IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 5, 2017, accepted December 30, 2017, date of publication January 23, 2018, date of current version March 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2797048

Finding Top-k Dominance on Incomplete
Big Data Using MapReduce Framework

PAYAM EZATPOOR, JUSTIN ZHAN", JIMMY MING-TAI WU, AND CARTER CHIU

Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
Corresponding author: Jimmy Ming-Tai Wu (ming-tai.wu@unlv.edu)
This work was supported in part by the United States Department of Defense under Grant W911NF-17-1-0088 and Grant

WO11NF-16-1-0416, in part by AEOP/REAP programs, in part by the National Science Foundation under Grant 1625677
and Grant 1710716, and in part by the United Healthcare Foundation under Grant UHF1592.

ABSTRACT Incomplete data is one major kind of multi-dimensional dataset that has random-distributed
missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when
it becomes large. Finding top-k dominant values in this type of dataset is a challenging procedure. Some
algorithms are present to enhance this process, but most are efficient only when dealing with small incom-
plete data. One of the algorithms that make the application of top-k dominating (TKD) query possible is
the Bitmap Index Guided (BIG) algorithm. This algorithm greatly improves the performance for incomplete
data, but it is not designed to find top-k dominant values in incomplete big data. Several other algorithms
have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms,
but their performance is also questionable. Algorithms developed previously were among the first attempts
to apply TKD query on incomplete data; however, these algorithms suffered from weak performance. This
paper proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the
aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying
top-k dominance queries on large incomplete datasets. The proposed approach uses the MapReduce parallel
computing approach involving multiple computing nodes. The framework separates the tasks between
several computing nodes to independently and simultaneously work to find the result. This method has
achieved up to two times faster processing time in finding the TKD query result when compared to previously
proposed algorithms.

INDEX TERMS Top-k dominance, incomplete data, bigdata, mapreduce, hadoop, dominance relationship,

query processing.

I. INTRODUCTION

In a given dataset R with multiple dimensions d, an in-depth
analysis may be required to find the most powerful or influen-
tial values throughout the dataset. The most influential values
can also be referred to as the dominant objects over the other
objects present in the data, based on a specific predefined
definition, referred to as dominance definition. A value can
be evaluated as a dominant value based on the dominance def-
inition. Discovering the dominant values in a dataset helps to
fulfill different data mining purposes. Suppose the dataset R
has n objects (= items) from d dimensions that can be imag-
ined as a two-dimensional array with a range of objects and
dimensions. Each item in R, accommodates the correspond-
ing value of (n,d). In the real-life application, a database
of movies with different movie ratings from a range of
users is a reasonable sample of a multi-dimensional dataset.

The values are the ratings for each movie m from user 0 to
n-1 represented for every object m as:

m—1 n—1 d-1
Yi=Q p Y e
i=1 p=0 q=0

Top-k dominance query finds the most powerful values
which dominate other values in the same dimension by using
a predefined scoring function. Top-k is one of the main uncer-
tain queries that returns the top-k objects with the highest
scores according to a scoring function [1]. The dominant val-
ues are distinguished using the dominance definition which
defines when and how a value can be dominant over the other.

Finding the answer for TKD queries can be accomplished
by using different methods and algorithms. While thinking
about finding dominant values in a dataset, the first and

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

7872 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4210-6279
https://orcid.org/0000-0003-3740-2102

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

easiest approach that might come to mind is to compare each
two items in the dataset individually. This naive approach
implies the pair-wise comparison between the values of dif-
ferent objects in the same dimension. In this approach, a com-
parison is required for every two values existing in the dataset.
The observed dominant value in each comparison can be used
to find the final top-k dominant values later. Indicating the
top-k dominant values can be challenging when facing big
data; processing time can become astronomical even if the
computational cost can be ignored. Therefore, this approach
may not be the best way of solving this problem.

Several algorithms have been proposed to apply the
TKD queries with performance more acceptable and efficient
than the naive approach. Based on [2] and [3], applying the
top-k dominance query is possible in the incomplete dataset
using Skyline query processing. The Skyline algorithm sep-
arates the uniform values into different buckets. The buckets
group the dataset by dividing it into chunks that have same
missing-value dimension. The buckets are easier and faster to
process. By having separate top-k dominant values for each
bucket and combining them together, determining the top-k
values of the whole dataset becomes possible. The Upper
Bound Based algorithm is another method which works by
finding top scores using the bit-wise comparison between
values, covered later in the paper [4].

The Bitmap Index Guided algorithm is another approach
proposed by [4] that can greatly enhance the performance
of the TKD query, although, our analysis shows that this
difference is not significant in comparison to other algorithms
like k-Skyband Based or Upper Bound Based. As the size of
data increases over time with big data becoming more com-
mon in this field, it is useful to consider applying the same
logic and algorithms more realistically and prepare them to
face real-world problems with exponentially larger datasets.
Based on the results indicated in [4], the performance of the
BIG algorithm for finding TKD results has been improved by
using tiny subsets of an incomplete multi-dimensional data.
However, the performance of the BIG approach is not clear
in real datasets which are exponentially larger in size.

In all of the aforementioned algorithms, incompleteness
is the nature of the datasets for applying the TKD queries.
The incompleteness in this data is independent, meaning
that both present and missing values in this type of dataset
are not related to each other and there is no way to find
values based on others using any probabilistic approaches.
For incomplete data, neither prior knowledge nor calculation
of data is required. Derivation of values is assured and not
based on probabilities, but in the uncertain data, the missing
values can be found based on experience or prior information.
Also, the probabilistic concept of TKD approach has been
reviewed by [5] for its efficacy on missing data.

The results of top-k dominance algorithms help us to
enhance our ability to obtain information and knowledge
from unprocessed raw data that contain numerous missing
values. The incomplete dataset will soon be the ever-present
data in every system, and finding the top-k dominant values

VOLUME 6, 2018

throughout a dataset helps us to design smart and intelligent
systems such as movie recommenders that have strong, accu-
rate, efficient, and real-time recommendations.

This paper explains an attempt to enhance the performance
of the Bitmap Index Guided algorithm while dealing with
large datasets by getting help from not only one machine,
but having multiple processing machines working simultane-
ously to find the TKD query result in a fast and accurate way.
Using single computing nodes, even with powerful comput-
ing components, is still not enough for processing the large
real-time data, and the process duration makes those systems
completely unresponsive. The machine power resources are
not always able to accommodate the algorithm’s metadata and
temporary files. In those cases, limited processing power and
memory capabilities become a significant difficulty. Ideally,
the MapReduce framework is one productive method this
paper tries to focus on in implementing a new enhanced
algorithm that can efficiently apply TKD queries in a faster
way by using multiple processing machines working simul-
taneously to find the TKD query results.

To our knowledge, this paper is one of the first works of
considering big data in the area of finding the top-k domi-
nance values. Applying the MapReduce framework on this
subject is an innovative approach which guarantees enhanced
performance. This work also has several different aspects
of innovation in comparison to previous works which are
focused on uncertain data or complete data. Efforts in this
context are not only focused on incomplete data, but also
massive, incomplete Big Data. Our work provides new ways
of thinking about a specific usage area that has not been
considered thoroughly so far.

The rest of this paper is organized by describing related
work in the different areas of top-k and top-k Domi-
nance, Incomplete Data, Bitmap Indexing, and MapReduce
in Section II. Preliminaries and the problem statement are
presented in Section III. A complete overview of the Bitmap
Index Guided (BIG) algorithm and the related modifications
have been provided in Section I'V. Also, in Section IV, other
currently available algorithms for applying TKD queries have
been considered such as Skyband Algorithms and Upper
Bound Based Algorithm, as well as the Bitmap Index Guided
algorithm and its details. Thorough consideration of the
related algorithms leads to the reveal of our proposed MapRe-
duce Enhance Bitmap Index Guided Algorithm (MRBIG)
which uses the MapReduce framework as the infrastructure
for applying the TKD query that has been described in
Section V. Further experiments and analysis of the efficiency
of the algorithm, in addition to analysis of the results, have
been provided in Section VI. Finally, conclusions and future
work ideas are given in Section VII to provide some notions
and possibilities for future research.

Il. RELATED WORK

In this section, the related works about finding top-k dom-
inance, incomplete data, bitmap indexing, and MapReduce
is provided. First, an overview of the previous works for

7873

IEEE Access

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

applying top-k dominating (TKD) queries will be provided.
Then we proceed by explaining related works about incom-
plete data. Next, we consider the bitmap indexing related
works, which help us to distinguish different approaches and
compare to our work. Finally we explore applications of
MapReduce in the field.

