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Abstract—Deep neural networks have recently gained tremen-
dous interest due to their capabilities in a wide variety of
application areas such as computer vision and speech recognition.
Thus it is important to exploit the unprecedented power of
leadership High-Performance Computing (HPC) systems for
greater potential of deep learning. While much attention has
been paid to leverage the latest processors and accelerators, I/O
support also needs to keep up with the growth of computing
power for deep neural networks. In this research, we introduce an
entropy-aware I/O framework called DeepIO for large-scale deep
learning on HPC systems. Its overarching goal is to coordinate the
use of memory, communication, and I/O resources for efficient
training of datasets. DeepIO features an I/O pipeline that utilizes
several novel optimizations: RDMA (Remote Direct Memory
Access)-assisted in-situ shuffling, input pipelining, and entropy-
aware opportunistic ordering. In addition, we design a portable
storage interface to support efficient I/O on any underlying
storage system. We have implemented DeepIO as a prototype
for the popular TensorFlow framework and evaluated it on a
variety of different storage systems. Our evaluation shows that
DeepIO delivers significantly better performance than existing
memory-based storage systems.

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) ap-

plications have gained wide-spread prominence, particularly

because of the employment of powerful neural networks in

various application domains such as computer vision, image

classification [33], and natural language processing.

While neural networks with small datasets such as

NORB [35], Caltech-101/256 [20], [24], CIFAR-10/100 [32],

and MNIST [34] can be solved efficiently using a small group

of computation tasks, many shortcomings of small datasets

for training have been recognized in prior works. It has been

observed that small datasets fail to reflect real-world variations

and reduce the generalization of other datasets, as each object

can produce a wide range of images based on different poses,

positions, and scales [39], [45]. To meet the need of general-

ization, neural networks (e.g, GoogleNet [44], ResNet [26])

with larger filters and more weights are adopting deeper

layerswith larger datasets (LabelMe [40], ImageNet [19]),

because large datasets can prevent deep neural network (DNN)

from overfitting during training by utilizing more iterations to

update an increased number of weight parameters [43].

While there have been many existing efforts to enable deep

neural networks to leverage the powerful CPU and GPU pro-

cessors from leadership high-performance computing (HPC)

systems, large-scale deep learning with larger datasets requires

efficient I/O support from the underlying file and storage sys-

tems. For example, deep learning frameworks such as Tensor-

Flow [18] and Caffe [28] need to read datasets from backend

storage systems during training. In TensorFlow, datasets are

fetched from different platforms (e.g., HDFS [41], POSIX-

like file systems). Besides POSIX-like file system, Caffe also

supports other storage systems such as LMDB/LevelDB [6].

In these deep learning frameworks, in order to achieve a

high level of accuracy in the training model, datasets often

have to be read from the backend storage multiple times in a

random order. The randomization process, often called shuffle,

is important to avoid bias and update parameters of the training

model efficiently.
This I/O pattern has led to inefficiency in reading large

datasets from backend storage for many DNN training frame-

works. For some clusters that have node-local storage devices

(e.g., SSD), the dataset size is limited to the size of the

storage devices. Furthermore, on a GPU cluster, to meet the

training speed, the read bandwidth of devices is expected to

be relatively high. An alternative approach for the clusters

without node-local storage devices is to leverage traditional

parallel file systems (e.g, Lustre [11], BeeGFS [4]). However,

the read bandwidth of a parallel file system depends highly on

the size of the dataset. Small datasets can easily be “cached”

locally by parallel file systems for multiple reads whereas

large datasets cannot fit in the file system cache. For example,

our experiments show that on Cab [5] cluster at Lawrence

Livermore National Laboratory (LLNL), which uses Lustre as

the backend file system, TensorFlow’s reading bandwidth for

a dataset of 1 TB is less than half of that for a dataset of 32

GB.
In this research, we propose an efficient I/O framework for

large-scale deep learning on HPC systems. Our main objective

is to coordinate the use of memory, communication, and I/O

resources for efficient training. To this end, we design and

implement an entropy-aware I/O pipeline for TensorFlow. In

addition, to overcome the performance impedance of Tensor-

Flow dataset API, we design a portable storage interface so

that efficient I/O for deep learning can be enabled across a

wide variety of underlying file and storage systems.
Specifically, we make the following contributions:

• We design DeepIO, an I/O framework for training deep

neural networks.
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• We implement DeepIO as a prototype for TensorFlow fea-

turing novel optimizations: RDMA-assisted in-situ shuf-

fling, input pipelining, and entropy-aware opportunistic

ordering.

• To overcome the overhead of the TensorFlow dataset API,

we develop a portable API for TensorFlow to leverage

DeepIO on different storage systems.

• We conduct a systematic set of evaluation tests that

show DeepIO improves the I/O bandwidth by at least

6.12 times and 1.17 times, respectively, compared with

a memory-based BeeGFS and Octopus [38], an RDMA-

based distributed persistent memory file system.

II. BACKGROUND & MOTIVATION

In this section, we review the background of using large

datasets in DNN and discuss the motivation for DeepIO.

A. DNN with Large Datasets
When training deep neural networks, large datasets are

commonly used since they represent diverse real-world sce-

narios. On HPC systems, the datasets can be placed on node-

local devices or parallel file systems such as Lustre [11]

and BeeGFS [4]. For example, Catalyst [8] at LLNL is

equipped with 800 GB node-local SSDs on every compute

node. However, the SSD devices with fast read speed and large

capacity are quite expensive and not available on all clusters.

Therefore, parallel file systems are a feasible choice for users

on HPC systems without node-local storage devices.
When dealing with datasets on parallel file systems, the

sizes of the datasets have a high impact on the reading speed.

