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Simulations of strongly stratified turbulence often exhibit coherent large-scale
structures called vertically sheared horizontal flows (VSHFs). VSHFs emerge in
both two-dimensional (2D) and three-dimensional (3D) stratified turbulence with
similar vertical structure. The mechanism responsible for VSHF formation is not
fully understood. In this work, the formation and equilibration of VSHFs in a 2D
Boussinesq model of stratified turbulence is studied using statistical state dynamics
(SSD). In SSD, equations of motion are expressed directly in the statistical variables
of the turbulent state. Restriction to 2D turbulence facilitates application of an
analytically and computationally attractive implementation of SSD referred to as
S3T, in which the SSD is expressed by coupling the equation for the horizontal
mean structure with the equation for the ensemble mean perturbation covariance.
This second-order SSD produces accurate statistics, through second order, when
compared with fully nonlinear simulations. In particular, S3T captures the spontaneous
emergence of the VSHF and associated density layers seen in simulations of
turbulence maintained by homogeneous large-scale stochastic excitation. An advantage
of the S3T system is that the VSHF formation mechanism, which is wave-mean flow
interaction between the emergent VSHF and the stochastically excited large-scale
gravity waves, is analytically understood in the S3T system. Comparison with fully
nonlinear simulations verifies that S3T solutions accurately predict the scale selection,
dependence on stochastic excitation strength, and nonlinear equilibrium structure
of the VSHF. These results constitute a theory for VSHF formation applicable to
interpreting simulations and observations of geophysical examples of turbulent jets
such as the ocean’s equatorial deep jets.
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1. Introduction

Understanding turbulence in stable density stratification is a central problem in
atmosphere, ocean and climate dynamics, as well as in the context of engineering
flows (Riley & Lelong 2000). In strongly stratified turbulence a common phenomenon
is the emergence of a vertically sheared horizontal flow (VSHF). VSHFs have
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commonly been observed in numerical simulations of strongly stratified Boussinesq
turbulence maintained by stochastic excitation (Herring & Métais 1989; Smith 2001;
Smith & Waleffe 2002; Laval, McWilliams & Dubrulle 2003; Waite & Bartello 2004,
2006; Brethouwer et al. 2007; Marino et al. 2014; Rorai, Mininni & Pouquet 2015;
Herbert et al. 2016; Kumar, Verma & Sukhatme 2017).

The VSHF formation mechanism and the mechanism determining the equilibrium
VSHF structure remain incompletely understood. Mechanisms that have previously
been advanced include rapid distortion theory (Galmiche & Hunt 2002) and resonant
interactions among gravity waves (Holloway 1986; Smith 2001; Smith & Waleffe
2002). Although resonant interactions cannot transfer energy directly into the VSHF
due to its vanishing frequency, a mechanism has been suggested in which resonant
interactions transfer energy towards the VSHF which is subsequently transferred
into the VSHF by non-resonant interactions (Smith 2001; Smith & Waleffe 2002).
Studying the VSHF equilibration process has proved difficult because the VSHF
development time scale is long compared to the time scale for establishment of
equilibrium between the turbulence and the VSHF so that obtaining a statistically
steady VSHF requires long simulations (Brethouwer et al. 2007; Herbert et al. 2016).

Computational impediments associated with equilibrating the VSHF in simulation
are mitigated by investigating VSHF behaviour in the simplified model of two-
dimensional (2D) stratified turbulence. This approach is predicated on establishing
that the dynamics of VSHF emergence in the 2D system is similar to that in the
three-dimensional (3D) system. A potentially important physical difference between
2D and 3D Boussinesq dynamics is that the 3D system admits modes with vertically
oriented vorticity, referred to as vortical modes, while the 2D system does not.
However, Remmel, Sukhatme & Smith (2013) recently compared VSHF formation in
the full 3D system to that in a reduced 3D system in which these vortical modes were
removed from the dynamics, and found that similar VSHFs form with or without
vortical modes. This result suggests that VSHF formation results from interactions
that can be captured in the 2D system. Another important physical difference between
2D and 3D stratified turbulence is that 3D turbulence maintains vorticity by vortex
stretching and exhibits a direct cascade of energy towards small scales (e.g. Lindborg
2006), whereas 2D turbulence does not permit vortex stretching and exhibits an
inverse cascade of energy towards large scales (e.g. Kumar ef al. 2017). However,
previous analysis of stratified turbulence using rapid distortion theory has identified
a direct and spectrally non-local interaction between large-scale gravity waves and
large-scale shear flows that is viable as the central driver of VSHF formation and
maintenance, suggesting that the details of the route to dissipation are not primarily
involved in VSHF dynamics (Galmiche & Hunt 2002). Numerical simulations have
also demonstrated that VSHFs form robustly in strongly stratified 2D turbulence and
that these structures have similar properties to those seen in the 3D case (Smith 2001;
Kumar et al. 2017), further indicating that VSHF dynamics can be usefully studied
in 2D. In view of the great analytic and computational advantage afforded by the
application in 2D of statistical state dynamics to elucidate the mechanisms involved
we are motivated to begin our study of VSHF dynamics by exploiting this method,
which has proved successful in addressing similar problems of structure formation in
related systems (see Farrell & loannou 2017a, and references therein).

Spontaneous emergence of large-scale shear flows from small-scale turbulence has
been extensively studied in the context of geophysical fluid dynamics, where the
emergent structures are referred to as turbulent jets. The banded winds of Jupiter
(Vasavada & Showman 2005) provide a striking example in which the jet structure
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takes the form of statistically steady planetary-scale zonal (east-west oriented) winds
which oscillate in sign as a function of latitude. Layered shear flows are also found in
the weakly rotating, strongly stratified environment of the Earth’s equatorial oceans.
The equatorial deep jets (EDIJs) are zonal currents observed below approximately
1000 metres depth, and within 1° of latitude of the equator in all ocean basins that
are characterized by a vertically sheared structure in which the zonal flow oscillates
in sign as a function of depth (Eden & Dengler 2008). Although the EDIJs are
reminiscent of the VSHFs that emerge in stratified turbulence simulations, these
geophysical jets differ from VSHFs in that they are time-dependent and exhibit phase
propagation in the vertical direction (Brandt er al. 2011). Nonetheless, understanding
VSHF emergence in Boussinesq stratified turbulence may provide insight into the
EDJs in a manner analogous to the insight provided by barotropic beta-plane
turbulence into planetary-scale baroclinic jet formation (e.g. Farrell & Ioannou 2003).

As in the case of VSHFs, theoretical understanding of the origin and maintenance
of geophysical planetary-scale turbulent jets is not yet secure. Attempts to theoretically
explain the formation of large-scale structure from turbulence date back to Fjgrtoft
(1953) and Kraichnan (1967), who showed that nonlinear spectral broadening together
with energy and vorticity conservation implies that energy is transferred, on average,
from small scales to large scales in 2D inviscid unstratified turbulence (a similar
inverse cascade may occur in 3D rotating turbulence (Sukoriansky & Galperin 2016)).
The mechanism of 2D inverse cascade is consistent with the observed concentration
of energy at large scales on Jupiter (Galperin et al. 2014), as the planetary-scale
flow of the weather layer is believed to be both lightly damped and nearly 2D.
Similar arguments have been made for the EDJs, in which the jets are suggested
to result from a nonlinear cascade in which baroclinic mode energy is funnelled
towards the equator (Salmon 1982). However, the Jovian jets have an intricate and
nearly time-invariant structure (Vasavada & Showman 2005), and while the vertical
structure of the EDJs has not been as well established, they are also observed to be
phase-coherent over long times and large length scales (Youngs & Johnson 2015).
While general arguments based on the direction of spectral energy transfer predict
that the large scales will be energized in these systems, they do not predict the form
of these coherent structures. Other theoretical proposals for the origins of the EDIJs
have been based on instabilities of finite-amplitude equatorial waves (Hua, D’orgeville
& Fruman 2008) and on the linear response of the equatorial ocean to periodic wind
forcing (Wunsch 1977; McCreary 1984). Although these mechanisms can produce
high-wavenumber baroclinic structure near the equator, how this structure would
remain coherent in the presence of turbulence remains an open question.

Improving understanding of the formation and maintenance of shear flows in
strongly stratified turbulence is the subject of this paper. We focus on a simple
example, VSHF emergence in 2D stratified turbulence, which has at least suggestive
connection to geophysical systems such as the EDIJs.

Statistical state dynamics (SSD) refers to a class of theoretical approaches to the
analysis of chaotic dynamical systems in which the dynamics are expressed directly in
terms of the statistical quantities of the system (Farrell & Ioannou 2017a). A familiar
example of SSD is the Fokker—Planck equation for the evolution of the probability
distribution function of a system whose realizations evolve according to a stochastic
differential equation. In this work we apply the simplest non-trivial form of SSD,
known as stochastic structural stability theory (S3T) (Farrell & Ioannou 2003), to
investigate VSHF formation in the stochastically excited 2D Boussinesq system. By
comparing the results of analysis of the S3T system to simulations made with the full
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nonlinear equations (NL), we show that S3T captures the essential features of the full
system, including the emergence and structure of the VSHF and associated density
layers. In S3T, and the related system referred to as CE2 (second-order cumulant
expansion, Marston 2010), nonlinearity due to perturbation—perturbation advection is
either set to zero or stochastically parametrized, so that the SSD is closed at second
order. This second-order closure has proved useful in the study of coherent structure
emergence in barotropic turbulence (Farrell & Ioannou 2007; Marston, Conover
& Schneider 2008; Srinivasan & Young 2012; Bakas & loannou 2013; Tobias &
Marston 2013; Constantinou, Farrell & Ioannou 2014; Parker & Krommes 2014,
Bakas, Constantinou & Ioannou 2018), two-layer baroclinic turbulence (Farrell &
Ioannou 2008, 2009h; Marston 2010, 2012; Farrell & Ioannou 2017c¢), turbulence in
the shallow-water equations on the equatorial beta-plane (Farrell & Ioannou 2009c¢),
drift wave turbulence in plasmas (Farrell & Ioannou 2009a; Parker & Krommes 2013),
unstratified 2D turbulence (Bakas & Ioannou 2011), rotating magnetohydrodynamics
(Tobias, Dagon & Marston 2011; Squire & Bhattacharjee 2015; Constantinou &
Parker 2018), 3D wall-bounded shear flow turbulence (Farrell & Ioannou 2012,
2017b; Thomas et al. 2014, 2015; Farrell, Gayme & loannou 2017a; Farrell, Ioannou
& Nikolaidis 2017b), and the turbulence of stable ion-temperature-gradient modes
in plasmas (St-Onge & Krommes 2017). In the present work we place 2D stratified
Boussinesq turbulence into the mechanistic and phenomenological context of the
mean flow—turbulence interaction mechanism that has been identified in these other
turbulent systems.

In formulating the S3T dynamics for the Boussinesq system the perturbation
vorticity and buoyancy variables are expressed in terms of ensemble mean two-point
covariance functions. When coupled to the dynamics of the mean state this
second-order perturbation dynamics contains the statistical wave—mean flow interaction
between the turbulent perturbation fluxes and the horizontal mean structure. The
dynamics is greatly simplified by discarding the phase information in the horizontal
direction pertaining to the detailed configuration of the turbulent perturbation fields,
which we will demonstrate to be inessential to the VSHF formation mechanism.
Because the S3T dynamics is written in terms of two-point covariance functions the
state space of the S3T system is of higher dimension than that of the underlying
system, and use of the 2D, rather than 3D, Boussinesq system substantially reduces
the resulting computational burden.

The SSD approach used in S3T permits identification and analysis of cooperative
phenomena and mechanisms operating in turbulence that cannot be expressed
using analysis based on a single realization. For example, we will show that in
the S3T system, the initial formation of the VSHF occurs through a bifurcation
associated with the onset of a linear instability caused by a statistical wave—mean
flow interaction mechanism in which turbulent fluxes are organized by a perturbatively
small mean flow in such a way as to reinforce that flow. The resulting instability is
a statistical phenomenon that lacks analytical expression in the dynamics of a single
realization and therefore cannot be fundamentally understood through analysis of
single realizations of the turbulent state. However, the reflection of this phenomenon
is strikingly apparent in single realizations of the system, and we will demonstrate
that the VSHF structures predicted to arise via S3T instabilities emerge in NL
simulations of realizations. The S3T system also reveals subtle details of turbulent
equilibrium structures that might not otherwise be detected from observing the NL
simulations, including the turbulent modification of the horizontal mean stratification
producing density layers. Although these density layers are obscured by fluctuations


https://doi.org/10.1017/jfm.2018.560
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Harvard-Smithsonian Centerfor Astrophysics, on 19 Sep 2018 at 17:32:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2018.560

548 J. G. Fitzgerald and B. F. Farrell

in snapshots of the flow, time-averaging reveals that they coincide with the structure
predicted by the S3T system.

The present work is closely related to our recent work, Fitzgerald & Farrell (2018),
in which we apply the linearized differential formulation of S3T, originally developed
by Srinivasan & Young (2012), to analyse VSHF formation in 2D Boussinesq
turbulence. In Fitzgerald & Farrell (2018) we focus on the initial linear formation
process of VSHFs and analyse how this process depends on the structure of the
underlying turbulence and how individual physical processes contribute to the VSHF
formation mechanism. In the present work, we instead apply the conventional matrix
formulation of S3T and focus on analysing the structure and maintenance mechanisms
of finite-amplitude equilibria in 2D Boussinesq turbulence.