A. TOP-k DOMINANCE
TKD query finds the best values in a dataset based on
a pre-defined goodness criterion in each use case. Domi-
nance indicates that at least one attribute or value makes
an object better than the object it dominates. The domi-
nance admittance is based on a predefined definition or rela-
tionship which reviews the best dominance relationship in
terms of handling constraints of the system. In the approach
described in [6], budget constrained optimization query
helps to increase the profitability of products. Furthermore,
Yiu and Mamoulis [7] reviewed the TKD queries on multi-
dimensional datasets. They propose ITD, an enhanced algo-
rithm applied to indexed multi-dimensional datasets without
using Skyline-based algorithms. Furthermore, they also pro-
posed the LCG algorithm that computes upper bound scores
using a tree structure, giving a relaxed version of the top-k
dominating query. Reference [8] suggests a new algorithm
that refines the object accesses throughout top-k processing.
Lian and Chen [9] consider Probabilistic Top-k Dominating
(PTD) query in uncertain data. Reference [10] works on
uncertain data by applying probabilistic top-k queries by
assigning a probability threshold. Their approach reduces
the PTD search space by pruning the improbable values
in the uncertain dataset. It finds the PTD query for values
that dynamically dominate all possible values in the dataset.
Han et al. [11] work on TKD queries on massive data, accom-
plished by sorting and listing values and making the process
faster than other methods. Their proposed TDEP algorithm
sorts and prunes the data with specifically selected objects,
which helps to make multi-criteria decisions for the data.
Multi-dimensional databases are primarily used in
applying the top-k dominating queries. Reference [12] study
processing top-k dominating queries over dynamic attribute
vectors where finding the distances depends on the defined
metrics between objects. Their algorithms benefit from the
applied metric space to solve the TKD query. Results of
their work show that out of several reviewed approaches
such as SBA and ABA, the pruning-based algorithms show
the best performance. References [4] and [13] follow the
combination of top-k and Skyline queries that led to top-k
dominating query, and [13] process the more complex sit-
uations. Reference [14] provides the work on Skyline in
Crowd-Enabled Databases with consideration of incomplete
datasets. Their proposed query, continuous top-k dominating
query (cTKDQ), can continuously generate answers to a
query even after changes in the data. Reference [15] applies
the top-k query on massive data without considering the
Skyline queries which distinguishes it from top-k dominance
queries, but establishes a relation due to the TKAP model

7874

which uses adaptive pruning processes on massive datasets
to enhance performance. Reference [16] also follows the
same structure as [15], but applied to monitoring purposes for
tracking top-k queries. Also, [17] addresses the concurrency
problems while applying TKD queries based on a service
selection scheme to apply TKDs based on specific requests.

Papadias et al. [3] uses Skyline Computation to find domi-
nated values. First, they introduce the branch-and-bound sky-
line (BBS) algorithm that accesses the skyline points using
an R-tree and Nearest-Neighbor search, and then implements
the TKD queries. Furthermore, top-k dominance has been
further considered in [18], in which the top-k Dominance
Range Query (TkDR) operator helps to find the most inter-
esting objects in any uncertain datasets by taking advantage
of probabilistic skyline queries, which try to enhance the
TkDR performance of uncertain datasets.

Further details and definitions have been provided in [1]
to give a better understanding of top-k and Skyline queries
based on uncertain data. The presented concepts in [1] are
helpful for grasping the underlying concepts of this paper.
The mentioned efforts in this subsection provide different
approaches for dealing with top-k dominating queries, and
each may have different implementation processes. They con-
sider the complete, incomplete, probabilistic and uncertain
data and query types, with several performance outcomes.
Our MRBIG approach adds a new and improved method for
evaluating top-k dominating queries on a massive scale by
improving the performance.

B. INCOMPLETE DATA

The main characteristic of incomplete data is the presence of
missing values in its dimensions. Khalefa et al. [2] propose
TKD query processing using the ISkyline algorithm that is
especially suitable for incomplete data. Haghani ez al. [19]
study incomplete unsynchronized data streams and try to
address the issue of continuously monitoring top-k queries
through their efficient pruning approach. Soliman et al. [20]
provides a probabilistic model and express types of ranking
queries to apply the TKD query.

Razniewski and Nutt [21] assure the data integrity
of query answers while dealing with incomplete data.
Reference [22] considers the clustering of incomplete
datasets in high-dimensional big data and improves perfor-
mance for clustering. This approach also reduces the dimen-
sions of the dataset using a hierarchical clustering structure.
Reference [14] uses incomplete datasets and proposes an
approach to overcome current defects while applying sky-
line queries, enhancing its effectiveness in crowd-enabled
databases.

The incomplete data requires different processing meth-
ods than other types of data such as complete, probabilis-
tic, or uncertain data. One must solve issues like the presence
of missing values and how to manage the value absence with-
out wasting available computing resources, and this requires
innovative methods. The missing values in an incomplete
structure require complex methods of computation which

VOLUME 6, 2018

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

distinguish them from complete datasets [23]-[25]. This
incompleteness can mean differences in approaches from
processing information in a database to conducting rela-
tional operations [23], or searching and mining incomplete
data [24]. Some works provide language to handle incom-
pleteness and study algebraic methods to map them to com-
pleted datasets [25], [26]. Finding top-k dominance and
relating it to the incomplete data is a major point that can
differentiate the MRBIG approach from the previously men-
tioned works. This paper addresses further considerations in
this field by considering big data.

C. BITMAP INDEXING

Bitmap Indexing is a way to ease the processing of non-
uniform data. By using the bitmap indexing approach,
the results discovery will be efficient and easier to handle in
most cases. The bitwise operations in the Bitmap Indexing
generate data patterns which are simpler for a machine to
use and process, but in some cases might make the process
over complicated. Big Data is one of the environments where
bitmap indexing can be either useful or dangerous. Bitmap
indexing can become an additional load for the system while
dealing with multi-attribute data. Creating a bitmap index
for a particular algorithm can be as complex as the algo-
rithm itself in some cases. Therefore, compression of bitmap
indexes has also emerged as a useful tool to make the bitmap
indexes simpler to navigate and process.

Bitmap indexing compression speeds up the processes and
increases the efficiency of the algorithms. The effects of com-
pression on multi-component and multi-level compressed
bitmap indexes has been considered in [27]. There are sev-
eral methods for compressing bitmap indexes, such as BBC,
CONCISE, and WAH methods that [28] has considered thor-
oughly and reviewed in the context of Big Data. For instance,
to make the compression more stable, [29] has proposed their
word-aligned hybrid code (WAH) as a compressing method
for bitmap indexes that leads to improved performance. Each
method has different CPU and GPU runtimes as well as
varying segmentation, chunking, etc., configuration charac-
teristics that are utilized for various use cases [28].

Miao et al. [4], review the TKD query on incomplete
data as one of the first attempts to solve this issue using
Bitmap Index Guided (BIG) algorithm. They use the Bitmap
Indexing as the infrastructure for their algorithm and to per-
form TKD queries on incomplete datasets. After conduct-
ing compression on the bitmap indexing, they propose the
IBIG algorithm, which uses an improved version of the
bitmap index tables. There is no significant difference in
the performance between the BIG and IBIG algorithms.

D. MapReduce

The MapReduce framework has been used to greatly reduce
the runtime of parallelizable algorithms on big data by way
of distributing the workload to run simultaneously on mul-
tiple machines. Recent significant research has been done
in the area of developing algorithms for use in MapReduce.

VOLUME 6, 2018

Manogaran and Lopez [30] propose a MapReduce disease
surveillance system for analyzing correlation between cli-
mate data and Dengue fever transmission in real time.
Kamal er. al. [31] suggest a k-nearest neighbor classifier
for imbalance data reduction by employing MapReduce,
applying the method to a big DNA dataset with 90 million
base pairs. In a different paper, Kamal et. al. [32] apply
MapReduce to de Bruijn graphs to more efficiently and accu-
rately perform metagenomic gene classification. Research in
improving the MapReduce framework and its encompassing
Apache Hadoop architecture for use in big data has also been
conducted; Matallah et. al. [33] propose enhancements to the
storage of metadata in the Hadoop Distributed File System
for improved scalability, demonstrating the continuing value
of MapReduce in modern applications.

Ill. PROBLEM STATEMENT
In this section, we address the issue of finding top-k dominant
values and illustrate the details of implementation of the
MRBIG algorithm. TKD query on incomplete data starts with
an incomplete dataset R with n dimensions and m items.
Dimensions are indicated as

>4 @)
i=1

By using the pairwise comparison method, the objective
is to find the items that are dominant over the other values
in the dataset. If item m; dominates over my, it is denoted
as my > my. Consider an item m; having four dimensions,
the depiction of which is provided below:

my = (di,dy,d3,dy) =(2,—,1,0)

Each missing value is represented as a dash (-). We define a
dominance definition which let us decide which value(s) can
be dominant based on this definition. For instance, consider
the following theorem which defines our dominance defini-
tion. The definition remains primarily the same throughout
this context.

Dominance Definition: Given the two items m1 and mjy,
my dominates over my if Yd the values in the dimensions
of my are larger than the values in the dimensions of my,
excluding the missing values for all dimensions. In other
words, the condition for being dominant is as follows:

V mi[¥di] and my[Vd;] - mi[Vd;] > my[¥d;] 3)

The domination of my over my is denoted as my > my while
holding the above condition.

In the dominance definition, the basis of dominance is
based on the larger value between two corresponding dimen-
sions. In other words, the greater value is a better value based
on the dominance definition. Dominance definitions define
the strength of a value in a dataset and are a vital part of decid-
ing what values are considered as dominant in any particular
usage. Going back to the sample item m, by comparing
m; = (2, —, 1,0) and item ms = (—, —, 3, 2) as an example,

7875

IEEE Access

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

the dominance is given to ms[d3] = 3 in comparison to
mi[d3] = 1. Based on the Dominance Definition, item ms
dominates ms due to the larger value it has. Missing values
are not considered because they are not making any changes
to the result. For example, users that have not submitted any
rating for item ms cannot be a part of TKD query processing
for item ms.

