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Temperature is among the most ubiquitous determinants of organism growth, survival,

and reproduction. Accurate recordings and predictions of how the temperatures of plants

and animals vary in time and space are therefore critical to forecasting the likely impacts

of global climate change. Intertidal zones have long served as a model ecosystem for

examining the role of environmental stress on patterns of species distributions, and

are emerging as models for understanding the ecological impacts of climate change.

Intertidal environments are among the most physically demanding habitats on the

planet, and excursions in body temperature of ectotherms can exceed 25◦C over the

course of a few hours. It is now well-known that the body temperatures of intertidal

organisms can deviate significantly from the temperature of the surrounding air and

substrate due to the influence of solar radiation, and that their size, color, morphology,

and material properties markedly influence their temperatures. While many intertidal

organisms are slow moving or almost entirely sessile, for others, behavior can play a

significant role in driving vulnerability to temperature extremes. We explore datalogging

methods used in intertidal zones and discuss the advantages and drawbacks of each.We

show how measurements made in situ reveal patterns of thermal stress that otherwise

would be undetectable using more remotely-sensed data. Additionally, we explore the

idea that the relevant “grain size” of the physical environment, and thus the spatial

scale that must be measured, is a function of (1) the size of the organism relative to

local refugia; (2) an organism’s ability to sense and to some degree predict near-term

environmental conditions; and (3) an animal’s movement speed and directionality

toward refugia. Similarly, relevant temporal scales depend on the size, behavior, and

physiological response of the organism. While miniaturization of dataloggers has

significantly improved, several significant limitations still exist, many of which relate to

difficulties in recording behavioral responses to changing environmental conditions. We

discuss recent innovations in monitoring and modeling intertidal temperatures, and the

important role that they have played in bridging ecological and physiological studies of

ongoing impacts of climate change.
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INTRODUCTION

Temperature is among the most universal determinants of
a plant or animal’s physiological performance and survival
(Somero, 2010; Sinclair et al., 2016). Metabolism, heart rate (in
animals with hearts), and enzyme functioning are all strongly
temperature-dependent. At whole organism levels, temperature
determines rates of growth and reproductive output. For mobile
animals, body temperature can drive movement behavior, and
thus ability to eat or avoid being eaten by other organisms (e.g.,
Adolph and Porter, 1993; Kordas et al., 2011). At extreme high
or low temperatures, reproductive failure, and/or mortality occur
as physiological systems shut down, enzymes cease functioning,
or oxygen supply is no longer able to meet metabolic demands
(Williams, 1970; Pörtner et al., 2006). Subsequently, temperature
has long been recognized as a key driver of the distribution
and abundance and hence biodiversity of plants and animals
in nature (Hutchins, 1947; Ehrlén and Morris, 2015; Peters
et al., 2016). The influence of temperature is especially evident
in ectothermic organisms (which comprise the vast majority
of species on Earth) that are unable to generate appreciable
metabolic heat and thus have body temperatures that change
with environmental conditions. While endotherms (birds and
mammals) can generate heat through metabolism, they too
will die or suffer stress when the maintenance of optimal
body temperature becomes too challenging (Porter et al., 2000).
Importantly, species display a wide range of responses to body
temperature, and a temperature that may be lethal to one species
may be optimal for another; while some species can tolerate only
very narrow ranges of temperature, others appear to function well
over wide ranges (e.g., >20◦C; Dell et al., 2014).

Understanding how temperature affects organisms has taken
on critical significance in the face of ongoing climate change
(Porter et al., 2000; Hobday et al., 2016), as scientists attempt
to understand underlying drivers of current observations of
mortality events and shifts in distribution, and potentially
forecast responses to an even warmer planet (Petchey et al.,
2015; Sunday et al., 2015). A key component of this work has
been the development of empirical and theoretical approaches
that connect what we know about the physiological effects of
factors such as temperature, ocean pH, and water availability—
often measured under controlled experimental conditions
(Somero, 2010; Williams et al., 2011; Gunderson et al., 2016)—
with patterns of environmental conditions observed in the
field (Denny and Helmuth, 2009). Specifically, numerous
physiological studies have measured both the lethal tolerance
limits of plants and animals, as well as the non-lethal cumulative
effects of exposure to chronic stress (Woodin et al., 2013;
Dell et al., 2014; Sinclair et al., 2016). At least in theory,
these lab experiments can then be compared against measured
environmental conditions (nowcasts and hindcasts) as well
as model projections (forecasts) to quantify how patterns of
survival, abundance, distribution, reproduction, and growth of
key organisms have responded, or likely will respond, to rapid
environmental change (Porter et al., 1973).

A major obstacle to such approaches has been a quantitative
understanding of the environmental conditions that organisms

actually experience in the field (Smale and Wernberg, 2009),
and of what spatial and temporal scales we must measure
these parameters in order to effectively forecast responses to
environmental change (Montalto et al., 2014). The challenge is far
more difficult than is often appreciated, especially given the wide
availability of environmental data from ground-based weather
stations and buoys (e.g., Helmuth, 1998; Kearney et al., 2012),
remote sensing platforms (e.g., Geller et al., 2017), and re-analysis
databases that present weather data integrated from multiple
platforms (e.g., Mesinger et al., 2006; Mislan and Wethey, 2011).
Below we briefly explain why such data, while necessary, may
at times be insufficient for understanding the effects of climate
change on organisms, and then explore various options for
recording relevant environmental data at the scale of organisms
using logging devices.

We focus on intertidal zones, the regions between the high
and low tide lines of the world’s coastlines. These habitats have
long served as test beds for understanding the causal linkages
between organism physiology and local and geographic patterns
of distribution (e.g., Doty, 1946; Southward, 1958). Alternately
exposed to the aquatic (at high tide) and terrestrial (at low
tide) environments, the patterns by which species more or less
predictably replace one another moving from the low to high
intertidal, i.e., zonation (Figure 1), are generally assumed to
be determined to a large extent by physiological stress from
temperature, desiccation, and time spent feeding (Connell, 1961;
Wethey, 1983, 1984; Gilman and Rognstad, 2018). Many of
these organisms have been shown experimentally to live close
to their stress tolerance limits during low tide (Somero, 2002;
Davenport and Davenport, 2005; Harley, 2008). As a result,
and because of their enormous ecological importance to coastal
environments and easy accessibility to researchers, intertidal
zones have contributed significantly to ecological theory (Paine,
1994). Yet, despite their importance, they are also among the
environments where we have the least amount of environmental
data. Here we use intertidal habitats as a case study, but the
concepts that we explore have broad applicability to other
environments and organisms including plant communities (e.g.,
Scherrer and Körner, 2011), terrestrial arthropods (Caillon et al.,
2014; Woods et al., 2015), and lichens (Kershaw, 1985).

