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Abstract: For second countable discrete quantum groups, and more generally second
countable locally compact quantum groups with trivial scaling group, we show that prop-
erty (T) is equivalent to every weakly mixing unitary representation not having almost
invariant vectors. This is a generalization of a theorem of Bekka and Valette from the
group setting and was previously established in the case of low dual by Daws, Skalski,
and Viselter. Our approach uses spectral techniques and is completely different from
those of Bekka—Valette and Daws—Skalski—Viselter. By a separate argument we further-
more extend the result to second countable nonunimodular locally compact quantum
groups, which are shown in particular not to have property (T), generalizing a theorem
of Fima from the discrete setting. We also obtain quantum group versions of characteri-
zations of property (T) of Kerr and Pichot in terms of the Baire category theory of weak
mixing representations and of Connes and Weiss in terms of the prevalence of strongly
ergodic actions.

1. Introduction

Introduced by Kazhdan in the 1960s for the purpose of showing that many lattices are
finitely generated, property (T) has come to play a foundational role in the study of
rigidity in Lie groups, ergodic theory, and von Neumann algebras through the work of
Margulis, Zimmer, Connes, Popa, and others [5,30,36]. Over the last twenty-five years
it has been extended in stages to the realm of quantum groups, first via Kac algebras
[17], then in the algebraic [3] and discrete [14,26] settings, and finally in the general
framework of locally compact quantum groups, as defined by Kusterman and Vaes [11].
In one notable recent application, Arano showed in [1,2] that the Drinfeld double of a
q-deformation of compact simple Lie group has property (T) and that this implies that
the duals of these g-deformations have a central version of property (T), a fact which has
inspired progress in the theory of C*-tensor categories and underpins Popa and Vaes’s
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construction of subfactors with property (T) standard invariant that do not come from
groups [28,31].

By definition, a locally compact group G does not have property (T) if it admits a
unitary representation that does not have a nonzero invariant vector (ergodicity) but does
have a net of unit vectors that is asymptotically invariant on each group element (having
almost invariant vectors). Because ergodicity has poor permanence properties, it can be
hard to leverage this definition so as to obtain global information about the representation
theory of a group without property (T), and in particular to determine to what extent the
kind of flexible behaviour exhibited by amenable groups persists in this more general
setting. Bekka and Valette provided a remedy for this in the separable case by showing
that one can equivalently replace ergodicity above with weak mixing, which is charac-
terized by the absence of nonzero finite-dimensional subrepresentions, or alternatively
by the ergodicity of the tensor product of the representation with its conjugate [4]. This
leads, for example, to a short proof of a theorem of Wang that characterizes property
(T) in terms of the isolation of finite-dimensional representations in the spectrum ([4],
Sect. 4) and a streamlined proof of the Connes—Weiss characterization of property (T)
in terms of strongly ergodic probability-measure-preserving actions ([5], Sect. 6.3).

Using the fact that weak mixing is preserved under tensor products with arbitrary
representations, Kerr and Pichot applied the Bekka—Valette theorem to show that if a
second countable locally compact group does not have property (T) then within the
set of all unitary representations of the group on a fixed separable infinite-dimensional
Hilbert space the weakly mixing ones form a dense G in the weak topology [22]. The
idea is that any representation will approximately absorb a representation with almost
invariant vectors under tensoring (since locally it is as if we were tensoring with the trivial
representation) and so such a tensor product will be “close” to the original representation
while also inheriting any properties of the second one that are preserved under tensoring,
such as weak mixing. By a similar principle requiring a more subtle implementation,
Kerr and Pichot also established an analogous conclusion for the measure-preserving
actions of the group on a fixed standard atomless probability space, strengthening a result
of Glasner, Thouvenot, and Weiss that gave the same conclusion for ergodic actions [15].

Using the theory of positive-definite functions as in [18,29], Daws, Skalski, and
Viselter demonstrated in [12] that the conclusion of the Bekka—Valette theorem also
holds for second countable discrete unimodular quantum groups with low dual, and as an
application they derive analogues of the Connes—Weiss theorem and the representation-
theoretic Kerr—Pichot theorem. Low dual is the rather restrictive assumption that there is
a bound on the dimensions of the irreducible representations of the quantum group, and
the authors of [12] wonder, somewhat pessimistically, whether it can be removed. In the
present paper we show that the Bekka—Valette and Kerr—Pichot theorems actually hold
for all second countable discrete quantum groups, and even more generally for all second
countable locally compact quantum groups with trivial scaling group (Theorems 4.8 and
4.9) as well as for all second countable nonunimodular locally compact quantum groups
(Theorem 6.3). The methods of Daws, Skalski, and Viselter can then also be applied
to extend their version of the Connes—Weiss theorem to all second countable locally
compact quantum groups with trivial scaling group (Theorem 5.1).

Our approach is completely different from those of Daws—Skalski—Viselter and
Bekka—Valette and consists in applying the quantum group version of Wang’s char-
acterization of property (T) mentioned above in order to reduce the problem to a purely
spectral question concerning C*-algebras. In Theorems 3.7 and 3.8 we prove that the fol-
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lowing hold for a separable unital C*-algebra A and a fixed separable infinite-dimensional
Hilbert space 77

(i) if the spectrum of A contains no isolated finite-dimensional representations then
the set of weakly mixing unital representations of A on .77 is a dense G, and

(i1) if the set of finite-dimensional representations in the spectrum of A is nonempty
and contains only isolated points then the set of weakly mixing unital represen-
tations of A on 7 is closed and nowhere dense.

A version of the argument establishing (i) for unitary representations of countable dis-
crete groups has also been included in the book [21] by Li and the second author.
Theorems 4.8 and 4.9 then follow from (i) and (ii) whenever Wang’s characterization of
property (T) holds in the quantum group context, and this is known to be the case when
the scaling group is trivial (see Sect. 4). By a completely different argument we also
prove in Theorem 6.3 that the conclusions Theorems 4.8 and 4.9 are valid for second
countable nonunimodular locally compact quantum groups, which we show in particular
not to have property (T), generalizing a result of Fima from the discrete case [14].