IV. TKD QUERY ON INCOMPLETE DATA

In this section, we review the procedure to apply the TKD
query to incomplete data as well as the problem statement for
finding the top-k dominant values. Various algorithms have
been proposed to handle Top-k dominance. Some of these
algorithms handle incomplete data, for which an overview is
provided later. Further down in the paper, the structure and
functionality of the Bitmap Index Guided algorithm (BIG)
will be considered.

A. SKYBAND BASED ALGORITHMS

In order to apply TKD query to a dataset, the easiest approach
that first comes to mind is to compare the values of the whole
dataset by doing a pairwise comparison. This method can be
helpful for small datasets, but following this approach for
larger datasets causes poor performance and potentially total
failure because of the high volume of resource-exhaustive
comparisons. There are many flaws to this approach. The
pairwise comparisons require a prohibitively long runtime to
examine every single value in the dataset and massive storage
to keep track of the progress. The inefficiency gets worse
while dealing with the larger datasets that comprise big data.

To make the process of finding top-k dominant values
practical and efficient, we need to have more sophisticated
algorithms. One subset of algorithms designed for this pur-
pose are the Skyband Based algorithms [34], which have
been a valid solution for incomplete data. Extended Skyband
Based [4] and Expired Skyline algorithms [35] are among the
methods that utilize the same concept.

These processes uses normalization methods by catego-
rizing the data into different parts based on their missing
values. Each item in the dataset redirects to its corresponding
bucket based on the pattern in their missing values. Each
bucket contains similar items and their values. For instance,
(-, 2, 4, 6) and (-, 8, 3, 2) both go into the same bucket
due to having the missing values in the same dimensions.
Following the same logic, each bucket populates its members,
and eventually, dataset would be completely divided into
different groups.

Among each group, the dominant candidate sets will be
calculated. The candidate sets are created for each bucket.
Candidate sets can have multiple possible values and depict
all of the values in a bucket which can be a dominant value.
By looking at the candidate set which is smaller in size and
contains less data, the TKD query can be applied easier.
By intersecting the whole candidate sets from the buckets,
the TKD query answer can reveal the final top-k result of the
dataset.

7876

TABLE 1. Sample incomplete dataset.

di | dy | ds | dy di | dy | ds | dy
mq — 1 2 — me — — — 3
mao 1 — 3 2 mry 1 1 — —
ms 3 1 - - msg - 3 2 -
my | — | — | — 1 my 2 — 2 2
ms — 2 1 — mio 2 — —

To clarify the concept, take Table 1 as an example incom-
plete dataset. As can be seen in Table 2, mj,ms5 and mg have
been bucketed into b; since they have the same missing-
data dimensions. Starting from the second dimension, can
be seen that mg > ms on both dimensions d> and d3 as
well as the ms > m; on the dimension d>. The dominance
on the dimension d3 is not strictly distinguishable as both
values are the same, further processing passes to next steps
and comparison to all candidate sets from the whole dataset.
The candidate set (S.) can be formed as illustrated by Table 3.

The Skyband bucketing method cannot always be efficient.
The worst case scenario to this approach is when the size of
Sc equals the size of the dataset. In Table 3, every bucket
has more than one candidate, and the worst occurs in by
when all of the values goes into S.. In general, the perfor-
mance of Skyband bucketing method decreases as the size
of S increases.

This approach gives us the ability to eliminate multiple
dimensions at once and constructs a temporary complete
dataset for the Skyband algorithm which helps to process the
remaining values much faster. Observing real datasets with
thousands of items and dimensions can suggest a significant
difference in speeding up the process. However, as shown
above, there are still important imperfections to this approach,
which in some cases can make the entire process inefficient.

After obtaining all of the candidate values from each
bucket, it is possible to make final pair-wise comparisons and
reach the final TKD result. Having the Sy set as the com-
bined version of the candidate sets, the following summation
gives the final input for performing the TKD query based on
the Table 3:

4
Sp =) Sclba] “)
n=1

By obtaining Table 4, final results for the top-k domi-
nant values can be found by comparing the values at each
dimension separately. It can be inferred that this process
involves pairwise comparison, and consequently inherits the
weaknesses of that methods as well.

As mentioned earlier, the performance of Skyband based
algorithms is strongly dependent on the size of Sg. The
size of this set can directly increase the complexity of the
TKD process and affect the performance of the whole system.

By considering Skyband Based algorithms for the
MapReduce framework, using a small Sr can exhaust the
MapReduce cluster with simple calculations that waste run-
time with massive communications cost in synchronizing

VOLUME 6, 2018

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

TABLE 2. Skyband based data bucketing method.

by
— 12— — _b2 —r7
- 13]2]|- [N O R
— 1211 =

TABLE 3. Candidate set (Sc) formation for potential TKD items.

by
—T1i[2] - - _b2 —
— 3|2 - i i N
— 1211 =

TABLE 4. Final candidate set (S¢) for skyband based algorithm.

Sk
312 —-1|—
2 1 — | =
2 — 2 2
1 -1 3 2
— | =1 =13

the computing nodes. Alternatively, by considering a single
machine procedure, a large Sr can overload the machine with
large, inoperable values. It is also possible that Sr equals the
dataset size as mentioned before. This exceptional situation
motivates the use of another algorithm that can address these
issues.

B. UPPER BOUND BASED ALGORITHMS

We described the defects of Skyband algorithms and the
processing overload problems when facing massive data.
Having a new approach that can address the issue can hugely
improve the performance of finding top-k dominance queries.
Another approach for TKD is to use an integrated evaluation
of items that is no longer based on the pair-wise comparison.
UBB is one of the available algorithms to apply TKD queries
on incomplete data. It relies on the upper bound values in a
dataset for retrieving the answer of TKD query [4].

In any given dataset, there is always one criterion to evalu-
ate the values to empower the decision to choose top-k dom-
inant values based on the dominance definition. So for each
dominance definition, the first goal is to define criteria that
work uniquely to distinguish between different values. After
finding the criteria, a unique approach is to score values based
on their power according to dominance definition. A score is a
number that is dedicated to each dataset to evaluate the values
and make the decision of final TKD value possible. Scoring
helps us by resulting in fewer calculations and eliminating
pair-wise comparison.

The UBB algorithm is mainly based on finding the
frequency of the items that our picked value dominates.

VOLUME 6, 2018

b3
31 = - s
il I]-1372
slal_ |- 20 —12]2
b3
by
g?: B 17-1372
A 2| — 122

For complete data, the challenge is to compare each value
with the other ones in the same dimension. For our desired
multi-dimensional incomplete data, as can be seen in the
sample dataset from Table 1, UBB considers each dimen-
sion independently and compares the selected value to other
corresponding values and finds the frequency of values it
dominates.

The Upper Bound Based algorithm alters the dataset to
make it easier to deal with by separating each dimension. This
characteristic can be imagined as looking at the columns of
a two-dimensional array and processing each column sepa-
rately. Dataset R, having m items and d dimensions, contains
d separated columns to process. The dominance definition
can tell which value is dominant over a chosen item and
assigns it to the proper B; set. B; is a list of all values that
i dominates. For example, B, for ms shows all values that
ms dominates on the second dimension. Obviously, the B;
for missing values are not considered as it is the same as
the whole dataset for each dimension. By having B; sets and
obtaining the size of each B;, UBB stores all the sizes into
a single structure. Depending on the dominance definition,
the answer is retrieved based on the scores.

The UBB algorithm suffers from the generic high volume
exhausting pairwise comparison problem. This algorithm
tries to separate the dimensions and then compare the whole
dimension with the value it has. Having massive data requires
atremendous processing procedure to apply the Upper Bound
method on the real world problems.

C. BITMAP INDEX GUIDED ALGORITHM

As reviewed in the previous sections, present methods
enhance the performance in different ways, but they still have
various problems which cause inefficiencies in some cases.
Using the previously discussed naive approach involving
pairwise comparison requires a significant amount of time
and inefficiency, even with smaller data. Using the Skyband
algorithms are also substantially dependent on the size of the
dataset, and having large datasets creates huge buckets of data
so that applying the TKD query on each would still be ineffi-
cient. UBB algorithms cannot be sufficiently efficient as they
require numerous comparisons between values. The Bitmap

7877

IEEE Access

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

TABLE 5. Bitmap index table for the sample dataset.

Items || dp | — |1 | 2|3 | de | —|1|2|3|d3s|—|1]|2|3|da|—|1]2]|3
my — (00| 0O]jO| T |0 |1T]|1]1 2 (00|11} —=]0]0]0]|0
mo 1 /0|1 (1|1f—=10]0]0(0| 3|]0|0]0]|1 2 100|111
ms 3 101001 1 /0|1 (1|1f|—=10]0|0]O0O|L=10]0]|]0|O0
my - |0j0|O0O|O0O|f=]0|0]O0O|0} =|O0O]O0OJO0O]O LT [O0O]1|1]1
ms —(0(0|0]O0O| 2 |00]|1]1 1 (0|1 (1|1} —=]0]0(0]O0
me - 0j0|O0O|O0O|]f=]0|0]O0OJO0O} —=|0]O0J0]O0OYf 3 |0]O0O|0]1
my 1 {0111 1 /0|1 (1|1f|—=10]0|0]O0O|L=10]0]0|O0
mg — | 0]0|0|O0|3|]0|0]0]|1 210011} —=]0]0]0]0
mg 2 (00|11 |f—=100]0O|O0O| 2 |0|0]1]1 2 10011

mio 3|o0jojof1jf2(0(0j111)—-=10(010{0| =10]0]0]0

Indexed Guided is another algorithm that helps us to find the
top-k dominant values by initially generating a bitmap index
table, and then accommodating values based on the same
format. This method includes the bitmap indexing method to
solve the scoring problem and accelerate the process.