THE CHALLENGE OF RECORDING
INTERTIDAL DATA AT RELEVANT SCALES

Environmental Temperature Data
The role of “temperature” in ecological and physiology studies
is ubiquitous. A quick search of the Web of Science with
the terms “Temperature” and “Ecolog∗ or Physiol∗” returns
almost 700,000 papers published since 1975. Yet the term
“temperature” continues to be misused with subsequent carry-
on effects for experimental design and interpretation of results.
Critically, “temperature” is not a stand-alone variable, but rather
a descriptor, and so studies that refer to “the temperature”
(e.g., as a descriptor of a site) are about as meaningful
as referring to “the color.” Most commonly, researchers are
referring to air temperature recorded at some fixed elevation
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FIGURE 1 | Zonation pattern of mussels and barnacles. The upper intertidal

limit to intertidal organisms is generally assumed to be driven by physiological

stress and feeding time (Connell, 1961; Wethey, 1983, 1984; Gilman and

Rognstad, 2018).

above the substratum, usually by a weather station (Tair); Sea
Surface Temperature (SST); or, primarily in remote sensing
literature, Land Surface Temperature (LST). Such inaccuracies
are understandable given how we humans live our daily lives,
using reports of near-ground air temperature as an appropriate
indicator for how comfortable we are likely to be outside on
any given day. Under more extreme conditions, we may also
consider indices such as “wind chill” to reflect the influence of
wind on heat loss through convection, or a “heat index” to reflect
the role that high humidity has in limiting our ability to cool
through sweating (Parsons, 2014). But, the assumption that these
measurements and indices are physiologically and ecologically
relevant to non-human species is often wildly violated. For
example, SST can be very different from water temperature just
a few meters below the surface (Smale and Wernberg, 2009;
Castillo and Lima, 2010; Brewin et al., 2018). In terrestrial
alpine environments, temperatures recorded at 2m above-
ground weather stations can be very different than temperatures
in and around underlying plant canopies (Scherrer and Körner,
2010). In coastal systems, measurements recorded by offshore
buoys (the most common data source) or satellites can differ
markedly from those nearshore due to the influence of upwelling
and solar heating (Pfister et al., 2007). Kearney (2006) refers to
these large-scale measurements (also including those made by
weather stations) as “environmental” temperature and explains
that they can deviate significantly from those experienced by
animals and plants—which drive their physiology and survival.

Many potential problems with the use of environmental data
center on the large spatial and temporal scales over which
they are, by necessity given the enormous size of the ocean,
recorded, and archived. Satellite measurements of SST and LST
record averages that integrate temperatures over pixel sizes
ranging from 100’s to 1,000’s of square kilometers. In coastal
systems, these pixels can overlap both terrestrial and aquatic
measurements and thus can artificially reflect a hybrid of LST and

SST. Because of rapid heating due to solar radiation, and cooling
effects of internal waves and upwelling, temperatures at even
moderate depths can vary by several degrees from SST (Smale
andWernberg, 2009; Castillo and Lima, 2010). Similarly, on land,
while surface (substrate) temperature may be an accurate proxy
for small organisms that live in close contact with the ground
(e.g., Thomas, 1987; Bertness, 1989; Wethey, 2002; Chapperon
and Seuront, 2011), LST pixels are typically many orders of
magnitude larger than the size of these organisms, and thus
are based on spatial averages that when parsed, can reveal
extremely high within-pixel heterogeneity (Geller et al., 2017).
Air temperature and wind speed change as a function of distance
from the ground because of boundary layer effects (Gates, 1980),
which is why weather stations typically adhere to standards
where the thermometer and anemometer are placed at ∼2m
and 10m above the ground, respectively (World Meteorological
Organization, 2008). Air temperature is thus always, at best, an
indirect indicator of substratum temperature. Some animals are
nocturnal, making measurements of environmental parameters
recorded during the hottest part of the day largely irrelevant
(Kearney, 2006). Similarly, in intertidal systems, the timing
of low tide determines what part of the day organisms are
exposed to the terrestrial, and by contrast, aquatic, environments.
Environmental conditions recorded during the hottest part of
the day have little relevance to an intertidal organism that is
underwater during that period (Helmuth et al., 2002).

For intertidal (and terrestrial) environments, the most
important reason why broad-scale weather data are often
ineffective as direct proxies for plant and animal temperature
is the role of the organism itself in driving heat exchange
across its surface through the absorption of heat energy from
solar radiation, and the transfer of heat with the surrounding
air through wind-driven convection (Porter and Gates, 1969).
For example, the color of an animal’s skin, shell, or fur
significantly affects the amount of solar heat that is either
absorbed or reflected (e.g., Mitton, 1977; Erasmus andDeVilliers,
1982; Etter, 1988). Likewise, the shape and surface area of an
organism drives the rate of convective exchange (Mitchell, 1976).
Subsequently, two ectothermic organisms exposed to precisely
the same environmental conditions can have body temperatures
that radically differ from one another (>10◦C; Broitman et al.,
2009; Gilman et al., 2015), and can be either substantially hotter
(>15◦C) or cooler than the temperature of the surrounding air
(Helmuth, 1998). Predators and their prey, for example, can
experience significant differences in their temperature, and thus
in physiological stress, even if they have similar physiological
tolerances (Monaco and Helmuth, 2011).

The deviation of animal and plant body temperatures from
Tair, SST, or LST has enormous implications for how we
extrapolate from the lab to the field, and for how we compare
physiological stress at different field sites. Recently, physiological
ecologists have adopted the use of Thermal Safety Margins
(TSM) to quantify the difference between an organism’s lethal
temperature (usually measured in the lab) and the maximum
conditions that it will experience in the field (Sunday et al.,
2011). A wide TSM suggests that these organisms may be less
susceptible to warming than is an organism already living in
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a habitat where it is very close to its lethal limits (Woodin
et al., 2013; Dong et al., 2017). In a scenario where body
temperature is substantially hotter than air temperature, overall
risk will be massively underestimated if physiological limits are
compared against air temperature (Marshall et al., 2010). Even
the assumption of air temperature as a relative indicator of
stressful conditions can be problematic. While some models do
predict that the most extreme body temperatures tend to occur
on days with high air temperature and maximum solar radiation
(Mislan et al., 2014), other comparisons of animal temperature
against local air temperature have shown poor relationships, with
root mean square errors on the order of 5–9◦C (Kish et al., 2016).
But, even in instances where air temperature is correlated with
body temperature, a mechanism for determining “how hot is too
hot” may still be difficult without some means of estimating how
much hotter organism temperature is than air temperature under
full sun, i.e., the offset (y-intercept) of the correlation (Kish et al.,
2016).

