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Abstract—The magnetoencephalography (MEG) response to
continuous auditory stimuli, such as speech, is commonly de-
scribed using a linear filter, the auditory temporal response
function (TRF). Though components of the sensor level TRFs
have been well characterized, the underlying neural sources
responsible for these components are not well understood. In this
work, we provide a unified framework for determining the TRFs
of neural sources directly from the MEG data, by integrating the
TRF and distributed forward source models into one, and casting
the joint estimation task as a Bayesian optimization problem.
Though the resulting problem emerges as non-convex, we propose
efficient solutions that leverage recent advances in evidence
maximization. We demonstrate the effectiveness of the resulting
algorithm in both simulated and experimentally recorded MEG
data from humans.

I. INTRODUCTION

Neuroimaging experiments designed for probing sensory
information processing in the brain traditionally use repeated
trials of synthetic and transient stimuli [1]. In real world,
however, the brain naturally processes more complex, infor-
mative sensory stimuli that evolves over time in a continuous
fashion. As an example, consider an experiment in which
the subject is listening to a series of repeated tones vs. a
natural setting where the subject is listening to speech. In the
former case, the neural phenomena of interest are isolated by
experiment design, so that the evoked responses can be directly
analyzed as the activation in response to the stimuli. In the later
case, assessing the dependency of the neural response on the
continuous stimuli is not straightforward and is usually carried
out via model-based inference procedures. Previous studies
have shown that for auditory MEG and EEG experiments
under such naturalistic scenarios, the response can be modeled
as a linear convolution of a continuous stimulus variable with a
time-invariant filter [2]-[4], often referred to as the Temporal
Response Function (TRF). The TRFs play a crucial role in
characterizing the temporal structure of auditory information
processing in the brain. For instance, the prominent negative
peak observed in the TRF with a latency of ~ 100 ms has been
shown to be modulated by the attentional state in a competing-
speaker environment [5].
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Although the functional roles of specific components of the
TRF have been studied over the sensor space, the cortical
distributions of the underlying neural responses are not well-
understood. Given that the spatial distribution of the TRF
over neural sources can potentially unveil the brain dynamics
that underlie continuous stimulus processing, existing studies
either project the estimated sensor space TRF components to
the source space using current dipole fitting methods [4], or
use distributed source localization to map the MEG data to
the cortical surface, followed by estimating the TRFs [6].
As a consequence of operating in this two-stage fashion,
the resulting estimates are often highly biased and more
importantly, suffer from spatial leakage (e.g., blurred recon-
struction of focal sources), thus severely limiting the spatial
resolution of the cortical TRF estimates. Even though the
spatial resolution of the state-of-the-art source localization
methods have significantly improved [7]-[10], they require
various prior assumptions that inevitably increases the bias
of the TRF estimates.

To mitigate these shortcomings, here we present a unified
framework for determining the cortical localization of the
TRFs directly from the MEG data, by integrating the TRF
estimation and distributed forward source models into one. To
this end, we model the neural response of each source location
as a linear convolution of its local temporal response function
with the continuous stimulus variables of interest, corrupted
by background brain activity. We then cast the problem of
cortical TRF localization as an optimization problem where the
likelihood of the recorded MEG response is maximized over
all the TRFs, thus eliminating the need for the aforementioned
two-stage procedures. Though the resulting problem turns out
to be non-convex, we provide an efficient coordinate-descent
algorithm leveraging recent advances in evidence maximiza-
tion that yields the solution in a fast and efficient manner.
Finally, we demonstrate the utility of our proposed algorithm
through application to simulated and experimentally recorded
MEG data.

II. PRELIMINARIES AND NOTATIONS

Consider a task in which the subject is listening to a speech
stream. We are interested in assessing the dependency of
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the neural currents evoked at different anatomical locations
in the brain on certain acoustic features of the speech. In
particular, we consider the speech envelope (reflecting the
momentary acoustic power of the speech stimuli) e; as the
main covariate, where ¢t = 1,---,7T denotes the discrete time
indices corresponding to a sampling frequency of fs.

