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1. Introduction

For a locally compact group G, the question of the unitarizability of uniformly 

bounded representation has quite a long history. The beginning of this story started with 

the following general result of Day and Dixmier, extending previous work of Sz.-Nagy 

[9] on the particular case G = Z.

Theorem 1.1 (Day–Dixmier Theorem [8], [11]). If a locally compact group G is amenable, 

then every uniformly bounded Hilbert space representation π : G → B(Hπ) admits an 

invertible T ∈ B(Hπ) such that T ◦ π(·) ◦ T −1 is a unitary representation.

Since there is a bijective correspondence between uniformly bounded representations 

π : G → B(Hπ) and bounded representations π : L1(G) → B(Hπ) (of the associated 

convolution algebra L1(G)), the above celebrated work can be concisely described in 

terms of the so-called similarity property for L1(G). More precisely, we have that

1. every contractive representation π : L1(G) → B(Hπ) is a ∗-representation, and

2. under the assumption of amenability of G, every bounded representation π : L1(G) →

B(Hπ) is similar to a ∗-representation.

The question of whether the converse to the Day–Dixmier theorem holds is called 

Dixmier’s problem and it is still open (although there are some notable partial results 

[12], [25], [13] and [20]). A remarkable partial answer to Dixmier’s problem was ob-

tained by G. Pisier [24] for discrete groups and N. Spronk [28] for the general case by 

requiring a norm condition ‖T‖
∥∥T −1

∥∥ ≤ ‖π‖
2
. In other words, amenability of G is 

equivalent to L1(G) having the similarity property with (completely bounded) similarity 

degree dcb(L1(G)) ≤ 2. For more details, see Subsection 2.5.

Within the framework of locally compact quantum groups, it is natural to ask whether 

such known results generalize. More precisely, let G = (L∞(G), Δ, ϕ, ψ) be a locally 

compact quantum group and let L1(G) = L∞(G)∗ denote the associated convolution 

algebra.

Question 1. Is every (completely) contractive representation π : L1(G) → B(Hπ) auto-

matically a ∗-representation?

Question 2. Is every (completely) bounded representation π : L1(G) → B(Hπ) similar to 

a ∗-representation, at least when G is amenable?

In the above questions, we impose the condition that our representations are com-

pletely bounded maps. This is natural when working with genuine quantum groups, since 

for ordinary groups G, all bounded representations π : L1(G) = MAX(L1(G)) → B(Hπ)

are automatically completely bounded. Moreover, in the quantum case, any representa-

tion of L1(G) that is similar to a ∗-representation is automatically completely bounded. 
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We also note that the general assumption of complete boundedness on a representa-

tion π : L1(G) → B(Hπ) is not redundant: [5] established the existence of examples of 

bounded π : L1(G) → B(Hπ) which are not completely bounded. See also [4]. This leads 

us to the following definition.

Definition 1.2. Let G be a locally compact quantum group. We say that G (or L1(G)) 

has the Day–Dixmier property if the answers to Questions (1)–(2) are affirmative.

The first investigation into the Day–Dixmier property for quantum groups was in 

[3]. Here, the authors considered the Fourier algebra A(G) of a locally compact group 

G, which corresponds to the convolution algebra of the co-commutative dual quantum 

group Ĝ (which turns out to always be amenable). There, they showed that the Day–

Dixmier property on A(G) holds for all SIN (= small invariant neighborhood) groups. 

They also observed more generally that for any locally compact group G, and any com-

pletely bounded representation π : A(G) → B(Hπ), Question 2 has an affirmative answer 

if and only if a certain related map π̌ is completely bounded. Here, π̌ is the (anti-)rep-

resentation of A(G) defined by w �→ π(w̌) where w̌(g) = w(g−1).

For genuine locally compact quantum groups, [4] generalized the affirmative answer of 

Question 2 on A(G) to the case of amenable locally compact quantum groups. More pre-

cisely, they showed that any completely bounded representation π : L1(G) → B(Hπ) for 

which ‖π̌‖cb < ∞ is similar to a ∗-representation. Moreover, for compact quantum groups 

G of Kac type, the authors of [4] showed that Day–Dixmier theorem holds in full gener-

ality without assumption on π̌. Here, π̌ is the (a priori unbounded) anti-representation 

of L1(G) defined by w �→ π((w∗)�) where 〈(w∗)�, x〉 = 〈w, S(x)〉 and S is the antipode

map.

In summary: the results of [3,4] show that, with the exception of some small classes of 

amenable quantum groups (i.e., classical amenable groups, duals of SIN groups, compact 

Kac algebras, ...), establishing the Day–Dixmier property seems to require one to not 

only have complete boundedness of a given representation π, but also complete bound-

edness of the affiliated map π̌. It is quite natural to ask whether the additional complete 

boundedness assumption on π̌ is in fact required. Quite recently, [19] showed that the 

complete boundedness of π̌ was indeed automatic for a large class of Fourier algebras. 

More precisely, they tackled the similarity problem for A(G) using tools more directly 

connected to Pisier’s machinery [24], proving that for a broad class of groups, A(G) has 

the Day–Dixmier property with completely bounded similarity degree dcb(A(G)) ≤ 2. 

This work provides significant evidence to suggest that complete boundedness assump-

tions on π̌ are indeed unnecessary, at least for group duals Ĝ.

Our first main objective in this paper is to show (by means of explicit examples) 

that the appearance of the anti-representation π̌ in the analysis of the Day–Dixmier 

property is indeed essential when working in the framework of general locally compact 

quantum groups. More precisely, in Theorem 3.1, we show that any compact quantum 

group G with the Day–Dixmier property whose dual Ĝ has subexponential growth must 



1316 M. Brannan, S.-G. Youn / Journal of Functional Analysis 276 (2019) 1313–1337

be of Kac type. This result, in particular, implies (cf. Corollary 3.2) that if G is any 

compact simply connected semisimple Lie group, then its Drinfeld–Jimbo deformation 

Gq (0 < q < 1) can never have the Day–Dixmier property. Based on these results, we 

conjecture that every amenable locally compact quantum group with the Day–Dixmier 

property is automatically of Kac type.

Our second objective in this paper is to establish some new classes of amenable Kac-

type quantum groups which have the Day–Dixmier property. The examples include all 

of amenable discrete quantum groups of Kac-type and the duals of certain crossed prod-

ucts that are non-compact, non-discrete, non-commutative and non-cocommutative in 

general.

All of these new examples arise as consequences of Theorem 4.1, which follows along 

the same line of attack as the prior works [3,4] where the above assumptions allow one to 

show that a given completely bounded representation π : L1(G) → B(H) automatically 

extends to a completely bounded homomorphism Φ from the enveloping C∗-algebra 

Cu
0 (Ĝ) into B(H) satisfying ‖Φ‖cb ≤ ‖π‖2

cb. Since by coamenability Cu
0 (Ĝ) = C0(Ĝ) is 

nuclear and nuclear C∗-algebras have completely bounded similarity degree 2, the fact 

that dcb(L1(G)) ≤ 4 easily follows.

One would hope for a better result in Theorem 4.1, namely that dcb(L1(G)) ≤ 2. We 

explain in Appendix A, using different techniques more in line with [24,19], how one 

can obtain dcb(L1(G)) ≤ 2 if G is a compact Kac algebra or an amenable discrete Kac 

algebra. We also note that dcb(L
1(G)) = 1 if and only if L∞(G) is finite dimensional in 

those cases.

