsets. Our proposed method uses the same FP-Growth and FP-free approach to generate different association rule
for the combination of low-frequency, and high frequency itemsets. The utility of candidate itemsets should also be considered to
generate these association rules. The utility of each itemset can be calculated while generating and calculating their support, and
confidence values. The detailed explanation of how to generate different type of itemsets based on the combination of utility, and
frequency is as follows:

Low frequency itemsets.

The key contribution of this algorithm is to generate maximum possible rules to increase the frequency, utility, or both for the low-
frequency as well as the high frequency itemsets. It is necessary to generate different combination of itemsets to find the desired
association rules based on the frequency of itemsets. The FP-Growth algorithm [3] creates the FP-tree structure to generate the
frequent itemsets, and remove the low-frequency itemsets. We create the same FP-tree structure without pruning the low-frequency
itemsets, and use the same FP-tree to generate high frequency as well as low-frequency itemsets. An itemset is considered as a
high frequency itemset (HFy), if its frequency is greater than or equal to min.Support which is denoted as min_Sup i.e minimum
frequency threshold value.

HF} = G © T,|Frequency(Cy) = min_Sup
(1)

An itemset is considered as a low-frequency itemset (LFy), if its frequency is less than min_Sup i.e minimum frequency threshold
value.

LFy = Cp C T, |Freguency(Cy) < min_Sup
(12)

FP-tree.

Since we use the FP-Growth algorithm [3] to generate the candidate itemsets, it is necessary to discuss the FP-tree structure used
for the generation of candidate itemsets. The FP-tree is a novel structure which stores items and their frequencies, and helps to
create the conditional pattern base useful for the generation of candidate itemsets, without scanning the transaction database
multiple time. Original FP-Growth algorithm [3] creates the FP-tree by pruning the low-frequency itemsets. However, for our
purpose, we do not prune the low-frequency itemsets and include them in the FP-tree structure. Thus, the conditional pattern base
for every item contains low-frequency as well as high frequency itemsets. Since we store the support value of every item in FP-tree
structure, this support information can be used to classify the itemsets into High Frequency, or Low Frequency itemsets.

FP-growth.

Construction of a compact FP-tree ensures that subsequent mining can be performed with a rather compact data structure. The FP-
Growth algorithm [3] is used to generate the candidate itemsets by exploring the compact information stored in the FP-tree. The
FP-Growth mining process scans the FP-tree once and generate a conditional pattern base for each item C;jin the transaction
database. The conditional pattern base of each item contains a set of transformed prefix paths having all the items, which share the
same transaction number, and support value as C;. The itemset mining is then recursively performed on the conditional pattern
base of each item C; by constructing a conditional FP-tree. This conditional FP-tree is usually much smaller than original tree, and
is bounded by maximum depth of the FP-tree. Moreover, the itemset mining operation consists of prefix count adjustment, counting
the frequency of item, and concatenation of items to form low-frequency, or high frequency itemset. This is much less costly
compared to candidate itemset generation in Apriori algorithm, thus, the proposed algorithm is efficient.

Calculate utility.

It is necessary to calculate the utility of each candidate itemset generated as above (HF, and LFy) based on the utility value
assigned to every item in the utility table in Table 2. Once the low-frequency and high frequency itemsets are generated using the
FP-tree structure, the utility of each itemset can also be calculated based on the following formula.

Utilitv(Cy) = Z Frequency(i;) = Utilite(i;)
FCCNGST,

(13)

It is necessary to consider the utility value of each item in each transaction of utility table, to calculate the utility of each itemset.
Thus, we create an index structure /, where, utility of every item Utility(Cy) is stored with the corresponding transaction number T.
For each item X c Cy, the corresponding list Trans(X) of all transactions is derived and the common transactions are derived using
AND operation on those lists. Thus, the utility value Utility(Cy) is derived by adding the utility value of every item in the common
transaction. The index structure / help to reduce the multiple scan of the utility table, and we can easily get the utility value of
itemsets from the index structure. If the utility of Cy is greater than or equal to min.Utility, then the candidate itemset Cy is a high
utility itemset, otherwise, it is a low utility itemset. Based on the definition of utility of an itemset, we generate different combination
of the low utility and high utility itemsets with the low-frequency and high frequency itemsets as follows: If the utility of a high
frequency itemset (HFy) is greater than or equal to min_util, then it is considered as the High Frequency High Ultility itemset
(HFHU).