First, an overview of the Single Machine algorithm (the
conventional way of using a machine to apply the TKD query
on incomplete big data) will be provided. This is followed
by the proposed MRBIG algorithm, which will be introduced
and discussed at length.

1) SINGLE MACHINE ALGORITHM

For a given dataset R containing numbers of items in different
dimensions, each dimension is represented as a group of
values v. The value v; represents the range of all numbers for
dimension i in R. For example, in Table 1, vi is = (—, 1, 2, 3)
which shows all of the present values in dimension d. In the
provided example in Table 1, all v; values are the same
because all dimensions have the same range of present values.
In real-world problems, the benefit of having v; is to give
the power of creating dynamic bitmap index tables for each
dimension d to save storage and improve performance.

The bitmap index creates separate columns for each value
in v;. Having v; gives a full representation of present numbers
in each dimension among all items. The bitmap index table
would be initialized to 0, and then based on each item we
would modify the values in the table as described below.

o For each missing value, leave the fields in the corre-
sponding row without any changes. So each v; with a
missing value remains as all Os.

o For each number we have in v;, insert number 1 in the
corresponding row, and all of the following right rows.

For a better illustration of what the values would be after
modifying the bitmap, suppose we consider all v; values for
the items in the sample dataset in Table 1. As can be seen,
the items have four different values overall. Missing values
and also the numbers 1, 2 and 3 are among the members of v;
for this dataset. These three are among all of the possible
values in the dimensions of items in R. The generated bitmap
index table can be seen in Table 5.

Using a single computing machine to execute the pro-
cess of Algorithm 1 and creating bitmap index tables for

7878

Algorithm 1 Single Machine(BIG) Pseudo Code

1: Score calculation for item m;

2: Create [P] and [Q]

3: for each item m; do

4 for each column in v; do

5: temp <« the first O in the m;-th row
6: ind < Index(temp)
7
8
9

[P] < append(zj’»’=1 [mj, ind])
[Q] « append(zj'-’:1 [mj, ind+17)

: nonD(m;)
10: PN P*
11: onQE*
12: end for

13: o = P* — Q* — nonD
14: B = count(P*—)

15: score =u + f
16: maxscore[i] < score
17: end for

18: finish when length(maxscore) = n
19: Finding Top-k

20: sort(descending (maxscore))

21: return top-k

incomplete data is not possible while dealing with large
datasets with hundreds of thousands of columns and rows.
The described approach and Algorithm 1 works with best per-
formance when the data does not exceed certain thresholds.
Otherwise, there are massive run-time and storage require-
ments to run the TKD query using the mentioned algorithm.
By keeping the mentioned problems in mind as an incen-
tive, the proposed algorithm is an effort to make the process of
finding top-k dominant values in incomplete data efficient in
both time and storage while dealing with large files. To avoid
redundancy, P and Q sets are defined in later sections.

2) MapReduce MODIFIED ALGORITHM

As the single machine procedure is not capable of dealing
with large datasets, another method is required to bolster
this approach. The single machine procedure (referred as
the BIG algorithm) provides good performance for small

VOLUME 6, 2018

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

TABLE 6. Simple example for the word count problem.

TABLE 7. Mapper result.

Apple | Orange | Mango
Orange | Grapes | Plum
Apple Plum | Mango
Apple | Apple | Plum

Mapperl | Mapper2 | Mapper3 | Mapper4

Apple,1 | Orange,1 | Apple,l1 | Applel
Orange,1 | Grapes,1 | Plum,1 Apple,1
Mango,1 Plum,1 Mango,1 Plum,1

datasets, but as the size of dataset increases, the performance
weakens. Thus, another strategy is necessary to make the
BIG algorithm practical on larger files.

Incomplete big data is ubiquitous, and TKD query process-
ing on this data class needs to be addressed. In this paper,
we propose the MRBIG algorithm, which enables us to apply
TKD queries on incomplete big data using the MapReduce
framework. The complete explanation of our proposed algo-
rithm is detailed below.

V. MRBIG: MapReduce ENHANCED BITMAP

INDEX GUIDED ALGORITHM

The MapReduce framework evolved when data became too
large for machines to process. The processing time of certain
tasks can take months using one machine, and efforts to
significantly increase a single machine’s computer power was
impractical and expensive. As mentioned before, MapReduce
framework has two fundamental functions called Mapper
and Reducer, which are used to separate huge tasks between
multiple nodes to make them faster. Each task, when applied
to the MapReduce framework, is split into different chunks
based on internal patterns and gets distributed between nodes.
After assigning these data fragments to the Mapper, each
piece is processed and the output returned. Later, the Mapper
results are aggregated to calculate the final result using the
Reducer.

In the MapReduce framework, the communication time is
one issue that has to be considered. Synchronizing the nodes
and making them informed of the status of tasks, in addition to
sending and receiving data amongst them, are major factors
that can impact computation cost in MapReduce. There are
vast domains that MapReduce can be applied to enhance
performance. Time inefficiency in top-k dominance is one
major issue that this paper addresses by applying the MapRe-
duce framework. A majority of complex problems such as
text processing systems and data mining technologies can be
handled using the MapReduce framework, making systems
operable in real-time with outputs computed in a minute
fraction of the time needed in a single machine approach.

One generic MapReduce example is counting the fre-
quency of words in large text files (Table 6). The dataset first
divides into different slices, each of which contain a smaller
portion of the original dataset. Each piece of the dataset goes
to a different Mapper, and each Mapper performs the same
process of word counting. In this manner, Mapper generates
a simple line by line output wherein each line contains the
word itself and the number of appearances, as shown in
the Table 7.

VOLUME 6, 2018

TABLE 8. Top: Results after sort-and-shuffle; Bottom: Reducer appended
the results.

Apple,1 | Orange,1 | Mango,1 | Grapes,1 | Plum,1
Apple,1 | Orange,1 | Mango,1 Plum,1
Apple,1 Plum,1
Apple,1

{
| Apple4 | Orange,2 | Mango,2 | Grapes,1 | Plum,3 |

The process starts with the first word of the document
and creates a line that contains the word and the number
of appearances. The output is sorted and cleaned, which is
done by the framework automatically using Sort-and-Shuffle.
Sort-and-Shuffle aligns the words in separate places then
together. The internal function of MapReduce framework
prepares the results for the Reducer (Table 8). After obtaining
the results of Sort-and-Shuffle, the Reducer appends all the
results and combines the Mapper results to assemble the final
result. Table 8 displays the sorted and shuffled result and the
resulting Reducer output.

MapReduce framework does not require a high volume of
processing and the results can be calculated rapidly while
dealing with big files and datasets. There is no signifi-
cant change between using the Hadoop MapReduce frame-
work or traditional single machine code in the small cases.
In such cases, using the single machine can be more effective
by avoiding synchronization and metadata exchange costs.
Not having that overhead make the processes faster in smaller
datasets. However, the single machine procedure is not help-
ful with big datasets as the number of calculations and com-
parisons can and do increase exponentially.

MapReduce framework is a fast procedure for dealing with
big datasets by using simple programming methods, but it
still has some flaws. The amount of time which is required to
synchronize the data in different nodes is a factor to weigh.
Network congestion and delay are among the important fac-
tors which cannot be left unconsidered. Also, recovering from
error is another aspect of MapReduce which can worsen
performance. If a node gets disconnected or some error occurs
that interrupts the node, data recovery or node suspension
for continuing the process can inflate runtimes. However,
MapReduce framework now can handle most of the issues
autonomously.

Based on the characteristics mentioned above,
MapReduce shows promise as a reliable method to imple-
ment our proposed algorithm for finding top-k dominant
values in incomplete big data. Hadoop clustering method
used for implementation and two mathematically proven

7879

IEEE Access

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

lemmas have been provided to evaluate the effectiveness of
the MRBIG algorithm.

To start implementing the MRBIG algorithm, preparation
and pre-formatting of the dataset are vital steps to ensure the
accuracy of the input. Bitmap indexing is another aspect of
implementation that has to be defined. A description of the
construction of the Bitmap Index table has been provided in
Section IV-C1, but in this section, we provide more detailed
explanation to illustrate the concept.

A. BITMAP INDEXING

Dataset R is a multi-dimensional incomplete big dataset that
has m items and d dimensions. The size of the dataset is
millions of times larger than the previous sample datasets
used by the single machine approach. Throughout the dataset
R, a two-dimensional matrix can accommodate rows and
columns in itself. As discussed in Section IV-C1 and shown
in Table 5, v; provides a range of all present values in
dimension i. If each column is considered separately, a range
of all present values in that specific column can be found.
Having the v; helps us to construct the bitmap index table
for the algorithm and gives the power to create dynamic
bitmap index tables based on the dataset values. For instance,
v.[6] = [—, 1,2, 5] shows that in the 6, dimension of data
all present values are missing values and 1, 2, 5. This helps
us to smartly construct the bitmap index table and tells us the
number of columns required for the bitmap index table for
each dimension.