The remainder of the paper is organized as follows: In Section 2, we introduce some of 

the basics of the theory of locally compact quantum groups and the completely bounded 

similarity degree that are needed for our work. Then we show in Section 3 that the 

Day–Dixmier property does not generally hold within the category of compact quantum 

groups, and in Section 4 we establish the Day–Dixmier property for a class of examples 

with G is amenable and of Kac type with tracial left Haar weight. Finally, in Appendix A, 

we explain how to improve the similarity degree for some of the examples of Section 4.
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2. Preliminaries

2.1. Locally compact quantum groups

We refer the reader to [17,18,31] and the book [29] for an introduction to operator 

algebraic locally compact quantum groups. Let us recall that a (von Neumann algebraic) 

locally compact quantum group is a von Neumann algebra L∞(G) equipped with a coas-

sociative coproduct and left and right Haar weights. The coproduct is a unital normal 

∗-homomorphism Δ : L∞(G) → L∞(G)⊗L∞(G) satisfying the coassociativity condition

(Δ ⊗ id)Δ = (id ⊗ Δ)Δ.

The left and right Haar weights are normal semifinite faithful weights ϕ and ψ on L∞(G)

such that for every w ∈ L∞(G)+
∗ one has

ϕ((w ⊗ id)Δ(a)) = ϕ(a)w(1)

for all a ∈ L∞(G)+ with ϕ(a) < ∞ and

ψ((id ⊗ w)Δ(a)) = ψ(a)w(1)

for all a ∈ L∞(G)+ with ψ(a) < ∞. The predual of L∞(G) is written as L1(G), and 

becomes a completely contractive Banach algebra with respect to the convolution product

w1 � w2 = (w1 ⊗ w2) ◦ Δ, w1, w2 ∈ L1(G).

Associated to G is a canonical weakly dense sub-C∗-algebra of L∞(G), written C0(G), 

which plays the role of the C∗-algebra of continuous functions vanishing at infinity in 

the case of ordinary groups. Also, we denote by M(G) the dual space of C0(G). The 

coproduct restricts to a unital ∗-homomorphism Δ : C0(G) → M(C0(G) ⊗ C0(G)). The 

algebras C0(G) and L∞(G) are standardly represented on the GNS Hilbert space L2(G)

associated to the left Haar weight. In the case of a locally compact group, the notations 

L∞(G), L1(G), C0(G), L2(G) and M(G) have their ordinary meaning.

There is a (left) fundamental unitary operator W on L2(G) ⊗ L2(G) which sat-

isfies the pentagonal relation W12W13W23 = W23W12 and unitarily implements the 

coproduct Δ on L∞(G) via the formula Δ(x) = W ∗(1 ⊗ x)W . Using W one has 

C0(G) = {(id ⊗ w)W : w ∈ B(L2(G))∗}
‖·‖

, and one can define the antipode of G as 

the (generally only densely defined) linear operator S on C0(G) (or L∞(G)) satisfying 

the identity (S ⊗ id)W = W ∗ informally. The antipode admits a polar decomposition 

S = R ◦ τ−i/2 where R is an antiautomorphism of L∞(G) (the unitary antipode) and 

{τt}t∈R is a one-parameter group of automorphisms (the scaling group). In the case of 

a locally compact group, the scaling group is trivial and the antipode is the antiauto-

morphism sending a function f ∈ C0(G) to the function s �→ f(s−1). Using the antipode 
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S one can endow the convolution algebra L1(G) with a densely defined involution by 

considering the norm-dense subalgebra L1
�(G) of L1(G) consisting of all w ∈ L1(G) for 

which there exists an w� ∈ L1(G) with 〈w�, x〉 = 〈w, S(x)∗〉 for each x ∈ D(S). It is 

known from [16] and Section 2 of [18] that L1
� (G) is an involutive Banach algebra with 

involution w �→ w� and norm ‖w‖� = max{‖w‖, ‖w�‖}.

Associated to any locally compact quantum group G is its dual locally compact 

quantum group Ĝ, whose associated algebras, coproduct, and fundamental unitary are 

given by C0(Ĝ) = {(w ⊗ id)W : w ∈ B(L2(G))∗}
‖·‖

⊆ B(L2(G)), L∞(Ĝ) = C0(Ĝ)′′ in 

B(L2(G)), Δ̂(x) = Ŵ ∗(1 ⊗x)Ŵ , and Ŵ = ΣW ∗Σ. Then in fact W ∈ M(C0(G) ⊗C0(Ĝ)), 

and the Pontryagin duality theorem asserts that the bidual quantum group 
̂̂
G is canon-

ically identified with the original quantum group G. One says that a locally compact 

quantum group G is compact if C0(G) is unital, and discrete if Ĝ is compact, which is 

equivalent to C0(G) being a direct sum of matrix algebras.

For a locally compact quantum group G, we can always assume that the left and 

right Haar weights are related by ψ = ϕ ◦ R, where R is the unitary antipode. If the 

left and right Haar weights ϕ and ψ of G coincide then we say that G is unimodular. 

In general, the failure of ψ to be left-invariant is measured by the modular element, 

which is a strictly positive element δ affiliated with L∞(G) satisfying the identities 

Δ(δ) = δ ⊗ δ and ψ(·) = ϕ(δ
1
2 · δ

1
2 ). Compact quantum groups are always unimodular, 

and the corresponding Haar weight can always be chosen to be a state. Although discrete 

groups are always unimodular, discrete quantum groups need not be. We recall that a 

locally compact quantum group G is said to be of Kac type (or a Kac algebra) if G has 

trivial scaling group, and Rσt = σ−tR, where (σt)t is the modular automorphism group 

associated to ϕ. For discrete quantum groups G, being of Kac type is equivalent to the 

traciality of the Haar state on Ĝ.

The Fourier transform on L1(G) is given by λ = F : L1(G) → C0(Ĝ), w �→

(w ⊗ id)(W ). Also, it extends to an onto isometry F2 : L2(G) → L2(Ĝ). More 

precisely, I =
{

x ∈ nϕ

∣∣∣∃xϕ ∈ L1(G) 〈y∗,x ϕ〉L∞(G),L1(G) = 〈x, y〉L2(G) ∀y ∈ nϕ

}
and 

{
λ(xϕ)

∣∣∣x ∈ I
}

form norm-dense cores for L2(G) and L2(Ĝ) respectively and for any 

x ∈ I, ‖x‖L2(G) = ‖λ(xϕ)‖L2(Ĝ) by definition of the dual Haar weight ϕ̂.

For an element ξ of an Hilbert space H, we will often use Bra-ket notation 〈ξ| ∈

B(H, C) and |ξ〉 ∈ B(C, H) defined by

〈ξ| : η �→ 〈η, ξ〉H for all η ∈ H and |ξ〉 : z �→ zξ for all z ∈ C.

In particular, 〈ξ|η〉 = 〈η, ξ〉H for all ξ, η ∈ H. Also, we denote by Σ : H ⊗ H → H ⊗ H

the swap operator ξ1 ⊗ ξ2 �→ ξ2 ⊗ ξ1.
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2.2. Completely bounded representations and corepresentation operators

Let H be a fixed Hilbert space. Recall that there is a bijective correspondence be-

tween completely bounded representations π : L1(G) → B(H) and operators V ∈

L∞(G)⊗B(H) ⊆ B(L2(G) ⊗ H) satisfying the identity (Δ ⊗ id)V = V13V23. Such oper-

ators V are called corepresentations. The association π ←→ V is given by

π(w) = (w ⊗ id)V (w ∈ L1(G)),

and we have ‖π‖cb = ‖V ‖. We call a representation π : L1(G) → B(H) a ∗-representation 

if its restriction to the ∗-subalgebra L1
�(G) is involutive in the usual sense. In this case, π is 

automatically completely contractive. There is a bijective correspondence between non-

degenerate ∗-representations of L1(G) and unitary corepresentations. Moreover, any uni-

tary corepresentation V actually belongs to the multiplier algebra M(C0(G) ⊗ K(H)) ⊆

L∞(G)⊗B(H). Two representations π : L1(G) → B(Hπ) and σ : L1(G) → B(Hσ) are 

called similar (or equivalent) if there exists an invertible T ∈ B(Hπ, Hσ) such that 

σ = T ◦ π(·) ◦ T −1. At the level of corepresentations, this is equivalent to saying that 

Vσ = (id⊗T )Vπ(id⊗T −1). We say that a unitary corepresentation V ∈ M(C0(G) ⊗K(H))

is irreducible if {T ∈ B(H) : Tπ(·) = π(·)T} = {T ∈ B(H) : (1 ⊗T )V = V (1 ⊗T )} = C1.