Typical MEG recordings consist of measurements of mag-
netic fields and gradients at different positions over the scalp,
represented as a multidimensional time series. Let /N denote
the number of sensors. We denote the MEG observation at jt
channel at time ¢ by y;;, for 1 <j < N, 1<t <T, and the
measurement vector at time ¢ by y; := [ygl), y,(?), e 7y,EN)]T.
Finally we denote multidimensional time series, consisting of
all MEG measurements in the time window [1,T’] by a matrix
Y = [y1, 92, -, yr)

In a distributed source model, the brain volume is divided
into M voxels, while the primary current in each voxel is
modeled by the dipole moment of a current source placed
at the center of the voxel. Let the dipole moment at the
mt voxel at time ¢ be denoted by a 3D vector jp,; =
[Fm,0,t, Jm,1,t> Jm,2,¢t), and the overall source current vector at
time ¢t by j; = [jlyt,jg_’t,“',j]\/jyt]-r. Similarly, we denote
the neural currents in the time window [1,7] by a matrix
J :=[j1,j2, -+, jr|- Then, the MEG observations Y can be
related to the neural sources via the following forward model:

Y=LJ+W, (D

where L € RN*3M s the lead-field matrix, a mapping
from the source space to the sensor space, and W is the
measurement noise matrix. Typically, M ~ 10® — 10 and
N ~ 102, which make the problem highly under-determined
and necessitate appropriate priors for source estimation.
Following [2]-[4], we model the neural response (dipole
activity) at the m™ source, in the d™ direction, and at time
N, Jm,d,t, as a noise corrupted version of convolution between
the continuous stimulus with a linear time-invariant filter:

Jmdt = (Tm,a) | € + Um ds, 2

for m = 1,2,---,M and d = 0,1,2, where 7,,4 :=
[Tond1, Tm.d2, > Tm.dp]  is the TRF kernel of order [ at
the m'" source, e; := [es,e;_1,--+,¢;_141] " is the stimulus
history, and v, 4 is a nuisance component corresponding
to the background (stimulus-independent) brain activity. The
3D TRFs, T, = [Tm,0, Tm,1, Tm,2], capture the temporal
dependency of the neural currents on the stimulus. Let ® :=
[T1, T2, -+, Ta] " be the TRF matrix formed by stacking the
3D TRFs across the M brain sources, V be the stimulus-
independent neural current matrix and S := [ey, eo, - - -, er] be
the stimulus covariate matrix formed by stacking the stimulus
history vectors in the time window [1,77], so that Eq. (2) takes
the form of the following matrix equation:

J=®S+V. 3)

Our main goal in this work is to directly estimate the TRF
matrix, ®, given the MEG measurement matrix Y, the lead-

field matrix L, and the stimulus covariate matrix S, without
resorting to the existing two-stage procedures [4], [6].

IT1I. PROBLEM FORMULATION
We first assume that the measurement noise has a tem-
porally uncorrelated multivariate Gaussian distribution with
covariance matrix X,,:

1
p(Y[J) o \EMI_T/ZeXp—iHY—LJH;;l )

where |A|g:= /tr {ATBA}. Next, we adopt the following
prior on the stimulus-independent background activity V:

M 1 M
p(VIE) o [T 10"/ exp =5 D IVallf o 9
m=1 m=1

implying that the background dipole activity at the m" voxel
has an independent zero mean Guassian distribution with
unknown 3 x 3 covariance matrix I',,,, so that,

1
p(J|@,T) o 1)~ T 2exp —§HJ - ®S|7., (6)

where the 3M x 3M matrix I' consists of diagonal blocks
given by I';,,’s. Under these assumptions, the joint distribution
of the MEG observation and source currents is given by:

1
p(Y,J|®,T) o<\2w|_T/2exp—§HY —LJ|% .
1
x |07 2exp —5 19 - ®S|2... (]