The structure of the paper is as follows. In §2 we introduce the 2D stochastically
excited Boussinesq equations and present NL simulation results demonstrating VSHF
formation. In § 3 we use SSD to illustrate the wave—mean flow interaction mechanism
underlying VSHF formation and maintenance. In §4 we formulate the deterministic
S3T system in its conventional matrix form and also the intermediate quasilinear
(QL) system, which provides a stochastic approximation to the second-order closure
and bridges the gap between NL simulations and the S3T system. In §5 we show
that the primary phenomena observed in NL simulations are captured by the QL
and S3T systems. In §6 we carry out a linear stability analysis of the S3T system
and relate the results to the scale selection of the initially emergent VSHF in NL
simulations. In §7 we analyse the finite-amplitude equilibration of the VSHF as a
function of the strength of the stochastic excitation. In §8 we show that multiple
simultaneously stable turbulent equilibrium states exist in this system, a phenomenon
which is predicted by S3T and verified in the NL simulations. In § 9 we compare the
NL, QL and S3T systems as a function of the excitation strength and show that the
VSHF-forming bifurcation predicted by S3T is reflected in the NL and QL systems.
We conclude and discuss these results in § 10. Appendix A describes a simplified
model system in which the mathematical structure and conceptual utility of S3T
is revealed simply. Appendix B provides analytical details required for the linear
stability analysis.

2. VSHF formation in simulations of 2D Boussinesq turbulence

We study VSHF formation using the 2D stochastically excited Boussinesq equations
using a unit aspect ratio (x, z) computational domain doubly periodic with length L
in the x and z directions. Anticipating the development of horizontal mean structure
we use a Reynolds decomposition in which the averaging operator is the horizontal
mean. The resulting equations, in terms of the mean velocity, perturbation vorticity,
and mean and perturbation buoyancy are

U 9 ___ 92U
=W —r,U+v—, 2.1
a7 8Zuw T, +v8z2 2.1
oB i 9?B
Ez_aisz _rmB+V72’ (22)
i d 8V BV L, Ay — T A
= - W —— - 9 - 5
ot ox 072 ox
—rAY +vA%Y + /ES, (2.3)
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In these equations an overline indicates a horizontal mean and primes indicate
deviations from the horizontal mean so that f'=f — f. The velocity is u = (u, w) with
u and w the horizontal and vertical velocity components, U =u is the horizontal mean
horizontal velocity, b is the buoyancy with B=b the horizontal mean buoyancy, ¥ is
the streamfunction satisfying (4, w) = (—d,y, 0,%), and the vorticity is Ay =d,w — d,u
where A = 97 + 92 is the Laplacian operator. Perturbation—perturbation advection
terms are written using the Jacobian J(f, g) = (8,/)(9,2) — (3:2)(3.f). /€S denotes
the stochastic excitation, which has zero horizontal mean and excites the perturbation
vorticity only. € controls the strength of the excitation. N, is the constant background
buoyancy frequency. Dissipation is provided by Rayleigh drag and diffusion acting
on both the buoyancy and vorticity fields. Consistent with previous studies of VSHF
formation, dissipation coefficients are assumed equal for vorticity and buoyancy,
i.e. the Prandtl numbers associated with the Rayleigh drag and with the diffusive
dissipation are each set equal to one. To approximate the effects of diffusive turbulent
dissipation, which damps the large scales less rapidly, the Rayleigh drag on the
mean fields (with coefficient r,) is typically taken to be weaker than that on the
perturbation fields (with coefficient ). We refer to (2.1)-(2.4) as the NL equations
(for fully nonlinear) to distinguish them from the quasilinear (QL) and S3T systems
which we formulate in § 4.

Use of Rayleigh drag in (2.1)—(2.4) departs from the diffusive dissipation commonly
used in simulating stratified turbulence (e.g. Smith 2001). Rayleigh drag provides a
simplified parametrization of dissipation that allows the system to reach statistical
equilibrium quickly, enabling simulations to obtain the asymptotic state of the VSHF
that is difficult to study comprehensively using diffusive dissipation. We emphasize
that the essential phenomenon of VSHF formation does not depend crucially on the
details of the dissipation, which we demonstrate using examples near the end of the
present section.

We choose the stochastic excitation, /&S in (2.3), to have the spatial structure
of an isotropic ring in Fourier space and to be delta-correlated in time. Figure 1
shows a snapshot of /¢S (panel a) and its wavenumber power spectrum (panel b), in
which k = (k, m) is the vector wavenumber with k and m the horizontal and vertical
wavenumber components. The excitation is homogeneous in space and approximately
isotropic, with some anisotropy being introduced by the omission of the horizontal
mean (k= 0) and vertical mean (m = 0) components of the excitation and also by
the finite domain size. We set the total wavenumber of the ring, k,, to be global
wavenumber six, k,/(2mL) = 6. As the excitation is delta-correlated in time, the rate
at which energy is injected into the flow by the vorticity excitation is a control
parameter that is independent of the system state. Here we define the kinetic energy,
K, the potential energy, V, and the total energy, E, of the flow as

K=[iu-u], V=[INV], E=K+V, (2.5a—c)
in which square brackets indicate the domain average. The energy injection rate as a
function of wavenumber, denoted & ,,, follows a Gaussian distribution centred at k, so
that &, = a exp[—(|k| — k.)*/8k*], where 8k =27 /L sets the ring thickness and « is
a normalization factor chosen so that the total energy injection rate summed over all
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FIGURE 1. Spatial structure of the stochastic excitation of the vorticity field, /eS.
(a) A sample realization of the excitation pattern, shown in normalized form as
S(x, z, f)/max[S(x, z, t)]. (b) The wavenumber power spectrum of S, shown in normalized
logarithmic form as In(P(k, m)/max[P(k, m)]). Here we define P(k, m)= (|§k,,,,|2), in which
S’k,m(t) is the Fourier coefficient of the excitation when S is expanded as S(x, z, t) =
D m S (£)e®m) - Angle brackets indicate the ensemble average over noise realizations.
The parameters of the excitation are k,/2mw =06 and §k/2m =1.

wavenumbers, >, &, iS equal to the value of the parameter & appearing in (2.3).
With this normalization, ¢ corresponds to the rate at which the vorticity excitation
injects energy into the system. Global horizontal wavenumbers 1-8 have non-zero
excitation and all higher horizontal wavenumbers are omitted from the excitation.
Equations (2.1)-(2.4) are non-dimensionalized by choosing the unit of length to
be the domain size, L, and the unit of time to be the Rayleigh damping time of

the perturbations, 1/r. The non-dimensional parameters of the problem are k, = Lk,,
8k = L8k, iy = r,/r, D =v/(L*r), € =¢/(r*L?), and N} = N/r’. We hold fixed the
parameters 12/27: =6, 87c/2n =1, iy =0.1, V=24 x 107 and N} = 10 unless
otherwise stated. The choice of . represents a compromise between providing
separation between the excitation scale and the domain scale while minimizing the
effects of diffusion on perturbations at the excitation scale. Modelling scale-selective
diffusive dissipation motivates setting 7, < 1 and our specific choice to set 7, = 0.1,
so that the mean fields are damped ten times less rapidly than the perturbation fields,
is made for computational convenience. We examine the sensitivity of the system to
this choice later in figure 6(a). The value of ¥ is small and was selected to ensure
numerical convergence. The rate of energy injection by the excitation, &, is the
primary control parameter which is varied to determine the response of the system
to changes in /efcitation.

We choose N3 =10 to place the system in the strongly stratified regime in which
VSHFs have previously been found to form (Smith 2001; Smith & Waleffe 2002).
The strongly stratified regime is also the regime relevant to the EDJs. For example,
taking the equatorial deep stratification as Ny, ~2 x 107 s7', a typical gravity wave
wavelength of Agw ~ 10 km, and a lateral eddy viscosity of vqs ~ 100 m? s~! gives
an effective Rayleigh drag coefficient of r; ~ (2m /AGW)zveddy ~4x107° s and so

NG £y =Ngeop/ Ty ~2500. Although we do not attempt in this work to model the EDJs,

which have 3D structure and are influenced by rotation and boundaries, this estimate
suggests that the presently studied idealized turbulence is in the appropriate parameter
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regime to allow comparison between our VSHF dynamics and EDJ phenomena.
For the remainder of the paper we work exclusively in terms of non-dimensional
parameters and drop hats in our notation.

We now summarize the behaviour of an NL simulation exhibiting VSHF formation
in which the system was integrated from rest over ¢ € [0, 60] with ¢ =0.25 and the
other parameters as described above, which we refer to as the standard parameter case.
The standard case value of e places the system in the parameter regime in which
strong VSHF formation occurs; the sensitivity of the system to ¢ is examined in
§§6, 7 and 9. In § 5 we compare the first- and second-order statistical features of NL
simulations with the results of the QL and S3T simulations. To perform the numerical
integration we use a 2D finite-difference configuration of DIABLO (Taylor 2008) with
512 gridpoints in both the x and z directions.

To estimate the canonical scales and non-dimensional parameters of the standard
case simulation we use the estimates Uy ~ /¢ for the velocity scale and Ly~ 1/k,
for the length scale. The velocity scale is estimated based on the approximate
energy balance in the absence of a VSHF, E ~ —2E + g, together with the
estimate U, ~ JE. Using these estimates, the Froude number of the standard
parameter case is Fr = Uy/(LyNy) ~ 0.6, the Ozmidov wavenumber is ko/(2m) & 56,

where ko = (N;/¢)"?, and the buoyancy wavenumber is k,/(2mw) ~ 10, where
k, = No/Uy ~ No/+/¢. The buoyancy Reynolds number is conventionally defined
as Re, = ¢/ (vNé) and is used to estimate the ratio of the vertical advection term
to the viscous damping term in the horizontal momentum equation in 3D stratified
turbulence (Brethouwer et al. 2007). Using this definition, the value of Re, in the
standard parameter case is Re, =~ 10.4. Although our system is 2D and includes
Rayleigh drag, this estimate of Re, is consistent with the time average value in the
standard case simulation of the ratio of interest, (W'd.u')pys/(—u' + vAu)rys =~ 10.7,
where the time average is calculated over the final 15 time units of the simulation
and the subscript RMS denotes the root mean square average over space.

Indicative example snapshots and time series of the NL system are shown in
figures 2—4. Near the start of the integration (figure 2a,b), the structure of the
flow reflects the structure of the stochastic excitation and is incoherent with a
dominant length scale corresponding to the stochastic excitation scale, 1/k.. By
t=060 (figure 2c¢,d) the system has evolved into a state in which the flow is dominated
by the VSHF, U, which manifests as horizontal ‘stripes’ in both the vorticity and
streamfunction fields with vertical wavenumber m/(27) = 6. Simulated realizations of
the NL system in the standard parameter case are always found to form a VSHE, but
the VSHF wavenumber, my, differs slightly between simulations when the system is
initialized from rest. We focus, in this section, on an example in which my/(271) =6
to facilitate comparison with SSD results in § 5. However, VSHFs with my/(2n) =7
form somewhat more frequently, which we discuss in § 6. We analyse how the VSHF
wavenumber, my, is related to the parameters in §§6 and 7, but presently note that
in the standard parameter case my is closely related to the excitation wavenumber,
k./(2m) =6, and that my differs from the Ozmidov wavenumber, ko/(27) ~ 56, and
from the buoyancy wavenumber, k,/(21) = 10.

The time evolution of U is shown in figure 3(a). The VSHF forms by ¢~ 15 and
persists until the end of the integration. Figure 4 shows the time evolution of the
kinetic energy of the VSHF, K, and of the perturbations, K’, where these energies
are defined as

K=[iU?], K=[-u]. (2.6a,b)
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FIGURE 2. Snapshots of the vorticity, streamfunction, and velocity fields for the standard
case NL simulation showing the development of the VSHF in turbulence. Just after
initialization (r=2.5), the vorticity field (a) and the streamfunction and associated velocity
field (b) are characterized by perturbations at the scale of the excitation. The system
evolves into a statistical equilibrium state by 7z = 60 in which the vorticity field (c) is
dominated by horizontal stripes with alternating sign indicative of a strong VSHF. The
streamfunction and velocity field at =60 (d) show that the VSHF is the dominant feature
of the instantaneous flow. Parameters are set to the standard values r, = 0.1, N = 10°,
k./2m =6, 8k/2m =1, v=2.4 x 107> and & =0.25. The buoyancy Reynolds number is
Re, =10.4 and the Froude number is Fr=0.6.

The VSHF is the energetically dominant feature of the statistically steady flow,
containing approximately six times more kinetic energy than the perturbations. In the
statistical equilibrium state, the kinetic energy that is injected into the perturbation
field by the stochastic excitation is transferred both into the mean flow, thereby
maintaining the VSHF, and into the buoyancy field. Energetic balance is maintained
by dissipation of the mean and perturbation energies at large scales by Rayleigh drag,
with viscosity contributing only weakly to the total dissipation.