Keeping in line with what is now standard terminology, we will often refer to unitary 

corepresentations V ∈ M(C0(G) ⊗ K(H)) (and also the corresponding ∗-representations 

π : L1(G) → B(H)) as unitary representations of G.

Remark 2.1. As mentioned in the introduction, not every bounded representation 

π : L1(G) → B(H) is automatically completely bounded [5,4]. For such represen-

tations, there does not exist a corresponding (bounded) corepresentation operator 

V ∈ L∞(G)⊗B(H)

2.3. Amenability and co-amenability

We recall here the basic terminology and facts on (co-)amenability for quantum 

groups.

Definition 2.2.

1. A locally compact quantum group G is called amenable if there exists a state m ∈

L∞(G)∗ such that

m(w ⊗ id)Δ = w(1)m for all w ∈ L1(G).

We call such a state m a left-invariant mean on L∞(G).

2. A locally compact quantum group G is called co-amenable if there exists a state 

ε : C0(G) → C such that
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(id ⊗ ε)Δ = idC0(G).

Such a state ε is called a co-unit for C0(G). Equivalently, co-amenability is defined 

as the existence of a net (ξj)j ⊆ L2(G) of unit vectors such that

lim
j

‖W (ξj ⊗ ξ) − ξj ⊗ ξ‖L2(G)⊗L2(G) → 0 for each ξ ∈ L2(G),

where W ∈ B(L2(G) ⊗ L2(G)) is the multiplicative unitary.

Remark 2.3. It is well-known that co-amenability of Ĝ implies amenability of G [1]. 

For a net (ξj)j ⊆ L2(G) such that lim
j

∥∥∥Ŵ (ξj ⊗ ξ) − ξj ⊗ ξ
∥∥∥

L2(G)⊗L2(G)
= 0 for each 

ξ ∈ L2(G), we may assume that the net (ŵξj ,ξj
)j converges to lim

j
ŵξj ,ξj

∈ B(L2(G))∗

with respect to the weak ∗-topology (thanks to the Alaoglu’s theorem). Then one has

lim
j

ŵξj ,ξj

∣∣∣
C0(Ĝ)

= ε̂ and lim
j

ŵξj ,ξj

∣∣∣
L∞(G)

= m,

where ε̂ is the co-unit for C0(Ĝ) and m is a left invariant mean on L∞(G).

Indeed, for any w ∈ L1(G) and x ∈ L∞(G) we have

lim
j

ŵξj ,ξj
((w ⊗ id)(Δ(x))) = lim

j
(w ⊗ ŵξj ,ξj

)(W ∗(1 ⊗ x)W )

= lim
j

(ŵξj ,ξj
⊗ w)(Ŵ (x ⊗ 1)Ŵ ∗)

= lim
j

ŵξj ,ξj
(x)w(1).

2.4. Crossed products as locally compact quantum groups

In this subsection we briefly recall how the von Neumann algebraic crossed product 

L∞(N) �α H is understood as a locally compact quantum group, where α : H → Aut(N)

is a continuous group homomorphism. Given any such α, there always exists a group 

homomorphism t : H → (0, ∞) such that

∫

N

f(x)dx =

∫

N

f(αh(x))t(h)dx

for all h ∈ H and f ∈ L1(N).

Given an action α, we also denote by α : L∞(N) → L∞(H × N) the corresponding 

∗-homomorphism defined by (α(g))(h, n) = g(αh(n)) for all h ∈ H and n ∈ N . On the 

von Neumann algebraic crossed product

L∞(G) = L∞(N) �α H = (α(L∞(N)) ∪ (V N(H) ⊗ 1))′′,
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there exists a natural multiplicative unitary W ∈ B(L2(H × N × H × N)), making 

L∞(N) �α H into a locally compact quantum group, which is given by

(W ∗(f))(h1, n1, h2, n2) = f(h−1
2 h1, n1, h2, αh−1

2 h1
(n1)n2) h1, h2 ∈ H, n1, n2 ∈ N.

Then Δ(x) = W ∗(1 ⊗ x)W gives the comultiplication and G = (L∞(G), Δ) turns out to 

be of Kac type (see [Corollary 3.6.17, [31]]). In this case, τ : L∞(H ×N) → L∞(H × N), 

given by

(τ(f))(h, n) = f(h, αh(n)),

is a ∗-automorphism, but generally it is not an isometry on L2(H × N). However, using 

the function h �→ t(h), we are able to get an isometry τ2 : L2(H × N) → L2(H × N)

defined by

(τ2(f))(h, n) = f(h, αh(n))t(h)
1
2 .

On the dual side, the underlying von Neumann algebra is

L∞(Ĝ) = L∞(H)⊗V N(N)

and the corresponding multiplicative unitary is given by Ŵ = ΣW ∗Σ.

Thanks to [22] and [10], we have the following characterization of amenability for the 

dual of the crossed product G = (L∞(N) �α H, Δ):

Ĝ amenable ⇐⇒ H amenable ⇐⇒ G co − amenable.

Moreover, we can give explicit descriptions of a net satisfying

lim
k

‖W ∗(ξk ⊗ ξ) − ξk ⊗ ξ‖L2(H×N×H×N) = 0 ∀ξ ∈ L2(H × N).

Proposition 2.4. Let N be discrete, H be amenable and choose a net (fi)i ⊆ L2(H) such 

that

lim
i

∫

H

|fi(h0h) − fi(h)|
2

dh = 0

uniformly for h0 on compact subsets of H. Then

lim
i

‖W ∗(fi ⊗ χeN
⊗ ξ) − fi ⊗ χeN

⊗ ξ‖L2(H×N×H×N) = 0

for each ξ ∈ L2(H × N).
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Proof. We may assume that ξ ∈ Cc(H×N). Since 

∫

H

∣∣fi(h
−1
2 h1) − fi(h1)

∣∣2
dh1 converges 

to 0 uniformly for h2 on supp(ξ),

lim
i

‖W ∗(fi ⊗ χeN
⊗ ξ) − fi ⊗ χeN

⊗ ξ‖
2
L2(H×N×H×N)

= lim
i

∫

H×H×N

∣∣fi(h
−1
2 h1)ξ(h2, n2) − fi(h1)ξ(h2, n2)

∣∣2
dh1dh2dn2

= lim
i

∫

H×N

|ξ(h2, n2)|
2

∫

H

∣∣fi(h
−1
2 h1) − fi(h1)

∣∣2
dh1dh2dn2 = 0. �

2.5. Completely bounded similarity degree

In [24], G. Pisier analyzed the notion of “similarity degree” for completely bounded 

representations of completely contractive Banach algebras in relation to the Kadison 

similarity problem and Dixmier’s problem for discrete groups. In Pisier’s original work, 

there were certain assumptions made on the existence of units in the algebras under 

consideration, and later N. Spronk verified that Pisier’s techniques work in general [28]. 