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198066 6/17
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HFHU, = Cr € HFu(Cy) = min_util
(14)

If the utility of a high frequency itemset (HF) is less than min_util, then it is considered as the High Frequency Low Ultility itemset
(HFLUg).

HF LU = Cp € HF|u(Cy) < min_util
(15)

If the utility of a low-frequency itemset (LFy) is greater than or equal to min_util, then it is considered as the Low Frequency High
Utility itemset (LFxHUk).

LFHU, = Cy € LF|u(Cy) = min_util
(16)

If the utility of a low-frequency itemset (LFy) is less than min_util, then it is considered as the Low Frequency Low Utility itemset
(LFxLU).

LF LUy = Cy € LFy|u( Cy) < min_util
an

Pre-large threshold.

Since we use the FP-tree structure to generate low-frequency as well as high frequency itemsets, and there is not any pruning
criteria to reduce the number of itemsets which generate the least utility in the process, we need to define some criteria to eliminate
itemsets which have the least confidence value of the association rules for different combination of itemsets. The concept of pre-
large itemsets [30, 31], which defines a low support threshold, are used to prune itemsets having the least support values. Two pre-
large thresholds are defined, one with the frequency, and another with the utility. The low support threshold for pre-large itemsets
helps to prune the itemsets which have the support value less than the low support threshold, and hence requires less time to
generate the candidate itemsets. Similarly, the low utility threshold for pre-large itemsets helps to prune the itemsets which have the
utility less than the low utility threshold, and hence requires less time to generate the candidate itemsets.

Proposed algorithm.

In this section, the proposed method is described based on the above definitions. Whole pseudo-code is divided into two
algorithms, the Algorithm 1 generates the low-frequency and high frequency itemsets based on the FP-Growth method [3], and
calculate the utility of these itemsets to generate four different type of itemsets. The Algorithm 1 is a modified version of the FP-
Growth [3] algorithm, where the low-frequency itemsets are also considered in the construction of FP-tree structure. The FP-tree
structure is used to generate a conditional base pattern for every item, which further produces all the candidates for high frequency
as well as low-frequency itemsets. Once the candidate itemsets are generated, the utility values are calculated for all the itemsets
to classify them in four type of itemsets. The Algorithm 2 generates different association rules for these four different type of
itemsets generated by the Algorithm 1. The Algorithm 3 provides a basic method to generate different association rules for different
type of itemsets.

Algorithm 1 mining low frequency itemsets

Input:

D: transaction database;

min_util: minimum utility threshold;

min_sup: minimum frequency threshold;

supp: Support value of an item;

conf. confidence value of an association rule;

Output:

HFHU: High Frequency High Utility ltemset;

HFLU: High Frequency Low Utility ltemset;

LFHU: Low Frequency High Utility ltemset;

LFLU: Low Frequency Low Utility itemset;

1: for each Transaction T; € DB do

2: for eachitem Cje T, do
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3/18/2019 Mining Association rules for Low-Frequency itemsets

3: supp(Cj) = count(C)) + +;
4: end for
5: end for

6: Sort T € DB with supp(C;j) in descending order
7:insert_FP_tree([C{|T¢)

8: for each item Cj € DB do

9: generate candidate itemsets Cx = FP_Growth(FP_Tree, C))

10: end for

11: HF = {c € Ck|supp(Ck)= min_sup}: frequent itemset in DB in k scan;
12: LFy = {c € Cy|supp(Ck)< min_sup}: low-frequency itemset in DB in k scan;
13: for each item Cy € T, do

14:  Utility(Cx) = > Frequency(Cy € T;) x Utility(Ck € T¢);

15:  HFHU) = {Cx € HF | Utility(Ck) = min_util};

16:  LFyLUy = {Ck € LFy|Utility(Ck) < min_util};

17:  LFLUg = {Ck € LFy Utility(Cx) = min_util};

18:  HFiLUk = {Cx € HF|Utility(Ck) < min_util};