We use BeeGFS as an example to illustrate this. If the size of

a dataset is relatively small, it can be cached in the memory of

BeeGFS clients or Object Storage Servers (OSSs). In this way,

after the first epoch of a DNN training, the dataset will always

be read from “cache” instead of being fetched from physical

storage devices. However, if the size of a dataset is large and

cannot be cached, some data must be fetched from physical

storage devices, since all images must be read in each training

epoch. The slow reading speed can significantly prolong the

training time.
To demonstrate the impact of dataset size on parallel file

system performance, we use IOR [10] to measure the maxi-

mum read bandwidth (N-to-N sequential read) of BeeGFS with

16 clients on our in-house cluster (the system configuration is

described in Section IV-A). In our examination, every node

reads 512 MB from BeeGFS (8 GB in total) for measuring

the impact of small datasets, and 10 GB (160 GB in total) for

measuring the impact of large datasets. The aggregated read

bandwidth for small datasets is 7411.98 MB/s, and 4662.49

MB/s for large datasets. As stated previously, the bandwidth

of reading small dataset is much greater than reading large

dataset since the small dataset can benefit from the OSS’s and

BeeGFS clients’ caches.

B. DNN Training Algorithms
There are several algorithms for optimizing training param-

eters of deep neural networks (DNN). Gradient descent is one

of the most popular algorithms. It uses prediction error to

update the parameters of models to reduce the error in the next

round. Batch gradient descent, stochastic gradient descent, and

mini-batch gradient descent are several variants of gradient

descent algorithms [1]. The difference among these three is

how frequently the parameters are updated: after processing

every element of a dataset (stochastic gradient descent), after

processing the entire dataset (batch gradient descent), or after

processing a few elements (mini-batch gradient descent). The

mini-batch gradient, often referred to as SGD (Stochastic

Gradient Descent) [3], is more commonly used because it

requires less memory and leads to faster convergence speed.

However, using SGD as the optimizer of a model requires the

sequence of input elements being randomly shuffled. This is to

avoid the model being biased by the noise of the input order.

C. Challenges from Large-Scale Deep Learning

With the growing size of DNN datasets, the training time

has been increasing as well. As described in the previous

section, SGD is one of the most popular algorithms for deep

learning. SGD allows weights and coefficients to be updated

more efficiently, by processing training samples in batches in-

stead of individually. To overcome the performance challenges

caused by large datasets, strategies such as distributed training

with large mini-batches are typically employed. Different

mini-batch sizes have been observed in practical training.

The batch size for a mini-batch is critical in terms of training

speed and accuracy. A small batch size leads to less computa-

tion in one iteration but can be more easily affected by noises

during the training process. A larger batch size reduces the

number of iterations per epoch, but it may cause the training

model to be less likely to converge. Although very large batch

size may have less competitive performance [30], many recent

studies have shown that cleverly enabling large minibatch

helps both training performance and training accuracy [31],

[37], [23], [47]. In addition, when training with SGD, it

requires the training dataset to be shuffled randomly before

each training epoch. This prevents possible overfitting of the

neural networks from inputting samples in a known order.

It remains a challenge on how to efficiently generate large

mini-batches for distributed DNN models while maintaining

the randomness of input datasets for accuracy assurance.

Deep learning frameworks such as TensorFlow and Caffe

support multiple file formats such as batched binary files and

raw images. When training with raw images, a massive amount

of small random reads are issued to parallel file systems

to offer full randomization while organizing mini-batches.

Therefore, simply enabling a large mini-batch on raw images

causes relatively low performance due to the random small

reads. When training with batched binary files, TensorFlow

can perform sequential reads, but the randomness of its input

datasets is highly dependent on the size of shuffling buffer in

the training framework, which is discussed in Section II-D.

Furthermore, using large mini-batches in DNN on HPC

systems requires a good match of performance between com-

putation and I/O during the training. As mentioned previously,
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Fig. 1: Data flow in TensorFlow Dataset API.

some large datasets have to be stored on parallel file systems

due to the HPC systems’ limitation. Although prefetching from

parallel file systems can be enabled to overlap the loading

with computation time, the read performance is still not able

to match the fast computation speed, especially with powerful

training devices, such as GPUs. For example, Goyal et al. [23]

report that the training time of one iteration is as low as

0.26 second with 11K images per mini-batch on 44 nodes.

To match such a speed, the estimated mini-batch producing

speed needs to be greater than 6 GB/s. And if the size of

the dataset is relatively large, it becomes difficult to deliver

the estimated reading speed when reading dataset through

a training framework from parallel file systems, since the

training framework can add additional overheads. Therefore,

there is a genuine need for a specialized, high-performance

I/O solution that can construct highly-randomized large mini-

batches for the DNN training.

D. Data Flow in TensorFlow Dataset API

As data fetching and randomization procedures are im-

portant for deep learning, we describe how mini-batches are

prepared for DNN training in TensorFlow.

TensorFlow provides tf.data API to enable data import-

ing [14]. The tf.data API simplifies importing data from

files in various formats (e.g., text files, raw images, zip files),

ensures randomization of the files, and transforms them into

batches. The tf.data API introduces several stages (e.g.,

Source, Map, Shuffle, Batch) for importing a dataset. Normally

mini-batches are generated in the following order: Source →
Map → Shuffle → Repeat → Batch. Note that the Shuffle step

is optional and a TensorFlow application can opt to read the

dataset elements in a specified order.

Fig. 1 shows these basic stages of reading files in Ten-

sorFlow (excluding the Repeat stage). First, the Source stage

retrieves elements from files and stores them in a read-in data

buffer. Then, the Map stage transforms the elements, e.g.,

decodes raw values into a three-dimensional pixel value tensor.

The Shuffle stage inserts the new elements in the shuffle buffer,

typically appending them to the end of the buffer. Then the

output of the Shuffle stage is randomly chosen from the shuffle

buffer for the Batch stage. The elements at the tail of the

shuffle buffer are moved to the indices of the randomly chosen

elements to fill the resulting holes. Finally, at the Batch stage,

TensorFlow accumulates N elements from the previous stage

(Shuffle in our example) to a mini-batch, and copies them into
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a contiguous memory allocation. N is a parameter specified

by the user. Once a mini-batch is ready, it is used by the rest

of the TensorFlow training model.