We begin in Sect. 2 by reviewing some of the basic theory of locally compact quantum
groups and their unitary representations as developed by Kustermans and Vaes [23—
25,32].In Sect. 3, we study weak mixing for C*-algebra representations and establish the
two key spectral results (i) and (ii) concerning separable unital C*-algebras. In Sect. 4,
we discuss weak mixing and property (T) for quantum groups, record the quantum
group incarnation of Wang’s theorem, and then establish our versions of the Bekka—
Valette and Kerr—Pichot theorems. Section 5 contains the Connes—Weiss-type dynamical
characterization of property (T). Finally, the nonunimodular case is treated in Sect. 6.

2. Preliminaries

For a C*-algebra A we write M (A) for its multiplier algebra. A representation of A is
understood to mean a *-homomorphism from A into the C*-algebra of bounded linear
operators on some Hilbert space. When working with tensor products of Hilbert spaces
€ and ', we denote by X the tensor flip map from 57 ® % to Z ® . For
linear operators on multiple tensor products, we use leg notation. For example, if U is a
unitary operator on a Hilbert space tensor product J ® .~ we write Uy3 for the unitary
operator on a Hilbert space tensor product of the form /7 ® ¢ ® % which is given by
V(U ®id)V~! where V is the shuffle map # @ # ® ¢ — A ® # ® A defined
on elementary tensors by § ® { Q k = E Rk R ¢, 1e., V =idpr @ X.

2.1. Locally compact quantum groups. Our main references for generalities on locally
compact quantum groups are [24,25,32]. Formally speaking, a (von Neumann algebraic)
locally compact quantum group is a von Neumann algebra with coassociative coproduct
and left and right Haar weights, but as usual we use the simple notation G so that we can
conveniently and suggestively refer to the various objects that are canonically attached
to it just as one does for locally compact groups, although there is no longer anything
like an underlying group. The von Neumann algebra itself is thus written L>°(G), and
the coproduct is a unital normal *-homomorphism A : L®(G) — L®(G)QL*>(G)
satisfying the coassociativity condition

(A ®iDA = (id ® A)A.
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The left and right Haar weights are normal semifinite weights ¢ and ¥ on L°°(G) such
that for every w € L>°(G)} one has

p((w ®id)A(a)) = p(@)w(1)
for all a € L*°(G)* with ¢(a) < oo and
Y ((id @ w)A(a)) = Y (a)w (1)

for all a € L°°(G)* with ¥(a) < oo. The predual of L>(G) is written as L' (G),
and becomes a completely contractive Banach algebra with respect to the convolution
product

wixw = (0 @) oA, w,w e LY(G).

Associated to G is a canonical weakly dense sub-C*-algebra of L°°(G), written
Co(G), which plays the role of the C*-algebra of continuous functions vanishing at infin-
ity in the case of ordinary groups. We say that G is second countable if Co(G) is separable.
The coproduct restricts to a unital *-homomorphism A : Co(G) — M (Co(G)RCo(G)).
The algebras Co(G) and L°°(G) are standardly represented on the GNS Hilbert space
L%(G) associated to the left Haar weight. In the case of a locally compact group, the
notations L*®(G), L' (G), Co(G), and L?(G) have their ordinary meaning.

There is a (left) fundamental unitary operator W on L?(G) ® L?(G) which satisfies
the pentagonal relation W1, W13 Wa3 = W3 W15 and unitarily implements the coproduct
A on L*®(G) via the formula A(x) = W*(1 ® x)W. Using W one has Cyo(G) =

{(dQw)W :w e %(LZ(G))*}WH , and one can define the antipode of G as the (generally
only densely defined) linear operator S on Co(G) (or L°(G)) satisfying the identity
(S ®1id)W = W*. The antipode admits a polar decomposition S = R o 7_;/» where R
is an antiautomorphism of L>°(G) (the unitary antipode) and {7, };<R is a one-parameter
group of automorphisms (the scaling group). In the case of a locally compact group,
the scaling group is trivial and the antipode is the antiautomorphism sending a function
f € Co(G) to the function s — f (s_l). Using the antipode S one can endow the
convolution algebra L!(G) with a densely defined involution by considering the norm-
dense subalgebra Lé(G) of L'(G) consisting of all w € L'(G) for which there exists

an o' € LY(G) with (0, x) = (w, S(x)*) for each x € D(S). It is known from [23]
and Sect. 2 of [25] that Lé (G) is an involutive Banach algebra with involution @ > w®

and norm ||o|; = max{[@], [*]}.
Associated to any locally compact quantum group G is its dual locally compact quan-
tum group G, whose associated algebras, coproduct, and fundamental unitary are given

by Co(@) = (@B IOW 1w € ZLAG).) | € BUAG). L®@G) = Co(G)'.
A(x) = W*(1 ® x)W, and W = EW*Z. Then in fact W € M(Co(G) ® Co(G)), and
the Pontryagin duality theorem asserts that the bidual quantum group G is canonically
identified with the original quantum group G. One says that a locally compact quantum
group G is compact if Co(G) is unital, and discrete if G is compact, which is equivalent
to Co(G) being a direct sum of matrix algebras.

For alocally compact quantum group G, we can always assume that the left and right
Haar weights are related by ¥ = ¢ o R, where R is the unitary antipode. If the left and
right Haar weights ¢ and ¥ of G coincide then we say that G is unimodular. In general,
the failure of i to be left-invariant is measured by the modular element, which is a
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strictly positive element § affiliated with L°°(G) satisfying the identities A(§) =8 ® §
and ¥ (-) = @(8'/2 . §/2). Compact quantum groups are always unimodular, and the
corresponding Haar weight can always be chosen to be a state. Although discrete groups
are always unimodular, discrete quantum groups need not be. We recall that a discrete
quantum group G is said to be of Kac type (or a Kac algebra) if it is unimodular, which
is equivalent to the Haar state on G being a trace.

2.2. Unitary representations.

Definition 2.1. A unitary representation of a locally compact quantum group G on a
Hilbert space 7 is a unitary U € M(Co(G) ® J# (J)) € B(L*(G) ® ) such that
(A®1d)(U) = U13Uss.

