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1. Introduction

For a locally compact group G, the question of the unitarizability of uniformly
bounded representation has quite a long history. The beginning of this story started with
the following general result of Day and Dixmier, extending previous work of Sz.-Nagy
[9] on the particular case G = Z.

Theorem 1.1 (Day—Dizmier Theorem [8], [11]). If a locally compact group G is amenable,
then every uniformly bounded Hilbert space representation m : G — B(Hy) admits an
invertible T € B(H,) such that T om(-) o T~ is a unitary representation.

Since there is a bijective correspondence between uniformly bounded representations
7 : G — B(H,) and bounded representations 7 : L'(G) — B(H,) (of the associated
convolution algebra L'(G)), the above celebrated work can be concisely described in
terms of the so-called similarity property for L'(G). More precisely, we have that

1. every contractive representation 7 : L'(G) — B(H,) is a *representation, and
2. under the assumption of amenability of G, every bounded representation 7 : L*(G) —
B(H,) is similar to a s-representation.

The question of whether the converse to the Day-Dixmier theorem holds is called
Dixmier’s problem and it is still open (although there are some notable partial results
[12], [25], [13] and [20]). A remarkable partial answer to Dixmier’s problem was ob-
tained by G. Pisier [24] for discrete groups and N. Spronk [28] for the general case by
requiring a norm condition |7 ||7!|| < |I7||°. In other words, amenability of G is
equivalent to L'(G) having the similarity property with (completely bounded) similarity
degree dey(L'(G)) < 2. For more details, see Subsection 2.5.

Within the framework of locally compact quantum groups, it is natural to ask whether
such known results generalize. More precisely, let G = (L>®(G), A, ¢,v) be a locally
compact quantum group and let L'(G) = L*°(G). denote the associated convolution
algebra.

Question 1. Is every (completely) contractive representation 7 : LY(G) — B(H,) auto-
matically a *-representation?

Question 2. Is every (completely) bounded representation m: L*(G) — B(H,) similar to
a x-representation, at least when G is amenable?

In the above questions, we impose the condition that our representations are com-
pletely bounded maps. This is natural when working with genuine quantum groups, since
for ordinary groups G, all bounded representations 7 : L}(G) = MAX(L'(G)) — B(H,)
are automatically completely bounded. Moreover, in the quantum case, any representa-
tion of L'(G) that is similar to a *-representation is automatically completely bounded.
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We also note that the general assumption of complete boundedness on a representa-
tion m : LY(G) — B(H,) is not redundant: [5] established the existence of examples of
bounded 7 : L'(G) — B(H,) which are not completely bounded. See also [4]. This leads
us to the following definition.

Definition 1.2. Let G be a locally compact quantum group. We say that G (or L(G))
has the Day—Dizmier property if the answers to Questions (1)—(2) are affirmative.

The first investigation into the Day—Dixmier property for quantum groups was in
[3]. Here, the authors considered the Fourier algebra A(G) of a locally compact group
G, which corresponds to the convolution algebra of the co-commutative dual quantum
group G (which turns out to always be amenable). There, they showed that the Day—
Dixmier property on A(G) holds for all SIN (= small invariant neighborhood) groups.
They also observed more generally that for any locally compact group G, and any com-
pletely bounded representation 7 : A(G) — B(H), Question 2 has an affirmative answer
if and only if a certain related map 7 is completely bounded. Here, 7 is the (anti-)rep-
resentation of A(G) defined by w + 7(w) where w(g) = w(g™1).

For genuine locally compact quantum groups, [4] generalized the affirmative answer of
Question 2 on A(G) to the case of amenable locally compact quantum groups. More pre-
cisely, they showed that any completely bounded representation 7 : L'(G) — B(H,) for
which ||7]|, < oo is similar to a *-representation. Moreover, for compact quantum groups
G of Kac type, the authors of [4] showed that Day—Dixmier theorem holds in full gener-
ality without assumption on #. Here, 7 is the (a priori unbounded) anti-representation
of L}(G) defined by w + 7((w*)*) where {(w*)*, ) = (w, S(z)) and S is the antipode
map.

In summary: the results of [3,4] show that, with the exception of some small classes of
amenable quantum groups (i.e., classical amenable groups, duals of SIN groups, compact
Kac algebras, ...), establishing the Day—Dixmier property seems to require one to not
only have complete boundedness of a given representation m, but also complete bound-
edness of the affiliated map 7. It is quite natural to ask whether the additional complete
boundedness assumption on 7 is in fact required. Quite recently, [19] showed that the
complete boundedness of 7 was indeed automatic for a large class of Fourier algebras.
More precisely, they tackled the similarity problem for A(G) using tools more directly
connected to Pisier’s machinery [24], proving that for a broad class of groups, A(G) has
the Day—Dixmier property with completely bounded similarity degree d.,(A(G)) < 2.
This work provides significant evidence to suggest that complete boundedness assump-
tions on 7 are indeed unnecessary, at least for group duals G.

Our first main objective in this paper is to show (by means of explicit examples)
that the appearance of the anti-representation 7 in the analysis of the Day—Dixmier
property is indeed essential when working in the framework of general locally compact
quantum groups. More precisely, in Theorem 3.1, we show that any compact quantum
group G with the Day—Dixmier property whose dual G has subexponential growth must
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be of Kac type. This result, in particular, implies (cf. Corollary 3.2) that if G is any
compact simply connected semisimple Lie group, then its Drinfeld—Jimbo deformation
G4 (0 < ¢ < 1) can never have the Day-Dixmier property. Based on these results, we
conjecture that every amenable locally compact quantum group with the Day—Dixmier
property is automatically of Kac type.

Our second objective in this paper is to establish some new classes of amenable Kac-
type quantum groups which have the Day—Dixmier property. The examples include all
of amenable discrete quantum groups of Kac-type and the duals of certain crossed prod-
ucts that are non-compact, non-discrete, non-commutative and non-cocommutative in
general.