Let us collect some results of [24] and [28] that are necessary for our work.

Definition 2.5. Let A be a completely contractive Banach algebra and suppose that A

admits at least one injective completely contractive representation λ : A → B(Hλ).

1. We say that A has the completely bounded similarity property if every completely 

bounded homomorphism π : A → B(Hπ) admits an invertible T ∈ B(Hπ) such that 

T ◦ π(·) ◦ T −1 is completely contractive.

2. Suppose that a completely contractive Banach algebra A has the completely bounded 

similarity property. The completely bounded similarity degree dcb(A) is defined as 

the infimum of α ∈ (0, ∞) satisfying that every completely bounded homomorphism 

π : A → B(Hπ) admits an invertible T ∈ B(Hπ) such that

(a)T ◦ π(·) ◦ T −1 is completely contractive

(b) ‖T‖
∥∥T −1

∥∥ ≤ K ‖π‖
α
cb for some universal constant K > 0.

Remark 2.6. For every completely contractive Banach algebra with the completely 

bounded similarity property, the existence of such α ∈ [1, ∞) is known. Moreover, the 

completely bounded similarity degree dcb(A) is always a natural number.

Let us now take A = L1(G) with the convolution product � and let c be the smallest 

cardinality of a dense subset of L1(G). For each a ≥ 1, define Homa as the set of all 

non-degenerate homomorphisms π : L1(G) → B(Hπ) with ‖π‖cb ≤ a and dim(Hπ) ≤ c.
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We equip L1(G) with the norm structure

‖x‖a = sup
π∈Homa

‖π(x)‖B(Hπ)

for all x ∈ L1(G) and define L̃1(G)a as the completion of L1(G) with respect to the 

norm ‖·‖a. From now on we consider L̃1(G)a as a subalgebra of 
⊕

π∈Homa

B(Hπ) in the 

obvious way, and equip it with the natural operator subspace structure coming from this 

inclusion.

We denote by ιa : L1(G) ↪→ L̃1(G)a the natural embeddings and define multiplication 

maps

mN,a : L1(G)N⊗h → L̃1(G)a, x1 ⊗ · · · ⊗ xN �→ ιa(x1 � · · · � xN )

and

mN : L1(G)N⊗h → C0(Ĝ), x1 ⊗ · · · ⊗ xN �→ λ(x1 � · · · � xN ),

where ⊗h denotes the Haagerup tensor product. These maps are completely bounded 

with ‖mN,a‖cb ≤ aN and ‖mN ‖cb ≤ 1.

Let us suppose that Ĝ is co-amenable and A = L1(G) has the Day–Dixmier property 

with dcb(L1(G)) ≤ γ. Then Ã1 = Cu
0 (Ĝ) = C0(Ĝ) since every completely contractive 

representation is a ∗-representation and ιa : L1(G) ↪→ L̃1(G)a extends to a completely 

bounded map ja : C0(Ĝ) → L̃1(G)a, λ(f) �→ ιa(f), with ‖ja‖cb ≤ Kaγ .

Proposition 2.7.

Suppose that Ĝ is co-amenable, G has the Day–Dixmier property and mN :

L1(G)N⊗h → C0(Ĝ) is a complete surjection, i.e. there exists K > 0 such that

Ball(Mn(C0(Ĝ))) ⊆ K(idn ⊗ mN )(Ball(Mn(L1(G)N⊗h))) for all n ∈ N.

Then, for any completely bounded representation π : L1(G) → B(Hπ), there exists an 

invertible T ∈ B(Hπ) such that

(a)T ◦ π(·) ◦ T −1 is a ∗ −representation

(b) ‖T‖
∥∥T −1

∥∥ ≤ K ‖π‖
N
cb .

Proof. Since ja ◦ mN = mN,a : L1(G)N⊗h → L̃1(G)a,

‖ja‖cb ≤ K ‖ja ◦ mN ‖cb = K ‖mN,a‖cb ≤ KaN .
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Now, for any completely bounded representation π : L1(G) → B(Hπ), the extension 

π̃ : L̃1(G)a → B(Hπ) exists as a completely contractive homomorphism for a = ‖π‖cb. 

Then π̃◦ja : C0(Ĝ) → B(Hπ) has completely bounded norm less than KaN . Since C0(Ĝ)

is of course an operator algebra, there exists an invertible T ∈ B(Hπ) such that

(a)
′

T ◦ [π̃ ◦ ja(·)] ◦ T −1 is complete contractive and

(b)
′

‖T ‖
∥∥T −1

∥∥ ≤ KaN .

Moreover, T ◦ [π̃ ◦ ja(·)] ◦ T −1 is a ∗-homomorphism since every contractive homo-

morphism on a C∗-algebra is automatically a ∗-homomorphism [23]. Finally we have 

that

(a) T ◦ π(·) ◦ T −1 = (T ◦ [π̃ ◦ ja(·)] ◦ T −1) ◦ λ is a ∗ −representation and

(b) ‖T ‖
∥∥T −1

∥∥ ≤ K ‖π‖
N
cb . �

3. Compact quantum groups without the Day–Dixmier property

In this section, we will establish that the Day–Dixmier property does not generally 

hold within the category of compact quantum groups. In other words, the role of associ-

ated anti-representation π̌ highlighted in [4] is indispensable. We begin by recalling some 

facts about unitary representations of compact quantum groups.

Let G be a compact quantum group, and denote by Irr(G) the collection of equiv-

alence classes of irreducible unitary representations of G under the relation of unitary 

equivalence. For each α ∈ Irr(G) we fix a representative uα ∈ M(C0(G) ⊗ K(Hα)) =

C0(G) ⊗ B(Hα). We write nα = dim Hα < ∞ for the dimension of α. By fixing an 

orthonormal basis (ej)1≤j≤nα
⊂ Hα, we can then write uα = [uα

ij ] ∈ Mnα
(C0(G)). For 

each α ∈ Irr(G), there exists a positive invertible Qα ∈ B(Hα) with the properties that 

Tr(Qα) = Tr(Q−1
α ) and Q

1
2
αuαQ

− 1
2

α is a unitary irreducible representation of G [29]. The 

quantity dα = Tr(Qα) = Tr(Q−1
α ) is called the quantum dimension of α.

Now let us suppose that G is a compact quantum group with the Day–Dixmier prop-

erty, i.e. (a) every completely contractive representation of L1(G) is a ∗-representation 

and (b) every completely bounded representation of L1(G) is similar to a ∗-representation 

(which is automatically completely contractive [4]). Then due to [28, Theorem 4.2.8]

and [24, Corollary 2.4], there exists K, γ > 0 with the property that every completely 

bounded representation π : L1(G) → B(Hπ) admits an invertible T ∈ B(Hπ) such that 

T ◦ π(·) ◦ T −1 is a ∗-representation and ‖T‖
∥∥T −1

∥∥ ≤ K ‖π‖
γ
cb.

Let uα = (u∗
i,j)1≤i,j≤nα

∈ L∞(G)⊗Mnα
be associated with a completely bounded 

representation πα : L1(G) → Mnα
satisfying

‖πα‖cb = ‖uα‖L∞(G)⊗Mnα
≤ n2

α.
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Then there exists Tα ∈ Mnα
such that ‖Tα‖

∥∥T −1
α

∥∥ ≤ K ·n2γ
α and TαuαT −1

α is a unitary 

irreducible corepresentation and we know that Q
1
2
αuαQ

− 1
2

α is also a unitary irreducible 

corepresentation. By Schur’s lemma and the assumption of irreducibility, for each α ∈

Irr(G), there exists a unitary Uα ∈ Mnα
and a constant cα ∈ C such that

UαTα = cα · Q
1
2
α .