One can then integrate out J to get the marginal distribution
of the observed MEG matrix, parametrized by the TRF matrix
& and background covariance I':

p(Y|® T) x |%, +LILT|77/2x
1
exp (—§||Y - L<1>S\|§Ew+LFLT),1) ®)

Under this model, if I" were known, the TRF estimation would
amount to the following optimization problem:
1
min oY —L®S|; | pppr)r - 9)
Furthermore, to enforce temporal smoothness of the estimated
TRFs, we represent T, over a space spanned by Gabor
atoms G, ie. Ty g = GO, g or @ = OGT, where © :=
[01.0,01.1,012,020,01r2]". In order to promote temporal
sparsity, the problem in (9) is replaced by the following mixed-
norm regularized optimization problem:

1 P
e §”Y_Les”(Ew+LI‘LT)*1+"7”®H2,1,17 (10)

where S := GTS, and the mixed l51,1 norm is defined as

M L 2 1/2
||®|z,1,1::ZZ( e) |
d=0

m=1 =1

(1D
Note that the objective function in (10) is convex in ® and
thus one can easily solve for ® by standard optimization
techniques. But, this requires the knowledge of I', which
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is generally unknown. So, a suitable approximation to I is
required. One principled way is to estimate both ® and I" from
the observed MEG data by solving the following optimization
problem:

T o1 a2
min 7 log (2, +LTLT) + SIY —LOS|(5 L pppr)-s
+7]H®”2,171. (]2)

If © is known, the minimization in (12) is known as evidence
maximization or empirical Bayes [11]. Unfortunately, the
objective in (12) is not convex in I'. In fact, the first term is a
concave function of I'. Nevertheless, there exist several EM-
based algorithms [12] as well as the ‘Champagne’ algorithm
[9], which aim at estimating I' in problems similar to (12). In
the next section, we present an efficient, recursive coordinate
descent-based algorithm that leverages recent advances in
evidence maximization and proximal gradient methods to
solve the problem in (12).

IV. MAIN ALGORITHM

Since optimization with respect to both ®, I" is not straight-
forward, we instead aim at optimizing the objective in (12)
by alternatingly updating ® and I'. The update rules at the
(r 4+ 1)t step are given as follows:

1) T update: With ® = O fixed, the problem in (12)
reduces to the following optimization problem:

Leom(T),

with C,, := T-1(Y —LOMS)(Y —LOMS)T and =, :=
3, + LTLT. Although the problem is non-convex in T, it
can be solved via another coordinate descent algorithm called
Champagne [9], which solves for I' by recursively updating
a set of auxiliary variables. Though convergence to a global
minimum is not guaranteed, the convergence rate is fast,
the computation cost per iteration is linear in N, and most
importantly, each pass is guaranteed to reduce the cost function
in (13), or leave it unchanged.

2) © update: Minimizing over ® while fixing I' =
TC+Y = arg ming Lg o (T) is relatively straightforward. We
note that the corresponding objective function

. 1 .
min tr(EU Cq,)+log\27,| =: (13)

1
5HL@S*YH;UHN+77||@H2,1.,1 = Lpe+(©) (14)

can be decomposed as the sum of a smooth differentiable

function f(©) := 1|LOS — Y|\;<7,+1),1 and a non-smooth

function ¢g(®) :=7||®||2,1.1, whose proximal operator can be
computed in an efficient manner. Optimization problems with
this structure can be efficiently solved using an instance of
the proximal gradient descent or forward-backward splitting
algorithm [13], [14].

Although the objective function is not convex in (@, T"), the
update steps described above together decrease the objective
in (12) at every iteration, until a fixed-point or limit-cycle is
reached. Intuitively, the ® update step is akin to assigning
sparse kernels to each neural sources that ‘best’ predict the
MEG responses from the stimuli, allowing them to compete

Algorithm 1 TRF Localization from Multiple MEG Trials

1: Input: MEG observations Y* and Covariate matrices, Sk for
k=1,2,---, K; Lead-field matrix, L; Regularizing parameter
7; initial guess ®°; tolerance tol € (0, 10_3), Maximum
Number of outer iterations Ryax € N7T.