All of these new examples arise as consequences of Theorem 4.1, which follows along
the same line of attack as the prior works [3,4] where the above assumptions allow one to
show that a given completely bounded representation 7 : L'(G) — B(H) automatically
extends to a completely bounded homomorphism ® from the enveloping C*-algebra
C’g(@) into B(H) satisfying ||®||., < ||7||%. Since by coamenability C’é‘(@) = Co(G) is
nuclear and nuclear C*-algebras have completely bounded similarity degree 2, the fact
that dep (L (G)) < 4 easily follows.

One would hope for a better result in Theorem 4.1, namely that d.,(L'(G)) < 2. We
explain in Appendix A, using different techniques more in line with [24,19], how one
can obtain d.,(L(G)) < 2 if G is a compact Kac algebra or an amenable discrete Kac
algebra. We also note that d.,(L'(G)) = 1 if and only if L>°(G) is finite dimensional in
those cases.

The remainder of the paper is organized as follows: In Section 2, we introduce some of
the basics of the theory of locally compact quantum groups and the completely bounded
similarity degree that are needed for our work. Then we show in Section 3 that the
Day—Dixmier property does not generally hold within the category of compact quantum
groups, and in Section 4 we establish the Day—Dixmier property for a class of examples
with G is amenable and of Kac type with tracial left Haar weight. Finally, in Appendix A,
we explain how to improve the similarity degree for some of the examples of Section 4.
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2. Preliminaries
2.1. Locally compact quantum groups

We refer the reader to [17,18,31] and the book [29] for an introduction to operator
algebraic locally compact quantum groups. Let us recall that a (von Neumann algebraic)
locally compact quantum group is a von Neumann algebra L>°(G) equipped with a coas-
sociative coproduct and left and right Haar weights. The coproduct is a unital normal
s-homomorphism A : L®(G) — L>®(G)®L>(G) satisfying the coassociativity condition

(A®id)A = (id® A)A.

The left and right Haar weights are normal semifinite faithful weights ¢ and ¥ on L™ (G)
such that for every w € L>(G); one has

p((w®id)Afa)) = p(a)w(1)

for all a € L>=(G)* with p(a) < oo and

P((id ® w)A(a)) = ¢(a)w(l)

for all @ € L>(G)* with ¥(a) < oo. The predual of L>°(G) is written as L!(G), and
becomes a completely contractive Banach algebra with respect to the convolution product

wy *we = (w1 @ wa) 0 A, wl,wgeLl(G).

Associated to G is a canonical weakly dense sub-C*-algebra of L>°(G), written Cy(G),
which plays the role of the C*-algebra of continuous functions vanishing at infinity in
the case of ordinary groups. Also, we denote by M(G) the dual space of Cy(G). The
coproduct restricts to a unital *-homomorphism A : Co(G) = M (Cy(G) ® Cy(G)). The
algebras Co(G) and L*>°(G) are standardly represented on the GNS Hilbert space L?(G)
associated to the left Haar weight. In the case of a locally compact group, the notations
L*>(G), LY(G), Cy(G), L*(G) and M(G) have their ordinary meaning.

There is a (left) fundamental unitary operator W on L?*(G) ® L?(G) which sat-
isfies the pentagonal relation WiaWi3Was = Wo3Wio and unitarily implements the
coproduct A on L*(G) via the formula A(z) = W*(1 ® z)W. Using W one has

Co(G) = {[dRw)W :w e B(LQ((G))*}H'”7 and one can define the antipode of G as
the (generally only densely defined) linear operator S on Co(G) (or L*°(G)) satisfying

the identity (S ® id)W = W* informally. The antipode admits a polar decomposition
S = RorT_;; where R is an antiautomorphism of L>°(G) (the unitary antipode) and
{7t }ter is a one-parameter group of automorphisms (the scaling group). In the case of
a locally compact group, the scaling group is trivial and the antipode is the antiauto-
morphism sending a function f € Co(G) to the function s — f(s1). Using the antipode



1318 M. Brannan, S.-G. Youn / Journal of Functional Analysis 276 (2019) 1813-1337

S one can endow the convolution algebra L'(G) with a densely defined involution by
considering the norm-dense subalgebra L} (G) of L'(G) consisting of all w € L*(G) for
which there exists an wf € LY(G) with (w#, z) = (w, S(x)*) for each x € D(S). It is
known from [16] and Section 2 of [18] that L}(G) is an involutive Banach algebra with
involution w ~ w¥ and norm ||w||y = max{|jw]|, [|w*|}.

Associated to any locally compact quantum group G is its dual locally compact
quantum group @, whose associated algebras, coproduct, and fundamental unitary are
given by Co(@) = [w@W :w € BILAG)).} | € B(ILA(G)), L=(G) = Co(@)” in
B(L*(G)), A(z) = W*(1®a)W, and W = SW*E. Then in fact W € M(Co(G)®Co(G)),

A

and the Pontryagin duality theorem asserts that the bidual quantum group G is canon-
ically identified with the original quantum group G. One says that a locally compact
quantum group G is compact if Cy(G) is unital, and discrete if G is compact, which is
equivalent to Cy(G) being a direct sum of matrix algebras.

For a locally compact quantum group G, we can always assume that the left and
right Haar weights are related by ¥ = ¢ o R, where R is the unitary antipode. If the
left and right Haar weights ¢ and i of G coincide then we say that G is unimodular.
In general, the failure of ¥ to be left-invariant is measured by the modular element,
which is a strictly positive element § affiliated with L°°(G) satisfying the identities
A(d) =d® 6 and ¢¥(-) = p(d 3.5 %). Compact quantum groups are always unimodular,
and the corresponding Haar weight can always be chosen to be a state. Although discrete
groups are always unimodular, discrete quantum groups need not be. We recall that a
locally compact quantum group G is said to be of Kac type (or a Kac algebra) if G has
trivial scaling group, and Roy; = o_ R, where (0¢); is the modular automorphism group
associated to . For discrete quantum groups G, being of Kac type is equivalent to the
traciality of the Haar state on G.