We have used one of the tf.data API (i.e.,

tf.data.FixedLengthRecordDataset) to examine the

I/O performance of TensorFlow Dataset API with the Cifar10

training dataset, whose total size is 146.48 MB and fixed

element size is 3 KB. We measure the fixed length dataset read

speed with Source stage, Shuffle, and Batch stage (batch size

= 128) on disk (Ext4-disk), SSD (Ext4-ssd), memory (tmpfs),

1 BeeGFS client (BeeGFS-1C), and 4 BeeGFS clients

(BeeGFS-4C). We compare the performance of the API with

the raw performance of these file systems (denoted as Raw in

Fig. 2). As shown in Fig. 2, the performance on the Ext4-disk

system is similar to that of the tf.data API because the

slow disk speed overshadows any differences. However, the

performance of TensorFlow Dataset API on Ext4-ssd and

tmpfs are much lower than their raw performance, which is

caused by the overheads introduced by the TensorFlow API.

147



Moreover, with BeeGFS-1C, the tf.data API reports 46.8%

of the raw sequential read bandwidth. With BeeGFS-4C,

tf.data achieves 52.31% of the aggregate sequential read

performance. This is because the same amount of data is read

concurrently in both cases and when four clients are used,

there are less tf.data function calls for each client. One

reason that tf.data API’s mini-batch generation speed is

much lower than the file systems’ raw performance is that the

tf.data API introduces several memory copies in its data

path. In one epoch, the dataset has to be copied to a read

buffer for improving the read performance, and an additional

memory copy is also necessary when batching elements for

next layers.

We show the breakdown of time spent in each stage in

Fig. 3. In the tf.data API, very little time is spent performing

the actual functionality of each stage, and is instead spent on

reading and other overheads. One overhead is due to the fact

that the core of tf.data API and TensorFlow is implemented

in C++. While TensorFlow provides wrappers to execute C++

code in python, the cost of executing the wrappers to invoke

the C++ code is not trivial when the total execution time

is short. Furthermore, the tf.data API acquires iterators to

repetitively generate input data for training. Dispatching and

scheduling a thread from the threads pool for the iterators also

incur non-negligible overheads.

III. DESIGN

The design of DeepIO incorporates several techniques to

improve the I/O performance of distributed DNN training

frameworks. To remove the overhead of reading datasets from

backend storage, we design DeepIO to be an ephemeral, in-

memory storage system that is co-located with a distributed

DNN training application. By retaining datasets in memory,

we are able to employ additional techniques to improve

performance including RDMA data transfers, overlapping I/O

operations with training iterations, relaxing order of records

retrieval, and the DeepIO API for retrieving records.

In Fig. 4 we show the comparison of data flow between the

original TensorFlow and DeepIO with TensorFlow. Fig. 4(a)

shows the original TensorFlow data flow. Here, in each epoch,

every TensorFlow worker reads elements from a shard of the

dataset located on the backend storage using the TensorFlow

Dataset API. The element is a training image, which can be a

raw image (e.g., .JPG file), binary data (e.g, pixel value of an

image), etc. The element means the pixel value of an image in

the following sections if it is not specified. Then, the elements

are organized into mini-batches via the tf.data API.

With DeepIO, as shown in Fig. 4(b), dataset elements are

loaded from the backend storage into the memory of DeepIO

servers that run on each compute node. TensorFlow workers

access the elements using the DeepIO API. The DeepIO

servers employ several optimizations to return elements to

the workers with high performance: RDMA-assisted in-situ
shuffling, input pipelining to hide I/O latency, and entropy-
aware opportunistic ordering. In the RDMA-assisted in-situ

shuffling, datasets are buffered in each server’s local memory

and exposed to other DeepIO servers for RDMA_READ opera-

tions. Note that, since the dataset is now retained in memory,

elements can be easily re-shuffled between the participating

nodes for the next epoch without reloading dataset from back-

end storage. The input pipelining reduces the I/O waiting time

of workers by overlapping training with mini-batch generation.

For the entropy-aware opportunistic ordering, we observe that

the order of generated mini-batches is not important as long

as it is randomized rather than delivered in particular order.

Our approach is to relax the strict ordering requirements to

improve I/O performance while still maintaining the level of

randomness required by the training algorithm. To estimate

the level of randomness, DeepIO leverages the notion of cross-
entropy in the shuffling procedure. Cross-entropy is a measure

of how one probability distribution diverges from a second

expected probability distribution [16]. We use cross-entropy as

a measure of the difference between our relaxed ordering and

the fully-shuffled scheme on the probabilities of occurrence

for a sequence of data elements.

To incorporate DeepIO into TensorFlow, we also introduce a

portable API which also enables any backend storage system

to be used for loading datasets with high performance. The

detail of the API is discussed in Section III-D.

A. RDMA-Assisted In-Situ Shuffling

DeepIO stores the training dataset in the memory of the

distributed compute nodes and leverages RDMA for mini-

batch generations. As shown in Fig. 5, both the storage buffer

and the read buffer on DeepIO servers are exposed for RDMA

data transfer. The storage buffer is used to store the dataset in

memory, and the read buffer is used both as the destination

of dataset shuffling and the shared memory communication

conduit between a training worker and a DeepIO server for

updating status of memory blocks. This is in contrast to the

TensorFlow where workers sequentially read elements of a

batched dataset and randomly choose elements for the shuffle

buffer. In our approach, the shuffle operation occurs in-situ

with the placement of the elements into the read buffer. Every

block in the storage buffer and read buffer contains an element

whose size is known to DeepIO.