19: end for

20: Rules k = Algorithm 2 to generate Association rules for 4 types of itemsets;
21: return Rule 1, Rule 2, Rule 3, Rule 4

Algorithm 2 association rules for low frequency itemsets

Input:

D: transaction database;

HFLU: High Frequency Low Utility itemset;

HFHU: High Frequency High Utility itemset;

LFLU: Low Frequency Low Utility itemset;

LFHU: Low Frequency High Utility itemset;

Sup: the minimum support threshold value;

Conf. the minimum confidence threshold;

Output: Association Rules:

Rule 1: LFLU — HFHU,

Rule 2: LFHU — HFHU,

Rule 3: LFHU — HFLU,

Rule 4: LFLU — HFLU,

1: for Cx € DB do

2: generate association rules for 4 types of itemsets with less frequent itemset as below;
3:  Confidence of Cy = Support of Cx-1 € DB + Support of Cy € DB

4:  Rq = Sup(HFxHU) + Sup(LFxHUy)

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198066 8/17
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5: Rule 1 ={Cx € HF(HUx — LFHU | if R1 = min_conf}
6: Ro = Sup(HF(LUK) + Sup(LFxHUk)

7:  Rule 2 ={Cx € HFLUy — LFHUy| if R 2 min_conf}

8: Rz = Sup(HFHUy) + Sup(LFyLUy)

9:  Rule 3 = {Cx € HFyHUx — LF¢LUjy| if R3 = min_conf}:
10: R4 = Sup(HFLU) + Sup(LFLU)

11:  Rule 4 ={Cy € HF(LUy — LFLUy| if R4 2 min_conf}
12: end for

13: return Rule1, Rule2, Rule3, Rule4

Algorithm 3 association rules

Input: ltemset1, Itemset2, min.Confidence;

Output: AssociationRule: ltemset1 — Iltemset2;

1: X « Itemset1

2: Y « ltemset2

3:if X< Ythen

4: Confidence «— Support(X) + Support(Y)

5: if Confidence = min.Confidence then

6: Rule «— Itemset2 — Itemset1
7: endif
8: end if

9: return Rule
Example of combination rules

Following example explains how the proposed algorithm generates four different kind of itemsets from a sample transaction
database. The itemsets and the corresponding utility value of each item in the transaction database is showin in Table 3 as follows:

T Tramaction Utilly of isera
AL .

AC.D

Table 3. Transaction database with profit values.
https://doi.org/10.1371/journal.pone.0198066.t003

Fig_3 shows the FP-tree generated for the sample transaction database. Table 4 shows the candidate set of frequent itemsets with
the support value = min.Support = 0.40 in a transaction database. Table 5 shows the candidate set of low-frequency itemsets with
the support value less than min.Support = 0.40. After these two candidate itemsets are generated, we calculate the utility of these
itemsets to categorize them as High Utility, or Low Ultility as follows:

{Root}

Support: 3
™ Uity (13, 23, 3.5 (A}

[hem [Support] .*

Support: 3 *
Wby {12, 2.3, 34y 1€}

o= n>

Suppert: 2 .

Y Ukt (1:2, 20,33} (B

s e e :

R {F}
utility: {1:0, 2:0, 3:20)

{D} Support: 1
¥ Uty (10, 2:10, 3:0)
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Fig 3. FP-tree for sample transaction database.

https://doi.org/10.1371/journal.pone.0198066.9g003

Table 4. Frequent itemsets (min. support 2 0.40).

https://doi.org/10.1371/journal.pone.0198066.t004

et

Spport

Table 5. Less frequent itemsets (min. support < 0.40).
https://doi.org/10.1371/journal.pone.0198066.t005

Table 6 shows High Frequency High Utility (HFHU) itemsets, i.e. high frequency itemsets having utility = min. Utility = 20. Table 7
shows High Frequency Low Ulility (HFLU) itemsets, i.e. high frequency itemsets having utility < min. Utility = 20. Table 8 gives Low
Frequency High Utility (LFHU) itemsets, i.e. low-frequency itemsets having utility = min. Utility = 20. Table 9 gives Low Frequency
Low Utility (LFLU) itemsets, i.e. low-frequency itemsets having utility < min. Utility = 20.