The Fourier transform on L*(G) is given by A = F : LY(G) — Co(G),w
(w ® id)(W). Also, it extends to an onto isometry F» : L%(G) — L2(G). More
precisely, Z = {:c € ng,‘Elz(p € LYG) (y* 2 @) (@),11(c) = (T, ¥)12(6) VY € ng,} and
{)\(zgo)’x € I} form norm-dense cores for L*(G) and Lz(@) respectively and for any

€L, ||lzllpe@ = ||)\(I<p)||L2(@) by definition of the dual Haar weight @.
For an element £ of an Hilbert space H, we will often use Bra-ket notation (¢| €
B(H,C) and |£) € B(C, H) defined by

& :nw— &y forall n € H and |£) : z — 2 for all z € C.

In particular, (¢|n) = (n, &)y for all £,n € H. Also, we denote by X: H® H - H® H
the swap operator £ ® & — & ® &;.



M. Brannan, S.-G. Youn / Journal of Functional Analysis 276 (2019) 1813-1337 1319

2.2. Completely bounded representations and corepresentation operators

Let H be a fixed Hilbert space. Recall that there is a bijective correspondence be-
tween completely bounded representations 7 : L'(G) — B(H) and operators V €
L>®(G)®B(H) C B(L?*(G) ® H) satisfying the identity (A ® id)V = Vj3Va3. Such oper-
ators V are called corepresentations. The association m <— V is given by

m(w) = (w®id)V (w € LY(G)),

and we have ||7||., = |V||. We call a representation 7 : L*(G) — B(H) a x-representation
if its restriction to the %-subalgebra Lé (G) is involutive in the usual sense. In this case, 7 is
automatically completely contractive. There is a bijective correspondence between non-
degenerate *-representations of Lt (G) and unitary corepresentations. Moreover, any uni-
tary corepresentation V actually belongs to the multiplier algebra M (Cy(G) ® K(H)) C
L*>°(G)®B(H). Two representations 7 : L'(G) — B(H,) and o : L'(G) — B(H,) are
called similar (or equivalent) if there exists an invertible T € B(H,, H,) such that
o =Tom(-)oT 1. At the level of corepresentations, this is equivalent to saying that
V, = (id®T)V,(id®T ). We say that a unitary corepresentation V € M(Cy(G)®K (H))
is irreducible if {T' € B(H) : Tw(-) =n() T} ={T € B(H) : 1®T)V=V(1T)} =CL

Keeping in line with what is now standard terminology, we will often refer to unitary
corepresentations V € M(Cy(G) ® K(H)) (and also the corresponding #-representations
7 : LY(G) — B(H)) as unitary representations of G.

Remark 2.1. As mentioned in the introduction, not every bounded representation
7 : LY(G) — B(H) is automatically completely bounded [5,4]. For such represen-
tations, there does not exist a corresponding (bounded) corepresentation operator
V e L>*(G)®B(H)

2.8. Amenability and co-amenability

We recall here the basic terminology and facts on (co-)amenability for quantum
groups.

Definition 2.2.

1. A locally compact quantum group G is called amenable if there exists a state m €
L>(G)* such that

m(w ®id)A = w(1)m for all w € L'(G).

We call such a state m a left-invariant mean on L>*(G).
2. A locally compact quantum group G is called co-amenable if there exists a state
€ : Cp(G) — C such that
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(ld ® E)A = ich(G).

Such a state € is called a co-unit for Cy(G). Equivalently, co-amenability is defined
as the existence of a net (§;); € L*(G) of unit vectors such that

lim W (& ©€) = & @€l L2 (gypr2) — O for each € € L*(G),
where W € B(L*(G) ® L*(G)) is the multiplicative unitary.

Remark 2.3. It is well-known that co-amenability of G implies amenability of G [1].

For a net (¢;); € L*(G) such that hijW(gj ®&) —¢; ®§‘ oG 0 for each

¢ € L*(G), we may assume that the net (@, ¢,); converges to lim @, ¢, € B(L*(G))*
. e

with respect to the weak *-topology (thanks to the Alaoglu’s theorem). Then one has

lim ﬁjf;vfj

! =€ and hjm We, ¢,

= ’[’)’]/7
L (G)

Co(G)

~

where € is the co-unit for Cy(G) and m is a left invariant mean on L>(G).
Indeed, for any w € L}(G) and = € L*°(G) we have

lin e, ¢, (w © i) (A(@)) = lim(w & e, ¢, )V (1@ )W)

o~ —~

= lim(@e, ¢, @ w)(W(zx ® 1)W™)
J

— lim i, ¢, () (1)
2.4. Crossed products as locally compact quantum groups

In this subsection we briefly recall how the von Neumann algebraic crossed product
L>°(N) x4 H is understood as a locally compact quantum group, where o : H — Aut(N)
is a continuous group homomorphism. Given any such «, there always exists a group
homomorphism ¢ : H — (0, 00) such that

[ f@de = [ st

for all h € H and f € L'(N).

Given an action «, we also denote by « : L>®(N) — L*°(H x N) the corresponding
s-homomorphism defined by (a(g))(h,n) = g(ap(n)) for all h € H and n € N. On the
von Neumann algebraic crossed product

L®(G) = L®(N) xq H = (a(L¥(N)) U(VN(H) ® 1)),
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there exists a natural multiplicative unitary W € B(L?(H x N x H x N)), making
L>°(N) %, H into a locally compact quantum group, which is given by

(W*(f))(h1,m1,ha,m2) = f(hz_lhlanlah27ah;1h1(n1)n2) hi,ha € H, ny,nz € N.

Then A(x) = W*(1 ® z)WW gives the comultiplication and G = (L*°(G), A) turns out to
be of Kac type (see [Corollary 3.6.17, [31]]). In this case, 7 : L°(H x N) — L*°(H x N),
given by

(T(f))(hvn) = f(h7 ah(n))v

is a *-automorphism, but generally it is not an isometry on L2(H x N). However, using
the function h — t(h), we are able to get an isometry 7o : L2(H x N) — L*(H x N)
defined by

=

(72(f)) (B, n) = f(h, cn(n))t(h)z.