In the above definition one can replace M (Co(G) ® £ (5¢°)) with the larger algebra
L®(G)®AB(H), forif U is a unitary in the latter which satisfies (A ®id)(U) = Uj3Uzs
then U automatically belongs to the former (see for example Theorem 4.12 of [7]).

Associated to a unitary representation U € M (Co(G) ® # (7)) is an adjointable
operator on the Hilbert module Cy(G) ® 2 which we write using the boldface version
U of the symbol in question. The relation between U and U is given by

(U@®8),b®¢) =b"(1d ® wg,)(U)a

forall a, b € Co(G) and &, ¢ € S, where wg  is the vector functional x — (x&, ¢).

Associated to G are two distinguished unitary representations, the one-dimensional
trivial representation 1 € M(Cy(G)) given by the unit of L°°(G), and the left regular
representation given by the fundamental unitary W € M (Co(G) ® Co(G)) viewed as
an element of M (Co(G) @ # (L*(G))).

Two unitary representations U € M(Co(G) @ # (7)) and V € M(Co(G) ®
J (%)) of G are (unitarily) equivalent if there is a unitary isomorphism u : S — 6
such that V = (id ® Adu)(U). A subrepresentation of a unitary representation U €
M(Cy(G) ® # (F)) is a unitary representation of the form Q = (1® P)U(1 ® P) €
L>®(G)RHB(#)) where 74 is a closed subspace of 7, P is the orthogonal projection
of A onto %), and 1 ® P commutes with U. In this case, we write Q < U. A unitary
representation U € M (Co(G) ® £ (JC)) is said to be finite-dimensional if 77 is finite-
dimensional.

Let G be alocally compact quantum group. Let U € M (Co(G)®.# (7)) be aunitary
representation of G. Write . for the conjugate of 7, i.e., the Hilbert space which is
the same as 7 as an additive group but with the scalar multiplication (c, &) + c& for
¢ € C and inner product (¢, ¢) 57 = ({, &) . Letting T : B(H) — B(IH) be the

transpose map T (a)(§) = a*(£), we define the conjugate of U, written U, to be the
unitary representation

(R®T)(U) € M(Co(G) @ H (H))).

The tensor product of two unitary representations U € M(Cy(G) ® # (7)) and
V e M(Cyo(G) ® £ (X)) is the unitary representation

UGV =UppViz e M(Co(G) ®%(%®%))
C L®(GC)QAB(H)QAB(K).
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There is a bijective correspondence between unitary representations U € M (Co(G)®
J () and nondegenerate *-representations 7wy : Lé(G) — HB(H) ([23], Corol-
lary 2.13). This correspondence is given by

7y (@) = (0 ®id)U € B(H), o e Li(G).

At the level of *-representations of L1 (G), the trivial representation 15 corresponds to
the *-character w —> (1), and the left regular representation is written as  — A(w) =

(w®id)W e CO(G) - ,%’(LZ(G)) As expected, we have the dual relations

—~ — Il Il
Co(G) = )»(Lé(G)) and Co(G) = )»(Lé(G))

where A is the left regular representation of G.
Let C0 (G) denote the universal enveloping C*-algebra of L (G) This is a univer-

sal version of CO(G) which encodes the unitary representation theory of G (since its
nondegenerate representations are in bijective correspondence with the nondegenerate
*_representations of L! 4(G) as bounded Hilbert space operators). In particular the left

regular representation W givesrise to a surjective representation 1. : Cj (G) — Co(G) -
PB(L?(G)), and the trivial representation gives rise to the (dual) counit &, : C“(G) — C.
We will generally use the same symbols to denote *-representations of L} (G) and their
unique extensions to Cj (G).

As was shown in [23], Cg(G) admits a coproduct Au : C(‘;(G) — M(Cg(G) ®
CY(G)) which can be used to turn (CY(G), A,) into a universal C*-algebraic locally

compact quantum group. For our purposes, we only need the fact that A, allows one
to express the tensor product U © V of two unitary representations U € M (CO(G) ®
H(H))andV € M(Co(G)®% (X)) interms of the representation (7y ®7tv)oUA
Cy (G) — B(H ® X), where o denotes the tensor flip map on Cy (G) ® CO(G)

Fmally, note that at the level of representations of CO(G) (or of *-representations
of L} ¢(G)) the notions of subrepresentation and unitary equivalence of unitary repre-
sentations reduce to their standard meanings. Indeed, given a unitary representation
U € M(Co(G) ®  (A)) and a projection P in #(H), the projection 1 ® P com-
mutes with U if and only if P commutes with 7y (Cj(G)), in which case the repre-
sentation g : C“(G) — B(PIH) associated to Q = (1 ® P)U(1 ® P) is given by
a+> Pry(a)P. Srmrlar]y, if Ve M(Cyo(G) ® JZ (£)) is another unitary represen-
tation, then a unitary isomorphism u : .7 — % implements an equivalence between
U and V if and only if it implements a unitary equivalence between my and my in the
sense that 7y = Adu o y.

3. Weak Mixing and Representations of C*-Algebras

This section is purely C*-algebraic and aims to establish two results concerning the
prevalence of weak mixing among unital representations of a separable unital C*-algebra
on a fixed Hilbert space (Theorems 3.7 and 3.8).

Throughout this section A will denote a separable unital C*-algebra. For a fixed
Hilbert space ¢, the set of all unital representations of A on J# will be written
Rep(A, 7). We equip Rep(A, 7)) with the point-strong operator topology, which is
equivalent to the point-weak operator topology, and also to the point-*-strong operator
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topology since the strong and *-strong operator topologies agree on the unitary group
of #(7) and A is linearly spanned by its unitaries. Under this topology Rep(A, 7¢)
is a Polish space ([13], Proposition 3.7.1).

Points in the spectrum A, while formally defined as equivalence classes of irreducible
representations, will be thought of as actual representations via their representatives,
following convention. The set of finite-dimensional representations in A will be written
Afin.

We begin with a discussion of weak mixing for unital representations of unital C*-
algebras.