An additional distinction, but one that is still frequently
misunderstood or at least ignored by many ecologists and
physiologists, is the difference between weather and climate
(30+ year trends in weather conditions). Specifically, while
climate change undeniably affects plants and animals, it does so
indirectly through changes in local weather parameters such as
air temperature, wind speed, rain, and solar radiation (Stenseth
et al., 2002). The role of high frequency (hourly, daily) variability
in driving physiological performance and survival remains an
active area of research, but recent work shows the important
role of time history (Drake et al., 2017; Koussoroplis et al.,
2017), as well as that of rare, short-term extreme events (e.g.,
heat waves; Tsuchiya, 1983; Hobday et al., 2016) that can be
masked through temporal averaging (Wethey et al., 2011; Robinet
et al., 2013). Spatial variability can also be very high (Herring
et al., 2016). Thus, for example, while the recent Paris Agreement
made as its goal to limit the increase of the Earth’s average
global temperature to well below 2◦C above pre-industrial
levels (UNFCCC, 2015), sites in the Gulf of Maine are already
displaying temperature deviations of nearly twice that magnitude
over periods lasting several months (Pershing et al., 2015; see
also references in chapter 3 on regional temperature trends in the
recent IPCC report on 1.5◦C Global Warming1 Hoegh-Guldberg
et al., 2018). Subsequently, model projections based on high
frequency (hourly) environmental data have been shown to yield
very different projections than those based on coarser resolution
(6 h: Montalto et al., 2014; monthly mean: Kearney et al., 2012)
data inputs.

The end result is that if one wishes to replicate meaningful
environmental conditions in a laboratory setting in order to
gain insights into the impacts of global climate change, it is not
sufficient to simply expose organisms to constant temperatures
based on annual means or climatic norms (e.g., based on global
or regional increases), as meaningful shorter-term deviations
will far exceed these trends. While climatic data such as annual
or decadal means made available through datasets such as the
World Ocean Atlas are useful when conducting research on the

1http://ipcc.ch/report/sr15/

climate system, they are effectively useless in physiological or
ecological contexts, as they ignore not only important inter-
annual variability but also variation over much shorter time
periods which may have highly significant consequences for
organisms such as heat waves (for an in-depth discussion of these
issues, see Montalto et al., 2014; Denny, 2017).

Several mathematical (heat budget) models are now available
to convert weather data (air temperature, wind speed, and solar
radiation) into estimates of intertidal organism temperature
(Elvin and Gonor, 1979; Bell, 1995; Helmuth, 1998, 1999; Denny
and Harley, 2006; Finke et al., 2009; Szathmary et al., 2009;
Helmuth et al., 2011; Iacarella and Helmuth, 2011; Sarà et al.,
2011; Wethey et al., 2011; Marshall et al., 2015; Mislan and
Wethey, 2015; Kish et al., 2016; Dong et al., 2017). These models
range in complexity from simple regression-based approaches
(Elvin and Gonor, 1979; Kish et al., 2016) to much more
sophisticated land-based models (Wethey et al., 2011; Mislan and
Wethey, 2015). However, and especially in intertidal ecosystems,
their application has still tended to be limited to a few research
groups. And, as with all models, their verification requires
extensive in situmeasurements of organism temperature.

Temperature Measurements in the Field
Collectively, these applications underline a critical need for
field measurements of temperature at the scale of organisms,
and over high temporal frequencies and small spatial scales.
Several authors have recently highlighted the use of infrared
thermography for recording temperature patterns in the field
(Figure 2) (Meola and Carlomagno, 2004; Scherrer and Körner,
2010; Chapperon and Seuront, 2011; Lathlean and Seuront, 2014;
Van Alstyne and Olson, 2014; Faye et al., 2016a; Lathlean et al.,
2017). Thermography produces visible “thermal” images that
are converted from infrared energy emitted and reflected on
a given surface (Chapperon and Seuront, 2011). This method
allows for spatial analysis of a habitat at a small organism’s scale
including measurements of shell and substratum which can then
be used to calculate corresponding tissue temperatures of animals
such as gastropods and discern habitat-specific thermoregulatory
behavior (Chapperon and Seuront, 2011). There are numerous
studies that use this method to examine microhabitats, behavior
and physiology in response to thermal stress (e.g., Helmuth,
2002; Bulanon et al., 2009; Montanholi et al., 2010; Woods
et al., 2015). Thermal infrared cameras have decreased markedly
in price and now are available as part of packages that can
be used on drones (Faye et al., 2016b) making their use
attractive, especially for obtaining measurements of multiple
organisms simultaneously (Scherrer and Körner, 2011). Their
primary limitation in intertidal systems is that they typically
cannot be left unattended and can only be deployed during
low tide. Data measured using thermography are only discrete
measurements, limiting temporal analysis to broad frequencies.
Moreover, analysis of temperature patternsmust be conducted by
post-processing of the images obtained. A further complication
involves calibration to the surface properties of the organism
of interest, specifically the animal or plant’s emissivity. This
parameter describes the ability of an object to radiate energy in
the infrared spectrum and is required in order for the camera
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FIGURE 2 | Infrared thermograph of a rocky intertidal site in Nahant, MA USA. Rocky intertidal temperatures range significantly based on complex topography that

creates microclimates. These include both areas of high thermal risk and areas of thermal refugia.

to back-calculate temperature. Typically, biological surfaces fall
in the range of 0.85–0.95, and so small errors in emissivity will
make a difference of only a degree or two. However, some shelled
organisms and rock can have much lower values, introducing
error unless this is accounted for in image analysis.