By having v; for each dimension, the Bitmap Index table
can be constructed. By having d as dimensions and v; there
exists the following condition and bitmap index table can be
initialized after this step:

d
S 5)
i=1

To generate the Bitmap Index Table to continue the steps
of the MRBIG algorithm, as can be seen in Table 5, the table
would be initialized to 0. By following the appropriate rules,
the proper values are inserted into the table.

As mentioned earlier, there are two rules to follow for
filling up the values in the Bitmap Index Table. First, for
each missing value, we leave the fields of that row and the
range of columns that spans without any changes. Second,
for each non-missing value in v;, the corresponding field and
the following rightmost fields changes to 1.

By repeating the described process for every object and
dimension, the Bitmap Index Table will be generated. In the
Single Machine Algorithm (Section IV-C1), a bitmap index
table representation has been provided to clarify the concept.
The bitmap index table will be used to run the algorithm and
find the top-k dominant value(s) in any incomplete dataset.

B. MRBIG STRUCTURE
To evaluate the values based on a power which is defined
in the dominance definition, a scoring method is vital to

7880

examine values in a comparable way. Having a scoring
method enables us to compare values by the score they
acquire throughout the dataset. Higher scores are better
according to the dominance definition. The scoring method
has been modified to match and take advantage of the
MapReduce framework structure. The pre-defined scoring
function is embedded into the MRBIG algorithm.

Algorithm 2 MRBIG Algorithm (Having n Items and r
Dimensions)
1: Create [P*] and [Q*]

2: for item m; in {my, mo, ..., m,} do

3 Mapper:

4 Map(split(Z;=1 d;)) // split by dimensions

5 Bitmap(d))

6: for each dimension d; do

7 Create [P;], [Q;] and nonD;

8 for each Vd; in m;-th row do

9: Candidate < index(if (mj, vg) ==0)
10: [P;j] < append(}>_}_, [m;, Candidate])
11: (O] < append(X:l'-’:l [m;, Candidate+1])
12: end for

13: end for
14: Reducer:
15 for) jido

16: [Pi]1N[P*]
17: [Q:1 N [O*]

18: end for

19: A =[Q"]—[P*]

20: for each i in A do

21: ¢ = count (if A; > m;)

22: nonD < A;

23: end for

24: o = |A — nonD|

25: B = count(P* — @)

26: score =o + f

27: maxscore[i] < score

28: finish when length(maxscore) = n
29: end for

30: Finding Top-k
31: sort (descending (MaxScore))
32: return top-k

Based on the inherent characteristics of MapReduce,
the most logical approach would be to calculate the score
for each particular dimension. The mapper component in the
MapReduce calculates the score as it always accommodates
a fixed amount of dimensions.

There are also three internal sets that form the
MRBIG algorithm and helps us to acquire the top-k dominant
values in a dataset for each object m.

VOLUME 6, 2018

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

Mapper

Arbitrary Partition on r

Reducer

Bitwise AND on [P], [Qj]

Y

[P1], [Qu]

> [P2], [Qz]

[P*], [Q*]

Y

[Pz], [Qz]

N4

Input
nXxri
Dataset nxra
n items
X nxrs
r dimensions
n X ry

[P, [Qd]

Y

FIGURE 1. High-level representation of the application of MapReduce in

Algorithm 2 (MRBIG).

One of the important sets that have a significant role in the
algorithm is called [Q]. [Q] is defined as a set of objects which
is not better than m or the values missing excluding m based
on the dominance definition in that particular dimension. The
other set [P] is a subset of [Q] and can be defined as a set
of objects that are strictly worse than object m or missing
from that specific dimension. The last and one of the most
important components of the MRBIG algorithm is the [nonD]
set, as it can be implied from its name, demonstrates the set
of objects that are not dominated by the considered object m.

To provide a better understanding, suppose we have a
movie recommender system that calculates the most popular
movies among users’ ratings. Suppose that the approach is
to calculate the score of each dimension in the Bitmap Index
Table (sample shown in Table 5) by using one Mapper for pro-
cessing each dimension. The Mapper calculates the candidate
sets [Q] and [P] for each processed dimension which is useful
to find the top-rated movies of a particular user. This process
is described in detail in lines 4-13 of Algorithm 2. After
the Mapper calculations, the Reducer intersects the resul-
tant sets from the Mapper, leading to [Q*] and [P*] respec-
tively, as detailed in lines 15-18. The operations performed
by MapReduce are displayed diagrammatically in Figure 1.
Furthermore, the [ronD] calculation takes place after finding
the [Q*] and [P*] values. Finding the [Q*] and [P*] would be
the main objective of each MapReduce process, and the score
calculation of top-k values from one specific dimension takes
place in the remainder of the MRBIG algorithm.

One of the main requirements for applying the TKD query
is to have the score for each item in the dataset. The main
objective of the MRBIG algorithm is to help to make the
score calculation of each item as fast as possible by taking
advantage of MapReduce framework. The scoring method
is a key feature that can affect the algorithms performance
significantly. In this context, the score is a criterion that
shows how powerful an item must be to be a top-k dominant
value. This value is calculated based on how many items
an item is dominating and the ratings for that item. The
highest scores would be considered as the answer to the
TKD query.

Finding the score of each item requires a look at the whole
set of dimensions and finding the [P], [Q], and [rnonD] sets

VOLUME 6, 2018

for each dimension in a Mapper, later appending all of them
to find the final score of the item. Therefore, for each item,
one complete review of all the dimensions is required. Later,
an outer loop is used to follow this procedure and find scores
for each object. The scores are stored in maxscore, which is a
data structure containing the scores of all items. By looking at
the top values, the TKD final answer of the large incomplete
input dataset is found.

To clarify the MRBIG procedure and the whole TKD
process concept so far, we review an example by looking
to find the score of the item my4 based on the Table 5. The
MRBIG algorithm starts to send each dimension to one Map-
per and calculate the [P] and [Q] sets from each dimension.
Z?:o = P; and Z?:o = (Q; are the results from all of
the Mappers which are available for the Reducer to process.
It intersects the sets together and calculates the [P*], exclud-
ing the zero values (@) which primarily help us eliminate any
values that are incomparable, and [Q*]. Then, the Reducer
calculates the o and S values as can be seen in Algorithm 2
and appends the score of my to the maxscore data structure to
its corresponding index that represents m4 score. By repeating
this process for each item, we obtain a complete maxscore
data structure containing all of the scores, and at this point
we sort maxscore to identify the top-k dominant values.

Our approach in the MRBIG algorithm is based on numer-
ous mathematical assumptions. It is worth mentioning the
mathematical proofs for each of the processes take place
during the transition to the MapReduce framework. The
method of candidate set calculations for [P] and [Q] is the
major difference between the Single Machine and MapRe-
duce approaches. MRBIG Algorithm divides the sets to make
the process faster and send each portion to different comput-
ing nodes, while the single machine uses one calculated [P]
and [Q] and proceed to the rest of the algorithm. These two
ways of calculating [P] and [Q] are proven mathematically to
result in the same output by the following lemmas.

d

Lemma 1: Let [P] =) [P] where each [P'] is a binary

=1
string of length n. Let Py, ng, ..., Py be an arbitrary partition-
ing of the set of all [P'], k > 1, and where for any partition j,
k

Ul = LIf[P* 1= () [P"]), then [P] = [P*].

j=1 PmeP;

7881

IEEE Access

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

Proof: By definition, intersection and its bitwise equiva-
lent AND is commutative and associative. Therefore the order
of intersection does not matter, and [P] = [P*] regardless of
partitioning. 0

It is clear that [P*] and [Q*] are sets that have been
aggregated from multiple, variably-sized smaller ones which
come from computing nodes and are ultimately intersected
in a final reducing step. The same naming convention is
followed for sets [P] and [Q] for Single Machine resultant sets
and [P*] and [Q*] for MapReduce resultant sets. Lemma 1
shows a proof that for [P*], based on the definition for [P],
it is possible to claim that the resulting [P*] from MRBIG
algorithm (Algorithm 2) is mathematically equivalent to the
resulting [P] of Single Machine Algorithm (Algorithm 1).

d

Lemma 2: Let [Q] = ﬂ[Qi] — {0} where each [Q'] is

i=1
a binary string of length n and o is the current object. Let
Q1, 02, ..., Ok be an arbitrary partitioning of the set of all
[0, k > 1, and where for any partition j, |j| > 1. If [Q*] =
k

N N [Q") — {0}, then [Q] = [Q"].

j=1 0"eg;
k d
Proof: By Lemma 1, weknow (((0 [Q@"])=I[Q'],
_ j=1 QmeQ; i=1
since each [Q'] is just a binary string. Subtracting o from both
sides gives the desired result. (|

Following the same explanation for [Q] candidate set,
each [Q] which has been calculated by Single Machine
Algorithm is similar to [Q*] candidate set coming from
MRBIG Algorithm. In other words, there are several [Q] sets
that have been calculated in different computing nodes for
MRBIG Algorithm.

By having three computing nodes, each node calculated its
own [Q;] set based on the in-hand fraction of the input file,
with the resulting sets after mapper processing being [Q1],
[O2] and [Q3] respectively. The MRBIG algorithm intersects

3

the sets by [[O'] to arrive at [Q*]. Lemma 2 shows that [Q*]

equals [Q],l v&here [Q*] is the resulting set from the MRBIG
algorithm and [Q] is the resulting set from the Single Machine
approach.

By using Lemma 1 and Lemma 2, it is proven that the
resulting sets are mathematically correct and the approach in
MRBIG algorithm can be genuinely referenced and followed.