We denote by λα
min and λα

max the smallest and largest eigenvalues of Qα respectively 

for each α ∈ Irr(G). Then we have

√
λα

max

λα
min

= ‖Tα‖
∥∥T −1

α

∥∥ ≤ Kn2γ
α for all α ∈ Irr(G).

This implies that

dα ≤ nαλα
max ≤ nα

λα
max

λα
min

≤ K2n4γ+1
α for all α ∈ Irr(G).

Theorem 3.1. Let G be a compact quantum group satisfying the Day–Dixmier property 

and suppose that the function α �→ nα has subexponential growth, i.e.

lim sup
n→∞

( ∑

α∈Irr(G):uα≤vn⊗

n2
α

) 1
n

= 1

for any finite dimensional representation v. Then G is of Kac type.

Proof. By [Corollary 4.5, [6]], it is sufficient to show that the function α �→ dα has the 

subexponential growth.

For any finite dimensional representation v, we have

∑

α∈Irr(G):uα≤vn⊗

d2
α ≤

∑

α∈Irr(G):uα≤vn⊗

K4n8γ+2
α

≤ K4(
∑

α∈Irr(G):uα≤vn⊗

n2
α)4γ+1.

Therefore,

lim sup
n→∞

(
∑

α∈Irr(G):uα≤vn⊗

d2
α)

1
n ≤ lim sup

n→∞
K

4
n (

∑

α∈Irr(G):uα≤vn⊗

n2
α)

4γ+1
n = 1

for any finite dimensional representation v. Hence we reach the conclusion. �
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Corollary 3.2. Let G be a simply connected semisimple compact Lie group. Then the 

Drinfeld–Jimbo q-deformations Gq with 0 < q < 1 does not have the Day–Dixmier 

property.

Proof. For G = Gq with 0 < q < 1, the function α �→ nα has polynomial growth [21, 

Theorem 2.4.7]. �

3.1. An explicit example

Despite the applicability of the above theorem to many concrete examples of compact 

quantum groups, we find ourselves unable at the present time to construct so many 

explicit examples of completely bounded representations π : L1(G) → B(Hπ) that fail to 

be similar to ∗-representations, even for the simplest q-deformations, like Woronowicz’s 

SUq(2) quantum group. Let us content ourselves for the time being with at least one 

explicit example, obtained from an infinite tensor product of SUq(2)’s.

Let G =
∏

n∈N

SUqn
(2) with qn → 0 as n → ∞ and denote by an and cn the standard 

generators of SUqn
(2) in G =

∏

n∈N

SUqn
(2). Then

V :=
⊕

n∈N

(
an −qnc∗

n

cn a∗
n

)
∈ L∞(G)⊗(�∞ −

⊕

n∈N

M2)

is a representation of G, so that its contragredient

V =
⊕

n∈N

(
a∗

n −qncn

c∗
n an

)

also satisfies (Δ ⊗ id)V = V 13V 23. Note that

∥∥V
∥∥

L∞(G)⊗(
∞−
⊕

n∈N
M2)

= sup
n∈N

∥∥∥∥∥

(
a∗

n −qncn

c∗
n an

)∥∥∥∥∥
M2(L∞(G))

≤ sup
n∈N

(‖a∗
n‖ + ‖qncn‖ + ‖c∗

n‖ + ‖an‖)

≤ 4.

Next, we note that the operator V has dense range. Indeed, let H =
⊕

n∈N
C2 and 

Hk =
⊕

1≤n≤k C
2 ⊂ H. Then we have that V ∈ B(L2(G) ⊗ H), 

⋃
k(L2(G) ⊗ Hk) is 

dense in L2(G) ⊗H, and V restricts to an invertible linear map on 
⋃

k(L2(G) ⊗Hk) with 

algebraic inverse given by
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X =
⊕

n∈N

(
a∗

n −qncn

c∗
n an

)−1

=
⊕

n∈N

(
qn 0

0 q−1
n

) (
an cn

−qnc∗
n a∗

n

) (
q−1

n 0

0 qn

)

=
⊕

n∈N

(
an q2

ncn

−q−1
n c∗

n a∗
n

)

In particular, V has dense range.

Since V is non-degenerate, it follows that the associated completely bounded repre-

sentation π : L1(G) → B(H) is non-degenerate. To see this, let He ⊆ H be the essential 

space of π. Then for any η ∈ H⊥
e , ξ ∈ H, α, β ∈ L2(G), we have

0 = 〈π(wα,β)ξ, η〉 = 〈V (α ⊗ ξ), β ⊗ η〉,

implying that β ⊗ η ∈ (V (L2(G) ⊗ H))⊥ = 0 for all β ∈ L2(G). In particular, η = 0.

To conclude, we now appeal to [4, Theorem 6.1], which says that π will be similar to 

a ∗-representation iff π̌ is completely bounded iff V is invertible in B(L2(G) ⊗ H). But if 

we assume that V is invertible, then the algebraic inverse X =
⊕

n∈N

(
an q2

ncn

−q−1
n c∗

n a∗
n

)

defined above should extend to an element of L∞(G)⊗B(H). This, however, is impossible 

because ‖X‖B(L2(G)⊗H) ≥
∥∥q−1

n c∗
n

∥∥
L∞(G)

= q−1
n → ∞ as n → ∞. Thus the completely 

bounded representation π corresponding to V is not similar to a ∗-representation.

4. New examples of amenable Kac-type quantum groups with the Day–Dixmier 

property

The results of Section 3 imply that, if we want to classify the amenable locally compact 

quantum groups with the Day–Dixmier property, it is reasonable to first restrict our 

attention to the framework of Kac algebras. The main purpose of this section is to exhibit 

several new classes of examples that do have the Day–Dixmier property. In particular, 

we will establish the affirmative answer on all of amenable discrete quantum groups of 

Kac type and the duals of certain crossed products.

As a first step in this direction, we will show that the idea of [Theorem 6.2, [4]] (which 

shows that if G is compact and of Kac type, then any completely bounded representation 

π : L1(G) → B(Hπ) is similar to a ∗-representation without any a priori complete 

boundedness assumptions on π̌) is still valid for the much wider class of examples where 

G is of Kac type, the left Haar weight ϕ is tracial and Ĝ is co-amenable. Of course, in 

this case, the antipode S coincides with the unitary antipode R and R ◦ ∗ = ∗ ◦ R.

Theorem 4.1. Let G be a locally compact quantum group of Kac type such that Ĝ is co-

amenable and the left Haar weight ϕ is tracial. Suppose that the net (ξj)j (coming from 
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the definition of co-amenability in Section 2.3) is chosen to be (ξj)j ⊆ nϕ ∩ Z(L∞(G))

where Z(·) denotes the center. Then for any completely bounded representation π :

L1(G) → B(Hπ) there exists an invertible T ∈ B(Hπ) such that

(a) T ◦ π(·) ◦ T −1 is a ∗ −representation

(b) ‖T ‖
∥∥T −1

∥∥ ≤ ‖π‖
4
cb .

Proof. We will use the notation and adapt the methodology presented in [4, Theo-

rem 6.1] to the cases under consideration. Given a completely bounded representation 

π : L1(G) → B(Hπ), let us define a homomorphism Φ : λ(L1(G)) ⊆ C0(Ĝ) →

B(Hπ), λ(w) �→ π(w). Our goal is to show that Φ is bounded with ‖Φ‖C0(Ĝ)→B(Hπ) ≤

‖π‖2
cb.