Although the phenomenon of VSHF emergence in stratified turbulence is well
known, the concurrent development of coherent horizontal mean structure in the
buoyancy field has not been emphasized in the literature. Figure 3(b) shows the time
evolution of the horizontal mean stratification N> = N} + 9.B. Although N? exhibits
more temporal variability than U, it is clear that for these parameter values the
turbulent fluxes systematically weaken the stratification (N2 <N3) in the shear regions
of the VSHF. Association of mean stratification anomalies with the mean shear
produces a vertical wavenumber in N? of mg/27 = 12, twice that of the my/27 =6
structure of the VSHEF.


https://doi.org/10.1017/jfm.2018.560
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Harvard-Smithsonian Centerfor Astrophysics, on 19 Sep 2018 at 17:32:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2018.560

VSHF formation in 2D stratified turbulence 553

(a) 1.0 ] 1.0
| e PR R et T
705 et ——————— 0 1000
e —————
B
e ————r——" -0.5
e p—————"
| ——— A — e 4 500
IE—————— ~1.0
0 15 30 45 60
t 1

FIGURE 3. Development of the VSHF and associated density layers in the standard case
NL simulation. (@) Time evolution of the horizontal mean flow, U, which develops from
zero at ¢+ =0 into a persistent VSHF pattern with vertical wavenumber my/2m = 6 by
t~15. (b) Time evolution of the horizontal mean stratification, N2, which develops into a
pattern with vertical wavenumber mp/21 = 12 that is phase-aligned with U so that regions
of weak stratification coincide with the shear regions of the VSHF structure.
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FIGURE 4. Kinetic energy evolution in the standard case NL simulation. In statistically
steady state, the kinetic energy of the VSHF (dotted line) is approximately six times that
of the perturbations (solid line).

The statistical equilibrium horizontal mean state, obtained by averaging the flow
subsequent to a spin-up period of 30 time units, is shown in figure 5. Panels
(a,b) show that, for these parameters, the VSHF has a vertical structure that deviates
somewhat from harmonic, with flattened shear regions resulting in a profile resembling
a sawtooth structure. Comparison of panels (b,c) reveals that the shear extrema
coincide with the minima of N2. These N? minima correspond to narrow density
layers in which N2 is reduced by approximately 40 % relative to NZ. Similar density
layers have been reported in observations and simulations of the EDJs (Ménesguen
et al. 2009). As the vertical integral of N> — N2 must vanish due to the periodicity of
the boundary conditions in the vertical direction by (2.2), the narrow density layers
are compensated by regions of enhanced stratification. These regions of enhanced
stratification have a characteristic structure in which the N? maxima occur just
outside the extrema of U, with weak local minima of N? occurring at the locations
of the VSHF peaks.

The locations of strongest shear and weakest stratification correspond to the local
minima of the horizontal mean Richardson number, Ri = N2/(3,U)?, as shown in
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FIGURE 5. Vertical structure of the time average horizontal mean state in the standard
case NL simulation. (a) Mean flow, U. (b) Mean shear, 0U/dz. (c) Mean stratification,
NZ; the vertical dashed line indicates N?. (d) Mean Richardson number, Ri=N?2/(0U/d2)%;
the vertical dashed line indicates Ri = 1/4. Profiles are time averages over f € [30, 60] of
the structures shown in figure 3.

figure 5(d). The minimum value of Ri is near Ri~ 0.8 > 0.25, indicating that the time
mean VSHF structure would be free of modal instabilities in the absence of excitation
and dissipation by the Miles—Howard (MH) criterion. Although the MH criterion is
formally valid only for steady unforced inviscid flows, it remains useful in our
stochastically maintained turbulent flow to guide intuition about the maximum stable
shear attainable by the VSHF for a given stratification. We note that this usage of
the MH criterion differs from an alternative usage in which Ri is used to distinguish
between regions of a flow that are likely to become laminar and regions that are
likely to maintain turbulence. This alternative interpretation of the implication of Ri is
based on the fact that large perturbation growth is obtained by optimal perturbations
in shear flows for which Ri > 1/4 although modal instability is not permitted (Farrell
& Joannou 1993b). In accord with this result, turbulence is observed to be supported
in shear flows with Ri > 1 (Galperin, Sukoriansky & Anderson 2007).

To demonstrate that VSHF formation is robust to changes in the control parameters,
we show in figure 6 the time evolution of U in four additional cases. Panels (a,b)
show the response of the system to changes in the dissipation parameters. Panel (a)
shows the development of U when the Rayleigh drag on the mean fields is increased
by a factor of five (r,, =0.5). The mean fields in this case are damped half as rapidly
as the perturbations, rather than ten times less rapidly as in the standard case. The
excitation strength is € =0.5 and other parameters are as in the standard case, so that
Re, =20.8 and Fr =0.84. The VSHF has my/(2nwt) =7 and is similar to that seen
in the standard case in figure 3(a). Panel (b) shows the effect of removing Rayleigh
drag entirely (r = r,, = 0), so that all dissipation is provided by diffusion. In this
case, some ambiguity arises regarding how the other parameters should be set, as
we non-dimensionalize time by the perturbation damping time, 1/r, in examples other
than this figure. For simplicity we choose to retain all parameters as they are set in the
standard case as if Rayleigh drag were still present with »=1, which gives Re, =10.4
and Fr = 0.23, where for this example only we use the definition Fr = (¢k?)'/?/N,
due to the absence of Rayleigh drag. The VSHF in this example initially emerges
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FIGURE 6. Time evolution of the VSHF in four additional cases. Unless otherwise stated
all parameters are as in figure 2. (a) An example with enhanced Rayleigh drag on the
mean fields, r, = 0.5, and excitation strength ¢ = 0.5 (Re, = 20.8, Fr = 0.8). (b) An
example with zero Rayleigh drag on both the mean and perturbations, r=r,, =0 (Re, =
10.4, Fr = 0.23). Dissipation is provided solely by diffusion. (c,d) Two examples with
reduced stratification and with excitation strength & =1.5 x 1072: (¢) N3 =100 (Re, =6.3,
Fr=0.05) and (d) N} =40, (Re, = 15.6, Fr=0.12). This figure demonstrates that VSHFs
form robustly when the dissipation and stratification are varied.

with my/(2m) ~ 6 before transitioning to larger scale (smaller my) as the integration
is continued. Transition of the VSHF to smaller values of m; for weaker damping or
stronger excitation is consistent with previous studies of VSHF emergence (Herring
& Meétais 1989; Smith 2001; Smith & Waleffe 2002) and is expected on the basis
of analysis of the SSD system in the case of strong excitation, as we show in §7.
Figure 6(c,d) show the response of the system to reductions in stratification. In these
examples we reduce the excitation strength to & = 1.5 x 1072 for ease of comparison
because VSHFs form more rapidly at these stratification values than they do in the
standard case. Panel (c) shows the development of U when the stratification is reduced
by a factor of ten relative to the standard case (N = 100 rather than N3 = 1000,
corresponding to Re, = 6.3, Fr = 0.05) and panel (d) shows the effect of reducing
the stratification by a factor of 25 relative to the standard case (Ng =40, Re, =15.6,
Fr = 0.12). As in the case of modified dissipation, the VSHFs in these examples
develop with similar structures as in the standard case shown in figure 3(a). We note
(not shown) that VSHF formation ceases for sufficiently weak stratification (Smith
2001; Kumar et al. 2017). We return to the dependence of the VSHF on stratification
in §6.

3. Mechanism of horizontal mean structure formation

In a statistically steady state the VSHF, U, and the associated buoyancy structure,
B, must be supported against dissipation by perturbation fluxes of momentum and
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buoyancy as expressed in (2.1)—(2.2). In the absence of any horizontal mean structure
(i.e. if U=B=0), isotropy of the stochastic excitation implies that the statistical mean
perturbation momentum flux vanishes ((#'w’) = 0, where angle brackets indicate the
ensemble average over realizations of the stochastic excitation) and that the statistical
mean perturbation buoyancy flux is constant (—d,(w'd’) = 0). For the observed
horizontal mean structures to emerge and persist, their presence must modify the
fluxes so that the fluxes reinforce these structures. In this section we analyse the
interaction between the turbulence and the horizontal mean state and demonstrate that
the horizontal mean structures do influence the turbulent fluxes in this way.

We analyse turbulence-mean state interactions by applying two modifications to
(2.1)-(2.4). The first modification is to hold the mean fields constant as U = U,,,
B =B,,;. The second modification is to discard the perturbation—perturbation nonlinear
terms [J(¢¥', AY') — J(Y', AY))] and [J(Y', ') — J(¢', )] from (2.3)-(2.4). The
resulting equations are

IAY’ AAY’ U OV , ,
id = U,y L4 W2 — = AY v AT+ ES, (3.1
ot 0x 07 0x
b b —
E = — les‘ta - W/Nztesz - b, + VAb,» (32)

in which N2, :Ng + 0,B.ss. Equations (3.1)—(3.2) are a system of linear differential
equations for the perturbation fields. For this system the time mean fluxes are identical
to the ensemble mean fluxes averaged over noise realizations, and either method of
averaging can be used to calculate the average fluxes in the presence of the imposed
horizontal mean state (U = U,, and N? = N2,,). We refer to the calculation of
perturbation fluxes from (3.1)-(3.2) as test function analysis, as it allows us to probe
the turbulent dynamics by imposing chosen test functions for the mean flow and
buoyancy, U, and NZ.,. This approach has been applied to estimate perturbation
fluxes in the midlatitude atmosphere (Farrell & Ioannou 1993a) and in wall-bounded
shear flows (Farrell & Ioannou 2012; Farrell et al. 2017b), and we will evaluate its
effectiveness in the 2D Boussinesq system in §5.

That the modified perturbation equations are capable of producing realistic
perturbation fluxes given the observed mean flow is related to the non-normality
of the perturbation dynamics in the presence of shear (Farrell & Ioannou 1996).
The modified equations correctly capture the non-normal dynamics, which produce
both the positive and negative energetic perturbation—-mean flow interactions. The
non-normal dynamics of perturbations in stratified shear flow have been analysed
in 2D (Farrell & Ioannou 1993b) and in 3D (Bakas, Ioannou & Kefaliakos 2001;
Kaminski, Caulfield & Taylor 2014).

As an illustrative example we show in figure 7 the results of test function analysis
in the case of an imposed mean state comprising a Gaussian jet peaked in the
centre of the domain, U,y = exp(—50(z — (1/2))?), and an unmodified background
stratification, N2, :Ng = 10°. Panel (a) shows the imposed jet, U, while panel
(b) shows the induced perturbation momentum flux divergence, —d,(u'w’), alongside
the negative of the jet dissipation, (r,, — v9;)U,s. The core of the jet is clearly
being supported against dissipation by the perturbation momentum fluxes resulting
from its modification of the turbulence. This organization of turbulence producing
up-gradient momentum fluxes in the presence of a background shear flow is the
essential mechanism of VSHF emergence: an initially perturbative VSHF that arises
randomly from turbulent fluctuations modifies the turbulence to produce fluxes
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FIGURE 7. Test function analysis showing the perturbation flux divergences that develop
in response to an imposed horizontal mean state consisting of a Gaussian jet and an
unmodified background stratification. (a) Imposed jet, U,y. (b) The resulting ensemble
mean perturbation momentum flux divergence, —d,(#'w’), and the negative of the
dissipation of the jet, (r,, — v9,)U,y. (¢) Imposed stratification, N2, which is equal to
N} in this example. (d) Ensemble mean driving by perturbation fluxes of the stratification
anomaly, —d,(w'D’), and the negative of the dissipation of the stratification anomaly,
(o — 0..) (N? 1oy —Ng), which is zero in this example. This example shows that a Gaussian
jet organizes the turbulence so that the perturbation momentum fluxes generally accelerate
the jet. The buoyancy fluxes are also organized by the jet in such a way as to drive a
stratification anomaly with a complex vertical structure. Parameters are as in figure 2.

reinforcing the initial VSHFE. This wave-mean flow mechanism is consistent with
the results of rapid distortion theory for stratified shear flow (Galmiche & Hunt 2002)
and has been identified in simulations of decaying sheared and stratified turbulence
(Galmiche, Thual & Bonneton 2002). Wave-mean flow interaction has also been
hypothesized to be the mechanism responsible for the formation and maintenance of
the EDJs (Muench & Kunze 1999; Ascani et al. 2015).

Consistent with the results of the NL system shown in §2, the buoyancy fluxes are
also modified by imposing a test function horizontal mean state. Figure 7(c) shows the
imposed stratification, N2, which is equal to N§ in this example. Figure 7(d) shows
the driving by perturbation fluxes of the stratification anomaly, —d,,(w'b’), alongside
the negative of the dissipation of the stratification anomaly, (r,, — v0..) (N2 — Ng),
which is zero in this Gaussian jet example as N2> = NJ. The vertical structure of
—d,,(w'b) is complex. For these parameter values the fluxes act to enhance N2 most
strongly at the jet maximum, which departs from the NL results in which N? has weak
local minima at the locations of the VSHF peaks.