VI. EXPERIMENT AND ANALYSIS
This section examines the effectiveness of the BIG and
MRBIG algorithms and a comparison of their performance
using different real and synthetic datasets. The experiment
starts with performance evaluation of Single Machine algo-
rithm and follows with the assessment of the proposed
MRBIG algorithm based on metrics such as CPU time, item
frequency, dimension fluctuations, and incompleteness rate.
The real dataset originates from an authentic user-initiated
source that can help us evaluate the MRBIG performance in a
real-world problem. The MovieLens dataset contains different

7882

TABLE 9. Real MovieLens dataset information.

Name | No. of Users | No. of Movies
100k 1,000 1,700
1M 6,040 3,706
10M 71,000 11,000
20M 138,000 26,000

sizes for testing and analysis purposes. The number of present
values in the dataset is what distinguishes the various real
datasets, since using different sizes give the most detailed
investigation of the MRBIG algorithm’s effectiveness.

The experiments were conducted in computing nodes
equipped with the Intel Xeon E5-2695 v4 @ 2.10GHz CPU
and 32GB assigned RAM, running Linux Ubuntu 16.04 LTS.
For our parallel computing purposes, we have used four nodes
each equipped with the same configurations.

Based on volume, the number of computing clusters can
be easily adjusted. In this context, the number of computing
cluster is believed to be optimal. Having big data requires
the computing nodes to have a significant amount of RAM
available for the algorithm. This will help to be able to
initialize and process the necessary components such as the
bitmap index table.

The MRBIG parallel computing approach runs through
three slave computation nodes in addition to a master node
as a hub point for the others. The single machine code
(Algorithm 1) runs on the master node with the config-
urations as mentioned earlier, and the MRBIG processing
(Algorithm 2) takes place on Apache Spark configured clus-
ters pre-built for Hadoop 2.7.

A. DATA INFORMATION AND PREPARATION

The MovieLens datasets include a range of movies with sub-
mitted ratings from a set of users. This dataset can be used
to build a movie recommender system that can dynamically
evaluate impactful movies. Sizes of the dataset can be seen
in Table 9 in which the numbers depict the frequency of
present values in each dataset. The smallest dataset con-
tains 100k values and the 20M version, which is one of
the largest real datasets, contains over 138, 000 users and
27, 000 movies.

To provide more in-depth analysis of MRBIG perfor-
mance, diverse groups of synthetic datasets have been used.
Generation of the synthetic datasets’ involved various math-
ematical and statistical parameters to thoroughly test the
MRBIG algorithm.

1) EVALUATION AND CREATION

Other than the size of the data, there are several other parame-
ters of data that have been considered for analyzing the algo-
rithms, including mean and standard deviation of the ratings,
incompleteness rate, etc. The artificially generated datasets
have been crafted carefully involving six different manually-
defined parameters to preserve the accuracy of the experi-
ments. These components include the missing rate, average

VOLUME 6, 2018

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

TABLE 10. Artificial dataset information.

No. of Users | No. of Movies || No. of Users | No. of Movies
500 3,500 6,000 500
1,000 3,500 6,000 1,500
2,000 3,500 6,000 2,500
3,000 3,500 6,000 3,500
4,000 3,500 6,000 4,500
5,000 3,500 6,000 5,500
7,000 3,500 6,000 6,500

8,000 3,500

value for inserted numbers, and standard deviation threshold.
Additionally, missing rate standard deviation, the standard
deviation for each dimension which depicts the values dis-
crepancy for each dimension are among the other parameters
for the synthetic data.

Lastly, the standard deviation for the standard devia-
tion for each dimension is the last parameter that assigns
the difference of deviation between different items for
dimensions deviation. For the real datasets, not all of the
mentioned parameters are provided as it is published as a real-
world data and such information is not available. By defin-
ing the parameters mentioned above, we can procure the
most productive information to observe the efficiency of
the MRBIG algorithm and provide a way to elicit the most
accurate experiments.

2) PRE-FORMATTING AND PREPARATION

To make the different datasets uniform and compatible with
our desired input for the experiments, we have developed
a formatting process. As discussed, the real dataset is from
the publicly available MovieLens dataset. Each value in this
dataset has three different characteristics including movie
identification, user identification, and the rating submitted.
A small sample of the raw input is depicted in Figure 2. A for-
matting process needed to empower the experiments accuracy
and making the data suitable for the Hadoop MapReduce
framework. As can be seen in Figure 2, user 101 has submit-
ted four ratings for movies 01, 02, 04, 05, but not any rating
for movie 03. Not having rating submission for movie 03
indicates a missing value and no row exists for this particular
value. After pattern change occurrence, instead of having
multiple lines for each object, one line represents user 101
and the ratings of this user as seen in Figure 2.

Further formatting process involves operations to make the
data compatible with the algorithm such as removing special
characters and separators, readying the data for use by the
MRBIG algorithm.

There are multiple reasons for having a pre-processing
method. Comparing uniform datasets with the same format
to make the data analysis accurate is one the reasons. Not
tracking the spent times for arranging or formatting the
dataset is another reason which helps to provide valid com-
parisons. This process helps us to make implementation of
the algorithm easier and ensure our comparison and analysis

VOLUME 6, 2018

UserID MovielD Rating

101 01 3
101 02 2
101 04 1
101 05 3
236 03 4
236 05 1
87 01 4
512 01 2
01 02 03 04 05
101 3 2 - 1 3
236 - 4 1
87 4 - - - -
512 2 - - - -

FIGURE 2. Sample input formatting conversion for the MRBIG algorithm.
Top: Raw input; Bottom: Processed input.

are logical and correct. The experiments on MRBIG and
BIG algorithm using real data in Table 9 and synthetic data
in Table 10 all follow the same formatting style.

The synthetic data contains different missing rates, and
the experiment has been done using various combinations of
objects in several dimensions. These datasets use a standard
deviation for creating numbers for each object. Each object is
created based on the missing rate, the deviation function and
the pre-defined mean value which has been defined during
the generation of datasets. Synthetic datasets are created to
cover all experimental angles and completely evaluate the
performance of MRBIG.

B. ALGORZITHM DEVELOPMENT AND EVALUATION

The MRBIG algorithm implementation methods can be logi-
cally and fundamentally different based on the needs. Hence,
different results may not indicate consistent approaches for
applying the TKD queries on incomplete data.

Our implementation process goes more in-depth to ana-
lyze the entirety of available information in each dataset.
MRBIG algorithm calculates the final score for every single
object in the dataset. Furthermore, MRBIG algorithm stores
all objects’ score values in a permanent structure which can
be utilized even after the termination of the algorithm. The
final scores are available to retrieve k objects after running the
algorithm. This helps to acquire the TKD application result
faster for later use.

By considering alternative ways of reducing the run-time,
it is also possible to predefine the k value as some objects
which have to be returned by MRBIG as top-k dominant
values by performing some modifications to the algorithm.
The approach that MRBIG follows helps to recall the results
faster for later needs.

Using a predefined k value helps to execute the algorithm
much faster when finding the top-k dominant values, but not
in all cases. Choosing between using either a pre-defined
k value for running the algorithm or implementing the
algorithm using the entire scoring procedure is not clear.
Therefore, there is no perfect answer or approach for using

7883

I E E E ACC@SS P. Ezatpoor et al.:

Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

1682 * 943 6040 * 3706

71567 * 10677 138493 * 26744

1550- 19000~

18000~

ime

i
i

£ 17000~

R
Rur

1450

16000~

1400 15000~

BIG (Min) MRBIG (Min) BIG (Min) MRBIG (Min)
Method Method

Method | 816 (uin) [l MR8IG (an) Method | 816 (vin [l MRS1G (iny

(@) (b)

BIG (Min) MRBIG (Min) BIG (Min) MRBIG (Min)
Method Method

Method | 816 (vin) [l MABIG (Min) Method | &ic vin) [l MReiG vin)

(© (d)

FIGURE 3. Real MovieLens simulation results comparing BIG and MRBIG algorithm in the uniform configured clusters and computing machines described
in Section VI - Black bars shows MRBIG, Grey bars shows BIG. (a) 100k. (b) 1M. (c) 10M. (d) 20M.

which k calculation method. There are, however, several
advantages and disadvantages associated with each method.

By predefining the k, multiple executions of MRBIG
are required for every desired top-k value. In some cases,
the dataset changes often. This method may be helpful as
running the algorithm would be performed intermittently to
find new answers for the TKD query after the data is changed.
On the other hand, if the score calculation covers the whole
dataset like the MRBIG approach, after the initial implemen-
tation of the algorithm, the scores are permanently present
and can be recalled whenever required. This approach would
help enterprise systems to retrieve answers for different
top-k values in an instant just by looking up the scores
and retrieving the appropriate dominant values based on the
top-k results.

As shown in Figure 3, by using the real dataset, the per-
formance of the MRBIG algorithm is dependent on the size
of the dataset. When using small data sets in the MapReduce
framework, the communication cost incurred for synchroniz-
ing nodes and sending and receiving data leads to the slower
run-time for the algorithm. On the contrary, by increasing
the size of the dataset, employing Algorithm 1 exhausts the
resources and make the process exponentially slow while
MRBIG shows a high performance in handling a large flow
of data and speeding up the process.