Remiet Usiliy

Table 6. High frequency high utility (HFHU) itemsets.
https://doi.org/10.1371/journal.pone.0198066.t006

Incsct Unility

Table 7. High frequency low utility (HFLU) itemsets.
https://doi.org/10.1371/journal.pone.0198066.t007

Usility

Table 8. Low frequency high utility (LFHU) itemsets.
https://doi.org/10.1371/journal.pone.0198066.t008

Uity

Table 9. Low Frequency Low Utility (LFLU) itemsets.
https://doi.org/10.1371/journal.pone.0198066.t009

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198066
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Association rules order

Four different type of association rules can be derived for low-frequency itemsets from the algorithm described in the previous
sections. First, we find the (Low Frequency (LF) itemsets) along with their utility. If they have utility value greater than or equal to
min_util value, then they can be classified as Low Frequency High Utility (LFHU) itemsets. If they have utility value less than
min_util value, then they can be classified as Low Frequency Low Utility (LFLU) itemsets. These four type of itemsets can be
plotted on a graph to depict the different set of combinations considered while deriving these association rules, as follows. The X-
axis represents the frequency of itemsets, and Y- axis represents the utility of itemsets. Based on the Fig 4, the first quadrant of the
graph represents the Type 1 Low Frequency Low Ulility (LFLU) itemsets. The second quadrant of the graph represents the Type 2
Low Frequency High Utility (LFHU) itemsets. The third quadrant of the graph represents the Type 3 High Frequency High Ultility
(HFHU) itemsets. And finally, the fourth quadrant of the graph represents the Type 4 Low Frequency Low Ultility (LFLU) itemsets.
The association rules generated for all 4 different itemsets are as follows:

LFHU HFHU

Type 2 Types

Utility

LFLU HFLU

Type 1 Type 4

Frequency

Fig 4. Association rules order.

https://doi.org/10.1371/journal.pone.0198066.9g004

Low Frequency Low Utility — High Frequency High Utility.

Table 10 shows the association rules generated for LFLU — HFHU from example database presented in Tables 1 and 2,
respectively. These type of association rules can generate the maximum utility for the low utility itemsets, or can increase the
frequency of the low-frequency itemsets. If we combine the low-frequency itemset having low utility (LFLU), with the frequently sold
itemset with high utility (HFHU), we can increase the utility of LFLU itemset, and frequency of LFLU itemset. Following list of
suggestions can be provided for the above list of association rules:

Amoistion Ruke | Confidence

Table 10. Association rules for LFLU — HFHU.
https://doi.org/10.1371/journal.pone.0198066.t010

Suggestions:

> The low-frequency (LFLU) itemsets can be grouped together with the high frequency (HFHU) itemsets at the same place in super market, or retail stores to
increase frequency of the low-frequency (LFLU) itemsets.

> Discount offers, like Buy One, Get One Free, can be provided on the low utility itemsets, so that sale of the combination of LFLU and HFHU itemsets can
be increased.

> Discount offers, like 20-30% off, can be provided on the high utility (HFHU) itemsets, so that the frequency of LFLU, and utility of LFLU, or HFHU itemsets
can be increased.

Low Frequency High Utility — High Frequency High Utility.

Table 11 shows the association rules for LFHU — HFHU generated from example database represented in Tables 1 and 2,
respectively. With these type of association rules, we can get the combination of the Low Frequency High Utility (LFHU) itemset
with the High Frequency High utility (HFHU) itemset. If the low-frequency itemsets having high utility (LFHU), are combined with the
frequently sold itemsets having high utility HFHU), the frequency of LFHU itemset, and the utility of LFHU, and HFHU itemsets can
be increased. Following list of suggestions can be provided for the above association rules:

Confldence

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198066
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Table 11. Association rules for LFHU — HFHU.
https://doi.org/10.1371/journal.pone.0198066.t011

Suggestions:

> The low-frequency LFHU itemsets can be grouped together with the high frequency HFHU itemsets at the same place in super market, or retail stores to
increase frequency of LFHU itemsets.

> Discount offers, like 20-30% off, can be provided on the high utility (LFHU, HFHU) itemsets when the combination of (LFHU) and (HFHU) itemsets is
purchased. In this way, it can increase the frequency of (LFHU) itemsets, and the utility of LFHU and HFHU itemsets.