1) Memory-Resident Data Buffering: When the DeepIO

servers are launched, they establish RDMA connections be-

tween each other. The storage buffer on every node is allocated

and exposed to RDMA_READ. If the whole dataset can fit in the

memory available to DeepIO servers, each node will initialize

an equal number of blocks that in total can hold all elements

of the dataset. If not, the number of blocks initialized by the

servers will be contingent upon a configurable user-defined

ratio (e.g., 0.25) of the total dataset. The remaining portion

of the dataset left on storage will be read and processed in

a pipelined fashion, described later. Each DeepIO server will

read a different partition of the dataset from backend storage

into the storage buffer. Because the memory block size is equal

to the element size, the element ID equals to the block ID when

a dataset is all in memory. Therefore, any DeepIO server can
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Fig. 5: RDMA-assisted in-situ shuffling.

locate a desired element in the storage buffer by simply using

the block ID.

2) RDMA-Assisted Shuffling: To generate mini-batches,

DeepIO servers first create a random list of element IDs using

the same seed which is shared by broadcast at the beginning

of each epoch. Each DeepIO server generates the same list of

random IDs according to the same seed and then is assigned

a unique partition of the IDs list. After that, each server

will read its assigned elements from the storage buffer using

RDMA_READ or local memory read, depending on the location

of the element. The destination of an RDMA_READ or a local

memory read is the local read buffer. The structure of the

read buffer shown in Fig. 5 is designed to facilitate both data

shuffling and pipelining. The read buffer contains data and

an associated tag for each data element. The tag indicates

which elements have been used by the training workers and

which still need to be processed. The purpose of the tags is

to indicate the status of elements to further avoid the need

of copying the mini-batch elements to a separate buffer. The

blue and the orange blocks in Fig. 5 are corresponding to

the different element status. The blue blocks mean that the

reading is finished and the data is ready to be used. The orange

blocks imply that these blocks have been assigned to incoming

elements.

An advantage of our approach is that it can remove the

need for additional memory copies of the mini-batch elements,

depending on the behavior of the training framework. For

example, in Caffe, the memory data layer allows reading

data directly from memory without memory copy [7], so

the corresponding memory will not be released as long as

the data is still in it. Therefore, the RDMA-assisted in-situ

shuffling with zero-copy can be enabled when generating mini-

batches. However, TensorFlow requires a specialized output

tensor buffer in a TensorFlow operation [13]. The tensor buffer

will be released as soon as the tensor is not needed anymore.

In this case, an additional memory copy cannot be avoided for

re-organizing the data into the output tensor buffer. Then, the

generated mini-batches are ready for input to the DNN model,

as shown in Fig. 4.

B. Input Pipelining
To overlap disk I/O when the storage buffer is not able

to hold the entire dataset, DeepIO forms a pipeline of mini-

batches as shown in Fig. 6. To illustrate, we introduce two

pipeline processes in our multi-level pipeline scheme: a hy-
brid backend-memory pipeline and an in-memory pipeline.

The hybrid backend-memory pipeline is for overlapping the

training iterations when the size of the storage buffer of

DeepIO server is insufficient to hold the entire dataset and

some elements must be retrieved from backend storage. The

in-memory pipeline, indicated in Fig. 6 by the boxes with the

dashed line, is a part of the hybrid backend-memory pipeline.

It reads elements from the storage buffers of all participating

DeepIO servers and batches them for workers.
When the entire dataset resides in memory, the in-memory

pipeline moves elements from local and remote storage buffers

in a pipelined manner, overlapping training with mini-batch

preparation. During the in-memory pipeline, once the DeepIO

server detects the completion of an element read (RDMA_READ
or local memory copy), it updates the corresponding tag to

the read completed state. After the data of the block is used

or copied out by the training worker, the tag of the block

is updated to empty state to mark it as available for a new

element. The read buffer is viewed as a ring by the pipeline.

The pipeline progresses across the buffer to the next available

block to be replaced and wraps around from the tail of the

buffer to the head when the end is reached.
Hybrid backend-memory pipelining is designed to reduce

the overhead of constructing mini-batches when datasets can-
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not be fully uploaded to the storage buffers. To allow the

uploading time to be overlapped with the training time, we

use a double buffering scheme. The read buffer is divided into

two equal-sized buffers. In one buffer, elements are continually

read in from backend storage in a sequential manner. Concur-

rently, the data in the other storage buffer partition is used

for shuffling and mini-batch generation. Because the random

elements chosen for the mini-batches come only from the in-

memory buffers and not from storage in this mode, the size

of the storage buffer may affect the randomization level of the

mini-batches. We discuss this impact in the next section.

C. Entropy-Aware Opportunistic Ordering

There are two modes to select elements for mini-batches in

DeepIO, ordered and entropy-aware opportunistic ordering. In

the ordered mode, the order of element retrieval is based on

the requests submitted by the client in the case that they opt

out of the shuffling step. However, in some training jobs, e.g.,

when using SGD for optimization, the input training elements

are not required to be in a meaningful order. Therefore, the

order of input elements is not important as long as the input

order is randomized. Using this knowledge, we introduce the

entropy-aware opportunistic ordering mode. Here, workers of

training frameworks, also referred to as clients, are not aware

of the input order and wait for the data prepared by the DeepIO

servers.

In ordered access mode, input requests are a list of element

IDs, which enables DeepIO servers to process a batch of

elements all at once and significantly reduce the overheads

of inter-process communication. There are two “cursors” to

guarantee the access order following the requested order. The

DeepIO server uses one cursor to indicate the first free data

block, and workers (clients) use another cursor to indicate

the next read position. The cursor used by the server moves

forward only after the block is assigned to an incoming

element. The issued read follows the submitted ID list. The

cursor used by the client moves forward when the tag for that

block marked as ready by the server. Therefore, the elements

are guaranteed to be processed in order since the data blocks

are assigned based on the input order by the DeepIO server.

However, this strict ordering results in a massive number of

small random reads from backend storage to the storage buffer

when the entire dataset cannot fit in the memory, which leads

to relatively low read bandwidth.