MRBIG algorithm does not show a sizable difference in
comparison to the Bitmap Index Guided algorithm when
processing smaller sets of synthetic data. The improved per-
formance of MRBIG algorithm has been examined by both
item size and dimension size for the incomplete synthetic
datasets, shown in Figure 4a and Figure 4b. However, as soon
large dataset sizes are considered, the MRBIG performance
becomes more useful and time efficient. Our experiment
shows that this difference can be more than two times faster
in speed.

As can be seen in Algorithm 2, the overall execution of the
algorithm can be understood as two major parts that handle
the process of finding TKD query on incomplete data. The
first part includes operations that take place in the MapRe-
duce clusters. This part includes those calculations that have

7884

Objects Dimensions

Method » MRBIG (Min) & |BIG (Min) Method e MRBIG (Min) & BIG (Min)

@ (b)

FIGURE 4. Artificial data simulation results comparing BIG and MRBIG
algorithm in the uniform configured clusters and computing machines
described in Section VI by testing different parameter combinations.
(a) Objects. (b) Dimensions.

FIGURE 5. Compaing MRBIG and BIG algorithms using different missing
rates.

been transferred to clusters to accelerate the process by dis-
tributing the workload among different computing nodes.

The second part, which has a minimal role throughout
the algorithm, includes those operations which remain in the
single machine procedure. These are not processed by either
Mapper or Reducer, and the calculations are based on the
conventional single-machine method.

The first component of the algorithm is where the effi-
ciency is improved and enhanced. Based on different work-
loads and desired outcomes, the number of clusters can be
adjusted. Adjusting the cluster by increasing or decreas-
ing the number of computing nodes can have different
effects. Depending on the volume of data, having more
compute nodes might increase the runtime and worsen the

VOLUME 6, 2018

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

FIGURE 6. Artificial data simulation results comparing BIG and MRBIG algorithm in the uniform configured clusters and computing machines described

in Section VI - Black bars shows MRBIG, Grey bars shows BIG.

performance. Based on the synthetic data and real datasets in
this context, four nodes was determined to be optimal.

Parallel computing approaches always have considerations
that can affect the results negatively. The network structure is
a vital part of the process. Based on the network status, queues
and congestion, drops in performance are always expected.
As can be observed in Figure 4b and Figure 4b, the MRBIG
algorithm provides stable performance throughout the differ-
ent data sizes.

In the conducted experiments, garbage collection is also
included in the runtime, accounting for about 20 to 25 percent
of the elapsed time. Each segment of data is assigned dynam-
ically to different nodes by controlling the specific number
of dimensions assigned to each mapper. The results of each
mapper, including the [P], [Q] sets for the assigned dimen-
sion(s) would be aggregated (as depicted in Algorithm 2) and
finalized in the reducer. The final steps are mostly performed
on the master node.

The missing rate is another factor that can affect the per-
formance of the MRBIG algorithm. Having a lower incom-
pleteness rate causes a dataset to behave closer to as if it
were complete. The experiments show that varying missing
rates can influence the behavior of the MRBIG algorithm as
well. The range of tested missing value rates varied from 0 to
90 percent as shown in Figure 5. Different sizes of synthetic
data help to get a better insight of the MRBIG algorithm that
has been represented in Figure 5. By keeping the deviation
components to similarly evaluate the performance, multiple
synthetic datasets were generated to help identify the MRBIG
performance in response to differing missing rates.

The first zero percent missing rate represents complete
data. In those datasets, the MRBIG algorithm still goes
through the same procedure although there are no missing
values. MRBIG is not designed specifically to handle com-
plete datasets. Therefore, the performance improvement is
not significant in that case as experiments show. For higher
incompleteness rates that are more suitable for MRBIG eval-
uation, the performance enhances and the runtime decreases.
The notable difference in performance helps the recom-
mender systems retrieve desired answers more efficiently.

After reviewing the performance of MRBIG, it can be
seen that applying TKD query on small incomplete datasets
using MRBIG can result in large variations in performance.
However, as the size of the dataset increases, the performance
of the algorithm becomes more stable, and deviations in the

VOLUME 6, 2018

processing runtime are much less than smaller datasets. For
further evaluating the MRBIG algorithm, various synthetic
datasets were generated as displayed in Table 10. The results
of synthetic incomplete datasets on MRBIG algorithm can
be seen in Figure 6. The synthetic data shows that the perfor-
mance of applying TKD on synthetic data is highly depen-
dent on the size of the dataset. By increasing the number of
dimensions, MRBIG becomes more efficient, and this pattern
is also demonstrated when increasing the number of objects
(or items).

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm to apply top-k domi-
nating queries using MapReduce framework on incomplete
big data. MapReduced Enhanced Bitmap Indexed Guided
algorithm (MRBIG) is the basis of the work that develops
a new way to handle large incomplete data and uses the
MapReduce framework to enable parallel computing to man-
age the problem faster.

Throughout the paper, the single machine algorithm has
been detailed, compared, and contrasted with the MRBIG
algorithm. Based on the experiments, the single machine
algorithm cannot be an optimal way for applying TKD
queries on big files. Not being resource-efficient, process
failure due to resource insufficiency, and having exponential
processing time are among the major defects when it comes
to finding top-k dominant values in massive incomplete data.

MRBIG algorithm is a faster way to process large
incomplete datasets while carefully managing the machine
resources and maintaining time efficiency simultaneously.
The MRBIG algorithm provides excellent performance, and
in most of the cases, it is two or more times faster than the
single machine procedure. The results and experiments have
also been considered in Experiment and Analysis Section to
provide an overview of the efficacy and consistency of the
approach.

BIG and MRBIG are both considered a resulting method
from Skyband based algorithm and Upper Bound Based
algorithms that use their key advantages to design better
algorithms. Skyband based and Upper Bound based algo-
rithms are reviewed in previous sections. Skyband based
algorithms promote a notion of data bucketing to normalize
the data, mimicked in MRBIG with the bitmap indexing
method. Using bitmap indexing helps to deal with big data
to reduce and speed up the pairwise comparison by repre-

7885

IEEE Access

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

senting binary strings for each value in the bitmap index
table.

The contribution from Upper Bound Based algorithms con-
sists of scoring methods, borrowed by MRBIG and BIG algo-
rithm with a scoring evaluation of the fields independently.
Having a scoring method can be considered as continued
work on UBB algorithms. Scores help to retrieve desired
top-k items in a significantly faster manner.

The MapReduce framework employs logical approaches
to handle TKD query processing. The assumptions for those
logical approaches promoted for creating [P*] and [Q*] can
be mathematically proven using lemmas provided in the
paper. Furthermore, having different structural implementa-
tions such as using a predefined top-k value and generating
the proper score disregarding the other items scores can
lead to differing performances of MRBIG. These notion and
modifications can later be addressed to either improve the
performance more or to provide better recommender systems
based on needs.

It is worth mentioning some logical approaches that
can be followed by future works using the same notion
behind MRBIG:

« Partitioning the dataset using the mappers that use spe-
cific chunks of objects for performing TKD. In this case,
we split a range of objects. Then we apply the TKD
query to them. To be clear, this means splitting the data
by rows by taking a particular collection of rows, with
every dimension included.

o Separating the dataset using mappers that split the
dataset by a different range of dimensions. This method
uses specific dimensions from every object and tries to
obtain candidate sets while applying the TKD query.
As seen on Algorithm 2 (MRBIG), it can be said that
the dataset would be separated by different ranges of
columns, which contains some dimensions of all objects,
and the TKD query performed on each of them.

o Separating larger datasets than what we have considered
in this paper, by both objects and dimensions. In other
words, we separate the data by rows and columns and
obtain a specific range limited by objects and dimension
for which we perform the TKD query and return the
candidate sets to the reducer(s).

The analysis for MRBIG performance shows a significant
improvement as described in Section VI. But there are a few
areas that can be addressed to enhance the performance even
more. These areas includes cases where the incomplete data
has an extremely high incompleteness rate that resembles
an empty dataset or low incompleteness rates that resemble
complete datasets. It has been experimentally determined that
having large incomplete data with moderate missing rates can
enjoy stable performance. However, in the two mentioned
cases, the MRBIG algorithm can potentially be altered to
provide better performance.

It is worth mentioning that finding top-k dominance for
incomplete data is a field that has not been fully addressed.
With emerging big data, MRBIG can be utilized well to

7886

design recommender systems and provide an approximately
real-time solution to TKD query processing.

ACKNOWLEDGMENTS

The authors would like to thank the UNLV Howard R. Hughes
College of Engineering, and especially the Department of
Computer Science, for providing the opportunity for this
research. We also give a big thanks to the Big Data Hub -
ILAB for equipment and assistance to make this research
possible.

REFERENCES

[1] Y. Wang, X. Li, X. Li, and Y. Wang, “A survey of queries over uncertain
data,” Knowl. Inf. Syst., vol. 37, no. 3, pp. 485-530, 2013.

[2] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline query
processing for incomplete data,” in Proc. IEEE 24th Int. Conf. Data Eng.,
Washington, DC, USA, Apr. 2008, pp. 556-565.

[3] D. Papadias, G. Fu, and B. Seeger, “Progressive skyline computation in

database systems,” ACM Trans. Database Syst., vol. 30, no. 1, pp. 41-82,

2005.

X. Miao, Y. Gao, B. Zheng, G. Chen, and H. Cui, “Top-k dominat-

ing queries on incomplete data,” in Proc. IEEE 32nd Int. Conf. Data

Eng. (ICDE), May 2016, vol. 28. no. 1, pp. 1500-1501.