Definition 3.1. We say that a unital representation of A on a Hilbert space is weakly
mixing if it has no nonzero finite-dimensional subrepresentations.

Recall that weak mixing for a unitary representation 7 : G — % (J¢) of a group
can be expressed in either of the following equivalent ways (see Theorem 2.23 in [21],
and note that the countability assumption there is not needed):

(i) for every finite set @ C 7 and ¢ > 0, there exists an s € G such that
{7 ()&, ¢} < eforall§, ¢ € €,
(i) s has no nonzero finite-dimensional subrepresentations.

Since a unital C*-algebra is linearly spanned by its unitaries, from (ii) we immediately
obtain the following, justifying the terminology of Definition 3.1.

Proposition 3.2. A unital representation of A is weakly mixing if and only if its restriction
to the unitary group of A is weakly mixing.

Next we consider a C*-algebra version of Zimmer’s notion [36] of weak containment
for unitary representations of groups.

Definition 3.3. Letw : A — AB(J)and p : A — () be unital representations. We
write 7 < p if for every finite set Q2 C A, orthonormal set {£1, ..., &,} € 7, ande > 0
there is an orthonormal set {1, . .., &y} © £ suchthat |(mw(a)&;, &) — (p(a)&i, &i)| < €
foralla e Qandi =1, ...,n.

This is the same as the usual notion of weak containment when the representation
7 is irreducible, but is different in general (the usual weak containment requires that
for every finite set Q2 C A, & € S, and ¢ > O there exist {1, ..., ¢, € S such that
[(m(a)t, &) — Z?zl(p(a)g‘i, gi)| < e foralla € Q[13]). In fact r is weakly contained
in p if and only if 7 < p®N,

The following is a straightforward consequence of Definition 3.3. The version for
unitary group representations was noted in the remark after Proposition H.2 in [20].

Lemma3d.letw : A — BH) and p : A — B(K') be unital representa-
tions on separable infinite-dimensional Hilbert spaces. Then w < p if and only if
7w € {k € Rep(A, ) : k = p}.

Denote by WM(A, 57) C Rep(A, S€) the subcollection of all weakly mixing rep-
resentations.

Lemma 3.5. Let ¢ be a separable Hilbert space. Then WM(A, 57) is a Gs in
Rep(A, J7).

Proof. Write G for the unitary group of A. Take an increasing sequence 21 € Q2 C - - -
of finite subsets of .7#” with dense union in 7. For every n € N define I, to be the set of
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all ¢ € Rep(A, J) such that there exists a u € G satisfying |[{(¢(u)&, ¢)| < 1/n for all
&,¢ € Q,.ThenT', isopen, and sotheset ' = ﬂflozl I'; is a Gs. By the characterization
of weak mixing for unitary group representations described before Proposition 3.2, I" is
precisely the set of all representations whose restriction to G is weakly mixing, which
is equal to WM(A, ) by Proposition 3.2. O

Lemma 3.6. Suppose that no point in Agn is isolated in A. Let p A — BH) be
a representation in Aqn. Then there exists a weakly mixing representation 6 of A on a
separable Hilbert space such that p < 6.

Proof. We may assume that p is not the limit of a sequence {r,, } of infinite-dimensional
representations in A, for in that case the representation 7 = @0, | 7, is weakly mixing
and p < m. Since A is second countable ([13], Proposition 3.3.4), we can then find a
countable neighbourhood basis {U, },,en for p in A such that no U,, contains an infinite-
dimensional representation. .

Letn € N. We construct a weakly mixing representation ¢, in A as follows. First we
argue that U, is uncountable. Suppose that this is not the case. As A is a Baire space
([13], Theorem 3.4.13) and U, is open, U, is itself a Baire space. For every w € U,
the singleton {w} is closed by finite-dimensionality (see Sect. 3.6 of [13]), and so by the
Baire property there exists an wg € U, such that {wg} is open, which means that wy is
isolated, contradicting our hypothesis. Thus U,, is uncountable. We can consequently
find a d, € N such that U, contains uncountably many d,,-dimensional representations.

Fix a Hilbert space .74, of dimension d,,. Denote by Irr(A, 77,) the set of irreducible
representations in Rep(A, .7;,). We observe the following:

(1) TIrr(A, 54,) is open in Rep(A, 774,),
(i) every equivalence class in Irr(A, 2;,) is closed in Irr (A, 74,),
(iii)  for every open set U C Irr(A, J4,) the set of all elements in Irr(A, J7,) which
are equivalent to some element of U is open.

Assertion (iii) is clear. To verify (i), let {3} be a convergent sequence in Rep(A, J7;,)
whose terms are not irreducible and let us show that its limit 7 is not irreducible. For
every k choose a nonzero projection Py € mx(A) of rank less than d,. In view of
the finite-dimensionality of .7, we may assume by passing to a subsequence that the
sequence { Py} converges in % (7;,), in which case its limit P is a nonzero projection
of rank less than d,, which commutes with 77 (A). This means that ;v is not irreducible,
yielding (i). Finally, to verify (ii) we let {mx} be a convergent sequence in Irr(A, J7;,)
such that for every k there exists a unitary operator Z; which conjugates my to 1. By the
finite-dimensionality of .7, there is a subsequence {Z; }; that converges to a unitary
operator Z, which must then conjugate the limit of {my} to 71, yielding (ii).

Since open subsets of Polish spaces are themselves Polish spaces ([19], Theorem 3.11),
we infer from (i) that Irr (A, .7%,) is a Polish space. Assertions (ii) and (iii) then permit
us to apply a standard selection theorem ([19], Theorem 12.16) which provides a Borel
set B, C Irr(G, J7,) of representatives for the relation of unitary equivalence. Write W,
for the set of all = € Irr(A, J#,) which, as elements in A, belong to U,,. This is clearly
an open set in Irr(A, 7;,), and it is uncountable by our choice of d,. Thus B, N W,
is an uncountable Borel set, which means that it is isomorphic as a Borel space to the
unit interval with Lebesgue measure and hence admits an atomless Borel probability
measure of full support. Let 1, be the push forward of this measure under the inclusion
B, "W, — Irr(A, 72,), and note that u, (C) = 0 for every unitary equivalence class
Cinlrr(A, J74,),
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Setting Y,, = Irr (A, J¢;,), we next consider the Hilbert space L%(Y,, 5,) of (classes
of) 7%, -valued functions on Y, with inner product

(f. 8 =f (f(r), () dpn (7).

n

Finally, we define the representation 6, : A — ZB(L*(Y,, #%,)) by setting

(On(@)8)() = m(a)¢ ()

fora € A, ¢ € L*(Y,, #;,),and T € Y.