An alternative approach that has seen more wide-scale
adoption by intertidal researchers is the deployment of small
sensors to directly document organism body temperatures in
the field. Initially, researchers attempted to follow the lead
of terrestrial studies through the use of thermocouples and
thermistors connected to a central data logger (Southward,
1958; Lewis, 1963; Hardin, 1968; Vermeij, 1971; Elvin and
Gonor, 1979). Early dataloggers include the Portable Chart
Recorder (Omega Engineering) used in recording N. lapillus
body temperatures (Etter, 1988), Stowaway XTR (Onset
Computer Corporation) initially used for logging silicone-filled
M. californianus shells (Helmuth and Hofmann, 2001) and
live P. ochraceus (Szathmary et al., 2009), Telatemp Datalogger
for logging M. californianus body temperatures (Fitzhenry
et al., 2004), and Campbell CR1000 Datalogger used with M.
californianus (Fitzhenry et al., 2004), G. demissa (Jost and
Helmuth, 2007), and L. irroratus (Iacarella and Helmuth, 2011).
While these devices were valuable for logging multiple body
temperatures simultaneously during lab experiments, they often
could only be deployed in the field for short periods during
low tide. During long-term deployments, flooding, broken
cables, and movement of the temperature probe tip made data
collection extremely difficult (Helmuth and Hofmann, 2001; but
see successful recent application by Gilman et al., 2015).

In the mid to late 1990’s, self-contained units with on-board
thermistors were introduced commercially by companies such
as Dallas/Maxim (iButton), and Onset Computer Corporation
(Hobo TidbiT) (Table 1). The ready availability of these rugged
and relatively inexpensive loggers initiated a new wave of
environmental measurements in intertidal systems, and their
application continues to this day. But, as often happens
with new technology, these instruments were frequently used
inappropriately. Specifically, what went largely unrecognized
was that just as the shape, color and mass of an organism
affect its body temperature, so do those characteristics affect
the temperature that a logger will record. When buried in

sand or mud (Jost and Helmuth, 2007), or placed in close
contact with the surface of a rock (Wethey, 2002; Harley and
Helmuth, 2003), these instruments will record temperatures close
to that of the substratum because of high rates of thermal
conduction. They therefore can serve as effective indicators of
body temperature in sessile animals such as barnacles (Wethey,
2002), small snails (Hayford et al., 2015; Marshall et al., 2015)
or, on the underside of rocks, crabs (Stillman and Somero,
1996). Such measurements cannot, however be applied to all
organisms at a site since all are likely to have very different body
temperatures, both due to habitat heterogeneity (microhabitats)
as well as a result of their thermal properties, as above. In
fact, Denny et al. (2011) showed that variation in mussel
temperatures within a single intertidal bench can exceed that
observed over several thousand kilometers. Fitzhenry et al.
(2004) compared temperature measurements by unmodified
TidbiT loggers against body tissue temperature measurements
of adjacent mussels in the lab and field and showed that
the loggers recorded errors of up to 14◦C. Claims of “site
level temperature” measurements were therefore shown to be
naïve.

A viable alternative which takes advantage of the rugged
nature of instruments such as iButtons and TidbiTs is the use
of biomimetic instruments (biomimics) designed to mimic the
thermal characteristics of the target species of interest (mussels,
limpets, barnacles, snails, seastars, etc.; Table 1; Helmuth et al.,
2002, 2006, 2011; Seabra et al., 2011; Fly et al., 2012; Pincebourde
et al., 2012; Monaco et al., 2015; Kish et al., 2016; Kroeker et al.,
2016; Drake et al., 2017). These instruments record temperatures
that are significantly more accurate (∼1–2◦C error) to the body
temperatures of animals than are either air temperature or the
temperature recorded by unmodified “off the shelf ” instruments
(Fitzhenry et al., 2004; Lima et al., 2011). Methods for building
sensors have usually involved either placing the logger inside
of an animal (e.g. mussel, limpet, barnacle, snail) shell and
filling the shell with silicone or Scotchcast flame retardant
compound both of which adequately approximate the thermal
characteristics of tissue (Lima and Wethey, 2009; Denny et al.,
2011) (Figure 3A) or by embedding them in materials such as
epoxy resin (Figure 3B; Helmuth and Hofmann, 2001; Lima
et al., 2011). A disadvantage of the latter approach is that not
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FIGURE 3 | (A) An iButton temperature logger (Maxim Integrated) next to a

real Mytilus edulis mussel shell. This biomimic is made by filling the shell with

silicone and embedding the logger within. (B) An unmodified HOBO TidbiT v2

temperature logger (Onset Computer Corporation) next to a biomimic. The

biomimic is a custom cast made of Evercoat Premium Marine Resin modeled

after a larger (74mm) mussel (Fitzhenry et al., 2004), more suitable for use

approximating body temperatures of the larger M. californianus species from

the Pacific Ocean.

all sizes or species of animal can be replicated. For example,
an organism’s “thermal inertia,” which defines the amount of
energy required to raise its temperature by one degree, can only
be matched with non-biological materials such as epoxy over a
narrow size range. For mussels, this was shown to occur in the
size range of ∼6–8 cm length (Fitzhenry et al., 2004). Biomimics
of mussels at sizes smaller or larger than this range requires the
use of real shells, which can break in the field after only a few
weeks. Nevertheless, “robomussels” and “robolimpets” have now
successfully been deployed at sites worldwide, and have provided
long-term records of temperatures approximating those of the
species of interest (Seabra et al., 2011; Helmuth et al., 2016).
Obtaining temperature records of animals too small to contain
current data logger designs remains a challenge, and most
solutions still require the use of a thermocouple or thermistor
(e.g., Gilman et al., 2015). However, emerging technology with
smaller batteries (e.g., EnvLogger, WeePit) is poised to open new
avenues of exploration for a wider range of animal sizes (Table 2).

Long-term records of non-shelled organisms have proven
much more elusive, especially for those with a wet surface that
cannot be mimicked with epoxy. Loggers constructed of foam
have been used to approximate temperatures of intertidal seastars
for periods of several months (Figure 4; Table 1; Fly et al.,
2012; Pincebourde et al., 2012; Monaco et al., 2015). But, the
lack of a design which effectively mimics water loss (and thus
cooling through evaporation) and yet is sufficiently rugged to
withstand wave stresses, continues to be a major impediment
to understanding the thermal ecology of soft-bodied intertidal
organisms.

Despite these challenges, the use of biomimetics in intertidal
ecology has yielded major insights that otherwise would
likely have gone undetected. First and foremost, these field
measurements have shown that in many cases intertidal
organisms are living far closer to the limits of their thermal
tolerance than would be predicted based on air temperature
(e.g., Stillman and Somero, 1996; Helmuth and Hofmann, 2001;
Mislan et al., 2014). Second, they have shown that patterns of
temperature on local and geographic scales are far more complex
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TABLE 2 | New datalogging technologies.