With entropy-aware opportunistic ordering, DeepIO servers

independently determine which elements will be taken in next

mini-batches. The algorithm for determining the elements for

mini-batches in opportunistic ordering is designed to avoid

excessive inter-process communication using a seed broad-

casting method, and it avoids a large number of small random

reads from backend storage by utilizing only the elements that

are loaded into the in-memory storage buffers. The DeepIO

servers receive element count and size of storage buffer for

shuffling before training starts. Then before each epoch, seeds

are broadcast to all servers which are used to generate random

lists of memory block IDs. Because the seed used to generate

…

Read

DeepIO Storage Buffer

…

…

Read Backend

Batch Time

One Iteration Time

In-Memory Pipeline

Read Backend

Hybrid Backend-Memory Pipeline

Time

Fig. 6: Pipeline of importing dataset with opportunistic order.

the list is the same on all servers, the random list is identical

across servers. Each DeepIO server uses a pre-assigned portion

of the random list of memory block IDs for the mini-batch

generation. Then, similar to the ordered access mode, each

server issues element read requests according to the order

of the IDs until the read buffer is filled up. By using input

pipelining in DeepIO, the element read requests are overlapped

with the training of the workers.

In DNN training process, randomization is ensured by

shuffling input elements. The input order generation is similar

to the events of randomly choosing elements from a dataset.

According to the Information Theory, an unlikely event is

more informative than a likely event [17]. Similarly, when

training with shuffled input order, a higher randomized order is

more informative than a non-randomized order. For example,

if an input order of each epoch is fixed, i.e., the probability

of the appearance of the input order is 1, the training model

actually learns the noise of the elements’ order instead of the

elements themselves.

We leverage cross-entropy to help estimate the random-

ization level (RL) of an input sequence. The cross-entropy

H(P,Q) is

H(P,Q) =−∑
i

P(i)log2 (Q(i)) , (1)

where P(i) and Q(i) indicate the probabilities of the occur-

rence of i-th event.

When we have to use our hybrid backend-memory pipelin-

ing approach due to limited memory size, the randomization

level is affected since not all elements are available in the

in-memory storage buffer for organizing mini-batches at ev-

ery training iteration. Therefore, the possibility of an input

sequence of a hybrid backend-memory pipeline is

P =
1

∏Nr
1

(
CNc

Nf −r×Nc
×Nmem!

) , (2)

where Nmem is the number of memory blocks on all compute

nodes, Nf is the number of files of a dataset, Nc is the number

of files that can be uploaded in Nmem memory blocks, Nr is the

number of rounds needed for Nf files to be uploaded to the
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Fig. 7: Validation Accuracy with Different Randomization

Level on AlexNet.

Nmem blocks, and r indicates the r-th file uploading round in

an epoch. Then, CNc
Nf −r×Nc

in Equation 2 implies the number of

possible file combinations in memory, and Nmem! is the number

of all possible input sequence for one file uploading round. In

addition, the possibility of a fully shuffled input sequence is

Q =
1

Nimages!
, (3)

where Nimages is the image count of a dataset.

Equation 2 and 3, however, are hard to calculate if a dataset

has a large number of files and elements. To evade the potential

calculation problem, we calculate the appearance probability

of each element when building the input file sequence with

different modes. We leverage P(i,r) and Q(i), shown in

Equation 4, as the possibility of i-th element in a pipelined

and a fully shuffled sequence, respectively.

P(i,r) =
Nc

Nf −Nc × r
× 1

Nmem − i%Nmem
,

Q(i) =
1

Nimages − i
,

(4)

where r is the dataset file uploading round ID, Nc
Nf −Nc×r in

P(i,r) implies the chance of selected files on memory blocks

in pipelined sequence with shuffling without replacement,

and 1
Nmem−i%Nmem

and 1
Nimages−i are the possibility of randomly

choosing elements without replacement from memory blocks.

Then, P(i,r) and Q(i) from Equation 4 can be applied to Equa-

tion 1 to calculate the cross-entropy between any pipelined and

fully shuffled sequences. Therefore, the randomization level

(RL) is

RL =
H

Hf ully
, (5)

where Hf ully indicates the cross-entropy between two fully

shuffled sequences, and H is the cross-entropy between the

input sequence and a fully shuffled sequence. When RL =
100%, it means that the input sequence is fully shuffled. When
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Fig. 8: Accuracy validation for entropy-aware pipelining.

RL = 0%, it implies that the input sequence is in a constant

order.

To show the randomization level effect on the validation

accuracy, we have trained AlexNet [33] with Cal101 dataset

on a single machine, where the AlexNet is a convolutional

neural network with eight layers and the Cal101 is a dataset

with 101 categories and 40 to 800 images per category. In

the experiments, we divide the dataset into training (85%)

and validation (15%) portions. The RL in Fig. 7 indicates the

randomization level, and RL = 100% and RL = 0% mean fully

shuffled and constant order, respectively. To emulate other

randomization levels, we read N images in a constant order.

RL= 73%,49%, and 16% imply that 4, 16, and 256 images are

concatenated in a constant sequence, which means that every

4, 16, and 256 images are treated as an independent element in

shuffling, respectively. As shown in Fig. 7, the best validation

accuracy comes with full shuffling, and the accuracy decreases

with the randomization level decreasing.