We next verify that 6, is weakly mixing. Suppose that this is not the case. Then there
is a finite-dimensional irreducible representation 7 : A — () and an isometric
operator Z : s — L*(Y,, ) such that Zr (a) = 6,(a)Z foralla € A. Then for a.e.
p €Y,andeverya € A and € ¢ we have

(Zr(@)n)(p) = (Bn(@)Zn)(p) = p(a)((Zn)(p))-

so that the operator Z,, : 5 — J¢, givenby Z,n = (Zn)(p) satisfies Z,7(a) = p(a)Z
foralla € A. As Z is isometric, the operator Z, must be nonzero for all p in a nonnull
subset of Y,. But each such p is equivalent to m by irreducibility, contradicting the
fact that the measure of every unitary equivalence class is zero. Therefore 6, is weakly
mixing.

Now set = @72 | 0,. Then 6 is weakly mixing since each summand is weakly
mixing. It remains to show that p < 6. Let Q2 be a finite subset of A and ¢ > 0. Then we
canfindann € Nsuchthatforeveryw € U, thereisanisometry V : 5 — ¢, suchthat
[Vp(a) —m(a)V| < g/2 for all a € Q. Since bounded sets in B(7;,) are precompact
and representations are contractive, we can find an open set U C Y,, with u(U) > Osuch
thatforalla € Qandw, 7’ € U onehas |7 (a)—n'(a)| < ¢/2.Chooseany € U and an
isometry V : J — J;, such that for alla € Q we have ||Vp(a) —mg(a)V | < &/2 and
hence ||Vp(a) —m(a)V| < e forevery m € U. Writing 1y for the indicator function of
U, weset f = w,(U)~1/21y, which is a unit vector in L2(Y,, ). Define an isometry
Vi — LY, ) by VE = [ @ VE € L2 (Yo, pn) ® Ay = L?(Yy, ;). Then
for all a € €2 and norm-one vectors & € .77 we have

I(Vp(a) = 0u(@VIEN* = || f ® Vp(a)E — 0,(a)(f ® VE)|
f 1(Vp(a) = m(@)VEI dpun ()

n(U)

djin
SMn(U)/UE )

=82,

so that |V p(a) — 6,(a)V|| < &. We conclude that p < 6, as desired. O
‘We now come to the main theorems of this section.

Theorem 3.7. Suppose that no point in A\ﬁn is isolated in A. Let  be a separable
Hilbert space. Then WM(A, 5€) is a dense G in Rep(A, F7).
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Proof. By Lemma 3.5 it suffices to show the density of WM(A, 7). Letw € Rep(A, 7).
By a maximality argument involving the collection of direct sums of finite-dimensional
subrepresentations of 77, we can write 7 = 7o @D, ; 7; where 7 is weakly mixing and
7t; is finite-dimensional for every i € /. By decomposing further we may assume that 7;
is irreducible for each i € I. By Lemma 3.6, for each i € I we can find a weakly mixing
representation 6; on a separable Hilbert space such that 7; < 6;. Set p = w0 ® ;. 6
Then w < p, and p acts on a separable Hilbert space since / is countable by the sep-
arability of .7Z. It follows by Lemma 3.4 that 7 belongs to the closure of the set of all
k € Rep(G, 77) such that k = p, and hence to the closure of WM(A, 57°), yielding the
desired density. 0O

Theorem 3.8. Suppose that Afin # () and each point in Agin is isolated in A. Let # be a
separable infinite-dimensional Hilbert space. Then WM(A, ) is closed and nowhere
dense in Rep(A, ).

Proof. By assumption there exists a p € Afin. Let 7 € Rep(A, 7). Then clearly
T < 7 @ p and so by Lemma 3.4 the representation 7 belongs to the closure of the set of
all k € Rep(G, 77) such that k = 7 @ p, showing that the complement of WM(A, J¢)
is dense in Rep(A, 7).

Now let 7w be a representation in Rep(A, .7) which is not weakly mixing. Then we
can write m = mo @ w1 where m; is finite-dimensional, and we may assume that  is
irreducible. Now suppose that {p,} is a sequence in Rep(A, ) converging to = and
set p = @,fo:l pon. Then m < p and hence 71 < p, which implies that 777 is a subrepre-
sentation of p since 7y is isolated in Zﬁn ([35], Theorem 1.7). Since 7y is irreducible,
there must exist an n € N such that 771 is a subrepresentation of p,. We deduce from this
that 7w has a neighbourhood in Rep(A, .7) which does not intersect WM(A, 7). This
shows that the complement of WM(A, 77°) is open and hence completes the proof. O

4. Weak Mixing and Property (T) for Quantum Groups

We now return to the context of quantum groups and discuss the notions of weak mixing
and property (T). Let G be a locally compact quantum group.

Definition 4.1. A unitary representation U € M(Co(G) ® # (7)) of G is weakly
mixing if it contains no nonzero finite-dimensional subrepresentation.

Since finite-dimensionality is preserved under the canonical correspondence between
unitary representations of G and nondegenerate representations of C((G), by Proposi-
tion 3.2 we obtain the following.

Proposition 4.2. Let U € M(Co(G) ® # (H’)) be a unitary representation, let Ty be
the corresponding representation of Ci(G), and let tj; be the canonical extension of

7y to a unital representation of the unitization C(‘;(@)J’. Then U is weakly mixing if and
only if the restriction of [ to the unitary group of Cy(G)™ is weakly mixing.