This simple example demonstrates the general physical mechanism of horizontal
mean structures modifying turbulent fluxes so as to modify the mean state. However,
the results of this example indicate that a Gaussian jet together with an unmodified
background stratification does not constitute a steady state, as neither the jet
acceleration nor the driving of the stratification anomaly due to the perturbation fluxes
reflect the specific structure of the imposed mean state (U = U,y and N2 = N?,,).
Although the perturbation fluxes generally act to strengthen U, they also distort its
structure by sharpening the jet core and driving retrograde jets on the flanks. Similarly,
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FIGURE 8. Test function analysis showing the perturbation flux divergences that develop
in response to an imposed horizontal mean state corresponding to that which emerges
in the standard case NL simulation shown in §2, with U,, and N2,, smoothed and
symmetrized. Panels are as in figure 7, with the additional vertical dashed line in panel
(c) indicating Nj. This example shows that the horizontal mean structure that emerges
in the NL system, consisting of the VSHF and associated density layers, organizes the
turbulent fluxes so that these fluxes support the specific structure of the horizontal mean
state against dissipation. Parameters are as in figure 2.

the N2 = N} structure is not in equilibrium with the buoyancy fluxes. To maintain a
statistically steady mean state as seen in the NL simulations, the turbulence and the
mean state must be adjusted by their interaction to produce mean structure which the
corresponding fluxes precisely support against dissipation.

To demonstrate how such cooperative equilibria are established, we show in figure 8
the results of test function analysis applied to the case in which U, (panel (a)) and
N2, (panel (c)) are taken to be the time average profiles from the standard case NL
integration discussed in § 2, smoothed and symmetrized so that the sixfold symmetry
of the VSHF and twelvefold symmetry of N2 are made exact. As in the Gaussian
jet example, the perturbation momentum fluxes support the jet against dissipation
(panel (b)). However, unlike the results obtained in the case of a Gaussian jet,
the approximately harmonic VSHF that emerges in the NL system leads to flux
divergences that are precisely in phase with U. This provides an explanation for the
structure of the emergent VSHF: its approximately harmonic U profile is a structure
which the associated statistical equilibrium fluxes precisely support. Similarly, the
structure of N? is supported against dissipation by the perturbation buoyancy fluxes.
Some differences between the structure of the perturbation driving and that of the
dissipation are seen in panels (b,d). In particular, the perturbation driving of the jet
is slightly too strong, and the perturbation driving of the stratification anomaly is
too strongly negative at the local stratification minima that coincide with the VSHF
extrema. These differences arise because the VSHF and horizontal mean stratification
anomaly tend to strengthen when perturbation—perturbation nonlinearities are discarded
(see §5) and also because the smoothed and symmetrized stratification anomaly has
a somewhat weaker local minimum than that which is found in snapshots of the NL
system.

This analysis demonstrates that the linear dynamics of the stochastically excited
Boussinesq equations produces fluxes consistent with the emergent VSHF and
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density layers seen in the NL system. In this sense, test function analysis provides
a ‘mechanism denial study’ that demonstrates that spectrally local perturbation—
perturbation interactions associated with a cascade of energy to large scales are not
required to produce VSHFs in stratified turbulence. That VSHF formation does not
occur via such a cascade has previously been noted by Smith & Waleffe (2002). The
analysis in this section has been conducted using an imposed, constant horizontal
mean state. In the next section we extend (3.1)-(3.2) by coupling the dynamics
of the mean fields to the linearized perturbation equations to formulate the S3T
implementation of SSD for this system.

4. Formulating the QL and S3T equations of motion

The QL system is obtained by combining the perturbation equations (3.1)—(3.2) with
the NL equations for the horizontal mean state (2.1)—(2.2). The resulting QL equations
of motion are

W_ e vl @1
8t 8Z m 822 l
0B _ 0 B (42)
ot 0z " 9z’
DAV OV U O Ny Ayt s, (43)
ot ox 072 Ox
W _ —Ua—b/ —w <N2 + aB) — b +VAD. (4.4)
dt dx 07 3z

This system can also be obtained directly from the NL system (2.1)—(2.4) by
discarding the perturbation—perturbation nonlinearities [J(¢¥', Ay’) —J(Y¥’, Ay’)] and
@', b)) —J@', b)]. The QL dynamics is a coupled system that, while simplified,
retains the dynamics of the consistent evolution of the horizontal mean state together
with the stochastically excited turbulence. The 2D Boussinesq equations in the QL
approximation have previously been applied to analyse mean flow formation in the
case of an unstable background stratification (Fitzgerald & Farrell 2014).

Because (4.3)-(4.4) are linear in perturbation quantities, the QL system does not
retain the transfer by perturbation—perturbation interaction of perturbation energy
into horizontal wavenumber components that are not stochastically excited. We
choose to excite only global horizontal wavenumbers 1-8. The QL system will
therefore not exhibit the full range of small-scale motions seen in the NL system.
However, in §5 we compare the results of QL simulations with those of the NL
system, and show that the QL system reproduces the large-scale structure formation
observed in the NL system. This implies that the small-scale structures produced by
perturbation—perturbation interaction in the NL system do not strongly influence the
horizontal mean state and that a faithful representation of the turbulence at all scales
is inessential for understanding the statistical structure of the turbulence to second
order.

The energetics of the QL system, with respect to both the mean and perturbation
kinetic and potential energies, is identical to that of the NL system, with the exception
that the terms originating from perturbation—perturbation interaction, which redistribute
energy within the perturbation field but do not change the domain-averaged kinetic or
potential energies, are not retained in the QL system. The QL system thus possesses
identical energetics to the NL system in the domain-averaged sense.
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Although the QL system constitutes a substantial mathematical and conceptual
simplification compared to the NL system, QL dynamics remains stochastic and
exhibits significant turbulent fluctuations. These fluctuations obscure the statistical
relationships between the horizontal mean structure and the turbulent fluxes discussed
in §3. To understand the mechanism underlying these statistical relationships it is
useful to formulate a dynamics directly in terms of statistical quantities, which we
refer to as a statistical state dynamics (SSD). We now formulate the S3T dynamics,
which is the SSD we use to study our system. S3T is a closure that retains the
interactions between the horizontal mean state and the ensemble mean two-point
covariance functions of the perturbation fields which determine the turbulent fluxes.
For readers unfamiliar with S3T, appendix A provides a derivation of the S3T
equations for a reduced model of stratified turbulence illustrating the conceptual
utility of this closure in the context of this reduced model.

Derivation of the S3T dynamics begins with the QL equations (4.1)—(4.4). We
expand the perturbation fields in horizontal Fourier series as

Ni

¥'(x, 2z, 1) =Re [Z V2, t)eik"x] , 4.5)
n;kl

b (x,z,t) =Re Z b, (z, t)eik”x] . (4.6)
n=1

Here N, is the number of retained Fourier modes (N, =8 for our choice of stochastic
excitation) and k, = 27mn. Considering the Fourier coefficients as vectors in the
discretized numerical system (e.g. &n(z, 1) — ¥,(?)), the QL equations (4.3)—(4.4) can
be combined into the vector equation

o (w) AU, B)< ) (f En), @7

where &, = A'S, is the nth horizontal Fourier component of the stochastic excitation
of the streamfunction. Here A, =—k2/+ D* in which [ is the identity matrix and D is
the discretized vertical derivative operator. The linear dynamical operator A, is given
by the expression

A,(U, B)
_ [ —ik, A diag(U) A, + ik, A, 'diag(D*U) — 1+ v A, ik, A,
o —ik,,Ngl — ik,diag(DB) —ik,diag(U) — 1+ v A,
4.8)

in which diag(v) denotes the diagonal matrix for which the non-zero elements are
given by the entries of the column vector v.

We now make use of the ergodic assumption that horizontal averages and ensemble
averages are equal, so that, for example, U = u = (u) and w'w’ = (u'w’). For our
system, which is statistically horizontally uniform, this assumption is justified in a
domain large enough so that several approximately independent perturbation structures
are found at each height — as seen, for example, in figure 2(b). It can then be shown
(using the fact that /&S is delta-correlated in time) that the ensemble mean covariance
matrix, defined as

'/’n t <¢n¢;> <¢nbl> CK/M// n C‘/fbs"
C"‘<< )W ”)> <<bnw,1'> <bnbf;>) (cm C) 49
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in which daggers indicate Hermitian conjugation, evolves according to the time-
dependent Lyapunov equation

d
3,6 =4U.B)C, +C,AU, B)' +¢q,, (4.10)
_[&&H o
o,l—{ 0" ol (4.11)

where Q, is the ensemble mean covariance matrix of the stochastic excitation and has
non-zero entries only in the upper-left block matrix because we apply excitation only
to the vorticity field. Equation (4.10) constitutes the perturbation dynamics of the S3T
system and is the S3T analogue of the QL equations (4.3)—(4.4).

To complete the derivation of the S3T system it remains to write the mean equations
(4.1)—-(4.2) in terms of the covariance matrix. The ensemble mean perturbation flux
divergences can be written as functions of the covariance matrix as

Ni

0 —— ky
_Fz<”/w/> =y - Imlveed(4,Cyy.)], (4.12)
n=1
9 Mk
_£<W> =y ~ Imlvecd(DC,,)], (4.13)

n=1

in which vecd(M) denotes the vector comprising the diagonal elements of the matrix
M. The mean state dynamics then become

Ni

d k,
U= 2 5 mlveed(4,Cyy )] = ral + vD*U, (4.14)
n=1
Nk
dp_ > ﬁlm[vecd(oc )] — rn.B + vD’B (4.15)
- £~ 2 yonsd ' '

n=1

Equations (4.10), (4.14) and (4.15) together constitute the S3T SSD closed at second
order.

The S3T system is deterministic and autonomous and so provides an analytic
description of the evolving relationships between the statistical quantities of the
turbulence up to second order, including fluxes and horizontal mean structures,
without the turbulent fluctuations inherent in the dynamics of particular realizations of
turbulence, such as those present in the NL and QL systems. Although some previous
attempts to formulate turbulence closures have been found to have inconsistent
energetics (Kraichnan 1957; Ogura 1963), the dynamics of the S3T system are
QL, and so S3T inherits the consistent energetics of the QL system. That the
second-order S3T closure is capable of capturing the dynamics of VSHF formation,
as we demonstrate in §5, is due to the appropriate choice of mean. In the present
formulation of S3T, we have chosen the mean to be the horizontal average structure
so that the second-order closure retains the QL mean—perturbation interactions that
account for the mechanism of VSHF formation in turbulence.

Before proceeding to analysis of the QL and S3T systems, we wish to make
two remarks regarding the mathematical structure and physical basis of S3T. First,
we note that the ergodic assumption used in deriving S3T is formally valid in the
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limit that the horizontal extent of the domain tends to infinity and the number of
independent perturbation structures at each height correspondingly tends to infinity.
In this ideal limit described by S3T, the statistical homogeneity of the turbulence
is only broken by the initial state of the horizontal mean structure (which in the
examples is perturbatively small), which then determines the phase of the emergent
VSHF in the vertical direction. In simulations of the QL and NL systems in a finite
domain, the initial mean structure instead results from random Reynolds stresses
arising from fluctuations in the perturbation fields. Second, we note that S3T is a
canonical closure of the turbulence problem at second order, in that it is a truncation
of the cumulant expansion at second order achieved by setting the third cumulant
to zero. The mathematical structure of the cumulant expansion determines which
nonlinearities are retained and discarded in the QL system, which is a stochastic
approximation to the ideal S3T closure. Wave—mean flow coupling enters the equations
through second-order cumulants and so is retained, while perturbation—perturbation
nonlinearities enter as third-order cumulants and so are not retained.

In the next section we demonstrate that the QL and S3T systems reproduce the
major statistical phenomena observed in the NL system.

5. Comparison of the NL, QL and S3T systems

The most striking feature of the standard case NL simulation discussed in § 2 is the
spontaneous development of a VSHF, U, with max(U) ~ 1 and vertical wavenumber
my/2m = 6. The horizontal mean stratification, N2, is also modified by the turbulence
and develops a structure with vertical wavenumber mg/27 =12 in phase with U such
that weakly stratified density layers develop in the regions of strongest mean shear.
The VSHF in the NL system is approximately steady in time, while the horizontal
mean stratification is more variable. In this section we compare these NL results to the
behaviour of the QL and S3T systems for the same parameter values. We initialize the
QL system from rest, matching the procedure used for the NL system. We initialize
the S3T system with C, corresponding to homogeneous turbulence together with a
small VSHF perturbation (amplitude 0.1) with my/2n = 6 that is slightly modified
by additional small perturbations (amplitude 0.005). We note that the details of the
S3T initialization are unimportant in this example because, as we will show in §6,
the VSHF emerges via a linear instability of the homogeneous turbulence and so any
sufficiently small initial perturbation to the S3T system will evolve into a my /2w =6
VSHF for these parameter values.