On the dual side, the underlying von Neumann algebra is
L®(G) = L™ (H)®VN(N)
and the corresponding multiplicative unitary is given by W = SW*s.
Thanks to [22] and [10], we have the following characterization of amenability for the
dual of the crossed product G = (L*(N) x, H, A):
G amenable <= H amenable <= G co — amenable.
Moreover, we can give explicit descriptions of a net satisfying

H}in W&k ®&) = & D&l L2 (mxnwmxny =0VE € L*(H x N).

Proposition 2.4. Let N be discrete, H be amenable and choose a net (fi); € L?>(H) such
that

i [ 1fi(hoh) ~ () dh =0
H

uniformly for hg on compact subsets of H. Then
1izm W (fi @ Xex ®E) = fi @ Xen @&l 2casnxmxny =0

for each € € L*(H x N).
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Proof. We may assume that & € C.(H x N). Since / ’fz hythy) — fi(hy) ’2 dhy converges

H
to 0 uniformly for hy on supp(§),

. * 2
hgn [W*(fi @ Xenx ®E) — [i @ Xen ®£||L2(H><N><H><N)

= 11111 / | fi(hg ' h1)é(ha,ma) — fi(h1)&(ha, n2)|2 dhidhadns

_hm/ €(ha,n2)|? /|f2 Sthi) — fi hl\ dhidhadng = 0. O

HXN

2.5. Completely bounded similarity degree

In [24], G. Pisier analyzed the notion of “similarity degree” for completely bounded
representations of completely contractive Banach algebras in relation to the Kadison
similarity problem and Dixmier’s problem for discrete groups. In Pisier’s original work,
there were certain assumptions made on the existence of units in the algebras under
consideration, and later N. Spronk verified that Pisier’s techniques work in general [28].
Let us collect some results of [24] and [28] that are necessary for our work.

Definition 2.5. Let A be a completely contractive Banach algebra and suppose that A
admits at least one injective completely contractive representation A : A — B(H)).

1. We say that A has the completely bounded similarity property if every completely
bounded homomorphism = : A — B(H,) admits an invertible T' € B(H) such that
T o7(-) o T~1 is completely contractive.

2. Suppose that a completely contractive Banach algebra A has the completely bounded
similarity property. The completely bounded similarity degree d.;(A) is defined as
the infimum of « € (0, 00) satisfying that every completely bounded homomorphism
7w : A— B(H,) admits an invertible T' € B(H,) such that

()T om(-) o T~ is completely contractive

O 17 ||T_1|| < K ||r||, for some universal constant K > 0.

Remark 2.6. For every completely contractive Banach algebra with the completely
bounded similarity property, the existence of such a € [1,00) is known. Moreover, the
completely bounded similarity degree d.,(A) is always a natural number.

Let us now take A = L!(G) with the convolution product x and let ¢ be the smallest
cardinality of a dense subset of L'(G). For each a > 1, define Hom, as the set of all
non-degenerate homomorphisms 7 : L(G) — B(H,) with |||, < a and dim(H,) < c.
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We equip L' (G) with the norm structure
lzll, = sup [I7(2)lpm,)
mE€Hom,

—_~—

for all z € LY(G) and define L1(G)

norm ||-||,. From now on we consider L(G)

a

as the completion of L'(G) with respect to the
as a subalgebra of @ B(H,) in the

m€Hom,
obvious way, and equip it with the natural operator subspace structure coming from this

a

inclusion.
We denote by ¢, : L'(G) — L'(G), the natural embeddings and define multiplication
maps

—~—

MN,q : Ll(G)N®h = LYG),, 21 ® - @ TN = ta(T1 % % TN)
and
my : LHG)N®r C'O(((A})7 T1Q - QN+ Nay %+ *xN),

where ®;, denotes the Haagerup tensor product. These maps are completely bounded
with [[myal, < a® and lmnl < 1.

Let us suppose that G is co-amenable and A = L!(G) has the Day-Dixmier property
with dey(L'(G)) < 7. Then A; = C4(G) = Cy(G) since every completely contractive
representation is a *-representation and ¢, : L'(G) — Iﬁ@)a extends to a completely
bounded map j, : Co(G) — l%a, A(f) = ta(f), with [|ja]l 4 < Ka?.

Proposition 2.7.
Suppose that G is co-amenable, G has the Day-Dizmier property and my
LY G)N®n — Cy(G) is a complete surjection, i.e. there exists K > 0 such that

Ball(M, (Co(G))) C K (id, ® my)(Ball(M, (L' (G)N€"))) for all n € N.

Then, for any completely bounded representation m : L'(G) — B(H,), there exists an
invertible T € B(H,) such that

(a)T om(:) o T ! is a % —representation
_ N
TN |7 < K 7l -

—~—

Proof. Since j, omy =myq: LH(G)N® — L1(G)

a’

lalley < K llja o mnlley = K [Imy.all, < Ka™.
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Now, for any completely bounded representation 7 : L'(G) — B(H,), the extension

—_—~—

7 : LY(G), — B(H,) exists as a completely contractive homomorphism for a = ||7||,.

Then 703, : Co(G) — B(H,) has completely bounded norm less than Ka". Since Cy(G)
is of course an operator algebra, there exists an invertible T' € B(H,) such that

(a) To[Foja(-)]oT " is complete contractive and

() T || 77| < Ka.

Moreover, T o [7 0 j,(-)] o T7! is a x-homomorphism since every contractive homo-
morphism on a C*-algebra is automatically a *-homomorphism [23]. Finally we have
that

(a) Tom()oT ' = (To[Foja(-)]oT ") oNisa % —representation and
) |77 < Kl ©

3. Compact quantum groups without the Day—Dixmier property

In this section, we will establish that the Day—Dixmier property does not generally
hold within the category of compact quantum groups. In other words, the role of associ-
ated anti-representation 7 highlighted in [4] is indispensable. We begin by recalling some
facts about unitary representations of compact quantum groups.