Let 7 be a fixed Hilbert space. Write Rep(G, 5¢) for the collection of all unitary
representations of G on .77, and equip it with the point-strict topology it inherits as a

subset of M(Co(G) ® A (J)). Let WM(G, ) C Rep(G, ) be the subcollection
of all weakly mixing representatlons Write Rep(Cy (G) ) for the collection of non-

degenerate representations of C, u(G) on s (which is consistent with our notation in
Sect. 3 for unital C*-algebras). In Proposition 5.1 of [11] it is shown that the topology
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T 1nduced on Rep(Cy (G) ) under the canonical bijection between Rep(G, 5¢) and
Rep(C} (G) ) is the point-strict topology. Since the strict topology and the *-strong
operator topology coincide on bounded subsets of %(), this is the same as the point-

*-strong operator topology on Rep(Cy (G) J). Since the *-strong operator topology
and the strong operator topology agree on the unitary group of Z(J¢), and a unital
C*-algebra is spanned by its umtarles we therefore have 7, — 7 in the topology .7
on Rep(CO(G) ) if and on]y if 7;¥ — 7 in the point-strong operator topology on
Rep(C0 (G )+ ), where ;7 and 7™ are the canonical unital extensions of 7, and 7 to
the unitization C (G)+ Combining these observations with Lemma 3.5, we obtain:

Proposition 4.3. Let 57 be a separable infinite-dimensional Hilbert space. Then WM
(G, 7)) is a Gs inRep(G, 7).

Next we recall the definition of property (T).

Definition 4.4. Let G be a locally compact quantum group and let U € M (Co(G) ®
J (F)) be a unitary representation of G. A vector & € JZ is said to be invariant for
UifU(n®E&) =n®E& forall n € L>(G). We say that U has almost invariant vectors
if there is a net {&;}; of unit vectors in .7 such that

UM ®@&) —n®E&l — 0
for all n € L?(G), which by Proposition 3.7 of [11] is equivalent to

7y (@& — eu(@)&i]l — 0
forall a CS(G).

Definition 4.5. A locally compact quantum group G has property (T) if every unitary
representation of G having almost invariant vectors has a nonzero invariant vector.

In order to establish the two main results of this section, Theorems 4.8 and 4.9, we
require a characterization of property (T) in terms of the isolation of finite-dimensional
representations in the spectrum. Specifically, we will need the equivalence of (i) and (iv)
in Theorem 4.7 below. For locally compact groups the equivalence between (i), (iii), and
(iv) in Theorem 4.7 is due to Wang [35], and is known more generally for locally compact
quantum groups with trivial scaling group, although it does not seem to be explicitly
stated in this generality in the literature (see Remark 5.3 of [26] and Sect. 3 of [8]). For
quantum groups the idea is to adapt the argument of Bekka, de la Harpe, and Valette for
groups in Sect. 1.2 of [5]. This requires Lemma 4.6, which generalizes a well known
fact for locally compact groups. The discrete case of Lemma 4.6 appears in Sect. 2.5 of
[26], although the proof there works more generally, as observed in Proposition 7.2 of
[10]. See also Sect. 3 of [8] and the first paragraph of the proof of Proposition 3.5 in
[34].

Lemma 4.6. Let U and V be finite-dimensional unitary representations of a second
countable locally compact quantum group G with trivial scaling group. Then 1 <
U © Vifand only if U and V contain a common nonzero subrepresentation.

Armed with Lemma 4.6, one can now establish the following result by repeating
mutatis mutandis the argument in Sect. 1.2 of [5], as was done in Sect. 3 of [8] (the
results in [8] were only stated for G of Kac type, but their arguments readily generalize
to our present context).
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Theorem 4.7. For a second countable locally compact quantum group G with trivial
scaling group the following are equivalent:

(1) G has property (T),
(ii) &y is isolated in the spectrum of Cy (G)
(iii) every finite-dimensional representation in the spectrum of Cj (G) is isolated,
(iv) there exists a finite-dimensional representation in the spectrum of Cy (G) which is
isolated.

Theorem 4.8. A second countable locally compact quantum group G with trivial scaling
group has property (T) if and only if every weakly mixing unitary representation of G
fails to have almost invariant vectors.

Proof. For the nontrivial direction, if G does not have property (T) then by Theorem 4.7
and Lemma 3.6 there is a weakly mixing unitary representation of G with almost invariant
vectors. 0O

Theorem 4.9. Let G be a second countable locally compact quantum group with trivial
scaling group. Let 7€ be a separable infinite-dimensional Hilbert space. If G does not
have property (T) then WM(G, F€) is adense G s inRep(G, ), while if G has property
(T) then WM(G, F7) is closed and nowhere dense in Rep(G, F7).

Proof. Apply Theorem 4.7 in conjunction with Theorems 3.7 and 3.8. O

5. Property (T) and Strongly Ergodic Actions

We establish in Theorem 5.1 a quantum group version of a result of Connes and Weiss
[9] for countable discrete groups. It was verified by Daws, Skalski, and Viselter under
the additional hypothesis that the quantum group is discrete and has low dual ([12],
Theorem 9.3). In fact to obtain the conclusion we can simply apply the argument of
Daws, Skalski, and Viselter by replacing their Theorem 7.3 with our Theorem 4.8, or
rather a slight strengthening of the latter in line with Remark 7.4 of [12], as we explain
below.

An n.s.p. (normal-state-preserving) action G ~* (N, o) is a normal injective unital
*_homomorphism « : N — L*(G)®N, where N is a von Neumann algebra with a
faithful normal state o, such that (id ® @)a = (A ® id)a and (id ® o) (x) = o (x)1 for
all x € N. We drop the symbol « if we don’t need to refer to it explicitly. The action o
is ergodic if the only elements x € N satisfying «(x) = 1 ® x are the scalar multiples
of the identity.

Let G ~* (N, o) be ann.s.p. action. A bounded net {x;} C N is said to be asymptot-
ically invariant if for every normal state » € L'(G) we have (o ® id)(a(x;)) —x; — 0
strongly, and trivial if x; —o (x;)1 — 0 strongly. The action is said to be strongly ergodic
if every asymptotically invariant net is trivial.