Low Frequency High Utility — High Frequency Low Utility.

Third type of association rule is the combination of the Low Frequency High Utility (LFHU) itemset with the High Frequency Low
utility (HFLU) itemset, generated from example database represented in Tables 1 and 2, respectively. Table 12 represents the
association rule generated for the combination of LFHU — HFLU itemsets. If we combine the low-frequency itemset having high
utility (LFHU), with the frequently sold itemset having low utility (HFLU), following list of suggestions can be provided to increase the
frequency of low-frequency itemsets, and utility of the low utility itemsets.

Associstion Rule | Confidemee

Table 12. Association rules for LFHU — HFLU.

Suggestions:

> The low-frequency itemsets (LFHU) can be grouped together with the high frequency itemsets (HFLU) at the same place in super market, or retail stores.
In this way, we can increase the frequency of low-frequency itemsets.

> Discount offers, like Buy One, Get One Free, can be provided on the low utility itemsets (HFLU), so that the frequency of the combination of LFHU and
HFLU itemsets can be increased. This will help to increase utility of the low utility (HFLU), and frequency of the low-frequency (LFHU) itemsets.

> Discount offers, like 20-30% off, can be provided on the high utility (LFHU) itemsets on the purchase of the combination of HFHU, and LFLU itemsets. In
this way, the frequency of (LFHU) itemsets, and utility of HFLU itemsets can be increased.

Low Frequency Low Utility — High Frequency Low Utility.

Fourth type of association rule is the combination of the Low Frequency Low Ultility (LFLU) itemsets with the High Frequency Low
utility (HFLU) itemsets, generated from example database represented in Tables 1 and 2, respectively. Table 13 shows the
association rule for the combination LFLU — HFLU itemsets. If the low-frequency itemsets having low utility (LFLU) are combined
with the frequently sold itemset having low utility (HFLU), the frequency of the low-frequency itemsets can be increased. Following
list of suggestions can be provided to generate the high frequency, and high utility for the combination of itemsets.

Table 13. Association rules for LFLU — HFLU.
https://doi.org/10.1371/journal.pone.0198066.t013

Suggestions:

> The low-frequency LFLU itemsets can be grouped with the high frequency HFLU itemsets at the same place in the super market, or retail stores. This will
help to increase the frequency of low-frequency itemsets.

> Discount offers, like Buy One, Get One Free, can be provided on the itemsets having the lowest utility among all itemsets, so that the frequency of
combination of LFLU and HFLU itemsets can be increased. This will help to increase the frequency of low-frequency itemsets.

When the process is executed using the sample transaction databases shown in Tables 1 and 3, respectively, a different set of
association rules are generated. Tables 14 and 15 shows the number of association rules generated from sample Databases 1 and
2.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198066
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ursber of Rules

Table 14. Number of rules for sample database 1.

https://doi.org/10.1371/journal.pone.0198066.t1014

ursber of Rules

Table 15. Number of rules for sample database 2.

https://doi.org/10.1371/journal.pone.0198066.t015

Order of rules.

From Eig_4, it can be inferred that, there may be few itemsets which can be easily transformed from LFLU A to HFHU B by simply
adding HFHU itemset to LFLU itemset. Thus, it is necessary to define the order of the association rules, which can be more useful
to define different business strategies based on the requirements. If an association rule can increase the frequency as well as the
utility of the low-frequency itemset, then that association rule will have more priority. Otherwise, the association rule which can only
increase the frequency of low-frequency itemset will have less priority compared to the earlier rule. The total ordering, denoted by
>, is the ordering of the association rules in terms of utility value. The rules with the higher utility have the highest priority, compared
to the rest of the rules. We can denote the order of 4 type of association rules as follows:

LFLU — HFHU = LFHU — HFHU = LFHU — HFLU = LFLU — HFLU

Based on these association rules, different businesses can decide different strategies like discount offers, or group the less
frequently sold items with frequently sold items to increase the sale and eventually profit of the less frequently sold items.