Datalogger Memory

(Measurements)

Battery Life Dimensions Data transmission Pros Cons

HOBO

MX2204

(Onset)

96,000 3–5 years 4.45 × 7.32 ×

3.58 cm

Bluetooth low Energy

(BLE)

Easy programming and

offload, good memory

Cost, Size

WeePit

(AlphaMach)

114,000 Not Reported 10 × 11.25mm Radio-Frequency

Identification (RFID)

Small, very good memory Needs specific reader

to offload data, Cost

EnvLogger

(ElectricBlue)

20,000 2 years 7 × 16.5mm Near Field

Communication (NFC)

Very small, rugged, Easy

data offload

Small memory

Wireless Sensor

Network—PIDO

(Zhou et al., 2018)

NA NA NA Wireless Radio (915

MHz) Node-Node-Sink

No cables, easy data

access

Cost, Set-up time

FIGURE 4 | A “roboseastar” biomimic deployed in the intertidal next to live

seastars (Pisaster ochraceus) and their mussel prey. An iButton temperature

logger is embedded within the foam and the unit is affixed to the rock using

marine epoxy.

in space and time than previously appreciated. For example,
Helmuth et al. (2002, 2006) showed that intertidal mussels along
the west coast of North America do not display a geographic
gradient in temperatures, but rather conform to a mosaic pattern
where sites can be much hotter or colder than predicted based

on latitude. These complex patterns have been shown to occur
in Europe (Pearson et al., 2009; Seabra et al., 2011) and SE Asia
(Dong et al., 2017), although not on the west coast of South
America (Finke et al., 2007). Importantly, these observations
suggest that climate change may be having significant impacts
even well within species’ geographic ranges and not just at range
boundaries (Place et al., 2008; Pearson et al., 2009; Torossian
et al., 2016). Kroeker et al. (2016) expanded on this idea to explore
the impacts of multiple stressors acting on mussel populations,
and showed mosaic patterns of not just temperature but food
availability and ocean pH explained observed geographic patterns
in mussel growth. Results from biomimic deployments also have
pointed to the likely importance of stepping stones and climate
refugia (“rescue sites”) in coastal ecosystems, which may enhance
the recovery of species following extreme events (Potter et al.,
2013; Hannah et al., 2014).

Biomimetic sensors have also opened new avenues for
exploring the differential responses of interacting species to
environmental stress. Broitman et al. (2009) used biomimics to
track the temperatures of predatory seastars and their mussel
prey at multiple sites and showed that relative stress levels were
significantly affected by differences in the thermal dynamics of
the two species. Zardi et al. (2010) found that competition among
different lineages of the mussel Perna perna were maintained in
part by physiological stress that occurred during aerial exposure
at low tide.

CURRENT LIMITATIONS AND RECENT
ADVANCES IN LOGGER DESIGN

Despite their demonstrated importance in informing ecological
theory, intertidal dataloggers still have several limitations. We
next examine some of these in detail, along with recent progress
being made in overcoming these barriers.

Durability in Wave-Swept Environments
The intertidal environment is unique due to the binary nature of
environmental stressors resulting from the tidal cycle. Crashing
intertidal waves can produce water velocities exceeding 8m/s and
accelerations of up to 400m/s2 (Denny, 1985). Thus, loggers need
to resist dislodgement, physical impact and seawater ingress.
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Current loggers still face some of these durability limitations,
both in their construction and deployment. Two-part marine
epoxies are still commonly used to attach intertidal biomimetics
to the underlying rock surface. The amount of epoxy must be
sufficient to resist removal during storms, yet an excess will affect
the thermal characteristics of the logger. While superficially this
issue appears trivial, and is not typically considered in terrestrial
environments, it represents a major limitation in exposed rocky
intertidal systems.

The materials used to construct biomimetic loggers also
represent a design limitation, as the thermal conductivity as
well as the specific heat capacity will affect their relevance
to organisms. The growing availability of plastic and rubber
mold-making materials, traditionally used by hobbyists and
performing arts professionals, will expand the range of options
for future biomimics, particularly for soft-bodied organisms like
seastars and macroalgae. One such company called Smooth-On2

manufactures several user-friendly silicone and urethane-based
rubbers, foams and polyester hard epoxies that are traditionally
used for sculpting and performing arts. The company has
products available in stores on 6 continents and has a global
shipping distribution network. These products vary in tear
strength resistance, hardness, and conductivity. Those with the
highest tear strengths are less likely to break apart due to
wave stress, but their other thermal properties must meet the
requirements of the organism being considered. In preliminary
observations, some of these non-epoxy materials, particularly
the ones meant to be vacuum degassed (i.e., the removal of
entrapped air bubbles upon pouring), may harden into objects
with a textured, semi-permeable surface when poured without
vacuumdegassing. This techniquemay facilitate the development
of more accurate biomimics that can partially simulate a live
organism’s ability to retain seawater upon emersion, then release
it via evaporation. The materials may be colored to mimic
albedo and casted with a UV resistant agent which reduces
breakdown in the field due to solar radiation. In addition, some of
these materials are food-safe and non-toxic, making them more
attractive options for use over traditional materials like polyester
epoxy.

Lack of Real-Time Data Capabilities
Scientists have increasingly turned to the acquisition of
real-time data from their instruments (Zhou et al., 2018).
Utilizing real time data capabilities for sensing in the intertidal
environment, however, is extremely challenging due to the
tides. While real-time equipped data loggers have been used
extensively in terrestrial research (Porter et al., 2005), they
are not used commonly in marine research. This is due to
the difficulty inherent in transmitting data wirelessly through
water. Continuous, real time intertidal sensors are challenging
to implement because wireless signals are transmitted very
differently in water and air. Real time data transmission also
requires considerable battery power, in direct conflict with the
need to miniaturize sensors. Zhou et al. (2018) developed an
intertidal sensor prototype for real-time data that tackles both the

2https://www.smooth-on.com

challenges of transmitting in water and battery life (Zhou et al.,
2018). Specifically, they created a mesh intertidal wireless sensors
network (IT-WSN) whereby sensors communicate and transfer
data to each other. Transferring data between sister sensors is a
method to strengthen connection. With each logger acting as a
stepping stone, data are eventually pushed via a series of nodes
to the land-based “base” or “sink” node that is connected to
the cloud (Figure 5). To enhance battery longevity, a primary
limitation to miniaturization, the sensors are designed to log data
continuously but transmit data only when sensors are exposed to
air at low tide and a strong network link can bemade. This is done
by incorporating a new complex metric in the sensor (PIDO:
Predictive Delay Optimization) which controls for dormancy
based on (1) node conditions (dryness of the sensor), (2) link
quality (connectivity to sister nodes), and (3) predictability
classifier (uploaded tide cycles) to control for dormancy for
each sensor. With multiple factors confirming optimal data
transmission, real-time PIDO sensors can be deployed for longer
periods of time (Zhou et al., 2018).