To demonstrate that our pipeline does not affect the ran-

domization level, we have trained the AlexNet similarly to

the previous experiment but on multiple nodes, as shown

in Fig. 8. In Fig. 8, R indicates the ratio of the shuffling

memory size to the size of the entire training dataset. For

example, when R = 0.25, it means that the memory size used

to store the dataset for one round of random read is 25%

of the entire dataset. When R = 1, it means that the entire

dataset is resided on the memory indicating no uploading

pipeline. The randomization level of R = 0.5 and 0.25 are

98.54% and 96.96% respectively. Therefore, in these cases, the

randomization of generated mini-batches could deliver almost

the same validation accuracy as shown in Fig. 8. Although

the size of mini-batches changes with node counts, we can

still keep high training accuracy by carefully adjusting training

parameters.
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D. DeepIO API

We design a generic API for integrating DeepIO into Ten-

sorFlow. We provide a frontend and backend API to support

loading dataset to TensorFlow. Our goal in developing this API

is to enable datasets to be read easily from different storage

systems using our DeepIO framework. Additionally, using the

DeepIO API avoids the redundant memory copies and thread

scheduling overheads presenting in the TensorFlow tf.data
API.

The frontend API is used directly by a training worker:

1) generate_seed(epoch_count, seed_file);

Generate a seed list whose length is epoch_count and

store in a seed_file.

2) index_array = shuffle_rand(epoch_id,
worker_id, seed_file);

Get a randomized index array based on a provided seed

from seed_file for a specific worker with worker_id
at the certain epoch.

3) mini_batch = deepIO_batch(index_array,
batch_size, element_size, count_per_read,
dataset_filename_list);
Read and produce a mini-batch with batch_size
of elements based on the previously generated

index_array. element_size is the fixed length of

each element (i.e., image), count_per_read is the

element count when reading from backend storage used

in the backend API, and dataset_filename_list
contains the list of the dataset file name. Note that this

is a TensorFlow operation.

The backend API (inside the deepIO_batch() for incorpo-

rating different storage systems):

1) deepIO_inner_read(index, read_size,
count_per_read, out_tensor, &fs_read);

This function works inside the previous deepIO_batch
TensorFlow operation. index indicates the element IDs,

read_size and count_per_read indicate the read

size to underlying storage systems, out_tensor is the

destination of output tensor, and fs_read is the read

function for reading images from a specified storage

system.

2) deepIO_inner_init(&fs_init, argv);

fs_init is the initialization function of the backend

system. Same as deepIO_inner_read(), this function

also resides inside the deepIO_batch.

Here, we briefly describe the implementation of DeepIO

API. First, to avoid the additional communication channel to

be built for broadcasting the randomized image index array,

DeepIO stores a seed list for universally generating the array

on every node by generate_seed(). Then each worker can

use the seed to produce a shuffled index array and fetch

its portion of the index array based on the worker ID in

shuffle_rand(). Before using the deepIO_batch() to build

mini-batches from different storage systems, the additional

effort for indicating the read and the initialization function

of the storage system is needed. The mini-batches that are

the output of deepIO_batch() will be ready for the next

training iteration. The TensorFlow operation deepIO_batch()
is written, registered, and run in the same way as the original

TensorFlow operations [13], and there is no additional change

to the TensorFlow source code. In addition, to reduce the

potential overheads involved in the TensorFlow tf.data API,

we directly enable loading mini-batches from DeepIO API

instead of implementing DeepIO as a general file system

platform [12] for TensorFlow.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of DeepIO

implementation. We explore the contributions of the use of

DeepIO API, pipelining, and entropy-aware opportunistic or-

dering.

A. Experimental Setup

We conduct our experiments on Innovation, an in-house

cluster at Florida State University. Each node is equipped

with 10 dual-socket Intel Xeon(R) CPU E5-2650 cores, 64

GB memory, and a 1 TB Seagate ST91000640NS SATA disk.

Some of the nodes are equipped with a 400 GB Intel DC

P3700 NVMe SSD. All nodes are connected through an FDR

InfiniBand interconnect with the ConnectX-3 NIC.

Because there is no other open source solution similar to

DeepIO for addressing the potential I/O problems in DNN

training, we evaluate our DeepIO against two existing storage

systems.

BeeGFS: We use BeeGFS as an example of a conventional

parallel file system. For a fair comparison, we set up BeeGFS

over memory (tmpfs) for storage. We have two Metadata

Servers and six Object Storage Servers. Each Metadata Server

has one Metadata Target of 30 GiB size, and each Object

Storage Server maintains two RAID’ed Object Storage Targets

of 60 GiB each. These sizes are selected according to the

need of the dataset we were using. For the striping pattern of

BeeGFS, we use default RAID0 type with the chunk size of

512K and 4 desired storage targets.

Octopus: Although there are a few memory-based storage

systems, such as Crail [42], NVFS [27], and Alluxio [36],

we use Octopus [38] as the RDMA- and memory-based

comparison target of DeepIO. As the state-of-the-art RDMA

based memory file system solution, Octopus already shows

that it can outperform the other options listed above. Since

DeepIO leverages memory of allocated compute nodes as

data storage, we also emulate the same scenario when using

Octopus on compute nodes for a fair comparison. Therefore,

Octopus’s servers and clients are collocated on the same nodes

(i.e., one server and one client on one node).

To measure the read performance of BeeGFS, Octopus, and

DeepIO, we generate a dummy dataset with random numbers

to represent the pixel values of images. As randomization

is needed for reading training dataset, we leverage fully

randomized read across all files. Therefore, the read pattern in

tests is fully randomized if there is no additional notification.

The reported results are the average of 10 tests.

152



1

10

100

1 KB 4 KB 16 KB 64 KB 256 KB 1024 KB

Ba
nd

w
id

th
(G

B/
s)

Element Sizes

BeeGFS-Seq Octopus DeepIO-Base DeepIO-Opp
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B. Overall Bandwidth

Here we evaluate the bandwidth achieved by DeepIO using

different element sizes, node counts, and numbers of clients.