2: r=0.
3: repeat
4: for k=1,2,---, K do
5: Compute C,'lf(r):%(Yk—L®<T)Sk)(Yk—L®(T)Sk)T
6: kT — arg min  tr (2;%’;“) + log|3, |
r
st. 8, =%, +L'TL
s T -1
7: Compute Z,{f( = (Bw + LI+ H)LT)
8: end for
9:

IS . 1 =
o' +1):arg®m1nz 5“[;65’“ _ YH;;C(T+1)—1 +1(1©]2,1,1
— o

. unti] 1€ -0, _
10: until e, < tol or » = Rmax.

11: Setr < r+ 1.
12: Output: @) where R is the index of the last outer iteration of
the algorithm.

with one another, whereas the I' update step adaptively
changes the ‘best’ fitting noise normalization. In doing so, the
algorithm decomposes the observed MEG data into stimulus-
driven and stimulus-independent parts, taking into account
the lead-field matrix, which in turn helps to limit the spatial
leakage as we will demonstrate in the next section.

Next, consider the case where the data from K different
trials corresponding to K different stimuli (i.e. different speech
streams) are available. Suppose the covariate matrices and
MEG observations corresponding to these trials are denoted
by S* and Y*, for k¥ = 1,2,---,K. Assuming that the
background source activities correspond to different model
parameters, T'®, we can extend (12) to obtain the following

optimization problem:
K

: T kT
%1111‘1]; glog(ZerLI‘ L")

1 <k
+ §HY — L@)Sk||?Ew+LIWLT),1 + 7]”(")“2’171. (15)

In other words, we assume that the response functions remain
unchanged across trials, which promotes the integration of
relevant information across trials and obtaining consistent
response functions. This optimization problem can also be
solved via a coordinate descent method in a similar manner
described earlier. The resulting algorithm including the update
rules is summarized as Algorithm 1. In the spirit of easing
reproducibility, a Python implementation of the algorithm is
made available on the open source repository GitHub [15].

V. RESULTS

We applied the algorithm on a subset of MEG data collected
from 17 adults (aged 18-27 years) under an auditory task
described in [16]. During the task, the participants listened
to 1 min long segments from an audiobook recording of The
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Fig. 1. TREF localization results from simulated MEG data. The left panel shows the active neural sources normal to cortical surface corresponding to ground
truth TRFs (colorbar encodes intensity in each of the projections). The right panel shows the location and direction of the estimated TRFs (colorbar encodes
intensity only). The middle panel compares the time-course of the estimated and ground truth TRF magnitudes.

Legend of Sleepy Hollow by Washington Irving (https://librivox.org/
the-legend-of-sleepy-hollow-by-washington-irving/), narrated by a
male speaker under different noise conditions. Here, we con-
sider localizing the TRFs under the ‘quiet’ condition only,
using a total of 6 min data from each participant. MNE-python
0.14 was used in preprocessing the raw data to automatically
detect and discard flat channels, remove extraneous artifacts,
and to band-pass filter the data in the range 1—80 Hz. The six
1 min long data epochs were then down-sampled to 200 Hz. As
the stimulus variable, we used the speech envelope reflecting
the momentary acoustic power, by averaging the auditory
spectrogram representation (generated using a model of the
auditory periphery [17]) across the frequency bands, sampled
at 200 Hz.

The average head position over the entire recording period
was used to obtain the head shape of individual subjects
relative to the MEG sensors. Each subject’s head was co-
registered to the ‘fsaverage’ brain using these digitized head
shapes. A volume source space for individual subjects was
defined on a 3D regular grid with a resolution of 7 mm in
each direction. The lead-field matrix was then computed by
placing free orientation virtual dipoles on the resulting 3322
grid points. From a wide range of regularizing parameters,
the one resulting in the least generalization error in a 3-fold
cross-validation procedure is chosen for individual subjects.