In other cases, even when data cannot be recorded in real time,
methods for facilitating the rapid transfer of data manually can
speed data collection. Data from iButton loggers and older, LED-
based versions of Onset TidbiT data loggers can only be uploaded
to a computer or data shuttle directly using a cabled reader.
Data collected by the newest wireless Onset TidbiT Bluetooth
loggers (MX2204) are a significant improvement as data can be
downloaded via Bluetooth on to a cell phone or other mobile
device during low tide. A new Portuguese company, Electric
Blue, has developed a small, ruggedized temperature logger
(EnvLogger)3 that can offload data and be programmed using a
mobile Android device and has near real-time data capabilities
(Table 2). This new technology avoids the need to remove the
logger from its shell casing or make time-costly modifications
to offload data through protruding wires (e.g., Robert and
Thompson, 2003; Lima andWethey, 2009; Lima et al., 2011; Chan
et al., 2016). WeePit temperature loggers have not been widely
used in intertidal studies, however their large memory and high
resolution are useful for long-term deployments. Additionally,
it remains unclear whether the logger’s data can be transmitted
to the PitStop Radio-Frequency Identification (RFID) reader
through shell, epoxy, or other biomimic components.

Miniaturization
Rapid advancements in printed circuit board and battery
miniaturization have increased the availability of new
datalogging technology. Existing sensors and loggers (Table 1)
are small enough to be used to study many, although not all,
intertidal organisms. The size of a self-contained logger is
mostly determined by battery size. Some of the first uses of
self-contained temperature loggers for intertidal biomimetic
applications occurred in 2000-2001 where the first commercially
available temperature loggers from Onset were slightly larger in
circular diameter than 24mm, and several cm thick. Some newer
models of loggers are significantly smaller.

3http://www.electricblue.eu/products/
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FIGURE 5 | Diagram of a mesh Intertidal Wireless Sensor Network (IT-WSN) that uses PIDO (Predictive Delay Optimization) for more frequent and effective intertidal

data transmission as described in Zhou et al. (2018). Environmental data are collected by the sensor nodes (red) where they is then transmitted via links (dashed lines)

to other nodes (Freq. = 915 MHz) using the most efficient routing path during low tide. Data are then transmitted to a land-based sink node (purple) before they are

offloaded to a computer.

Mimicking Aggregation Effects
Most intertidal bivalves such as mussels and oysters commonly
grow in aggregations that range in size from small (<25 cm2)
(Hunt and Scheibling, 2001) to large populations of hundreds
of thousands of individuals (Okamura, 1986). Biomimics of
shelled molluscs have been shown to record markedly different
temperatures when deployed in growth position, in intact beds,
as compared to when they are deployed as solitary individuals
(Fitzhenry et al., 2004). Generally, loggers such as “robomussels”
need to be deployed in intact beds, surrounded by living animals
that provide shading (Figure 6). This limitation is increasingly
important to address due to the extensive die-off of mussels in
locations such as the Gulf of Maine (Sorte et al., 2016). The causes
of these declines remain uncertain (Sorte et al., 2016), and studies
attempting to explore whether the underlying causal factor is
related to temperature face the problem that in many locations
there are no intact mussel beds in which to deploy sensors.
This severely limits our ability to record relevant temperatures
in sites where animals have disappeared. An individual that is
shaded by conspecifics within a bed can have 40% less surface
area exposed to direct sunlight than mussels living as solitary
individuals, and the bed as a whole creates a higher thermal
inertia (Helmuth, 1998). Therefore, not only does the aggregation
buffer any one individual from thermal stress, it also produces a
matrix of individuals that can experience significantly different
body temperatures based on their spatial position (Denny et al.,
2011; Nicastro et al., 2012; Lathlean et al., 2016b). Similarly,
oysters that orient their shells vertically to decrease surface
area exposed to solar radiation can reduce thermal stress for
themselves and smaller invertebrates that live amongst them
within an oyster reef (McAfee et al., 2018). As we explore in more
detail in a case study below, the development of low-cost open
source hardware and software has allowed researchers to begin
testing new biomimetic mussel bed devices to provide greater
insight into how mussels and other invertebrates that live within
beds experience differing environmental conditions, and how
these may be mimicked using new sensor designs.

FIGURE 6 | A single robomussel deployed in growth position within a live

mussel bed. The presence of surrounding organisms helps improve

biomimetic logger accuracy.

Accounting for Behavioral
Thermoregulation
One of the biggest challenges facing logging of intertidal
temperatures is understanding the role of animal behavior in
determining body temperatures (Williams and Morritt, 1995;
Williams et al., 2005). Under thermal stress, many organisms
are adept at seeking or creating shaded microhabitats such
as crevices or the shade of larger organisms (Potter et al.,
2013; Scheffers et al., 2013; Sunday et al., 2014) or creating
microclimates through aggregation behavior (Nicastro et al.,
2012; Olabarria et al., 2016). Others burrow, living in conditions
much cooler than those on the surface (Kearney et al., 2010).
Leaf-mining insects create microenvironments by burrowing
into plant tissue (Pincebourde and Casas, 2006), and crop pests
benefit significantly from shade provided by the plants on which
they feed (Faye et al., 2017).

Intertidal animals display a wide repertoire of behavioral
strategies for thermoregulation. The most common form of
behavioral thermoregulation involves pre-emptive movement in
to crevices or other shaded microhabitats where heating from
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direct solar radiation is minimized, i.e., taking advantage of the
immediate thermal landscape (Sears et al., 2016). Like terrestrial
organisms, porcelain crabs may compete for cool, shaded areas
under large rocks to reduce their body temperatures (Stillman
and Somero, 1996). Many snail species are also adept at moving
to crevices and other shaded areas to avoid extreme temperatures
(Marshall et al., 2010; Cartwright and Williams, 2012; Ng et al.,
2017). Monaco et al. (2016) measured potential and realized
microhabitats in the more slowly-moving seastar Pisaster and
found that these animals exhibited a “bet-hedging” strategy that
allowed them to avoid extreme conditions, but at the expense of
maximized physiological performance.

Slowly-moving or sessile species that are unable to avoid
full sun can modify their body temperatures via several
mechanisms. Hunt (1997) and Hunt and Scheibling (2002)
suggested that individuals of the mussel Mytilus trossulus
usually moved 1–2 cm in a month-long period, however
some may move up to 50 cm over that same stretch. In
contrast, Schneider et al. (2005) showed much more rapid
movement, but only by small animals. Miller and Dowd
(2017) noted that mussels living within a colder tidepool
did not reposition themselves as much as those living on
hotter bare rock in the high or low intertidal. Gastropods can
reorient their shell and remove their foot from the geologic
substrate to lower their body temperature (Miller and Denny,
2016).