[5] X.Lian and L. Chen, “Probabilistic top-k dominating queries in uncertain
databases,” Inf. Sci., vol. 226, pp. 23—46, Mar. 2013.

[6] S. Ge, L. H. U, N. Mamoulis, and D. W. L. Cheung, “Dominance rela-
tionship analysis with budget constraints,” Knowl. Inf. Syst., vol. 42, no. 2,
pp. 409-440, 2015.

[71 M. L. Yiu and N. Mamoulis, “Multi-dimensional top-k dominating
queries,” VLDB J., vol. 18, no. 3, pp. 695-718, 2009.

[8] N. Mamoulis, K. H. Cheng, M. L. Yiu, and D. W. Cheung, “Efficient
aggregation of ranked inputs,” in Proc.-Int. Conf. Data Eng., 2006, p. 72.

[9] X.Lian and L. Chen, “Top-k dominating queries in uncertain databases,”
in Proc. 12th Int. Conf. Extending Database Technol., Adv. Database
Technol., New York, NY, USA, 2009, pp. 660-671.

[10] M. Hua, J. Pei, W. Zhang, and X. Lin, “Efficiently answering probabilistic
threshold top-k queries on uncertain data,” Proc.-Int. Conf. Data Eng.,
Apr. 2008, pp. 1403-1405.

[11] X.Han,].Li, and H. Gao, “TDEP: Efficiently processing top-k dominating
query on massive data,” Knowl. Inf. Syst., vol. 43, no. 3, pp. 689-718,2015.

[12] E. Tiakas and G. Valkanas, “Metric-based top-k dominating queries,” in
Proc. 17th Int.-Nat. Conf. Extending Database Technol. (EDBT), 2016,
pp. 415-426.

[13] B. J. Santoso and G.-M. Chiu, “Close dominance graph: An efficient
framework for answering continuous top-k dominating queries,” IEEE
Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1853-1865, Aug. 2014.

[14] C. Lofi, K. El Maarry, and W.-T. Balke, “Skyline queries in crowd-
enabled databases,” in Proc. 16th Int. Conf. Extending Database Technol.,
New York, NY, USA, 2013, pp. 465-476.

[15] X. Han, X. Liu, J. Li, and H. Gao, “TKAP: Efficiently processing top-
k query on massive data by adaptive pruning,” Knowl. Inf. Syst., vol. 47,
no. 2, pp. 301-328, 2016.

[16] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of
top-k queries over sliding windows,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data (SIGMOD), 2006, p. 635.

[17] J. Zhang, F. Zhong, and Z. Yang, ‘““Efficient approach to top-k dominating
queries on service selection,” in Proc. 6th Joint IFIP Wireless Mobile Netw.
Conf. (WMNC), Apr. 2013, pp. 1-8, 2013.

[18] H. T. H. Nguyen and J. Cao, Top-k Dominance Range-Based Uncertain
Queries. Cham, Switzerland: Springer, 2016, pp. 191-203.

[19] P. Haghani, S. Michel, and K. Aberer, “Evaluating top-k queries over
incomplete data streams,” in Proc. Cikm, 2009, pp. 877-886.

[20] M. A. Soliman, . F. Ilyas, and S. Ben-David, ““Supporting ranking queries
on uncertain and incomplete data,” VLDB J., vol. 19, no. 4, pp. 477-501,
Aug. 2010.

[21] S. Razniewski and W. Nutt, “Completeness of queries over incomplete
databases,” Proc. VLDB Endow, vol. 4, no. 11, pp. 749-760, 2011.

[22] F. Bu, Z. Chen, Q. Zhang, and X. Wang, “Incomplete big data clustering
algorithm using feature selection and partial distance,” in Proc. 5th Int.
Conf. Digit. Home, 2014, pp. 263-266.

[4

=

VOLUME 6, 2018

P. Ezatpoor et al.: Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework

IEEE Access

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

T. Imielifiski and W. Lipski, Jr., “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, pp. 761-791, Sep. 1984.

W. Cheng, X. Jin, J. T. Sun, X. Lin, X. Zhang, and W. Wang, “Searching
dimension incomplete databases,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 3, pp. 725-738, Mar. 2014.

L. Antova, C. Koch, and D. Olteanu, ‘“From complete to incomplete
information and back,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
New York, NY, USA, 2007, pp. 713-724.

L. Libkin, “Incomplete data: What went wrong, and how to fix it,” in Proc.
33rd ACM SIGMOD-SIGACT-SIGART Symp. Principles Database Syst.,
New York, NY, USA, 2014, pp. 1-13.

K. Wu, A. Shoshani, and K. Stockinger, “Analyses of multi-level and
multi-component compressed bitmap indexes,” ACM Trans. Database
Syst., vol. 35, no. 1, pp. 2:1-2:52, Feb. 2008.

Z. Chen, Y. Wen, W. Zheng, J. Chang, G. Peng, and Y. Wu, “A survey
of bitmap index-compression algorithms for big data,” Tsinghua Sci.
Technol., vol. 20, no. 1, pp. 100-115, 2015.

K. Wu, E. J. Otoo, and A. Shoshani, “Compressing bitmap indexes for
faster search operations,” in Proc. 14th Int. Conf. Sci. Statist. Database
Manage., 2002, pp. 99-108.

G. Manogaran and D. Lopez, “Disease surveillance system for big cli-
mate data processing and dengue transmission,” Int. J. Ambient Com-
put. Intell., vol. 8, no. 2, pp. 88-105, Apr. 2017. [Online]. Available:
https://doi.org/10.4018/1IJACI.2017040106

S. Kamal, S. H. Ripon, N. Dey, A. S. Ashour, and V. Santhi,
“A mapreduce approach to diminish imbalance parameters for
big deoxyribonucleic acid dataset,” Comput. Methods Prog.
Biomed., vol. 131, pp. 191-206, Jul. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.cmpb.2016.04.005

M. S. Kamal, S. Parvin, A. S. Ashour, F. Shi, and N. Dey, “De-bruijn graph
with mapreduce framework towards metagenomic data classification,” Int.
J. Inf. Technol., vol. 9, no. 1, pp. 59-75, Mar. 2017. [Online]. Available:
https://doi.org/10.1007/s41870-017-0005-z

H. Matallah, G. Belalem, and K. Bouamrane, ‘“Towards a new model of
storage and access to data in big data and cloud computing,” Int. J. Ambient
Comput. Intell., vol. 8, pp. 31-44, Oct. 2017.

M. S. Kamal, S. F. Nimmy, M. I. Hossain, N. Dey, A. S. Ashour, and
V. Santhi, “Exsep: An exon separation process using neural skyline filter,”
in Proc. Int. Conf. Electr., Electron., Optim. Technol. (ICEEOT), Mar. 2016,
pp. 48-53.

Y. Gao, X. Miao, H. Cui, G. Chen, and Q. Li, “Processing
k-skyband, constrained skyline, and group-by skyline queries on
incomplete data,” Expert Syst. Appl., vol. 41, no. 10, pp. 4959-4974,
2014.

VOLUME 6, 2018

PAYAM EZATPOOR is currently pursuing
the master’s degree in computer science with
the Department of Computer Science,
Howard R. Hughes College of Engineering,
University of Nevada, Las Vegas. His research
interests include big data analystics and data
processing.

JUSTIN ZHAN was a Faculty Member with North
Carolina A&T State University, Carnegie Mellon
University, and the National Center for the Pro-
tection of Financial Infrastructure, South Dakota
State. He is currently a Professor with the Depart-
ment of Computer Science, College of Engineer-
ing, University of Nevada, Las Vegas. His research
interests include big data, information assurance,
social computing, and health science.

JIMMY MING-TAI WU received the Ph.D. degree
from the Department of Computer Science and
Engineering, National Sun Yat-sen University,
Taiwan. He is currently a Post-Doctoral Research
Fellow with the Department of Computer Sci-
ence, University Nevada, Las Vegas, NV, USA.
His research interests include data mining, fuzzy
theory, evolutionary computation, and cloud
computing.

CARTER CHIU is currently pursuing the Ph.D.
degree with the Department of Computer Science,
University of Nevada, Las Vegas. He is a member
of the Big Data Hub, University of Nevada, Las
Vegas. His research interests include deep learning
and big data analytics.

7887

	INTRODUCTION
	RELATED WORK
	TOP-k DOMINANCE
	INCOMPLETE DATA
	BITMAP INDEXING
	MapReduce

	PROBLEM STATEMENT
	TKD QUERY ON INCOMPLETE DATA
	SKYBAND BASED ALGORITHMS
	UPPER BOUND BASED ALGORITHMS
	BITMAP INDEX GUIDED ALGORITHM
	SINGLE MACHINE ALGORITHM
	MapReduce MODIFIED ALGORITHM

	MRBIG: MapReduce ENHANCED BITMAP INDEX GUIDED ALGORITHM
	BITMAP INDEXING
	MRBIG STRUCTURE

	EXPERIMENT AND ANALYSIS
	DATA INFORMATION AND PREPARATION
	EVALUATION AND CREATION
	PRE-FORMATTING AND PREPARATION

	ALGORZITHM DEVELOPMENT AND EVALUATION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	PAYAM EZATPOOR
	JUSTIN ZHAN
	JIMMY MING-TAI WU
	CARTER CHIU