Let G be a compact quantum group, and denote by Irr(G) the collection of equiv-
alence classes of irreducible unitary representations of G under the relation of unitary
equivalence. For each a € Irr(G) we fix a representative u® € M(Cy(G) ® K(H,)) =
Co(G) ® B(H,). We write n, = dim H, < oo for the dimension of a. By fixing an
orthonormal basis (€;)1<j<n, C Ha, we can then write u® = [uf}] € My, (Co(G)). For
each o € Irr(G), there exists a positive invertible Q, € B(H,) with the properties that
Tr(Qn) = Tr(Q,*1) and QéuTQ; Pisa unitary irreducible representation of G [29]. The
quantity d, = Tr(Qs) = Tr(Q; 1) is called the quantum dimension of a.

Now let us suppose that G is a compact quantum group with the Day—Dixmier prop-
erty, i.e. (a) every completely contractive representation of L!(G) is a *-representation
and (b) every completely bounded representation of L!(G) is similar to a *-representation
(which is automatically completely contractive [4]). Then due to [28, Theorem 4.2.8]
and [24, Corollary 2.4], there exists K,v > 0 with the property that every completely
bounded representation 7 : L'(G) — B(H,) admits an invertible T' € B(H,) such that
Tomw(-)o T is a srepresentation and ||T|| |77 < K ||x|,.

Let u® = (u] ;)1<ij<n, € L®(G)@M,,, be associated with a completely bounded
representation m, : L'(G) — M, satisfying

Imalle, = ||WHL°C(G)®MM < nj.
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Then there exists T, € M,,, such that || T, | |7 || £ K-n2 and T,uaT,; ' is a unitary
1 1

irreducible corepresentation and we know that Q2uaQ. 2 is also a unitary irreducible
corepresentation. By Schur’s lemma and the assumption of irreducibility, for each « €
Irr(G), there exists a unitary U, € M, and a constant ¢, € C such that

UsTo = cq - Qg

We denote by A\, and A%, ... the smallest and largest eigenvalues of (), respectively

for each a € Irr(G). Then we have

% = ||To|l || T ]| € Kn2Y for all a € Irr(G).

min

This implies that

Aa
do < NaApge < Navas < Kznfﬂ*‘l for all @ € Irr(G).

mazx
min

Theorem 3.1. Let G be a compact quantum group satisfying the Day—Dizxmier property
and suppose that the function o +— n, has subexponential growth, i.e.

lim sup ( Z ni) =1
oo a€lrr(G):u® <on®

for any finite dimensional representation v. Then G is of Kac type.

Proof. By [Corollary 4.5, [6]], it is sufficient to show that the function a — d, has the
subexponential growth.
For any finite dimensional representation v, we have

Z di < Z K4ni'y+2

a€lrr(G):ua<vn® a€lrr(G)ue<yn®

SK' YL et

a€lrr(G):u*<vn®

Therefore,

. i, a 4yt1
limsup ( Z d?)» <limsup K= ( Z n2)w =1
oo a€lrr(G):u® <vn® e a€lrr(G):u® <vn®

for any finite dimensional representation v. Hence we reach the conclusion. O
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Corollary 3.2. Let G be a simply connected semisimple compact Lie group. Then the
Drinfeld-Jimbo q-deformations Gy with 0 < q < 1 does not have the Day-Dizxmier

property.

Proof. For G = G, with 0 < ¢ < 1, the function @ — n, has polynomial growth [21
Theorem 2.4.7]. O

3.1. An explicit example

Despite the applicability of the above theorem to many concrete examples of compact
quantum groups, we find ourselves unable at the present time to construct so many
explicit examples of completely bounded representations 7 : L'(G) — B(H,) that fail to
be similar to x-representations, even for the simplest g-deformations, like Woronowicz’s
SU,4(2) quantum group. Let us content ourselves for the time being with at least one
explicit example, obtained from an infinite tensor product of SU,(2)’s

Let G = H SU,, (2) with ¢, — 0 as n — oo and denote by a,, and ¢,, the standard

neN
generators of SU,, (2) in G = H SU,, (2). Then
neN

V= @(n >€L°° > — P M,)

neN neN

is a representation of G, so that its contragredient

54 ay —(4nCn
V — n
@5 o)

neN
a —(nCn
c an,

< sup([|ag, || + [lgnenll + llenll + llanl)
neN

also satisfies (A ® id)V = V13V 3. Note that

= sup

V10,0 = 510

S% 3%

M3 (L>(G))

<A4.

Next, we note that the operator V has dense range. Indeed, let H = @,y C? and
Hy = @,.,<, C*> C H. Then we have that V € B(L*(G) ® H), U, (L*(G) ® Hy,) is
dense in L2(G)® H, and V restricts to an invertible linear map on U, (L*(G) ® Hy,) with
algebraic inverse given by
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-1
ar  —qnc
X — :L n*n
neN Cn n
_ dn 0 Gy Cn qvtl 0
S\ 0 gt )\ —ane a, 0 g

_ @ Qp Q%Cn
_qglc* CL*

n n

In particular, V has dense range.

Since V is non-degenerate, it follows that the associated completely bounded repre-
sentation 7 : L'(G) — B(H) is non-degenerate. To see this, let H, C H be the essential
space of . Then for any n € HX, £ € H, a, B € L?(G), we have

0= <7T(wa,ﬁ)€777> = <V(O¢ & 5)5 ﬂ ® 77>7

implying that S ®@n € (V(L?(G) ® H))* =0 for all B € L?(G). In particular, n = 0.
To conclude, we now appeal to [4, Theorem 6.1], which says that = will be similar to

a *-representation iff 7 is completely bounded iff V' is invertible in B(L?(G)® H). But if
an  dncn
N =gt a
defined above should extend to an element of L°°(G)®B(H ). This, however, is impossible
because || X|| g2 oH) = Hq;chHLw(G) = ¢, ! — o0 as n — oo. Thus the completely

we assume that V' is invertible, then the algebraic inverse X = @@

bounded representation 7 corresponding to V is not similar to a *-representation.