Intertidal animals also display methods for thermoregulation
that do not involve movement to shaded microhabitats. The
seastar Pisaster has been shown to increase its thermal inertia by
taking up cold water into its body during high tides preceding
stressful low tide conditions (Pincebourde et al., 2009). The
temperatures of intertidal algae likewise remain low as long
as sufficient water is present to cool the surface through
evaporation, but once significant desiccation occurs, thallus
temperatures can skyrocket (Bell, 1995). This combination of
desiccation and high temperature has significant effects on
photosynthetic rates (Dring and Brown, 1982; Brown, 1987) and
is thought to be the main determinant of algal species upper
zonation limits in the intertidal zone (Lubchenco, 1980; Brown,
1987). Some species of gastropods can “mushroom” (Williams
et al., 2005), cooling their bodies by exposing moist tissue,
facilitating the evaporation of water. Yet other species climb
atop one another to form chains, minimizing contact with the
hot rock surface by all but the bottom-most animal (Ng et al.,
2017).

Several studies have suggested the potential importance of
shell gaping in bivalves as a means of thermoregulation, although
to date results suggest high variability among species. During
exposure at low tide, several intertidal bivalve species will
remain tightly closed, but during extreme events will open
their valves (gape), either to obtain oxygen or, potentially, to
cool through evaporation of tissue water. Whether or not this
behavior cools animals remains a matter of debate. Excessive
levels of cooling through evaporation can lead to desiccation,
suggesting significant trade-offs between temperature control
and desiccation. Helmuth (1998) presented biophysical models
for mussels suggesting that even slight evaporation can lead to

notable decreases in body temperature. In contrast, Fitzhenry
et al. (2004) forced mussel shells open inside a wind tunnel
and compared temperatures to mussels that were forced shut.
Their results suggested no significant difference in animal
temperature. Miller and Dowd (2017) also found that live
M. californianus mussels in the intertidal that experienced
high body temperatures during low tide (>25◦C) generally
kept their shells closed more often than cooler mussels
meaning this species likely does not utilize cooling through
evaporation to control body temperature during hot conditions.
Nicastro et al. (2012) showed that individual mussels did
not apparently cool as a result of gaping, but suggested that
entire beds of mussels, acting in concert, could lead to overall
cooling.

Biomimetic sensors, unless attached to or imbedded in a
living animal, can thus only provide information on potential
body temperatures in the absence of behavioral thermoregulation
(Adolph, 1990; Buckley et al., 2013; Díaz et al., 2015). Thus,
there is a pressing need to better understand the cues and
behavioral “rules” that allow intertidal organisms to proactively
move to appropriate microhabitats. Typically this has been
accomplished by placing biomimetic sensors in a number
of potential microhabitats, and then determining the factors
that cause organisms to move among these options, usually
in response to trade-offs such as food availability, thermal
stress and avoidance of predators (e.g., Monaco et al., 2015).
Understanding the relationships between body temperature,
shell gaping/orientation behaviors, and desiccation, and to link
these trade-offs to physiological and molecular responses (e.g.,
Williams et al., 2011; Gleason et al., 2017) remains a significant
information gap. Examining these factors simultaneously, in
both the field and under controlled laboratory settings would
provide an understanding of thermal physiological thresholds
and how the organisms balance trade-offs. Progress is being
made in this arena (Table 3). Researchers in the U.K. and the
Netherlands have developed a biomonitoring device called the
Musselmonitor that measures the amount and timing of mussel
shell gaping using hall effect sensors (Allen et al., 2010). This
device has been used on the freshwater zebra mussel (Driessena
polymorpha) and the blue mussel (Mytilus edulis). A repeated
pattern of shell gaping and closing is a signal of poor water
quality. Mussels that spend the vast majority (70–80%) of
their time with their shell open indicate good water quality.
This device may be used to record early warning indicators
of water quality in local areas of saltwater or freshwater, and
can even be used to test drinking water quality. Hall effect
sensors have also been used with oysters to investigate seasonal
shell gaping patterns (Comeau et al., 2012) and gaping in
response to the presence of toxic dinoflagellates (Nagai et al.,
2006).

A device recently developed by Miller and Dowd (2017)
used low cost custom-built printed circuit boards (PCBs) with
type K thermocouples, waterproofed hall effect sensors, and an
accelerometer/magnetometer to track mussel body temperature,
shell gape, and orientation continuously in the field for a
period of 21 days. The hall effect sensor, also used in the
Musselmonitor, produces a magnetic field across the mussel’s
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TABLE 3 | Behavioral datalogging methods and technologies for intertidal organisms.

Behavioral variable Sensors Ecological variables Estimated max. field

deployment time

Key publications

Locomotion Radio-Frequency

Identification (RFID)

Predation Risk,

Thermal Stress,

Migration Patterns

4 months Hayford et al., 2015

Hayford et al., 2018

Shell Gape

(bivalves only)

Hall Effect Water Quality,

Thermal Stress

(Evap. Cooling),

Food Availability

1 month Nagai et al., 2006

Allen et al., 2010

Miller and Dowd, 2017

Organism

Orientation

Magnetometer +

Accelerometer

Topography,

Thermal Stress

1 month Miller and Dowd, 2017

two half-shells where the output voltage gradient is proportional
to the amount of shell gape. This type of system in the future
should be used in controlled laboratory experiments along
with other sensors to examine how mussel body temperature,
respiration, heart rate, orientation, and shell gape all influence
each other and determine the physiological performance of
an individual under different conditions. Although these
new datalogging capabilities provide researchers with valuable
data, they are wired sensors which presents problems for
trying to obtain long-term (>1 month) data sets from the
field.

We also know surprisingly little about the role of predictability
in the environment (temporal autocorrelation) in driving any
of these behavioral responses (Helmuth et al., 2006; Dong
et al., 2017). Some organisms may be able to behaviorally
respond to immediate environmental conditions, for example by
quickly moving during low tide to reach shaded microhabitat
before critical levels occur. However, many species can only
move during high tide, and “hunker in place” at low tide
(Ng and Williams, 2006). In order for these organisms to
successfully use appropriate microhabitats or to otherwise
modify their behavior they must predict, at some level, the
likelihood of near-term extreme events based on current
conditions. Specifically, environmental conditions need to be
temporally autocorrelated, i.e., when extreme conditions on
Day 1 presage extreme conditions during the next low tide
(Szathmary et al., 2009). However, at the few sites where
this idea has been tested (Helmuth et al., 2006; Dong et al.,
2017) the most extreme sites are often the least temporally
autocorrelated.