For any α, β ∈ Hπ and w ∈ L1(G), as in the proof of [4, Theorem 4.5], we have

|〈Φ(λ(w))α, β〉Hπ
| = |〈π(w)α, β〉Hπ

|

=
∣∣〈T π

α,β , w〉L∞(G),L1(G)

∣∣

=
∣∣〈(T π

α,β)∗, w�〉L∞(G),L1(G)

∣∣

= lim
j

∣∣∣〈(T π
α,β)∗λ̂(ŵξj ,ξj

), w�〉L∞(G),L1(G)

∣∣∣ ,

where (ŵξj ,ξj
)j ⊂ L1(Ĝ) is the bounded approximate identity given in the theorem 

statement, and T π
α,β = (id ⊗ wα,β)Vπ = (1 ⊗ 〈β|)Vπ(1 ⊗ |α〉) ∈ L∞(G) is the coeffi-

cient function of the corepresentation Vπ ∈ L∞(G)⊗B(Hπ) associated with the given 

completely bounded representation π : L1(G) → B(Hπ).

Next, we show the existence of the functionals

ŵj =
∑

i

ŵaiξj ,R(b∗
i )ξj

∈ L1(Ĝ)

which have the property that (T π
α,β)∗λ̂(ŵξj ,ξj

) = λ̂(ŵj). Here, (fi)i is an orthonormal 

basis of Hπ, ai = (1 ⊗ 〈fi|)V
∗

π (1 ⊗ |β〉) and R(b∗
i ) = R((1 ⊗ 〈fi|)Vπ(1 ⊗ |α〉)). To check 

this, note that

∑

i

‖ŵaiξj ,R(b∗
i )ξj

‖L1(Ĝ) ≤
( ∑

i

‖aiξj‖
2
L2(G)

)1/2( ∑

i

‖R(b∗
i )ξj‖

2
L2(G)

)1/2

.

Moreover,

∑

i

‖aiξj‖
2
L2(G) =

∑

i

〈ξj |a∗
i ai|ξj〉

= ŵξj ,ξj
(
∑

i

a∗
i ai)
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= ŵξj ,ξj
(
∑

i

(1 ⊗ 〈β|)Vπ(1 ⊗ |fi〉〈fi|)V
∗

π (1 ⊗ |β〉)

= (ŵξj ,ξj
⊗ wβ,β)(VπV ∗

π )

≤ ‖VπV ∗
π ‖ ‖β‖

2
≤ ‖π‖

2
cb ‖β‖

2

and

∑

i

‖R(b∗
i )ξj‖

2
L2(G) =

∑

i

ŵξj ,ξj
(R(bi)R(b∗

i ))

=
∑

i

ϕ(R(bi)ξjξ∗
j R(b∗

i ))

=
∑

i

ϕ(ξ∗
j R(b∗

i )R(bi)ξj)

= (ŵξj ,ξj
◦ R ⊗ wα,α)(V ∗

π Vπ)

≤ ‖π‖
2
cb ‖α‖

2
.

Hence ŵj :=
∑

i ŵaiξj ,R(b∗
i )ξj

absolutely converges in L1(Ĝ) with norm less than 

‖π‖
2
cb ‖α‖ ‖β‖. The fact that (T π

α,β)∗λ̂(ŵξj ,ξj
) = λ̂(ŵj) now follows exactly as in [4, 

Theorem 4.7].

Therefore, we have

|〈π(w)α, β〉Hπ
| = lim

j

∣∣∣〈(T π
α,β)∗λ̂(ŵξj ,ξj

), w�〉L∞(G),L1(G)

∣∣∣

= lim
j

∣∣∣∣∣〈λ̂(
∑

i

ŵaiξj ,R(bi)∗ξj
), w�〉L∞(G),L1(G)

∣∣∣∣∣

= lim
j

∣∣∣∣∣〈λ(w)∗,
∑

i

ŵaiξj ,R(bi)∗ξj
〉L∞(Ĝ),L1(Ĝ)

∣∣∣∣∣

≤ ‖λ(w)‖C0(Ĝ) ‖π‖
2
cb ‖α‖ ‖β‖ ,

which shows ‖Φ‖ ≤ ‖π‖
2
cb. Finally, since Φ extends to a bounded homomorphism on 

C0(Ĝ), and C0(Ĝ) is a nuclear C∗-algebra, there exists an invertible T ∈ B(Hπ) such 

that

(a) T ◦ Φ(·) ◦ T −1 is a ∗ −homomorphism

(b) ‖T ‖
∥∥T −1

∥∥ ≤ ‖Φ‖
2

≤ ‖π‖
4
cb .

Then the formula [T ◦ Φ(·) ◦ T −1] ◦ λ = T ◦ π(·) ◦ T −1 completes the proof. �

Using Theorem 4.1 as our starting point, we now describe some new examples of 

quantum groups with the Day–Dixmier property.
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4.1. Example 1: amenable discrete quantum groups of Kac type

Outside the realm of classical amenable groups and certain duals of locally compact 

groups, the only subclass of truly “quantum” groups known to satisfy the Day–Dixmier 

property are the compact quantum groups of Kac type. Therefore, it is quite natural to 

first consider the dual setting: discrete quantum groups of Kac type.

It is known that any co-amenable compact quantum group Ĝ of Kac type ad-

mits a contractive approximate identity (ŵξj ,ξj
)j ⊆ B(L2(G))∗ of L1(Ĝ) such that 

ξj ∈ Z(L∞(G)) ∩ L2(G). See for example [2, Theorem 7.3] and [15, Theorem 5.15]. 

Hence we can conclude from Theorem 4.1 that if G is an amenable discrete quantum 

group of Kac type, then L1(G) has the similarity property with dcb(L1(G)) ≤ 4.

Remark 4.2. Even if we suppose that G is a discrete quantum group and that u ∈

Mn(L∞(G)) is a finite dimensional unitary representation of G, it is not clear that its 

contragradient uc = u = (u∗
i,j)1≤i,j≤n is invertible. This question was raised in [27] and 

affirmatively answered by [7].

The Day–Dixmier property provides a generalized view on infinite dimensional repre-

sentations. Let us suppose that G is an amenable discrete quantum group of Kac type and 

V ∈ L∞(G)⊗B(H) is a unitary representation of G. Then the Day–Dixmier property im-

plies that its contragredient V c is automatically invertible with 
∥∥(V c)−1

∥∥
L∞(G)⊗B(H)

≤

‖V c‖
4
L∞(G)⊗B(H) (in fact, ≤ ‖V c‖

2
L∞(G)⊗B(H), as shown in the Appendix) whenever V c

exists in L∞(G)⊗B(H).

4.2. Example 2: some Fourier algebras of crossed products L∞(N) �α H

For now, we have the affirmative answer for amenable locally compact groups G, a 

large class of their duals Ĝ, compact Kac algebras and amenable discrete Kac algebras. 

In this subsection, we will present new examples which are non-compact, non-discrete, 

non-commutative and non-cocommutative in general.

Recall that for the crossed product quantum group G = (L∞(N) �α H, Δ), the von 

Neumann algebra associated with the dual Ĝ is

L∞(Ĝ) = L∞(H)⊗V N(N) ⊆ B(L2(H × N))

and the left Haar weight on L∞(Ĝ) is given by ϕ̂ = ϕH ⊗ ϕ̂N where ϕH is the left Haar 

measure on L∞(H) and ϕ̂V N(N) is the Plancherel weight on V N(N). Note that the left 

Haar weight ϕ̂ on L∞(Ĝ) is tracial if and only if N is unimodular.