Recall that R denotes the unitary antipode of G, which acts on # (L*(G))as R(x) =
Jrx*Jg where Jg is the modular conjugation associated to the left Haar weight on
L°°(G). We say that a unitary representation U € M(Co(G) ® # ()) of G is self-
conjugate (referred to as condition % in [12]) if there exists an anti-unitary operator J :
H — 7 such that the anti-isomorphismj C B(H) — B(IH) givenby x — Jx*J*
satisfies (R ® j)(U) =

Let U be aunitary representatlon of G onaHilbert space 7. Recall that the conjugate
representation U on the conjugate Hilbert space . is defined as (R ® T)(U) where
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T : B(AH) — B(H)Iis the map given by T'(b)€ = b*E. Let V = U O U be the tensor
product of U and U. Write J for the anti-unitary operator on . ®.7 given on elementary
tensors by J(€ ® ) = ¢ ® £. and let j : B(H) — B(H) be the anti-isomorphism
given by x > Jx*J*. Lety = ) ._; a; ® b; be a finite sum of elementary tensors in
L>®(G) ® #(S). Since R(a;R(a;)) = a;jR(a;) and j(b; @ T(b;)) = b; @ T (b;) for
all i, j € I, it follows that the element

x=yplROTIyliz = Y aiR(a)) ® b @ T(b)) € L¥(G) ® B(H) @ B(IH)
i,jel
satisfies
(R® j)(x) = x.

Since the maps R ® j and R ® T are *-strongly continuous, multiplication is *-strongly
continuous on the unit ball of Z(L*(G) @ H# ® %), and U is a *-strong limit of
operators of norm at most one in L>*(G) ® %#(.7) by Kaplansky density, we conclude
that (R ® j)(V) = V, so that V is self-conjugate.

Now if U has almost invariant vectors then so does V, as is easily seen, and if U is
weakly mixing and G has trivial scaling group then V is weakly mixing by Theorem 3.11
of [34]. It thus follows from Theorem 4.8 that if G has trivial scaling group and does not
have property (T) then it admits a weakly mixing self-conjugate unitary representation
with almost invariant vectors.

This extra self-conjugacy condition is needed in the argument of Daws—Skalski—
Viselter, who apply it in Lemma 9.2 of [12] so as to permit the use of Vaes’s construction
of actions on the free Araki—Wood factors from [33]. Now that we also have it in our more
general setting, we can apply the argument in Sect. 9 of [12] to deduce the following
theorem. Note that the assumption of trivial scaling group is not merely required for the
application of Theorem 3.11 of [34] in the previous paragraph, but is also a hypothesis
in Lemma 9.2 of [12]. Here (£ F, 7) is the von Neumann algebra of the free group on
a countably infinite set of generators along with its canonical tracial state.

Theorem 5.1. For a second countable locally compact quantum group G with trivial
scaling group the following are equivalent:

(i) G has property (T),
(1) every weakly mixing n.s.p. action G ~ (N, o) is strongly ergodic,
(iii) every ergodic n.s.p. action G ~ (N, o) is strongly ergodic.

One can also replace (N, o) with the fixed pair (£ Foo, T) in (ii) and (iii).

6. The General Nonunimodular Case

In this final section, our aim is to prove Theorem 6.3, which extends Theorems 4.8
and 4.9 so as to cover the general nonunimodular case. It shows in particular that a
nonunimodular second countable locally compact quantum group cannot have property
(T), which in the discrete situation was established in [14]. As one of the referees has
pointed out, this lack of property (T) can also be seen by viewing the modular element §
below as generating a morphism from G to R (see Sect. 1.4 of [12]) and then applying
Theorem 4.7, along with the appendix, in [12].

Let G be a second countable locally compact quantum group. Recall that the modular
element of G is strictly positive unbounded operator 8 on L?(G) affiliated with the
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von Neumann algebra L>(G). The map ¢ +— 8’ from R to L*®(G) € A(L*(G)) is
continuous in the strong operator topology by Stone’s theorem and so it defines a unitary
operator U on L?(R, L?>(G)) = L*(R) ® L*(G) which, when viewing L>(R, L?(G))
as the Hilbert space direct integral of copies of L>(G) over R with respect to Lebesgue
measure, is a decomposable operator and as such is expressed by the direct integral

f§ 8 dt. Thus for all ny, no € L>(G) and &1, & € L*(R) we have

(U ®8&1). m &) = /R@l(t)y’m, E2(0)m2) dt

= /R E1(OE D)8 1, mo) dt. (1)

Since A(8) = 8" ® 8" (see for example the proof of Proposition 1.9.11 in [32]), we
see that (A ® id)U and Uj3U, are both decomposable operators on L*R, L*(G) ®
L?*(G)) = L*(G)QL*(G)®L?(R) which canbe expressed as the direct integral fg s1®
8" dr. Thus U is a unitary representation of G on L2(R). (In fact, U € L®(G)®L>®(R)
can be regarded as a unitary representation of both G and R simultaneously.)

Lemma 6.1. The unitary representation U of G has almost invariant vectors.

Proof. For every n € N, writing 1[0 1 for the indicator function of [0, %] we set &, =

\/r_zl[o’ 1 which is a unit vector in LZ(R). Let n e L%(G) be a unit vector. Using the
formula (1), for every n we have

KU ® &) n @ &n) — 1] :n/[o ]]((5” — Dn.n)dt

and the expression on the right converges to zero as n — oo by the strong operator
continuity of the map ¢ +> §'". Thus U has almost invariant vectors. O

Let V be any unitary representation of G on a separable Hilbert space .77, and consider
the tensor product representation Z = VOU = V),U3. Viewing L>(R, L>(G)® ) =
L? GRA® L? (R) as the Hilbert space direct integral of copies of L? (G)® I over R
with respect to Lebesgue measure, the operator Vi, is decomposable and can expressed
by the direct integral fﬂga V dt,sothatforn € L>(G)and ¢ € L*(R, ) = # ® L*(R)
the vector V5 (n ® ¢), viewed as an element of L3R, L*(G) ® ), is equal to t +—
V*(n ® ¢(t)). Thus for 1,2 € L*(G) and &1, & € LA2(R, ) = # ® L*(R) we
have the formula

(Zm ®¢1),m ® 82) = (Uin(n1 ® ¢1), Vis(n2 ® 2))
= /Rw”m ® ¢1(t), VI (2 ® $2(1))) dt. ()

Lemma 6.2. Suppose that G is not unimodular. Let V be any unitary representation of
G on a separable Hilbert space 7. Then the tensor product representation Z =V Q U
is weakly mixing. Moreover, if 7€ is infinite-dimensional then the closure of the set of
unitary conjugates of Z in Rep(G, ) contains V.
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Proof. Since G is not unimodular, there is a real number ¢ # 0 such that ¢ belongs to
the spectrum of the modular element §. The equation A(§) = § ® & then implies, via
elementary spectral theory, that ¢ belongs to the spectrum of § for every n € N.