1) Read Bandwidth of Different Read Sizes: Fig. 9 shows

the concurrent random read bandwidth with varying image

sizes (element sizes) on 16 nodes for BeeGFS, Octopus, and

DeepIO. In our experiments, the total read size is 160 GB,

with 10 GB per node. The element size varies from 1 KB to

1 MB. Although running on memory, the read bandwidth of

BeeGFS is still limited by its complexity. Our experimental

results show that the fully randomized read bandwidth on

BeeGFS (not shown in Fig. 9) is at least 2× lower than the

aggregate N-to-N sequential read bandwidth (N processes read

N files simultaneously). So we leverage the aggregate N-to-N

sequential read bandwidth of BeeGFS as the baseline, which

is denoted as BeeGFS-Seq in Fig. 9. The fully shuffled read

bandwidth of Octopus is implied as Octopus in Fig. 9. For

DeepIO, we have two test scenarios as shown in Fig. 9, where

DeepIO-Base indicates that the returned elements follow the

input request submission order, and DeepIO-Opp indicates that

the returned elements follow the opportunistic order.

In Fig. 9, when the element size is small, BeeGFS-

Seq performs better than Octopus. This is because Octopus

clients read elements in a fully randomized order instead

of sequentially. Moreover, comparing Octopus and DeepIO’s

performance, the Octopus’s read performance is much lower

than DeepIO when the element size is small. This is because

clients of Octopus have to consult their servers to know the

address of the requested data before data operations. When

the element size is small, more requests for checking data

addresses with Octopus’s servers are triggered by the clients,

leading to relatively lower performance. In fact, because the

training models only read datasets instead of overwriting them,

it is not necessary to check the address of data with Octopus’

server for every read request. Additionally, because servers and

clients are collocated on the same nodes, both in and out data

transfers consume the RDMA bandwidth. In contrast, DeepIO

shows better read performance for all, especially on small

element sizes, since no redundant operations are performed

while reading elements from memory. Therefore, Octopus as

a general-purpose file system cannot match the performance

of DeepIO.
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Fig. 10: Aggregate read bandwidth with different node count.

Overall, DeepIO-Base and DeepIO-Opp outperform

BeeGFS-Seq by at least 1.43× and 1.82×, and up to 11.14×
and 11.54×; DeepIO-Base and DeepIO-Opp surpass Octopus

by at least 1.5× and 1.59×, and up to 9.34× and 9.86×.

When the element size is small (e.g., 1 KB), the performance

of DeepIO-Opp is 16.1% higher than DeepIO-Base; but

when the element size is getting larger, the performance

difference between the two becomes less, as less inter-process

communications are triggered in reading.

2) Read Bandwidth at Scale: We also evaluate the read

bandwidth using a larger number of nodes. As Fig. 9 reveals,

the read performance does not increase much when the el-

ement size is greater than 256 KB. We use 256 KB as the

element size for the scalability tests. The results for scalability

tests are shown in Fig. 10. The aggregate read performances

of all test cases increase with the number of nodes. Both

DeepIO scenarios have consistently better performance than

the other two systems, mainly because there are fewer over-

heads introduced in a read operation. In overall, DeepIO-Base

and DeepIO-Opp outperform BeeGFS-Seq by at least 6.12×
and 7.81×, respectively; they also exceed Octopus by at least

1.17× and 1.21×, respectively.

C. Data Importing API for TensorFlow

We deploy DeepIO API and compare the performance of

reading dataset through raw DeepIO (i.e. DeepIO-Raw) and

the proposed DeepIO TensorFlow API (DeepIO-TF). Fig. 11

shows the aggregate bandwidth over different node counts with

the read size of 256 KB. The performance of importing data

through DeepIO-TF delivers around 26.7% of the DeepIO-

Raw. This is because the read time with DeepIO-Raw is too

short and the added overhead time in DeepIO-TF is close to

the pure DeepIO read time.

We further compare our DeepIO API with TensorFlow’s

Dataset API over several different types of file/storage systems

(i.e., Ext4-disk, Ext4-ssd, tmpfs, BeeGFS-1C, BeeGFS-4C

mentioned in Section II-D). Table I shows the read bandwidth

of using different APIs over different storage systems with two

datasets (Cifar10 and a 16 GB dummy dataset). The element

size of Cifar10 and the 16 GB dummy dataset are 3 KB and

256 KB, respectively. The read performance is largely different

for different backends.
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Fig. 11: Read bandwidth of alternative data APIs.

(MB/s) TF Dataset API DeepIO API
3 KB 256 KB 3 KB 256 KB

Ext4-disk 105.641 95.971 122.363 103.267

Ext4-ssd 324.927 438.183 572.116 987.103

tmpfs 384.07 478.433 907.193 2034.814

BeeGFS-1C 97.429 145.744 105.672 259.589

BeeGFS-4C 485.739 718.606 572.978 1184.631

TABLE I: Images loading speed of different APIs on different

storage systems.

According to Table I, for Cifar10 (3 KB), DeepIO API out-

performs TensorFlow Dataset API by 15.8%, 76.1%, 1.36%,

8.46%, and 26.7%, over Ext4-disk, Ext-ssd, tmpfs, BeeGFS-

1C, and BeeGFS-4C, respectively. For the dummy dataset, the

performance of DeepIO API exceeds TensorFlow Dataset API

by 7.63%, 1.25×, 3.25×, 78.11%, and 64.85% for the same

five storage systems, respectively. The performance difference

between DeepIO API and TensorFlow Dataset API over Ext-

disk and BeeGFS-1C is not obvious which is due to the

relatively low raw bandwidth of backend storage. In addition,

according to Table I, with a larger size of dataset (16 GB)

and element size (256 KB), DeepIO delivers higher bandwidth

compared to TensorFlow Dataset API. One thing to note is that

the performance of BeeGFS-4C is 4× greater than BeeGFS-

1C. This is caused by more client side cache involvement.

As we don’t disable cache effect when reading datasets from

BeeGFS, using 4 BeeGFS clients across 4 nodes allows more

data to be cached while reading.