4. New examples of amenable Kac-type quantum groups with the Day—Dixmier
property

The results of Section 3 imply that, if we want to classify the amenable locally compact
quantum groups with the Day—Dixmier property, it is reasonable to first restrict our
attention to the framework of Kac algebras. The main purpose of this section is to exhibit
several new classes of examples that do have the Day—Dixmier property. In particular,
we will establish the affirmative answer on all of amenable discrete quantum groups of
Kac type and the duals of certain crossed products.

As a first step in this direction, we will show that the idea of [Theorem 6.2, [4]] (which
shows that if G is compact and of Kac type, then any completely bounded representation
7 LYG) — B(H,) is similar to a x-representation without any a priori complete
boundedness assumptions on 7) is still valid for the much wider class of examples where
G is of Kac type, the left Haar weight ¢ is tracial and G is co-amenable. Of course, in
this case, the antipode S coincides with the unitary antipode R and Ro * = %o R.

Theorem 4.1. Let G be a locally compact quantum group of Kac type such that G is co-
amenable and the left Haar weight ¢ is tracial. Suppose that the net (£;); (coming from
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the definition of co-amenability in Section 2.3) is chosen to be (§;); C n, N Z(L>*(G))
where Z(-) denotes the center. Then for any completely bounded representation w :
LY(G) — B(H,) there exists an invertible T € B(H,) such that

(@) Tom(-)oT™!is a * —representation

O ITHITH < 7l -

Proof. We will use the notation and adapt the methodology presented in [4, Theo-
rem 6.1] to the cases under consideration. Given a completely bounded representation
7 : LYG) — B(H,), let us define a homomorphism ® : A(L'(G)) C Co(G) —
B(Hz), A(w) = m(w). Our goal is to show that ® is bounded with [|®[,,
Iz,

For any «, 8 € H, and w € L*(G), as in the proof of [4, Theorem 4.5], we have

(@)= B(H,) =

{e(AMw))ev, B) b, | = [{m(w)ex, B) ., |

(TT 5w Lm(@) L)

= (T3 5)", w1~ (e) 11(0)|

<(T§,,@)*/\(@sj,5j)’wﬁ>L°@(G>,L1<G) ;

where (g, ¢;); C Ll(@) is the bounded approximate identity given in the theorem
statement, and T 5 = (id ® wa,)Vr = (1 @ (B))Vz(1 ® |a)) € L>*(G) is the coeffi-
cient function of the corepresentation V; € L>*(G)®B(H,) associated with the given
completely bounded representation 7 : L'(G) — B(H,).

Next, we show the existence of the functionals

;= Z@aigj,}z(b;)gj € L'(G)

which have the property that (777 5)*:\\({[\15],§J) = X(@J) e, (fi): is an orthonormal
basis of H.. a (16 )V (165 3)) amed R(57) = R(1L® ()Va(1 & o). To chock
this, note that

S o ) < (S loislae)) (S IREG ) )
Moreover,
Zm%%>2@w%>
= We, ¢, (Z_ a;a;)
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=T, (D (L (B)Va(1@ |fi){(fil)V7 (1 8))

= (g, ¢, ®wp ) (VaVy)
< WVaVEILIBIZ < Il 18112

and
> IBG)E 2y = Zw% )R(b)))
= Zso bi)&;& R(DY))
= D P& RE)Rb)E)

= ('@ﬁmﬁj °oR® wa,a)(Vw*VW>
2 2
< lmlle el
Hence w; = ), Wa,¢, r(v)e, absolutely converges in Ll(@) with norm less than
™ e} . e fact that MNi@e, ¢.) = AN@;) now ollows exactly as in |4,
2 Bl The fact that (7 5)* M@, ¢,) = A foll 1 4

Theorem 4.7].
Therefore, we have

(m(w)a, B, | = 1i§n <(T2,5)*/\(@&j,£j)7wﬂ>Lw(G),L1(G)‘

= 1ijm Z Wa, €5, R(b:) 5] >Loo(G) L1(G)

= li]r_n (A(w)™, Z ﬁ}aifjaR(b'i)*§j>L°C(@),L1(@)

2
< M)l gy @) Imlle el 11

which shows ||<I>|| ||7r||3b Finally, since ® extends to a bounded homomorphism on
Co(G), and Cy(G) is a nuclear C*-algebra, there exists an invertible T' € B(H;) such
that

(@) To®(-)oT !isa % —homomorphism
®) ITIIT < 2l < il -

Then the formula [T o ®(-) o T ' oA =Tom(-)oT~! completes the proof. O

Using Theorem 4.1 as our starting point, we now describe some new examples of
quantum groups with the Day—Dixmier property.
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4.1. Example 1: amenable discrete quantum groups of Kac type

Outside the realm of classical amenable groups and certain duals of locally compact
groups, the only subclass of truly “quantum” groups known to satisfy the Day—Dixmier
property are the compact quantum groups of Kac type. Therefore, it is quite natural to
first consider the dual setting: discrete quantum groups of Kac type.

It is known that any co-amenable compact quantum group G of Kac type ad-
mits a contractive approximate identity (ie,¢,); € B(L*(G)). of Ll(@) such that
& € Z(L>®(G)) N L*(G). See for example [2, Theorem 7.3] and [15, Theorem 5.15].
Hence we can conclude from Theorem 4.1 that if G is an amenable discrete quantum
group of Kac type, then L*(G) has the similarity property with d.,(L}(G)) < 4.

Remark 4.2. Even if we suppose that G is a discrete quantum group and that v €
M, (L>*(G)) is a finite dimensional unitary representation of G, it is not clear that its
contragradient u® = u = (u; ;)1<i,j<n is invertible. This question was raised in [27] and
affirmatively answered by [7].