Let & be a nonzero finite-dimensional subspace of L?(R) ® .. Choose an orthonor-
mal basis {¢1, ..., ¢k} for &. Let & > 0. Then there are a b > 0 and an N € N such
that for each k = 1,..., K we can find a { € L*([—b, b], ) = L*([—b,b]) ® H#
which is an .77-valued step function on [—b, b] taking at most N different values and
satisfying [|¢] — ¢kl < €/3. Set M = maxy—1,...x maX;e[—pp] 1 () ]|. By the proof of
the Riemann-Lebesgue lemma for step functions, there is an n € N depending only on
N and M such that, setting s = nc, every step function f : [—b, b] — C which takes
at most N2 values and is bounded in modulus by M? satisfies

‘ / f@)e' dt
[—b.b]

Write % for the range of the spectral projection of § corresponding to [0, 2¢°]. Since
¢* belongs to the spectrum of §, we can find a norm-one vector n € % such that
I6n — e*n|| is small enough so that by the continuous functional calculus, applied to §
acting (boundedly) on .#", we have ||/ — "] < ¢/(12bM?) forallt € [—b, b]. For
every norm-one vector 9 € L*(G)andk = 1, ..., nthefunctions — n®¢{ (1), V*(O®
;,é (t))) on [—b, b] is a step function which takes at most N 2 values and is bounded in
modulus by M2, and so using the formula (2) and applying (3) we obtain

¢ 3
<8 (3)

HZ ®¢)), 0 ® g)| = ‘/[ bb]<3i’n®§{(t), VO ® g (1)) dt

- / (€0 @ ¢](1), V(0 ® ¢ (1)) di
[—b.b]
+ /[ ) b]«a"’n — ety @] (1), VF(O ® ¢ (1))) dt
< / (n® ¢|(1), VF(O ® L))" di
[—=b.b]
+2b- sup (18" — e nllg OIIE @
te[—b,b]
AN VLI 2
6 12bM?
_¢
3
and hence
HZM®£1),0 @ &)l < HZ ®¢)), 0 @ ¢+ 115 — &l + g — &l
< ¢ + ¢ + - g. “)
3 3 3

Now given a norm-one vector k € L?(G) ® & we can write it as > le Ok ® ¢k where
Zle ||0k||2 = 1, and so if we take ¢ = 1/K then from (4) we get

K K

1
(Znr® ). <D NZ0 @), 6 @ Lol < Y~ 6l < Ke = 1.
k=1 k=1
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Since the vector Z(n ® ¢1) has norm one by the unitarity of Z, it follows that Z(n ®¢1) ¢
L?*(G) ® &, which shows that L2(G) ® & is not Z-invariant. We conclude that Z has
no nonzero finite-dimensional subrepresentations.

Suppose now that 7 is infinite-dimensional and let us show that the closure of
the set of unitary conjugates of Z in Rep(G, ) contains V. The argument is sim-
ilar to that in the proof of Lemma 5.3 in [11], whose antecedents in the group set-
ting can be found in [6,22]. Fix an orthonormal basis {{k},‘:il of /7. Let Q be a fi-
nite set of norm-one elements in Co(G). Let K € N and ¢ > 0. Working in the
Hilbert module Co(G) ® 7, there is an integer L > K such that for each a € Q
and k = 1,..., K we can find x4 4.1, ..., Xa kL Yak.1> ---» Yak,L € J€ satisfying
IV(@ ® &) = Yy Xaks ® Gl < &/3 and [V¥(a @ &) — iy Yokt @ Gl < &/3.
Using the characterization of having almost invariant vectors given in Proposition 3.7(v)
of [11], Lemma 6.1 yields a unit vector £ € 7 such that |[U(@ ® &) —a Q &|| < ¢/3
for all a € Q. Since 7 is separable and infinite-dimensional we can find a unitary
isomorphism u : 5 ® L*(R) — . which sends G @&tog foreveryk=1,..., L.
Then foreverya € Qandk =1, ..., K we have

1((d @ WZid @ u)~™' — V)(a ® &)l
<Nid@u)Vip(Ui3(a® &% Q&) —a® & Q&)

L
+|(d® u)<V12(a RUBE) — Y Xaki®Y ®€) H
=1
L
+ D Xari ® 4= Via® &)
1=1
& & &
<-+-+-=¢
3 3 3

and similarly [|((d @ u)Z*(id @ u) ™! — V*)(a ® &) || < . We conclude that V belongs
to the closure of the set of unitary conjugates of Z in Rep(G, .%). O

‘We can now conclude with the main result of the section.

Theorem 6.3. Let G be a second countable nonunimodular locally compact quantum
group. Then there exists a weakly mixing unitary representation of G which has almost
invariant vectors. Moreover, if 7€ is a separable infinite-dimensional Hilbert space then

WM(G, 5€) is a dense Gs in Rep(G, 7).

Proof. The representation U has almost invariant vectors by Lemma 6.1, and it is weakly
mixing by Lemma 6.2, as we can take V there to be the trivial representation.

Finally, if 7 is a separable infinite-dimensional Hilbert space then WM(G, J7) is
adense G in Rep(G, 7¢) by Lemmas 3.5 and 6.2. O
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