A. Application to Simulated MEG Data

To assess the performance of the proposed algorithm, we
synthesized a 6 min long MEG data epoch for one of the
participants from the aforementioned dataset according to the
generative model (1)-(3), using the TRF kernels shown in
Fig. 1. To emulate a realistic MEG experiment, we not only
employed these specific time-courses and active sources, but
also used MEG recordings during segment 2 while using
stimulus variables of segment 1 in place of W 4LV, and vice-
versa. In addition, we simulated the cortical activity on a finely

discretized source space (namely, ico-5) using a direction-
constrained lead-field matrix.

The 500 ms long TRF estimates obtained over the uncon-
strained volumetric source-space with 7 mm spacing is shown
against the ground truth in Fig. 1. Not only our algorithm was
able to recover the time-courses of the TRFs faithfully, but
also the spatial extents of the active dipole sources closely
resemble those of the simulated active regions. The most
intriguing observation from Fig. 1 is that the estimated 3D TRF
components closely align with the normal directions to the
cortical surface, without the algorithm having any knowledge
of said directions.

B. Application to Experimental MEG data

We estimated 1 s-long 3D TRFs for all 17 subjects from the
aforementioned preprocessed MEG data using our proposed
algorithm. The vector-valued TRF estimates were tested for
consistent directionality [18] at each grid location, time bin,
and across all subjects, against uniformity using a permutation
test. To compensate for head misalignment and anatomical
differences across subjects, the TRF estimates were first
smoothed with a Gaussian kernel with standard deviation of
10 mm over the grid locations. Fig. 2 shows the group average
of the estimated TRFs, masked by the significance level of
p = 0.05.

The TRFs manifest three prominent peaks at around 20 ms,
45 ms, and 105 ms respectively, all of which are bilaterally
centered at the auditory cortex (AC). Even though the two
earlier peaks at 20 ms and 45 ms seem partially overlapping
with nearly identical anatomical origins, the later peak exhibits
increasing contribution from the inferior frontal cortex (IFC)
and premotor cortex (PMC) as seen in the anatomical maps.
Unlike these early responses, the peak at 105 ms seems to
be much stronger at the right hemisphere and is localized
slightly posterior to the earlier ones. In between the peaks, we
observe responses from the PMC (at around 60 ms) and most
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Fig. 2. TREF localization from experimentally recorded MEG data. The middle panel shows the time course of the estimated TRF magnitudes for all neural
sources. Anatomical plots shows the active virtual dipoles at the visually prominent peaks, where the arrows indicate the estimated direction of the dipole
activity for each source. The TRFs are masked by a significance level of p = 0.05 prior to visualization.

interestingly, a direction reversal at around 85 ms. It is worth
noting that the spatiotemporal organization of the localized
TRFs is consistent with the auditory processing stream of
AC—IFC—PMC—AC [19].

VI. DISCUSSION AND FUTURE WORK

Characterizing neural response functions at the cortical level
is key to unveiling the mechanisms of continuous information
processing by segregating the contributions from different
brain regions involved in complex information processing. Ex-
isting methods for this purpose perform a two-stage procedure,
in which the cortical sources are first localized, followed by
estimating the response functions per localized source. As a
result, the localized response functions exhibit bias due to
the assumptions of the underlying source localization method.
In this work, we address this issue by introducing a novel
framework for localizing the temporal response functions
to continuous stimuli directly from the MEG responses in
a one-stage fashion. Application of our proposed algorithm
to synthetic and experimentally recorded MEG responses to
continuous speech demonstrates its utility in providing new
insights into the functional roles of various brain regions
at different stages of auditory processing. Even though we
presented our framework for a single stimulus variable (i.e., the
speech envelope), our approach can be extended to incorporate
multiple competing stimulus variables that can potentially
explain the observed response more accurately.
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