Figure 9(a,c) shows the time evolution of the VSHF in the QL and S3T systems
(see figure 3 for the corresponding evolution in the NL system). The QL and S3T
systems develop VSHF structures with my/2m = 6 and the U profiles in the NL,
QL and S3T systems are compared in figure 10(b). For the NL and QL systems
the profiles are time-averaged over ¢ € [30, 60], while for the S3T system we show
the U state after the S3T system has reached a fixed point. The aligned VSHF
structures agree well across the three systems. The time evolution of the horizontal
mean stratification, N2, in the QL and S3T systems is shown in figure 9(b,d). Like
the NL stratification, the QL profile of N? develops a mp/27 = 12 structure that is
more variable in time than U and is phase-aligned with U so that N? is weakest
in the regions of strongest shear. The S3T system behaves similarly but is free of
fluctuations. The evolution of N? in the S3T system also reveals that the vertical

structure of N? changes over time. During the development of the VSHF (¢ < 8), the
stratification is enhanced in the regions of strongest shear. As the VSHF begins to
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FIGURE 9. Development of the VSHF and associated density layers in the QL and S3T
systems. Panels show the time evolution of (a) U in the QL system, (b) N? in the QL
system, (¢) U in the S3T system, and (d) N? in the S3T system. This figure demonstrates
that the QL and S3T systems reproduce the phenomenon of spontaneous VSHF and
density layer formation shown in figure 3 for the NL system. Parameters are as in figure 2.
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FIGURE 10. Comparison of the kinetic energy evolution and equilibrium VSHF profiles
in the NL, QL and S3T systems. (@) Mean and perturbation kinetic energy evolution. (b)
Aligned VSHF profiles. The NL and QL profiles are averaged over ¢ € [30, 60] and the
S3T profile is taken to be the state after the S3T system reaches a fixed point. This
figure demonstrates that VSHF emergence in the S3T and QL systems occurs with similar
structure and energy evolution to that which occurs in the NL system. Parameters are as
in figure 2.
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FIGURE 11. Vertical structure of the horizontal mean states of the QL and S3T systems.
Panels are as in figure 5, with solid lines showing the S3T state and dotted lines showing
the QL state. This figure demonstrates that the QL and S3T systems capture the structure
of the horizontal mean state in the NL system, including the phase relationship between

U and N2. Parameters are as in figure 2.

equilibrate at finite amplitude, the N? profile reorganizes such that the shear regions
are the most weakly stratified. Such reorganization may also occur in the NL and QL
systems but is difficult to identify due to the fluctuations present in these systems.

Figure 10(a) shows the evolution of the mean and perturbation kinetic energies of
the NL, QL and S3T systems. The growth rate of mean kinetic energy is similar
in these three systems. The equilibrium mean energies differ somewhat among the
systems, with the VSHFs in the S3T and QL systems having more energy than the
NL VSHF. The relative weakness of the NL VSHF is consistent with the scattering of
perturbation energy to small scales by the perturbation—perturbation advection terms
that are included in NL but not in QL or S3T. The temporal variability of the NL
and QL VSHFs, as indicated by the fluctuations in K, is similar in the stochastic NL
and QL systems. The VSHF in S3T is time-independent once equilibrium has been
reached, as the S3T VSHF corresponds to a fixed point of the S3T dynamics.

The relationship between the U and N? structures is shown in figure 11 for the QL
(dotted curves) and S3T (solid curves) systems (see figure 5 for the corresponding
structures in the NL system). The equilibrium horizontal mean structures in the
QL and S3T systems agree well with those of the NL system. The U profiles
(panel (a)) are approximately harmonic with somewhat flattened shear regions and,
remarkably, the detailed structure of N? seen in the NL integration is reproduced
by the QL and S3T systems (panel (c)), which discard perturbation—perturbation
nonlinear interactions. In particular, the presence of weak local stratification minima
at the locations of the VSHF peaks is captured by the QL and S3T systems.

The above comparisons demonstrate that the horizontal mean structures and domain
mean kinetic energies of the QL and S3T systems show good agreement with those
of the NL system. Figure 12 compares the energy spectra in the three systems. In
panels (a—f), the 2D spectra of kinetic and potential energy are compared as functions
of (k, m), while in panels (g,h) the kinetic energy spectra are compared in the more
traditional 1D integrated forms as functions of k and m separately. Panel (a) shows
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FIGURE 12. Comparison of the wavenumber power spectra of kinetic (K) and potential
(V) energy in the NL, QL and S3T systems. (a—c) 2D K spectra of the (a) NL, (b) QL
and (c¢) S3T systems as functions of (k, m). (d—f) 2D V spectra of those corresponding
systems. 2D spectra are shown in terms of their natural logarithms and no normalization
is performed. (g,h) Kinetic energy spectra in the conventional 1D form as functions of (g)
vertical wavenumber, m, and (k) horizontal wavenumber, k. In panel (g), the contributions
to the spectra from the VSHFs in each system are also shown. This figure demonstrates
that the QL and S3T systems reproduce structural details of the turbulence beyond the
horizontal mean state, including the wavenumber distribution of perturbation energy at
large scales. Parameters are as in figure 2.

the kinetic energy spectrum of the NL system. The dominant and most important
feature of the K spectrum is the concentration of energy at (k, m) =27(0, 6), which
corresponds to the my /2w =6 VSHF structure. This feature is also evident in panel
(g), which shows that the peak in the vertical wavenumber spectrum of NL kinetic
energy is dominated by the VSHF component of the flow. The energy of the VSHF is
also spread across the neighbouring vertical wavenumbers, reflecting both the deviation
of the structure of the VSHF from a pure harmonic and also that fluctuations in the
VSHF structure project onto nearby vertical wavenumbers. Away from the k=0 axis,
the K spectrum reveals the expected concentration of energy on the ring of excited
wavenumbers k> 4+ m?* =k?, and the spread of this ring to higher m values. This spread
is due to the shearing of the ring by the m;/2n =6 VSHFE, which produces the sum
and difference wavenumber components. The quantitative structure of the spectrum
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associated with this spreading can be seen more clearly in panel (g), in which selected
power law slopes are provided for reference.

The most important features of the 2D K spectrum of the NL system are captured
by the QL and S3T systems. The QL K spectrum (figure 12b) reproduces the
primary feature of the energetic dominance of the VSHF over the perturbation field,
as well as the minor features of concentration of energy at k, and the spread of
the excited ring structure to higher vertical wavenumbers. The 1D spectrum in panel
(g) shows that the QL system quantitatively captures the spectrum of perturbation
kinetic energy in the wavenumber range m/(2m) < 80. We note that the stochastic
excitation directly influences the energy spectrum only near m/(2m) =~ 6, and so the
agreement seen in panel (g) is not a direct result of the structure of the excitation.
The primary difference between the K spectra of the NL and QL systems is that
the NL system scatters some kinetic energy into the unexcited part of the horizontal
wavenumber spectrum (|k|/27m > 8), whereas these unexcited wavenumber components
have no energy in the QL system, as can also be seen in panel (k). The vertical
wavenumber spectrum of K in the NL system, shown in panel (g), also contains
small-scale structure for m = 80 that is not present in the QL system and so can be
attributed to perturbation—perturbation nonlinearity. The S3T K spectrum (figure 12c¢)
also captures the most important features of the NL spectrum, but some differences
between the S3T spectrum and those of the NL and QL systems are also visible. In
the S3T system the VSHF energy is more strongly concentrated in the my /27w =6
harmonic than it is in the NL and QL systems. Additionally, the concentration of
energy at the excited ring and the spread of energy to higher m are more distinct
in the S3T system than in the NL and QL systems, in which the gaps are filled in
by a broad background spectrum. These features are also visible in panel (g). These
minor differences between the spectrum of S3T and those of the NL and QL systems
are due in part to the absence of fluctuations in the S3T system that are present
in the stochastic NL and QL systems. Noise in the stochastic systems produces
VSHF fluctuations that spread mean flow energy into & =0 modes neighbouring the
my /21 =6 harmonic. These transient VSHF fluctuations also contribute to producing
the broad background spectrum seen in the NL and QL systems by shearing the ring
of excited wavenumbers.

The spectrum of potential energy in the NL system is shown in figure 12(d). Unlike
the K spectrum, which is dominated by the horizontal mean flow, U, the V spectrum
is not dominated by the horizontal mean buoyancy, B, although a peak is evident at
the mp/2m =12 component. In this sense, the VSHF is a ‘manifest’ structure, whereas
the horizontal mean density layers are ‘latent’ structures (Berloff, Kamenkovich &
Pedlosky 2009). Other features of the spectrum are the expected concentration of
potential energy at the ring wavenumber and the spread of the ring to higher vertical
wavenumbers as was found for the K spectrum. The V spectra for the QL and S3T
systems are shown in figure 12(e,f). The QL and S3T spectra capture the peak
associated with the horizontal mean buoyancy layers, the concentration of potential
energy at the excitation scale, and the spread of the ring to higher m. The differences
between the three V spectra are similar to those identified when comparing the three
K spectra.

Agreement between the NL, QL and S3T systems indicates that the QL dynamics
of the horizontal mean state interacting with the perturbation field accounts for
the physical mechanisms responsible for determining the most important aspects of
the energy spectra. We emphasize that the QL and S3T systems involve no free
parameters, and that the demonstrated agreement between the three systems is not
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the result of parameter tuning. Because the QL and S3T systems do not contain
the perturbation—perturbation interactions required to produce a turbulent cascade,
agreement between these systems and the NL system indicates that, in the present
model configuration, such a cascade is not essentially involved in determining the
equilibrium turbulent state, including the large-scale spectrum. Nonlinear cascades in
the NL system only weakly influence the large-scale dynamics and energetics, and
we note that for this reason the parameter &, which is the energy injection rate of
the stochastic excitation, should not be interpreted as a rate of turbulent dissipation
in the sense of a classical cascade. In the NL system we employ to model VSHF
formation the turbulent dissipation rate in the classical cascade sense is close to zero
and it is exactly zero in the QL and S3T systems.

Similar results have been obtained for barotropic turbulence characterized by strong
zonal jets. In the presence of such jets the meridional wavenumber (€) spectrum of
the zonal flow obtains a well-known £ structure at large scales (Huang, Galperin &
Sukoriansky 2001; Galperin, Sukoriansky & Dikovskaya 2010). Constantinou (2015)
showed that the barotropic S3T system, with underlying QL dynamics, captures this
£73 spectrum, indicating that the large-scale structure of the spectrum in barotropic
turbulence with strong zonal jets is primarily determined by perturbation—-mean
interaction rather than by a turbulent cascade.

QL dynamics does not account for the spectrum at very small scales, which is
produced by perturbation—perturbation nonlinearity and is inessential to the dynamics
of VSHFs. We note that these small-scale features may be important to the stirring
of passive tracers at small scales (Sukoriansky, Dikovskaya & Galperin 2009), which
the QL and S3T systems would not be expected to accurately capture in the present
model turbulence.

Motivated by these results we proceed in the rest of this paper to exploit the S3T
system to analyse the mechanisms underlying the organization of structure in stratified
turbulence.

6. Linear stability analysis of the S3T system

In the previous section we showed that the S3T system reproduces the essential
statistical features, up to second order, of the NL system, including both the structure
of the horizontal mean state as well as the spectral characteristics of the perturbation
field. The S3T system can be understood and analysed with much greater clarity
than the NL system because the S3T system is a deterministic and autonomous
dynamical system and is amenable to the usual techniques of dynamical systems
analysis. In this section we show that the emergence of VSHFs in 2D stratified
turbulence can be traced to a linear instability in the SSD of the stationary state of
homogeneous turbulence that has analytic expression in the S3T SSD while lacking
analytic expression in the dynamics of single realizations. To determine the properties
of this instability, and in particular to understand how the vertical scale of the initially
emergent VSHF is selected, we now perform a linear stability analysis of the S3T
system.

Before linearizing the S3T system it is first necessary to obtain the fixed point
statistical state that is unstable to VSHF formation. As shown in § 5, the equilibrium
state with a finite-amplitude VSHF and modified horizontal mean stratification is a
fixed point of the S3T system. However, the fixed point of the S3T system whose
stability we wish to analyse is the state of homogeneous turbulence that is excited
by the stochastic excitation and equilibrated by dissipation. This homogeneous state
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FIGURE 13. Spectral structure of the homogeneous S3T fixed point. (a) Kinetic energy
(K) spectrum. (b) Potential energy (V) spectrum. The spectra are shown in terms of their
natural logarithms and no normalization is performed. The K and V spectra are nearly
identical to one another, even though only the vorticity field is stochastically excited, due
to the strong stratification. This figure shows that the homogeneous turbulence from which
the VSHF emerges inherits its structure directly from the stochastic excitation whose
structure is shown in figure 1. Parameters are as in figure 2.

is obscured in the NL and QL systems, both by noise fluctuations and (in examples
for which it is SSD unstable) by the development of a VSHF, but roughly corresponds
to the interval of nearly constant perturbation kinetic energy at early times (r <5) in
figure 10(a). If homogeneous turbulence is unstable we obtain an explanation for the
observed VSHF formation, since the alternative possibility of sustained homogeneous
turbulence is not possible in the presence of small perturbations.

For homogeneous turbulence U =B =0 and from (4.10) the steady-state perturbation
covariance matrix at wavenumber k, obeys

AC +CA +60,=0, (6.1)

where the A operator is given by

. [—1+vA4,  ikA!
A= < ik N2~ + vA,,> : ©2)

Equation (6.1) can be solved analytically for C;, and we show details of the solution
in appendix B. Figure 13 shows the kinetic and potential energy spectra for this fixed
point homogeneous turbulent state.