The Day—Dixmier property provides a generalized view on infinite dimensional repre-
sentations. Let us suppose that G is an amenable discrete quantum group of Kac type and
V € L*°(G)®B(H) is a unitary representation of G. Then the Day—Dixmier property im-
plies that its contragredient V¢ is automatically invertible with H(VC)_1H Lo (G)EB(H) =
”VC”AI%J“’(G)@B(F) (in fact, < ||VC|\200(G)@B(H), as shown in the Appendix) whenever V¢

exists in L>®(G)®B(H).
4.2. Ezample 2: some Fourier algebras of crossed products L (N) x, H

For now, we have the affirmative answer for amenable locally compact groups G, a
large class of their duals @, compact Kac algebras and amenable discrete Kac algebras.
In this subsection, we will present new examples which are non-compact, non-discrete,
non-commutative and non-cocommutative in general.

Recall that for the crossed product quantum group G = (L>®°(N) %, H, A), the von
Neumann algebra associated with the dual G is

L®(G) = L™®(H)®VN(N) C B(L*(H x N))
and the left Haar weight on LOO(@) is given by © = oy ® ¢ where ¢y is the left Haar
measure on L*°(H) and @y n(ny is the Plancherel weight on VN (). Note that the left
Haar weight ¢ on LOO(@) is tracial if and only if N is unimodular.
Under the condition that H is amenable and N is discrete, Proposition 2.4 tells us
that a contractive approximate identity of L'(G) is described by a net

(wfi®1VN(N),fi®1VN(N))i = ((pr(H)('fz?) ® @VN(N)('))%
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where (wy, 7, )i is a contractive approximate identity in A(H), and @1~ m), Pvn(n) are
left Haar weights on L>°(H) and VN (N) respectively. Moreover,

~

(i @ lyny)i € Z(L7(G)) = L= (H)@Z(VN(N)).

Hence we can conclude that the Fourier algebra A(G) = Ll(@) of the crossed product
G = (L*°(N) x4 H,A) has the Day-Dixmier property with d.,(A(G)) < 4 whenever N
is discrete and H is amenable.

Appendix A. Similarity degree

Under the assumption of the Day—Dixmier property for G, calculating the completely
bounded similarity degree d.,(L'(G)) is worthy of itself since du,(L*(G)) < 2 char-
acterizes the amenability of G in the category of locally compact groups G. On the
cocommutative side, one of the main results of [19] is dey(A(G)) < 2 for a large class of
locally compact groups. In this appendix, we will show that d.,(L*(G)) < 2 whenever G
is one of the following:

e A compact quantum group of Kac type.
e An amenable discrete quantum group of Kac type
o The dual of G = (L*°(N) x4 H,A) where N is discrete and H is amenable.

The key tool here is in the following theorem.

Theorem A.1. Let G be a locally compact quantum group and we fix two contractions
Ty, Ty € B(L?(G)). Also, suppose that there exists a contractive approzimate identity
(we; ;)i € LY(G) such that

lim p(|W(Ty @ i)W (T2 @ id)(&) ©1) — |&) @ 1) = 0

for any positive . € M(G).. Then we have that the multiplication map my : LY(G) @y,
LY(G) = Co(G) is a complete quotient map.

Proof. It is sufficient to show that the adjoint map T’ = mj} : M(G) — L®(G)®., L=(G),
n— (ld ®id ® /J)(Wszg),

is a complete isometry.
Recall that L>(G) ®.p, L>(G) is completely isometrically embedded into

B(L*(G)) ®en B(L*(G)) = CB?(B(L*(G)), B(L*(G)))

under the identification
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WA® B): T+ ATB for all A, B € B(L*(G)).

Hence, for any n € N and p = (fij)i<ij<n € M,(M(G)), (id, ® I)(u) =
(T(ui,5))1<i,j<n can be realized as an element in CB(B(L*(G)), M,,(B(L*(G)))), which
is given by

T (C(pig))(T))1<i,j<n-

First of all, a map ®7, 1, : B(L2(G)) — B(L3(G)), A — Ty AT} is a complete con-

~

traction for any contractions Ty, To € B(L?*(G)). Moreover, (id® &1, 1,) : B(L*(G)) ®cn
B(L?*(G)) — B(L?*(G)) ®n B(L?*(G)) is also a complete contraction. Secondly, for any

~

m,n € N, uw = (ui7j)1§i7j§n S Mn(M(G)) and X = ($s,t)1§s,t§m € Baﬂ(Mm(Co(G))),
we have that

(i & D) (1)
> [[(idy ® id ® Br, 2,) (i © D)X r mze @)

= ”[(ldn & ((id & (I)T1,T2) © F))(N)](X)Han(B(p(@)))
= [((d @ pi j) (W (s @ 1d)(T1 @ )W (T2 @ id)))1<ij<nas<s.e<mlln,, (B(r2@)))

= [[(6a @ m)ER @ SW (T @ W (T @ a)h<iszmaznrcnl, o

> sup | ((wg, 5, @ 1)) (ER (e )W (1) © )W (T @ i) i yn <o

> tim | 2s (] © DEB (20, SW (T3 @ IW (T3 9id)) (66 © 1)1t jnsasn]|,

Note that each p; ; is expressed as

12 034
pij = wij — wy ; +i(wy; — wi ;)

for some positive linear functionals wij € M(@)Jr, 1 <1 < 4. Now, by the assumption,
we know that for each 1 <4,5 <n,1 <s;t<m

lin g5 (((e] © D(EA (0 SIW (T @ i)W (T3 @1d)(Ig) @ 1) — [68) @ 1)|

w5 (] & DEA @) S (T @ dW(T: 91d)(16) © 1) - [6) @ 1)

N
Il
-



M. Brannan, S.-G. Youn / Journal of Functional Analysis 276 (2019) 1813-1337 1333

Therefore, we can conclude that

[(idn © T) ()|

> lim H(u@j(((nkl ©1)(SA(25.0)2(|6k) ® 1))))1§i,jgn,1§s,t§mH

mn

> tim || (2,5 ((1 @ () (B(20) (1 ® 16001t jna sz

mn

= lim H((Mm‘ ® wék,nk,)(A(»’Us,t)))1§i,j§n,1§s,t§mH
= lim [|((pi g * wep e ) (s, 1<ij<na<si<mlag,,,
= || (1ij(xse) 1<ij<ni<st<mlip,, -

Since X = (x5,)1<s,t<m I8 arbitrary, we can see that (id, ® I')(u) is an isometry, so
that I" is a complete isometry. 0O

And now back to examples:
A.1. Ezxample 1: compact or amenable discrete quantum groups of Kac type

Throughout this subsection, we assume that G is a compact or amenable discrete Kac
algebra. In both cases, the (left and right) Haar weight ¢ = ¢ on L*>°(G) is tracial and
the antipode S = R extends to a unitary operator on L?(G). Here we will make use of
the Sweedler notation A(x Z T(1) ® T(2) and the swap operator o : B(H; ® Hy) —
B(Hy® Hy), Th @ Ty T2 ® T1.