FUTURE DEVELOPMENTS IN INTERTIDAL
DATALOGGING

The development of newer, more complex biomimetic devices
has been enhanced by open-source hardware (microcontroller
circuit boards) and software programs such as Arduino and
Raspberry Pi. These programs are revolutionizing the way
marine scientists can collect oceanic data and have already been
used in novel devices such as a microplastics sensor (Edson
and Patterson, 2015), a CTD data logger (Lockridge et al.,
2016), and a chlorophyll sensor (Leeuw et al., 2013). Novice

engineers and programmers can learn to use microcontrollers
to build electronic devices (e.g., dataloggers, robots, lights) for
customized projects. These microcontrollers can be plugged
into a computer via a USB cord and programmed using
their corresponding computer applications (e.g., Arduino:
Integrated Development Environment). Once programmed,
a microcontroller will carry out the user-defined functions
within the electrical circuit. First prototypes are typically
designed by manually connecting the microcontroller to
a solderless breadboard with integrated circuits (usually
sensors and actuators) that are connected by jumper wires
to form the full circuit. For projects that require smaller,
more compact devices, these prototype designs can be
documented (i.e., mapped) and submitted for development
into custom printed circuit boards (e.g., Miller and Dowd,
2017).

Case Study: Biomimetic Mussel Bed
A project currently underway seeks to develop a biomimetic
mussel bed that circumvents some of the issues associated with
traditional robomussels. The biomimetic mussel bed consists of
23 mussel-shaped biomimics of sizes ranging from 25 to 60mm
in length—about the size of adolescent-adult M. edulis mussels
found in muddy embayments and rocky shores on the East
Coast of North America. These robomussels are synthesized
using a colored UV resistant polyurethane rubber (Econ-80 from
Smooth-On) a hard rubber material that closely matches the
specific heat of live mussel tissue. The 2-part liquid polyurethane
mixture can be poured into a silicone mold of several mussel
shaped cavities all of which are fitted with nylon bolts, and two
of which are fitted with type K thermocouple sensors. These
thermocouples are then connected to an Arduino circuit board
encased in a waterproof housing. Each mussel [including the
experimental unit(s)] is then secured to an acrylic platform using
nylon-insert locknuts, eliminating the need for marine epoxy. It
can also be bolted to rock (Figure 7) or affixed to muddy bottom
using thin rebar.

The Arduino is a microcontroller that can be programmed
in the Arduino Integrated Development Environment (IDE)
using the C/C++ programming languages. The board can
be programmed to collect temperature measurements at any
customized interval and stores them on a micro SD card. In
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FIGURE 7 | A robomussel bed prototype deployed in the rocky intertidal zone

in Nahant, MA USA. The robomussels in this prototype are colored white in

order to collect preliminary data on how albedo may affect the accuracy of

biomimetic devices.

addition, it uses software interrupts to go into a power-off mode
between readings to further conserve power and can extend
battery life for over a year (battery life depends on sampling
interval). The logger is configured with two thermocouples,
allowing for the simultaneous data collection of two different
mussels within the bed. However, it uses the One-Wire library
so more sensors may be added to the same data line with ease4.

The project also offers a customized solution for
simultaneously logging body temperatures of Nucella lapillus
gastropod predators foraging on mussels using biomimics. Casts
of Nucella shells have been constructed to log body temperature
of individuals at different positions on the mussel bed. The bed
contains screw-in attachment points both on the top and bottom
of the bed. Therefore, it is useful for gaining insight into the
temperatures experienced by an intertidal predator and its prey
based on spatial position. Nucella biomimics can be colored
which helps account for the effects of albedo of the different
color variants found in the wild. Therefore, the logger allows
researchers to better understand the role of albedo and spatial
position in shaping an organism’s thermal experience.

4https://github.com/judge-r/Robo-mussel

In situ Movement Tracking
Radio-Frequency Identification (RFID) technology has been used
in prior intertidal research for tracking organismal behavior.
Nucella ostrina gastropods have been shown to advantageously
venture into risky areas (i.e., areas closer to thermal maxima) for
increased access to food by using the timing of the tide to their
advantage (Hayford et al., 2015, 2018). These same investigations
found that RFID can be used to replace traditional tagging or
marking methods in the intertidal. Their results showed that
RFID tagging methods are 10-fold more efficient as a mechanism
for relocating specific individuals than were traditional means.

CONCLUSIONS

Significant advances in temperature logging in intertidal systems
have provided significant insights in to how this model system
will continue to respond to the ongoing threat of climate change.
Advances in logger design, both in terms of materials used
to construct loggers as well as the size, battery life, and live
transmission of data make biomimetics ever more powerful
for a wider range of species. A major limitation still lies
in understanding the role of thermoregulatory behavior by
intertidal animals, both through movement to microhabitats but
also through non-movement thermoregulatory behavior. New
tools for tracking movement through RFID and for monitoring
behaviors such as gaping are opening avenues of research, but
they must be coupled with a better understanding of the “grain
size” of the environment that the organism perceives. A small
crab that is able to scuttle to safety in a crevice when its body
temperature exceeds a critical threshold will experience very
different temporal and spatial patterns of small-scale refugia
than will a large seastar that is limited both by availability of
sufficiently large hiding places as well as by movement speed.
In contrast, by virtue of a significantly greater thermal inertia, a
larger animal may have less need of a hiding place except during
extreme events (Monaco et al., 2015). All of these organism-
environment interactions are occurring simultaneously at a
single site, yet without insights in to the way that they experience
their environments and one another our expectations of the
impacts of environmental change will likely fail (Broitman et al.,
2009; Gilman et al., 2015; Hayford et al., 2015).

The development of data sensing and logging tools that
are accurate and most importantly relevant to the species of
experimental interest is now more important than ever. This
instrumentation must be combined with laboratory and field
experiments that holistically evaluate the state of the species from
an assemblage-based perspective. Once these approaches are
taken, they may potentially be scaled up to regional assessments
of species performance and distribution (e.g., Woodin et al.,
2013). Advanced biologging techniques will allow for more
accurate ecological forecasting that enhances our understanding
of what to expect in the future. There are many unique challenges
to monitoring intertidal organisms, however the rapid pace of
technological improvement is making these challenges easier
to overcome, and thus promises new insights from this model
system.
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