To analyse the linear stability of this homogeneous turbulent state we perturb the
S3T state, (C,, U, B), about the fixed point, (C}, 0, 0), as

C,=C +46C,, U=6U, B=6B, (6.3a—c)

where the § notation indicates that the first-order terms are treated as infinitesimal
perturbations. The operator A, in (4.8) may then be written as

A, =A +5A, (6.4)
where A} is given by (6.2) and
SA — —ik, A 'diag(8U) A, + ik, A, 'diag(D*$U) 0 6.5)
" —ik,diag(DéB) —ik,diag(sU) | ° ’
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The linearized equations of motion are

Ew = ﬁ: @Im[vecdmnacw )] — r.dU +vD?*S8U, (6.6)
dt ~ 2 *
d(SB— N k"I d(bsc SB +vD?*SB 6.7
m —;jm[vec( vo)] — 1B + vD*SB, (6.7)
d * *,F k * F
&50,, =A8C,+8C,A" +3A,C;+ CSA.. (6.8)

As usual in linear stability analysis, we express the solutions of (6.6)—(6.8) in terms
of the eigenvectors and eigenvalues of the system. The natural matrix form of the
S3T equations obscures the operator-vector structure of the linearized system. The
most direct technique for conducting the eigenanalysis is to rewrite the equations in
superoperator form by unfolding the matrices §C, (Farrell & Ioannou 2002). This
technique results in linear operators of very high dimension for which eigenanalysis
is expensive. We use an alternative method to obtain the eigenstructures in which the
linearized equations are rewritten as coupled Sylvester equations (see appendix B in
Constantinou et al. (2014)).

We note that, for our choice of stochastic excitation, equations (6.6)—(6.8) decouple
into two separate eigenproblems: one determining the eigenmodes involving mean
flow perturbations §U, which have §B =0, and a separate eigenproblem determining
the eigenmodes involving mean buoyancy perturbations §B, which have §U = O.
The eigenproblem involving U gives unstable eigenmodes associated with growing
VSHFs for the parameter regime we address in this work, while the mean buoyancy
eigenproblem has only stable eigenmodes in our parameter regime. The mean
buoyancy eigenproblem is therefore irrelevant, in our parameter range, to VSHF
formation and we focus on the eigenproblem concerning §U.

We now describe the results of the eigenanalysis of (6.6)—(6.8). As the fixed
point underlying the linearization corresponds to homogeneous turbulence, the
eigenfunctions have harmonic structure in z so that U and §(u'w’) are both
proportional to e"e™*, For each my permitted by the periodic domain there is
a dominant eigenmode with eigenvalue s(my). For the parameter range we study,
we find that these eigenvalues are real, corresponding to structures for which the
perturbation momentum flux divergence, —d.8(u'w’), and the mean flow, SU, are
aligned in phase.

Figure 14 summarizes how the dominant eigenvalue, s, which is the VSHF growth
rate, depends on my and on the parameters k,, Ni and e. The dotted curve in panel
(a) shows the VSHF growth rate as a function of my for the standard parameter
case with ¢ =0.25 (Fr = 0.6). VSHFs with 1 < my /27 < 10 have positive growth
rates, with the my/2m = 6 structure having the fastest growth rate. This eigenvalue
problem thus predicts that a VSHF with vertical wavenumber m /2n =6 will initially
emerge from the turbulence, consistent with the structure of the VSHF discussed in § 2
and §5. The solid curve in panel (a) shows the VSHF growth rates for the standard
parameter case except with k,/2mw =12 (Fr=1.2) so that the excitation is at a smaller
scale. Increasing k, shifts the peak of the growth rate curve towards larger my values,
resulting in smaller scale VSHFs, and also enhances the VSHF growth rates.

Figure 14(b) shows the dependence of s on my and ¢ for the standard parameter
case with k,/2m = 6. For VSHFs with 1 < my/2n < 11 the growth rate becomes
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FIGURE 14. Growth rates of the eigenmodes responsible for VSHF formation in the S3T
system. (a) Growth rate as a function of the VSHF wavenumber m; for ¢ =0.25 and two
different excitation structures: k,/27w =6 (dotted, Fr=0.6) and k./27mw =12 (solid, Fr=1.2).
(b) Growth rate as a function of my and ¢ for k.,/2m = 6. Note the logarithmic & axis.
(c) Growth rate as a function of my for k,/27 =12 and four values of N3. (d) Growth
rate of the fastest growing VSHF structure as a function of Nj for k./27 = 6. This figure
shows that the vertical wavenumber, my, of the initially emergent VSHF is very sensitive
to changes in the spectral structure of the excitation, and also that my — 0 as Nj — 0o
so that the initially emergent VSHF takes on the largest scale permitted by the domain
if the stratification is sufficiently strong. Unless otherwise specified, parameters are as in
figure 2.

positive for sufficiently large €. For VSHFs in this wavenumber band, the perturbation
fluxes reinforce the infinitesimal VSHF and s increases with increasing ¢. For VSHFs
outside this band, with m; /2w > 12, the perturbation fluxes oppose the VSHF so that
the growth rate becomes increasingly negative as ¢ increases. The dashed line shows
the stability boundary, s =0. The homogeneous turbulence first becomes unstable near
e~0.042 (Fr=0.25) to a VSHF with my /27 =35. As ¢ increases, the growth rate of
the my /21t =6 VSHF structure exceeds that of the my /2w =5 VSHE, so that for the
standard parameter case with ¢ =0.25 (Fr=0.6) a VSHF with vertical wavenumber
my /27 = 6 initially emerges in the turbulence. We note that the emergent VSHF
wavenumber varies between NL simulations depending on the particular realization
of the stochastic excitation, with the my/(2m) = 7 structure occurring somewhat
more frequently than my/(2w) = 6. The existence of multiple turbulent equilibria
in this system is predicted by S3T, as discussed in §8. That the NL system often
forms a VSHF with a slightly different scale than that predicted by linear stability
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analysis of the S3T system is likely due to the modification of the background
spectrum of turbulence by perturbation—perturbation interactions. The influence of
perturbation—perturbation interactions on the S3T stability of homogeneous turbulence
has been analysed in detail by Constantinou et al. (2014) in the context of barotropic
beta-plane turbulence.

Figure 14(c) shows how N7 influences the scale selection of the initially emergent
VSHE. In panel (c) s is shown as a function of m for four Ng values with k. /27t =12
and ¢ = 0.25. As Ng increases, s decreases and the peak (indicated by the vertical
lines) shifts towards smaller my. For very large N; the largest values of s occur for
VSHFs at the domain scale with m;/2n =1. However, unless ¢ is also very large the
homogeneous turbulent state will remain stable and a domain-scale VSHF will not
emerge, because s decreases as N} becomes large. We note that the decrease of the
VSHF wavenumber as N increases demonstrates that my is not directly related to
either the Ozmidov wavenumber, ko = (N;/¢)'/?, or the buoyancy wavenumber, k, =
No/+/€, both of which increase as Nj is increased, and also that the S3T prediction
of my depends on the parameter values and is not always equal to the excitation
wavenumber, k.. As N} is decreased towards moderate and weak stratification (not
shown), the wavenumber of the initially emergent VSHF remains near k,, consistent
with the results of NL simulations shown in figure 6(c,d).

The dependence of s on N§ is shown directly in panel (d), which shows max[s(my)],
where the maximum is taken over my, as a function of Nj. For small N}, all modes
have negative growth rates. This result provides an explanation for the frequent
observation in numerical simulations that the VSHF ceases to emerge when the
stratification becomes sufficiently weak. However, this result depends on the details
of the stochastic excitation. In appendix A we describe a reduced model in which
the excitation is anisotropic and which has the property that s remains positive as
N} — 0, a result which was also obtained for similarly anisotropic excitation by
Bakas & Ioannou (2011). As N§ increases from zero, s increases to a maximum near
N} ~ 10°. This increase in growth rate is associated with the strengthening of the
feedback between the VSHF and the turbulence described in § 3. The dependence of
the S3T wave-mean flow feedback for harmonic mean structures on the parameter
that sets the wave restoring force has been explained analytically in terms of wave
dynamics by Bakas & Ioannou (2013) for the case of barotropic beta-plane turbulence.
For N} = 10° the growth rate falls off as ~1/N3 and approaches a constant asymptotic
value as N} — oo that is set by the dissipation parameters.

Figure 15 shows the time evolution of the VSHF, U, in two example simulations
that illustrate the correspondence of the behaviour of the NL system with the
predictions of linear stability analysis of the S3T system shown in figure 14.
Panel (a) shows the VSHF evolution in an example in which the parameters
are as in the standard case simulation but with the excitation scale modified to
k./(2m) =12 (Fr=1.2). Consistent with the shift of peak of the VSHF growth rate
curve to my/(2m) = 12 in figure 14(a), the emergent VSHF in the NL system has
my/(2w) ~ 12. Panel (b) shows the VSHF evolution in an example with the same
parameters as in panel (a), but with the stratification increased to N =5 x 10°
(Fr = 0.53). Consistent with the shift of the peak of the VSHF growth rate curve
towards lower values of my under increased stratification in figure 14(c), the emergent
VSHF in the NL system has my/(2m) & 10. Although the peak of s(my) in the S3T
system occurs at the slightly larger scale my/(27) =8 for N} =5 x 10°, the growth
rates of the nearby VSHF wavenumbers are very similar to the peak value, as
shown in figure 14(c), so that the VSHF wavenumber that is observed in a given
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FIGURE 15. Time evolution of the VSHF in two example simulations illustrating the
correspondence between the behaviour of the NL system and the predictions of the
linear stability analysis of the S3T system as the parameters are varied. Unless otherwise
stated all parameters are as in figure 2. (a) An example with smaller scale excitation,
k./(2m) =12 (Re, =10.4, Fr=1.2). The VSHF forms with my/(2w)~ 12. (b) An example
with smaller scale excitation, k,/(2w) = 12, and also stronger stratification, N& =5x10°
(Re, = 2.1, Fr =0.53). The VSHF forms with my/(2m) & 10. This figure demonstrates
that, in the NL system, the VSHF forms at smaller scale when the turbulence is excited at
smaller scale and that the VSHF forms at larger scale when the stratification is increased,
consistent with the predictions of S3T.

realization of the stochastic system for these parameter values is likely to depend on
the particular noise realization.

Results of this section demonstrate that the scale of the initially emergent VSHE,
my, is strongly influenced by the spectral structure of the perturbation field, which
in our problem is set by k.. As the stratification becomes very strong, the VSHF
scale is modified from the scale set by the excitation and tends towards the largest
scale allowed by the domain. In realistic turbulence, the implication of this result is
that we expect the spectral characteristics of the background turbulence to imprint
strongly on the VSHF scale if the turbulence is sufficiently close to the stability
boundary and the stratification is not too strong. We emphasize that the linear
stability analysis conducted in this section provides a prediction of the scale of the
initially emergent VSHEF, rather than of the scale of the statistical equilibrium VSHFE
For excitation strengths sufficiently near the stability boundary, the prediction based
on linear stability analysis is expected to agree with the equilibrium VSHF structure.
As the excitation strength is increased beyond the stability boundary, the structure
of the VSHF may be modified from the initially emergent structure, as suggested
by the NL simulation shown in figure 6(b). Previous studies of VSHF emergence
have primarily been conducted using weak dissipation or strong excitation, so that the
excitation strength lies well beyond the stability boundary, and these studies have also
observed VSHFs with larger scale than that of the excitation. For example, Herring
& Meétais (1989) obtained a my = 6 VSHF in 3D stratified turbulence maintained
with k, ~ 11 excitation, Smith (2001) obtained a VSHF with energy concentrated near
my ~ 10 — 15 in the 2D system using k, & 96, and Smith & Waleffe (2002) obtained
a VSHF with energy concentrated near my =~ 9-11 in the 3D system maintained
with k, & 24. Although precise parameter correspondence between our study and
these previous studies is difficult to establish due to differences in model formulation,
these previous examples demonstrate that VSHFs with larger scale than that of the
excitation are often observed when the system is strongly excited. This behaviour is
expected based on analysis of the S3T system, which we discuss in §7.
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FIGURE 16. Equilibrium structure diagnostics for S3T and the simple momentum balance
model in the case of the my/2m = 6 horizontal mean state as a function of . (a)
Maximum value of U, maximized over z, for the stable S3T fixed point with my/2m =6
(solid). This fixed point becomes secondarily unstable near ¢ =0.55 (Fr =0.88) and the
dashed continuation shows the amplitude of the unstable solution. The dotted curve shows
the estimate of the amplitude of U from the simple momentum balance model (see text).
(b—e) The vertical structure of the horizontal mean state as in figure 5 with dotted curves
indicating the ¢ =0.08 (Fr=0.34) state and solid curves indicating the ¢ =0.54 (Fr=0.88)
state. This figure shows that weak equilibration of the VSHF is captured by the simple
momentum balance model and that the U and N? structures, and their phase relationship
to one another, vary as ¢ is increased. Unless otherwise specified, parameters are as in
figure 2.

7. Equilibration of horizontal mean structure

In §5 we showed that the S3T system initialized with a perturbative VSHF with
my /27 =6 in the standard parameter case evolves into an equilibrium state with the
same VSHF wavenumber (figures 9 and 10). We now analyse how the structure of
this finite-amplitude equilibrium depends on the control parameters.