For any Ay (n), Ay (') € n, C L*(G),

W(R@id)W(R®id)(A, ® A,)(n @ 1)
=SW*(id ® R)W*(id ® R)(A, ® Ay) (' @ n)
=EW*(id ® R)(Ay @ Ay )(A(R(n) (' @ 1))
=SW*(id @ R)(A, @ Ay) (Y R(ne)n' © R(n)))
=SW* (A ® Ap) (D Rn)n’ @ 1))

=(Ay, ®Ay) Zﬁ(z) @ nyR(ney)n').-

Therefore, we can see that for any n € n, C L?(G) we have
W(R®idW(R@id)(n)@1) =Y lne) @ naRs)-

Lemma A.2. Let G be a co-amenable compact quantum group of Kac type or a discrete
quantum group of Kac type. Ifn € n, C L*(G) satisfies A(n) = (c0A)(n) = > n2)®@na),
then
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W(R ® 1d) (Reid)(In)®1) =|n) 1.

Proof. By the assumption and the co-associativity of A, we have that

(id @ A)(A(n) = (A @id)(A(n) =D n@) @ nE) D 1a)-

Then

> 0 @ e Rn) = (id @ m)(id ® id @ R)(id ® A)(A(n))

=({de)(An) =ne1,

where m is the multiplication of L°(G), €/(a) := €(a)1 and € is the co-unit of G. Then,
by applying id ® R again, we have

Z”@) @nyR(ng) =n®1l. O

Corollary A.3. Any compact quantum group of Kac type or amenable discrete quantum
group of Kac type has the Day-Dizmier property with dep(LY(G)) < 2.

Proof. In view of Lemma A.2 and Theorem A.1, it is sufficient to show that, in both cases,
there exists a net (¢;); € ng € L*(G) such that I€ill 2y = 1 A) = Z(gi)@) ® (&)
for all i and (wg, ¢, ); is a contractive approximate identity of L*(G).

For the case of G a compact quantum group of Kac type, the unit of L(G) is given
by WEo

— 3(.EO .
8.0:E80 = ?(-Ep o) when we write

L°o ) =L — @ L =07 — @ span{Eﬁjzlgi,jgna}.
a€clrr(G) aclrr(G)

Here, @ = 0 means the trivial representation. Furthermore, we have

AES) =Y (Bo) @ (Bo)o) = Y. Z - E5 O E,

a€lrr(G) ¢,5=1 Mo

where @ is the conjugate of a. Hence A(E&O) = Z(Egjo)(g) ® (Egjo)(l).
Secondly, let us suppose that G is an amenable discrete quantum group of Kac type.
It is equivalent to that G is a co-amenable compact quantum group of Kac type [26], [30].

In this case, a contractive approximated identity of L* (((A}) is given as the form we, ¢, with
Na

& € span{xq : @ € Irr(G) } where x, = Zuo‘ for each « € Irr(G) [2], [15]. Moreover,
i=1

for & = Z cha, we have
a€lrr(G)
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Na
AG)= Y. D> ufpouy;.

a€lrr(G) j.k=1

Hence again we have 3(&) = Z(&)(g) ®(&)ay. O
A.2. Ezample 2: Some Fourier algebras of crossed products

Suppose that N is discrete and H is amenable. Also, we choose a net (f;); C L*(H)
such that

/ | fi(hoh) — f;(h)|> dh — 0 uniformly for hy on compact subsets of H.
H

o~ o~

Now the operator T' := W(m o (Jg ® Jy) @ id ® id)W (o (Jg ® Jy) ®id®id) €
B(L?>(H x N x H x N)) is computed by

(W(rso (Ju® Jy) ®id @id)W(r 0 (Jg ® Jy) ®id ®1id)f)(hy,n1, ha,n2)

= f(hh Oéh1—1h2 (ng)nlahl_th (n51)7 hg, TLQ)

for any f € L(H x N x H x N).
In particular,

T = [T(1f) © [Xen) © 1) = i) © [Xen) @ 1> = 0 in B(L*(H x N))

In other words, for any € € L2(H x N), | fi)®|xex ) @& is a fixed vector for the operator T,
so that we get the similarity result.

Corollary A.4. Suppose that N is discrete and H is amenable. Then the dual G of the
crossed product G = (L*°(N) Xo H,A) has the Day-Dizmier property with dep(A(G)) =
deo(LY(G)) < 2.

A.8. The case of completely bounded similarity degree 1

One might wonder when d.,(L*(G)) = 1 happens. As in [24], [28], [19], it is reasonable
to conjecture that d, (L' (G)) = 1 if and only if the underlying quantum group G is finite,
i.e. L*°(G) is finite dimensional.

Indeed, if G has the Day-Dixmier property with d.,(L'(G)) = 1, then the map m; :
LY(G) — A, = C¥(G) becomes an isomorphism by [Theorem 4.2.9, [28]]. Note that m4
is nothing but the universal Fourier transform A* and L!(G) has a bounded approximate
identity.

Since G is co-amenable and L!(G) is Arens regular, G is discrete by [Theorem 3.10,
[14]]. Then the surjectivity of m; = A* : LY(G) — Cé‘(@) implies G is finite. In
conclusion, a locally compact quantum group G has the Day—Dixmier property with
dey(LY(G)) = 1 if and only if G is finite.
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