Under the condition that H is amenable and N is discrete, Proposition 2.4 tells us 

that a contractive approximate identity of L1(G) is described by a net

(wfi⊗1V N(N),fi⊗1V N(N)
)i = (ϕL∞(H)(·f

2
i ) ⊗ ϕ̂V N(N)(·))i,
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where (wfi,fi
)i is a contractive approximate identity in A(H), and ϕL∞(H), ϕ̂V N(N) are 

left Haar weights on L∞(H) and V N(N) respectively. Moreover,

(fi ⊗ 1V N(N))i ⊆ Z(L∞(Ĝ)) = L∞(H)⊗Z(V N(N)).

Hence we can conclude that the Fourier algebra A(G) = L1(Ĝ) of the crossed product 

G = (L∞(N) �α H, Δ) has the Day–Dixmier property with dcb(A(G)) ≤ 4 whenever N

is discrete and H is amenable.

Appendix A. Similarity degree

Under the assumption of the Day–Dixmier property for G, calculating the completely 

bounded similarity degree dcb(L1(G)) is worthy of itself since dcb(L1(G)) ≤ 2 char-

acterizes the amenability of G in the category of locally compact groups G. On the 

cocommutative side, one of the main results of [19] is dcb(A(G)) ≤ 2 for a large class of 

locally compact groups. In this appendix, we will show that dcb(L
1(G)) ≤ 2 whenever G

is one of the following:

• A compact quantum group of Kac type.

• An amenable discrete quantum group of Kac type

• The dual of Ĝ = (L∞(N) �α H, Δ) where N is discrete and H is amenable.

The key tool here is in the following theorem.

Theorem A.1. Let G be a locally compact quantum group and we fix two contractions 

T1, T2 ∈ B(L2(Ĝ)). Also, suppose that there exists a contractive approximate identity 

(wξi,ηi
)i ⊆ L1(Ĝ) such that

lim
i

μ(|W (T1 ⊗ id)W (T2 ⊗ id)(|ξi〉 ⊗ 1) − |ξi〉 ⊗ 1|
2
) = 0

for any positive μ ∈ M(Ĝ)+. Then we have that the multiplication map m2 : L1(G) ⊗h

L1(G) → C0(Ĝ) is a complete quotient map.

Proof. It is sufficient to show that the adjoint map Γ = m∗
2 : M(Ĝ) → L∞(G) ⊗ehL∞(G),

μ �→ (id ⊗ id ⊗ μ)(W13W23),

is a complete isometry.

Recall that L∞(G) ⊗eh L∞(G) is completely isometrically embedded into

B(L2(Ĝ)) ⊗eh B(L2(Ĝ)) ∼= CBσ(B(L2(Ĝ)), B(L2(Ĝ)))

under the identification
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ι(A ⊗ B) : T �→ ATB for all A, B ∈ B(L2(Ĝ)).

Hence, for any n ∈ N and μ = (μi,j)1≤i,j≤n ∈ Mn(M(Ĝ)), (idn ⊗ Γ)(μ) =

(Γ(μi,j))1≤i,j≤n can be realized as an element in CB(B(L2(Ĝ)), Mn(B(L2(Ĝ)))), which 

is given by

T �→ ((Γ(μi,j))(T ))1≤i,j≤n.

First of all, a map ΦT1,T2
: B(L2(Ĝ)) → B(L2(Ĝ)), A �→ T1AT2 is a complete con-

traction for any contractions T1, T2 ∈ B(L2(Ĝ)). Moreover, (id ⊗ ΦT1,T2
) : B(L2(Ĝ)) ⊗eh

B(L2(Ĝ)) → B(L2(Ĝ)) ⊗eh B(L2(Ĝ)) is also a complete contraction. Secondly, for any 

m, n ∈ N, μ = (μi,j)1≤i,j≤n ∈ Mn(M(Ĝ)) and X = (xs,t)1≤s,t≤m ∈ Ball(Mm(C0(Ĝ))), 

we have that

‖(idn ⊗ Γ)(μ)‖

≥ ‖[(idn ⊗ id ⊗ ΦT1,T2
)((idn ⊗ Γ)(μ))](X)‖Mmn(B(L2(Ĝ)))

= ‖[(idn ⊗ ((id ⊗ ΦT1,T2
) ◦ Γ))(μ)](X)‖Mmn(B(L2(Ĝ)))

= ‖((id ⊗ μi,j)(W (xs,t ⊗ id)(T1 ⊗ id)W (T2 ⊗ id)))1≤i,j≤n,1≤s,t≤m‖Mmn(B(L2(Ĝ)))

=
∥∥∥((id ⊗ μi,j)(ΣΔ̂(xs,t)ΣW (T1 ⊗ id)W (T2 ⊗ id)))1≤i,j≤n,1≤s,t≤m

∥∥∥
Mmn(B(L2(Ĝ)))

≥ sup
k

∥∥∥((wξk,ηk
⊗ μi,j)(ΣΔ̂(xs,t)ΣW (T1 ⊗ id)W (T2 ⊗ id)))1≤i,j≤n,1≤s,t≤m

∥∥∥
Mmn

≥ lim
k

∥∥∥(μi,j((〈ηk| ⊗ 1)(ΣΔ̂(xs,t)ΣW (T1 ⊗ id)W (T2 ⊗ id))(|ξk〉 ⊗ 1)))1≤i,j≤n,1≤s,t≤m

∥∥∥
Mmn

Note that each μi,j is expressed as

μi,j = w1
i,j − w2

i,j + i(w3
i,j − w4

i,j)

for some positive linear functionals wl
i,j ∈ M(Ĝ)+, 1 ≤ l ≤ 4. Now, by the assumption, 

we know that for each 1 ≤ i, j ≤ n, 1 ≤ s, t ≤ m

lim
k

∣∣∣μi,j((〈ηk| ⊗ 1)(ΣΔ̂(xs,t)Σ[W (T1 ⊗ id)W (T2 ⊗ id)(|ξk〉 ⊗ 1) − |ξk〉 ⊗ 1]))
∣∣∣

≤ lim
k

4∑

l=1

∣∣∣wl
i,j((〈ηk| ⊗ 1)(ΣΔ̂(xs,t)Σ[W (T1 ⊗ id)W (T2 ⊗ id)(|ξk〉 ⊗ 1) − |ξk〉 ⊗ 1]))

∣∣∣

≤ lim
k

4∑

l=1

∥∥wl
i,j

∥∥ 1
2

M(Ĝ)+
wl

i,j(|W (T1 ⊗ id)W (T2 ⊗ id)(|ξk〉 ⊗ 1) − |ξk〉 ⊗ 1|
2
)

1
2

= 0.
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Therefore, we can conclude that

‖(idn ⊗ Γ)(μ)‖

≥ lim
k

∥∥∥(μi,j((〈ηk| ⊗ 1)(ΣΔ̂(xs,t)Σ(|ξk〉 ⊗ 1))))1≤i,j≤n,1≤s,t≤m

∥∥∥
Mmn

≥ lim
k

∥∥∥(μi,j((1 ⊗ 〈ηk|)(Δ̂(xs,t)(1 ⊗ |ξk〉))))1≤i,j≤n,1≤s,t≤m

∥∥∥
Mmn

= lim
k

∥∥∥((μi,j ⊗ wξk,ηk
)(Δ̂(xs,t)))1≤i,j≤n,1≤s,t≤m

∥∥∥
Mmn

= lim
k

‖((μi,j � wξk,ηk
)(xs,t))1≤i,j≤n,1≤s,t≤m‖Mmn

= ‖(μi,j(xs,t))1≤i,j≤n,1≤s,t≤m‖Mmn
.