Figure 16(a, solid curve) shows the maximum value of the my/2m =6 equilibrium
U structure, maximized over z, as a function of €. The dotted curve shows an estimate
of U from a simple momentum balance model which we will explain later in this
section. As suggested by the stability analysis in § 6, the my/2n =6 VSHF forms near
&£~ 0.044 (Fr=0.25) when the growth rate of the corresponding eigenmode crosses
zero. The bifurcation is supercritical, with the VSHF equilibrating at weak amplitude
just beyond the bifurcation point. Near the bifurcation point, U increases rapidly with
&, with this rate of increase slowing as ¢ increases.

The structure of the horizontal mean state depends on e. Figure 16(b—e, dotted
curves) shows the horizontal mean structure of the marginally supercritical equilibrium
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at £ =0.08 (Fr=0.34). The VSHF structure is similar to that of the unstable my;/2n =
6 harmonic eigenmode. The phase relationship between U and N? differs from that
found in the more strongly excited ¢ =0.25 (Fr =0.6) case discussed in §§2 and 5.
In the ¢ =0.08 (Fr =0.34) case of weak equilibration the stratification is enhanced
in the shear regions, rather than weakened, and Ri is large for all z due to the weak
shear. The solid curves in figure 16(b—e) show the horizontal mean structure of the
£ =0.54 (Fr=0.88) equilibrium. For this more strongly supercritical equilibrium, the
shear regions are characterized by weakened stratification and Ri < 1/4. This structure
is similar to that shown in figure 11 for the ¢ =0.25 case, but with stronger shear and
smaller Ri values. The VSHF remains hydrodynamically stable (i.e. all eigenvalues
of A, have negative real parts) despite having Ri < 1/4 due to the dissipation acting
on the perturbation fields. When ¢ is further increased the m; /27 = 6 fixed point
becomes secondarily unstable, indicated by the dashed continuation of the solid curve
in figure 16(a).

The changing phase relationship between U and N? shown in figure 16 that occurs
as a function of ¢ mirrors the change in this relationship shown in figure 9 that occurs
as a function of time. Comparison of figure 9(c,d) shows that, when the developing
VSHF is weak, N? is enhanced where the shear is strongest. When the VSHF becomes
strong, the stratification is reorganized by the turbulent fluxes so that N2 is weakest
where the shear is strongest.

The mechanism of VSHF equilibration at weak amplitude can be understood using
a simple momentum balance model based on the test function analysis of §3. To
construct the simple model we first approximate the horizontal mean state as U =
Uy sin(myz) and B =0, where U, is the equilibrium VSHF amplitude that we will
estimate. We then estimate the acceleration of the VSHF produced by the induced
perturbation momentum fluxes as a function of U, using (3.1)—(3.2). Our estimate
of the equilibrium VSHF amplitude is the value of U, for which this acceleration is
balanced by dissipation. As & — ¢, this simple model becomes exact because both U
and the perturbation flux divergence become exactly harmonic and B — 0. For ¢ > ¢,
the structure of —a,(u'w’) deviates from harmonic and we estimate the equilibrium
VSHF amplitude by projecting the acceleration onto the assumed harmonic VSHF
structure.

We illustrate the simple momentum balance model for ¢ = 0.08 (Fr = 0.34)
and my/27 = 6 in figure 17, which shows the estimated acceleration (solid) and
dissipation (dashed) of the VSHF as functions of the VSHF amplitude, U,. The
dissipation, (7, + vm%]) Uy, increases linearly with Ujy. For small U, the acceleration
is stronger than the dissipation, consistent with spontaneous VSHF formation as a
linear instability for these parameters. Due to the negative curvature of the acceleration
as a function of U, the two terms balance near U, & (.65, which gives the simple
model estimate of the equilibrium VSHF amplitude. The vertical dotted line indicates
the equilibrium VSHF strength in the full S3T system. For this value of ¢ the simple
model captures the equilibration dynamics, implying that modification of N? and
changes in U structure do not play important roles in the weak equilibration process.
The simple model estimate of max(U) as a function of ¢ is shown in figure 16(a) as
the dotted curve. The model estimate matches the results of the full calculation as
& — &, and diverges from the full solution as ¢ increases.

As ¢ is increased, the global minimum of Ri falls further below 1/4 and the
my/2m = 6 state becomes secondarily unstable just beyond & = 0.54 (Fr = 0.88).
Although this instability occurs when U is near the laminar stability boundary,
which is modified from Ri = 1/4 by the presence of dissipation and by our choice
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FIGURE 17. Illustration of the simple momentum balance model for weakly supercritical
VSHF equilibration for ¢ =0.08 and my /27 =6, with other parameters as in figure 2. The
solid curve shows the projection of the perturbation momentum flux divergence, calculated
using the test function analysis of § 3, onto the assumed harmonic VSHF structure. The
dashed line shows the dissipation acting on the VSHF, given by (r,, + vm?,)U,. The simple
model estimate of the equilibrium VSHF amplitude is the value of U, at which these terms
balance one another. The vertical dotted line indicates the equilibrium VSHF amplitude
obtained from the full S3T system. This figure demonstrates that the dynamics of weakly
supercritical VSHF equilibration is captured by the simple balance model.
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FIGURE 18. Secondary instability of the S3T fixed point corresponding to the my /2w =6
VSHF for ¢ =1 (Fr=1.2), with other parameters as in figure 2. (a,b) The time evolution
of (a) U and (b) N2. (¢) The kinetic energy evolution. This figure shows that for strong
excitation the my /2w =6 VSHF state is unstable to the development of a global vertical
wavenumber 2 pattern in U that is superimposed on the initial wavenumber 6 pattern,
strengthening the VSHF and modifying its structure to produce wider shear regions.
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of a finite periodic domain which quantizes the permitted perturbation horizontal
wavenumbers, we emphasize that this secondary instability is a property of the S3T
dynamics, rather than of the perturbation dynamics determined by the operator A,. In
particular, the my /27w = 6 state remains hydrodynamically stable at all times during
the instability development. Figure 18(a,b) shows the time evolution of U and N?
during the development of the secondary instability for e =1 (Fr=1.2). The VSHF
structure near t = 30 reveals that the sixfold symmetry of the my/2nw =6 VSHF is
spontaneously broken by the instability. As the instability develops, the positive VSHF
peaks near z=0.2 and z=0.7 contract and weaken while their neighbouring negative
peaks strengthen and expand. Similarly, the negative VSHF peaks near z = 0.5 and
z=0.9 contract and weaken while their neighbouring positive VSHF peaks strengthen
and expand. The particular locations of the strengthening and weakening features
are the result of the symmetry breaking and so depend on the small perturbations
included in the initialization. Figure 18(c) shows the evolution of kinetic energy
during the instability. The changes in the VSHF structure are associated with an
increase in the mean kinetic energy consistent with the broadening of the VSHF
pattern allowing U to strengthen while maintaining a hydrodynamically stable shear.
Similar behaviour is shown to occur in the NL system in figure 6(b), which shows an
example in which the effective excitation strength has been increased relative to the
standard case integration by removing the Rayleigh drag terms from the dynamics. In
this example, a VSHF with my/(27) & 6 initially emerges from the turbulence and
this VSHF transitions to lower wavenumber as the integration is continued. Secondary
instabilities of finite-amplitude mean shear flows that result in broader shear patterns
also occur in the barotropic beta-plane system and have been analysed using S3T by
Constantinou et al. (2014).

The structure of the horizontal mean state before and after the development of the
secondary instability for e =1 (Fr=1.2) is shown in figure 19. Prior to the instability
development (¢ = 10, dotted) the structure is similar to that shown for ¢ =0.54 (Fr=
0.88) in figure 16(b—e) and is characterized by a VSHF with m; /27 =6 and weakened
stratification in the shear extrema. The U profile of the final equilibrium structure (¢ =
50, solid) contains shear regions with two distinct widths which are associated with
distinct phase relationships between U and N?2. For the wider shear regions, the U
profile inflects in the centre of the shear region and N? is locally maximized there,
resulting in Ri > 1/4. The narrower shear regions are similar to those that precede the
secondary instability development and have Ri < 1/4.

8. Multiple turbulent equilibria in stratified turbulence

In §6 we showed an NL simulation in which a my/2n = 6 VSHF emerges,
corresponding to the eigenmode of the linearized S3T system that has the fastest
growth rate in the standard parameter case. However, figure 14(a) shows that, for the
standard parameter case, all VSHF structures in the wavenumber band 1 <my /27 <10
have positive growth rates. The subdominant eigenmodes (i.e. those with my /27 # 6)
continue to finite-amplitude VSHF equilibria at the corresponding wavenumbers.
These equilibria may or may not be stable. In this section we demonstrate that
multiple turbulent equilibrium states are possible in 2D Boussinesq turbulence by
providing an example of such an alternate stable equilibrium in the S3T and NL
systems.

In figure 20(a,c) we show the development of U in the NL and S3T systems in
an example in which the parameters are set to the standard values (Fr = 0.6 as in
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FIGURE 19. Vertical structure of the horizontal mean state in the S3T system before
and after the development of the secondary instability for ¢ =1 (Fr = 1.2), with other
parameters as in figure 2. Panels are as in figure 5 with dotted curves showing the
structure for ¢+ =10 and solid curves showing the structure for ¢ =50. This figure shows
how the structure of the horizontal mean state is reorganized by the secondary instability.
The unstable equilibrium state at ¢ = 10 has Ri < 1/4 in regions of strongest shear and
weakest stratification. The final equilibrium state has shear regions of two different widths
in which the broader shear regions have Ri > 1/4 due to enhanced stratification and
weakened shear in the cores of the shear regions.

figure 2) but the initial conditions are chosen to initiate a VSHF with wavenumber
my/21t = 4. The NL system is initialized with a mean flow U « sin(myz) for
my/271 =4 and the S3T system is initialized with the same U profile and C, = C;.
In the S3T system this initial condition evolves into a stable my /2w =4 fixed point.
We note that, as shown in § 6, the S3T system will evolve, in the standard parameter
case, towards the my /27t =6 fixed point for any sufficiently small initial perturbation,
but that in this example the system evolves towards the my /27w = 4 fixed point as
a result of the finite initial perturbation. In the NL system the my /27 =4 turbulent
equilibrium is maintained for the length of the integration. Due to noise in the NL
system, the turbulence may eventually transition to another equilibrium state, such
as the my/2m = 6 state discussed in §2. The development of N? for this example
is shown in figure 20(b,d). As in the previous examples of equilibria, N> has a
doubled vertical wavenumber relative to U and is more variable than U in the NL
system. The vertical structure of the horizontal mean state is shown in figure 21.
The VSHF structure (panels a,b) resembles a sawtooth in both the NL (dotted) and
S3T (solid) systems. The phase relationship between U and N? (panel ¢) shares
some features with that shown in figure 16 for the my/2m = 6 equilibrium with
e =0.54 (Fr=0.88). In particular, the weakest values of N? occur in the centres of
the shear regions. The excitation strength ¢ =0.25 falls in a transitional range for the
my /27 =4 equilibrium in which N? has an approximately mp/27 = 16 structure. As
¢ is increased (not shown), the stratification in the shear centres continues to weaken,
producing density layers at these locations, and the stratification near the VSHF peaks
is enhanced.

Figure 22 shows the evolution of kinetic energy in the NL and S3T systems.
Consistent with the results for the my/2w = 6 equilibrium in §5, the equilibrium
value of K in the S3T system exceeds that of NL system. In both systems, the
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FIGURE 20. Time evolution of the horizontal mean structure of the my/2m =4 equilibrium
state in the NL and S3T systems. Panels show the time evolution of (a) U and (b)
N? in the NL system and (¢) U and (d) N? in the S3T system. This figure shows
that when initialized with a finite-amplitude VSHF with wavenumber my /2w =4 the NL
system maintains this structure, resulting in a turbulent equilibrium state different from
that discussed in §2 for the same parameter values, and that this alternate equilibrium
state is also a fixed point of the S3T system. Parameters are as in figure 2.
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075 075 0.75 075
Z 050 0.50 050 === 050
025 025 0.25 ro 0.25
[ — : J 0 Pl 0! — .
2210 1 2 50 0 50 750 1000 1250 0
U aU/dz N?

FIGURE 21. Vertical structure of the horizontal mean state of the my /27w =4 equilibrium
in the NL and S3T systems. Panels are as in figure 5 with dotted curves showing the
time-averaged structure over ¢ € [22, 45] for the NL system and solid curves showing the
final fixed point structure for the S3T system. Parameters are as in figure 2.
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= S3T
— NL

FIGURE 22. Kinetic energy evolution in the NL and S3T systems initialized with a
my/27t =4 VSHF. This figure shows that, as for the my/2nw =6 equilibrium, the VSHF
in the S3T system is more energetic than the VSHF in the NL system, and comparison
with figure 10 shows that in both the NL and S3T systems the my /27w =4 VSHF is more
energetic than the my /27w =6 VSHFE. Parameters are as in figure 2.

broader VSHF in the my /2w =4 equilibrium is more energetic than the VSHF in the
my /27 =6 equilibrium. This is consistent with the behaviour shown in figure 18(c), in
which the broadened VSHF resulting from the secondary instability is more energetic
than the my /27w =6 VSHF that precedes the instability.