Algorithm analysis

Since the proposed approach is implemented using the FP-Growth algorithm [3] to derive different combination of itemsets, there
are various factors impacting the computational complexity of the proposed method. The proposed method considers the low-
frequency as well as high frequency itemsets, hence, there is no major pruning criteria required in this method. As per the proposed
method, it is necessary to consider all the combination of candidate itemsets in the same transaction to generate four type of
itemsets, and then generate association rule for those itemsets. The computational complexity analysis of the proposed method is
described in detail as follows:

FP-tree creation

The first step in the proposed method is to derive the 1-itemsets from the transaction database, and create the FP-tree. This step
requires a single scan of transaction database. If we assume that, there are m number of transactions and average n items per
transaction in the database, then 1-itemsets and FP-tree creation require O(mn) time. Since we do not prune the low-frequency
items, we consider all the items while creating FP-tree from a transaction database. Hence, the time required is based on the
number of items per transaction, which is O(mn).

Generation of candidate itemsets

Once the FP-tree is created for all items from a transaction database, the next step is to derive conditional pattern base for all
items, and then generate low-frequency as well as high frequency itemsets. The conditional pattern base is created for every item
based on the path from the root of FP-tree. The conditional pattern base also takes into account the maximum support of an item,
and include all the items in the prefix-path of a given item having a similar support value. Thus, the candidate itemset generation
requires repeated scanning of the conditional pattern base, and requires the time as follows:

Cip1 = is‘ﬂpp{(?;_} + Z isupp[ﬁ UG+ Z iﬂxpp(ﬁl., Ci)
i=1

A=freguent j=1 Be=low=freguencyk=1
(18)

Since we consider the low-frequency as well as high frequency itemsets, and the conditional pattern base for every item is scanned
multiple times to generate both type of itemsets, the computational complexity will involve the every path of every item in FP-tree.
The maximum depth of any path is bounded by m for FP-tree, and there can be m maximum scans for all items. Thus, the time
required to generate all candidate itemsets is bounded by complexity O(m2).

Calculate utility of it

After the candidate itemset generation, next step is to calculate the utility value for each itemset, and classify those itemsets as the
low-utility, or high utility itemsets. The utility value for each item in each transaction is stored in an index structure /. This index
structure contains the information regarding the utility value of every item Utility(Cy), and the corresponding transaction number

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198066 13117
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T(Ck). For every item in an itemset, we retrieve the utility index for that item from the index structure, and find the common
transactions and utility value of two or more items in an itemset. This comparison requires some constant amount w for all itemsets
and involves n items, and almost m utility value for each item in an index structure. Hence, the total complexity for calculating the
utility of candidate itemsets and classifying them in four type of itemsets can be given as, O(mnw), which is O(mn).

Generation of association rules

Next phase is to derive the association rules for the different combination of itemsets. The association rules are derived by
comparing the itemsets from four different categories based on the common factor in the two itemsets, and the Confidence

measure min_conf. Suppose there are K itemsets in each type of itemset, then 3-%,i3"F , i comparisons are required to generate
all the association rules. Thus, the total complexity for the proposed method can be expressed as below:

n m m m
Time(AssociationRules) = ZZ C;-ZGZC} = m(n*)K*
=l k=l =1 =l
(19)

otaltime = O{mn) + O(m*) 4+ Olmn) + QXmn°k*) = Olmn*w) = O{mn*)
Totalti O(mn) + O(m*) + O(mn) + O(mn*k%) = O(mn® Of(mn?)
(20)

Experimental results

We perform different experiments to find the association rules for the different combination of itemsets generated using the
proposed method (Mining Association rules for Low Frequency itemsets). These experiments are executed on Intel Core i5 @
3.70GHz, and Windows 7 operating system with 64 GB main memory. The algorithms are implemented in Python 2.7.