Since X = (xs,t)1≤s,t≤m is arbitrary, we can see that (idn ⊗ Γ)(μ) is an isometry, so 

that Γ is a complete isometry. �

And now back to examples:

A.1. Example 1: compact or amenable discrete quantum groups of Kac type

Throughout this subsection, we assume that G is a compact or amenable discrete Kac 

algebra. In both cases, the (left and right) Haar weight ϕ = ψ on L∞(G) is tracial and 

the antipode S = R extends to a unitary operator on L2(G). Here we will make use of 

the Sweedler notation Δ(x) =
∑

x(1) ⊗ x(2) and the swap operator σ : B(H1 ⊗ H2) →

B(H2 ⊗ H1), T1 ⊗ T2 �→ T2 ⊗ T1.

For any Λϕ(η), Λϕ(η′) ∈ nϕ ⊆ L2(G),

Ŵ (R ⊗ id)Ŵ (R ⊗ id)(Λϕ ⊗ Λϕ)(η ⊗ η′)

=ΣW ∗(id ⊗ R)W ∗(id ⊗ R)(Λϕ ⊗ Λϕ)(η′ ⊗ η)

=ΣW ∗(id ⊗ R)(Λϕ ⊗ Λϕ)(Δ(R(η))(η′ ⊗ 1))

=ΣW ∗(id ⊗ R)(Λϕ ⊗ Λϕ)(
∑

R(η(2))η
′ ⊗ R(η(1)))

=ΣW ∗(Λϕ ⊗ Λϕ)(
∑

R(η(2))η
′ ⊗ η(1))

=(Λϕ ⊗ Λϕ)(
∑

η(2) ⊗ η(1)R(η(3))η
′).

Therefore, we can see that for any η ∈ nϕ ⊆ L2(G) we have

Ŵ (R ⊗ id)Ŵ (R ⊗ id)(|η〉 ⊗ 1) =
∑

|η(2)〉 ⊗ η(1)R(η(3)).

Lemma A.2. Let G be a co-amenable compact quantum group of Kac type or a discrete 

quantum group of Kac type. If η ∈ nϕ ⊆ L2(G) satisfies Δ(η) = (σ◦Δ)(η) =
∑

η(2)⊗η(1), 

then
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Ŵ (R ⊗ id)Ŵ (R ⊗ id)(|η〉 ⊗ 1) = |η〉 ⊗ 1.

Proof. By the assumption and the co-associativity of Δ, we have that

(id ⊗ Δ)(Δ(η)) = (Δ ⊗ id)(Δ(η)) =
∑

η(2) ⊗ η(3) ⊗ η(1).

Then

∑
η(2) ⊗ η(3)R(η(1)) = (id ⊗ m)(id ⊗ id ⊗ R)(id ⊗ Δ)(Δ(η))

= (id ⊗ ε′)(Δ(η)) = η ⊗ 1,

where m is the multiplication of L∞(G), ε′(a) := ε(a)1 and ε is the co-unit of G. Then, 

by applying id ⊗ R again, we have

∑
η(2) ⊗ η(1)R(η(3)) = η ⊗ 1. �

Corollary A.3. Any compact quantum group of Kac type or amenable discrete quantum 

group of Kac type has the Day–Dixmier property with dcb(L
1(G)) ≤ 2.

Proof. In view of Lemma A.2 and Theorem A.1, it is sufficient to show that, in both cases, 

there exists a net (ξi)i ⊆ nϕ̂ ⊆ L2(Ĝ) such that ‖ξi‖L2(Ĝ) = 1, Δ̂(ξi) =
∑

(ξi)(2) ⊗(ξi)(1)

for all i and (wξi,ξi
)i is a contractive approximate identity of L1(Ĝ).

For the case of G a compact quantum group of Kac type, the unit of L1(Ĝ) is given 

by wE0
0,0,E0

0,0
= ϕ̂(·E0

0,0) when we write

L∞(Ĝ) = �∞ −
⊕

α∈Irr(G)

Mnα
= �∞ −

⊕

α∈Irr(G)

span
{

Eα
i,j : 1 ≤ i, j ≤ nα

}
.

Here, α = 0 means the trivial representation. Furthermore, we have

Δ̂(E0
0,0) =

∑
(E0

0,0)(1) ⊗ (E0
0,0)(2) =

∑

α∈Irr(G)

nα∑

i,j=1

1

nα
Eα

i,j ⊗ Eα
i,j

where α is the conjugate of α. Hence Δ̂(E0
0,0) =

∑
(E0

0,0)(2) ⊗ (E0
0,0)(1).

Secondly, let us suppose that G is an amenable discrete quantum group of Kac type. 

It is equivalent to that Ĝ is a co-amenable compact quantum group of Kac type [26], [30]. 

In this case, a contractive approximated identity of L1(Ĝ) is given as the form wξi,ξi
with 

ξi ∈ span {χα : α ∈ Irr(G)} where χα =

nα∑

i=1

uα
i,i for each α ∈ Irr(G) [2], [15]. Moreover, 

for ξi =
∑

α∈Irr(G)

ci
αχα, we have
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Δ̂(ξi) =
∑

α∈Irr(G)

ci
α

nα∑

j,k=1

uα
j,k ⊗ uα

k,j .

Hence again we have Δ̂(ξi) =
∑

(ξi)(2) ⊗ (ξi)(1). �

A.2. Example 2: Some Fourier algebras of crossed products

Suppose that N is discrete and H is amenable. Also, we choose a net (fi)i ⊆ L2(H)+

such that
∫

H

|fi(h0h) − fi(h)|
2

dh → 0 uniformly for h0 on compact subsets of H.

Now the operator T := Ŵ (τ2 ◦ (JH ⊗ JN ) ⊗ id ⊗ id)Ŵ (τ2 ◦ (JH ⊗ JN ) ⊗ id ⊗ id) ∈

B(L2(H × N × H × N)) is computed by

(Ŵ (τ2 ◦ (JH ⊗ JN ) ⊗ id ⊗ id)Ŵ (τ2 ◦ (JH ⊗ JN ) ⊗ id ⊗ id)f)(h1, n1, h2, n2)

= f(h1, αh−1
1 h2

(n2)n1αh−1
1 h2

(n−1
2 ), h2, n2)

for any f ∈ L2(H × N × H × N).

In particular,

∣∣T i
∣∣2

:= |T (|fi〉 ⊗ |χeN
〉 ⊗ 1) − |fi〉 ⊗ |χeN

〉 ⊗ 1|
2

= 0 in B(L2(H × N))

In other words, for any ξ ∈ L2(H ×N), |fi〉 ⊗|χeN
〉 ⊗ξ is a fixed vector for the operator T , 

so that we get the similarity result.

Corollary A.4. Suppose that N is discrete and H is amenable. Then the dual Ĝ of the 

crossed product G = (L∞(N) �α H, Δ) has the Day–Dixmier property with dcb(A(G)) =

dcb(L1(Ĝ)) ≤ 2.

A.3. The case of completely bounded similarity degree 1

One might wonder when dcb(L
1(G)) = 1 happens. As in [24], [28], [19], it is reasonable 

to conjecture that dcb(L
1(G)) = 1 if and only if the underlying quantum group G is finite, 

i.e. L∞(G) is finite dimensional.

Indeed, if G has the Day–Dixmier property with dcb(L
1(G)) = 1, then the map m1 :

L1(G) → Ã1 = Cu
0 (Ĝ) becomes an isomorphism by [Theorem 4.2.9, [28]]. Note that m1

is nothing but the universal Fourier transform λu and L1(G) has a bounded approximate 

identity.

Since G is co-amenable and L1(G) is Arens regular, G is discrete by [Theorem 3.10, 

[14]]. Then the surjectivity of m1 = λu : L1(G) → Cu
0 (Ĝ) implies G is finite. In 

conclusion, a locally compact quantum group G has the Day–Dixmier property with 

dcb(L1(G)) = 1 if and only if G is finite.
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