To understand overheads in TensorFlow Dataset API and

DeepIO API, we investigate the time breakdown of the loading

process via those two APIs over the same five storage systems

(mentioned above). The results are shown in Fig. 12. The TF
and DeepIO indicate TensorFlow Dataset API and DeepIO

API, respectively. We see that the actual read time (gray por-

tion) is similar for both APIs on the same storage devices, but

the other time cost (read portion) for DeepIO is much lower

than TensorFlow Dataset API because we do not introduce the

thread scheduling overheads and redundant memory copies

when loading datasets. Furthermore, when dealing with the

dummy dataset, since the total I/O time is long, the overheads

0

0.5

1

1.5

2

T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O

Ext4-disk Ext4-ssd tmpfs BeeGFS-1C BeeGFS-4C

T
im
e(
s)

Read Others

(a) Time breakdown of reading Cifar10 (3 KB).

0

50

100

150

200

T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O T
F

D
ee
pI
O

Ext4-disk Ext4-ssd tmpfs BeeGFS-1C BeeGFS-4C

T
im
e(
s)

Read Others

(b) Time breakdown of reading a dummy dataset (256 KB).

Fig. 12: Time breakdown of different loading APIs.

introduced by DeepIO API are almost negligible, as shown in

Fig. 12(b). In contrast, when reading Cifar10, since the total

I/O time is short, there is a non-trivial overhead, as shown in

Fig. 12(a). In a nutshell, the overhead analysis echoes with the

bandwidth results we have in Table I.

D. Performance of Input Pipelining

Fig. 13 shows the overall time for loading a dataset and

training with different training iteration time. In the figure, R
indicates that the ratio of the shuffle buffer size to the training

dataset size, which has been described in Section III-C.

We use 8 DeepIO servers and 8 dummy training workers

on 8 different nodes. Every dummy training worker batches

N elements in each iteration but does not do any real training.

In our experiments, N = 128, the element size is 256 KB, and

the dataset size is 8 GB. Therefore, the total size of elements

for each iteration over 8 nodes is 256 MB. Every DeepIO

server reads 1 GB out of the 8 GB dataset from BeeGFS via

the BeeGFS client on the node in every epoch. The aggregate

dataset uploading bandwidth over 8 BeeGFS clients is 2526.25

MB/s. To investigate the effect of overlapping training and

uploading, we use different time intervals to emulate the

training iteration time. Every dummy worker sleeps 100, 50,

10, or 5 ms after acquiring every 128 elements in different

test sets.

The results are shown in Fig. 13. When R = 0, as every

element is directly read from BeeGFS, the worker has to wait

until 128 elements are read before a training iteration starts.

This significantly prolongs the total execution time. When
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Fig. 13: Total execution time with input pipelining.

R = 1 (all data stays in the memory), the overall execution

time decreases with the training iteration time, since the per-

formance is not affected by the backend uploading bandwidth.

When the time of training iteration equals 100 ms, the total

execution time of the first three cases is comparable. This

happens because the required minimum backend uploading

bandwidth is 2.5 GB/s when the training time is 100 ms,

and the aggregate uploading bandwidth (256 MB/100 ms) of

8 BeeGFS clients can meet the requirement. However, when

the training time decreases to 50, 10, or 5 ms, the required

minimum backend uploading bandwidth increases to 5 GB/s,

25 GB/s, or 50 GB/s, respectively. Therefore, the BeeGFS

aggregate bandwidth of 8 nodes cannot allow the uploading

to be overlapped by the training shown as R = 0.5 and 0.25 in

Fig. 13. However, normally in real-world DNN training, the

time of one iteration is not as short as those in our experiments.

Thus, with appropriate uploading bandwidth, the uploading

process can be easily overlapped by the training process.

V. RELATED WORKS

Google Brain team develops TensorFlow [18] and shows

its good scalability and training throughput. However, the

introduced Dataset API cannot satisfy the need of the full

randomization of input dataset among nodes. Caffe [28] as

another popular DNN training framework, supports images

in raw, HDF5, and LevelDB/LMDB formats. However, in

Caffe, reading raw images incurs massive random small reads,

shuffling data between HDF5 files is not allowed, and Lev-

elDB/LMDB database format is limited to sequential access.

In addition, LBANN [46] uses node-local storage device to

store dataset, but not all clusters feature the expensive fast-

speed node-local storage devices. Similarly, Weka.IO [15] is

a commercial file system that is built over NVMe devices

for various types of workloads, including machine learning.

However, it needs additional costs and efforts on purchasing

and installation on a group of separate storage nodes. In

contrast, DeepIO provides an efficient and effective solution

to data importing for the DNN training on most HPC systems.

Moreover, many research studies ([29], [27], [25], [38], [42],

[9], [2], [36], [15], [22]) have been carried out to exploit

Remote Direct Memory Access (RDMA) for improving the

communication speed among the compute nodes of clusters

and consequently improving the I/O performance of various

types of systems, such as remote memory paging [25], key-

value stores [29], [21], distributed file systems [27], [38], [42].

In particular, Lu et al. [38] leverage persistent memory with

RDMA for developing a file system with high throughput on

data I/O and low latency on metadata operations. Stedui et

al. [42] propose a fast multi-tiered distributed storage system

from ground up for high-performance network and storage

hardware to deliver user-level I/O. However, applying the

aforementioned RDMA-accelerated middleware directly for

DNN training incurs unnecessarily complicated communica-

tion process and memory copying, as shown in Section IV.

VI. CONCLUSION

The large datasets of DNN training on HPC systems may

suffer from the low reading speed due to the limitation of

parallel file systems. To better organize mini-batches over HPC

systems, we introduce DeepIO for large-scale deep learning

with RDMA-assisted in-situ shuffling, input pipelining, and

entropy-aware opportunistic ordering. In addition, to imple-

ment DeepIO as a prototype over TensorFlow, we implement

an alternative data API to allow loading dataset easily from

different underlying storage systems. Our experiments show

that DeepIO can outperform BeeGFS and Octopus by at least

6.12× and 1.17×, respectively.
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