Incremental experiments on small datasets

The real world datasets [32] are used for the experiment to generate different association rules. Four different type of itemsets are
generated by the proposed algorithm based on the input datasets. The real world datasets (Chess, Connect, PUMSB, Accidents,
Mushroom, and Retail) proves the authenticity of the proposed algorithm on the real world data. Initially, we perform the experiment
on the small scale datasets. Since we use the FP-Growth algorithm [3] to generate the low-frequency as well as high frequency
itemsets, there is not any pruning criteria involved in the whole process. Thus, the low support and low utility threshold value of pre-
large itemsets [30, 31] can be used to prune certain itemsets, which have the least utility, or frequency for different combination of
itemsets. We also perform these experiments by partitioning the transaction database into incremental value of the number of
transactions, and 10 items per transaction. We iteratively perform the experiment on the datasets having N = 500, 1000, 2000 and
5000 transactions with 10 items per transaction. Since the Apriori algorithm [2] works in multiple phases, and the FP-Growth [3]
works in single scan of transaction database, we need to compare both the implementations to prove the authenticity of the
proposed method. The experimental results shown in Fig_ 5 compare the two experiments, and proves that the FP-Growth [3]
implemenation of the proposed approach is more efficient than Apriori implementation, and provide more valuable association rules
for low-frequency as well high frequency itemsets.

Fig 5. Experimental results on small datasets.

https://doi.org/10.1371/journal.pone.0198066.9005

Incremental experiments on large datasets

We use the same real world datasets [32] to verify the efficiency of the proposed method using the FP-Growth [3], and Apriori
algorithm [2] on the large datasets. The large datasets (Connect, PUMSB, Accidents, and Retail) are used for the experiment. We
perform all the experiments iteratively using the datasets having N = 70,000, 20,000, 30,000 and 50,000 transactions, and 10
itemsets per transaction. The experimental results for the large datasets are shown in Fig_6. Different values of min_sup, min_util

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198066 1417
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and min_conf are used for all the experiments on small as well as large datasets, and the number of association rules are also
recorded for each experiment on each transaction dataset. The overall statistics of all the datasets used in small as well as large-
scale experiment are shown in Table 16. The experimental results for the iterative experiments show different association rules
generated for different combination of itemsets. The association rules for the low-frequency itemsets from a real world data shows
that different type of relations, or information can be extracted from the large volume of data. These association rules can help
different businesses to provide discount offers to increase sale, and eventually profit from the low-frequency items.

Fig 6. Experimental results on large datasets.

https://doi.org/10.1371/journal.pone.0198066.9g006

Table 16. Number of rules for all experiments.

https://doi.org/10.1371/journal.pone.0198066.t016

Conclusion and future work

In this paper, the novel method for mining different association rules for the combination of low-frequency itemsets with the high
frequency itemsets is proposed. Our approach uses different combination of high frequency itemsets (having low or high utility),
with the low-frequency itemsets (having low or high utility). The combination of utility with frequency helps us to derive different
association rules to increase either the utility, frequency, or both for the low-frequency itemsets in a transaction database. An
extensive experiment on the different transaction databases, and the input data proves that these different association rules are
important measure to decide different business strategies. Single phase FP-Growth [3] algorithm is used to generate candidate
itemsets, calculate the frequency, utility, support, and confidence measure to generate the association rules. This approach
generates different combination of the itemsets, and calculate all the required measures for generating association rules. Since the
FP-Growth [3] is used to generate the candidate itemsets based on the support values, we use the index structure for the
calculation of utility values. In future, the efficiency of the algorithm can be improved to calculate the utility itemsets. We intend to
use the approaches descried in the advanced algorithms to generate the high utility itemsets without candidate generation, and
thus reduce the time required to generate our desired association rules.

Supporting information

datasets.

The small datasets for calculating the frequency of itemsets in transaction database contain Accidents, Chess, Connection,
Mushroom, PUSBM, and Retail [32] transaction datasets. There are 500, 1000, 2000, and 5000 transactions per dataset. The small
datasets for calculating the utility of itemsets in a transaction database contain Accidents, Chess, Connection, Mushroom, PUSBM,
and Retail [32] transaction datasets. There are 500, 1000, 2000, and 5000 transactions per dataset. The large datasets for
caluclating the frequency of itemsets in a transaction database contain Accidents, Connection, and PUSBM [32] datasets. There
are 10000, 20000, 30000, and 50000 transactions per dataset. The large datasets for calculating the utility of itemsets in a
transaction database contain Accidents, Connection, and PUSBM [32] transaction datasets. There are 10000, 20000, 30000, and
50000 transactions per dataset.

https://doi.org/10.1371/journal.pone.0198066.s001

(ZIP)
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