9. Reflection of the S3T bifurcation in the NL and QL systems

In §5 we compared the behaviour of the NL, QL and S3T systems with all
parameter values fixed. Comparing the three systems in this way allows for a detailed
comparison of the structures of the mean state and of the turbulent spectra to be
made. However, our analysis of the S3T system has revealed phenomena, including
the bifurcation associated with the initial formation of the VSHEF, that can be analysed
only by allowing variation of the control parameters. We now compare the behaviour
of the three systems as a function of the excitation strength, ¢, in terms of the
fraction of the total kinetic energy of the flow that is associated with the VSHF. We
define this fraction as zmf=K/(K + K’), for zonal mean flow (zmf) index, borrowing
this definition from studies of barotropic beta-plane turbulence (Srinivasan & Young
2012; Constantinou et al. 2014). We note that in the context of barotropic turbulence
an alternative approach based on regime diagrams has also been used to characterize
the transition of turbulence to states dominated by zonal jets (Galperin et al. 2010).

Figure 23 shows the equilibrium zmf value as a function of ¢ for the NL, QL and
S3T systems. As all three systems possess multiple equilibria, there is some ambiguity
as to the meaning of the equilibrium energies. For the S3T system we show the
maximum zmf obtained when the system is initialized with a perturbative VSHF at
each unstable wavenumber my. For the NL and QL systems we initialize from rest and
show the time average of zmf over the final 10 time units of a ¢ € [0, 450] integration.
As many long integrations are required for this comparison, the simulations shown in
this section are spun up at low resolution and the resulting turbulence is interpolated
to the standard resolution of 512% grid points to initialize a simulation of the final 10
time units.

As discussed in § 6, the S3T system passes through a bifurcation near & ~ 0.04
(Fr=0.24). This bifurcation is reflected in the zmf indices of the QL and NL systems.
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FIGURE 23. Equilibrium zmf indices in the NL, QL and S3T systems as functions of
&, with other parameters as in figure 2. The zmf index measures the fraction of the total
kinetic energy of the flow that is associated with the VSHF. This figure shows that the
bifurcation through which the VSHF forms in the deterministic S3T system is reflected in
the behaviour of the NL and QL systems, which show an abrupt increase in the fraction
of the total kinetic energy contained in the VSHF near the S3T bifurcation point.

For ¢ <0.04 the VSHF accounts for only a few percent of the total kinetic energy of
the flow. As ¢ increases beyond the S3T bifurcation point, the zmf index increases
rapidly and the VSHF becomes energetically dominant. As was found in §5, the
S3T VSHF is the most energetic and the QL VSHF tends to be more energetic than
the NL VSHF. The eventual decrease of the zmf indices in the QL and NL systems
as ¢ is increased may be due to the tendency of those systems to maintain VSHF
structures with my /27w =6, even when this is not the most energetic VSHF structure.
The S3T curve does not show this decrease as we choose the most energetic VSHF
equilibrium to define the S3T equilibrium zmf. This maximally energetic VSHF
equilibrium often has a lower vertical wavenumber than that of the fastest growing
eigenmode, as discussed in § 8. Developing a complete understanding of the behaviour
of, and correspondence between, the QL, NL and S3T systems in the limit of strong
excitation is beyond the scope of the present study but is an important avenue for
future investigation. Note also in figure 23 the characteristic increase in fluctuating
VSHF amplitude in the NL and QL cases as the bifurcation point is approached. This
results from excitation of the reflection in QL and NL of the stable modes of the S3T
system, which have no analytical expression in the QL and NL systems themselves.
These modes are excited by the noise inherent in the QL and NL systems, while no
such excitation is seen in the noise-free S3T system (Constantinou et al. 2014).

10. Conclusions

In this work we studied the formation and maintenance of the VSHF and associated
density layers in stratified turbulence by applying SSD to the stochastically excited
2D Boussinesq system. Although highly simplified, the 2D Boussinesq system has
previously been shown to reflect the properties of VSHF emergence in 3D (Smith
2001; Smith & Waleffe 2002). Our analysis focused on the strongly stratified regime
in which the VSHF is known to develop and that is also the regime relevant to
geophysical turbulent jets such as the EDJs. Using the S3T implementation of SSD,
we showed that VSHFs form spontaneously in this system through the mechanism of
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cooperative interaction between the turbulence and the mean state. While wave—mean
flow interaction has previously been hypothesized to be the mechanism responsible
for the formation and maintenance of the EDJs (Muench & Kunze 1999; Ascani
et al. 2015), the analytical structure required for constructing a comprehensive theory
connecting turbulence to the formation and equilibration of these coherent structures
was lacking. The 2D Boussinesq system is a minimal dynamical model that captures
horizontal structure formation in stratified turbulence, analogous to the role played by
the barotropic beta-plane system in planetary-scale jet formation. Unlike the beta-plane
system, the 2D Boussinesq equations do not have a conserved potential vorticity, and
so this stratified turbulence provides a test of the role played by conservation laws
in the formation of jets. In agreement with previous studies, we find that VSHF
formation occurs robustly in spite of the absence of vorticity as a conserved quantity.

An aspect of horizontal mean structure formation in stratified turbulence highlighted
in this work is the formation of horizontal mean density layers. When the VSHF
emerges in turbulence, it typically dominates the velocity field at equilibrium and is
clearly visible in the instantaneous flow. The associated changes in the stratification,
however, are relatively weak and are obscured by turbulent fluctuations. Horizontal
averaging reveals the structure of the modified stratification, which agrees well with
the predictions of the S3T system. Stratified turbulence thus provides an example in
which the mean state is characterized by examples of both ‘manifest’ and ‘latent’
(Berloff et al. 2009) structures simultaneously.

The primary contribution of this work is to explain the dynamics of VSHF
formation and equilibration in stratified turbulence using SSD. We developed and
applied the S3T equations for this system and showed that the behaviour observed in
nonlinear simulations mirrors that of the S3T system. S3T provides a deterministic
and autonomous dynamical system that describes the formation, temporal evolution,
and equilibration of the statistical state of the turbulence at second order. In S3T,
the third cumulant, which is associated with perturbation—perturbation nonlinearity, is
set to zero and the ergodic assumption equating horizontal and ensemble averages
is made. The S3T system provides tools, concepts and insights for understanding
turbulent structure formation. For example, test function analysis was used in §3
to calculate the statistical mean turbulent perturbation fluxes in the presence of an
imposed horizontal mean structure. This tool yields the insight that the VSHF forms
by modifying the fluxes in such a way as to reinforce the VSHF structure, and
explains the specific horizontal mean structure maintained in turbulent equilibrium
as being the structure for which the fluxes balance dissipation while not distorting
the structure itself. Analysis of the S3T system also allows for the identification
of phenomena that are difficult to capture or anticipate in the presence of turbulent
fluctuations. For example, the linear stability analysis carried out in §6 shows
that VSHF formation occurs via a linear instability of the SSD of the underlying
homogeneous turbulent state. The growth rate of this instability crosses zero as the
strength of the stochastic excitation is increased beyond a critical threshold, resulting
in a supercritical bifurcation. This bifurcation behaviour is reflected in the dynamics
of both the associated quasilinear (QL) and fully nonlinear (NL) systems. As an
additional example, the S3T system predicts the existence of multiple simultaneously
stable turbulent equilibria with different horizontal mean structures. This property of
stratified turbulence has not previously been emphasized and might be unexpected
from the perspective of nonlinear cascade constrained by conservation laws. From the
perspective of S3T as an autonomous and nonlinear dynamical system the existence
of multiple equilibria is not surprising.
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Appendix A. A reduced model of 2D Boussinesq turbulence illustrating S3T

In this appendix we construct a severely truncated low-order model (LOM) of the
stochastically excited 2D Boussinesq system. A similar approach has been applied to
the stochastically excited barotropic beta-plane system (Majda, Timofeyev & Vanden
Eijnden 1999). We first formulate the model, which is expressed using coupled
ordinary differential equations, and then proceed to derive the S3T equations for this
system. This demonstration serves to illustrate the analytical techniques used in this
paper in the context of a simple set of equations. Moreover, we find that this severely
truncated model accurately captures certain aspects of the full 2D system.

To obtain the LOM we choose the stochastic excitation, /&S, to excite a single
standing wave mode so that S ocsin(kx) sin(mz) and analyse the interaction between the
excited mode and a VSHF with vertical wavenumber m;. We neglect the horizontal
mean buoyancy, B, as we focus on the linear instability responsible for VSHF
formation in which B plays no role (see §6), and we set v = 0. We write the
perturbation streamfunction, ', the perturbation buoyancy, ', and the VSHF, U, in
the form of low-order Fourier truncations as

¥ (x, z, t) = ¥, sin(kx) sin(mz) + ¥, cos(kx) cos((m + my)z), (A1)
b (x, z, t) = b, cos(kx) sin(mz) + b.. sin(kx) cos((m + my)z), (A2)
U(z, t) = U sin(myz). (A3)

We choose to retain these terms because the interaction between U and the excited
wave, (Y., b,), produces sum and difference wavenumber components including the
sheared wavenumber component, (¥, b,). The difference wavenumber component,
(Y_, b_), is also produced. For simplicity of the present development we write
equations with only the + terms included, but the results we show in this appendix are
calculated using a version of the LOM that includes both the 4+ and — components.

To obtain the equations of motion for the coefficients we substitute the expansion
(A 1)-(A 3) into the QL equations (4.1)—(4.4) and project each term onto the structure
functions. For example, the contribution to the 1, equation from the mean flow
interaction terms in the vorticity equation is given by

1k , )
Eﬁ (k+ —my)U¢,,

(A4)
in which k2 =k*+m? and k3 =k* 4+ (m + my)*. The LOM is most compactly written
in vector—matrix form. Defining the state vectors of the excited and sheared wave

components as ¢, = (V¥,, b,)T and ¢, = (Y, b;)T we obtain

. w, 0) (¢ 0 Lo\ (¢
(6)=(C w) (@) roll 5) (&) v @

N —1 1 1
(‘Z) / dx / dz(sin(kx) sin(mz)) (=Ud, Ay’ + (8,9 )Uz.) = —
0 0
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U= k(2 — k) Ye¥y — 1 U, (A6)

where ¢ is the energy injection rate and & = (24/2n/k., 0, 0, 0)T, where 7 is Gaussian
white noise with unit variance. The operators W, and W, encode the gravity wave
dynamics of the excited and sheared components and are given by

(-1 kR (-1 kR
W@‘(-kzvg _1), W+—(kNg ) (A7a,b)

The operators L., and L,, encode the interactions between the VSHF and the
perturbations and are given by

k k

TE (k%r —m}) —W(m%, -k 0
e +

L= L., = (A 8a,b)

0
k|’ k
0 2 0 2

Equation (AS5) is the LOM analogue of the QL perturbation equation (4.7). As
in the QL system the VSHEF, U, forms spontaneously in the LOM under certain
parameter conditions due to feedbacks between U and the perturbation statistics.
Figure 24 shows the time evolution of U and the perturbation momentum flux
divergence (which we denote R, for Reynolds stress) in the LOM. The VSHF
develops by t=25 and exhibits red noise fluctuations. The momentum flux divergence
fluctuates rapidly, sometimes strongly opposing U. The time average values of U and
R are indicated by the black dashed lines. These results demonstrate the complexity
of the LOM ‘turbulence’. The statistical equilibrium state is characterized by the
presence of large fluctuations that obscure the processes that generate and maintain
the VSHFE. We note that this example also demonstrates that VSHFs can form in
stochastically excited flows in which the vertical wavenumber of the VSHF (in the
present case, my/(2m) =7) is not contained in the excitation spectrum (which, in the
present case, contains only m/(2m) = 3).

We now illustrate the S3T closure technique in the simplified context of the LOM.
Defining the complete perturbation state vector as ¢ = (¢!, ¢7)", the instantaneous
covariance matrix of the perturbations, prior to ensemble averaging, is Cyp, = @P7.
By It6’s lemma,

.mech = A(U) Cs'tm:h + CstochA(U)T + £ Q + ¢§T + §¢T (A 9)

Here Q is the ensemble mean excitation covariance, which is the 4 x 4 matrix with
Q;; = 8/k? and all other entries zero, and the operator A(U) is defined as

A(U) = <"g v8+> YU <LS,6 Lg*) . (A 10)

We obtain the S3T dynamics by taking the ensemble averages of (A 6) and (A 9) under
the ergodic assumption that horizontal and ensemble averages are equivalent so that
U = (U). The stochastic terms in (A 9) vanish upon averaging and the S3T equations


https://doi.org/10.1017/jfm.2018.560
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Harvard-Smithsonian Centerfor Astrophysics, on 19 Sep 2018 at 17:32:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2018.560

584 J. G. Fitzgerald and B. F. Farrell

(@) —_— (b) 0.1 — . ;
—— Stochastic LOM ‘ |
= S3T LOM ‘ |
. ‘ || n s }i |
PRRL I e
0.1 '
0 100 200 0 100 200
t t

FIGURE 24. Evolution of the LOM system state in the original stochastic system (thin
curves) and the corresponding S3T system (thick curves). (a) U, the VSHE. (b) R, the
perturbation momentum flux divergence. Time average values over ¢ € [100, 200] in the
stochastic system are indicated by dashed lines. The values of the control parameters are
e =0.01, Ng =100, r, =0.1 and (k, m, my) = 21 (6, 3, 7), corresponding to Fr = 0.42.
This figure shows that the trajectory of the stochastic LOM is made complicated by large
fluctuations but that the average behaviour of the system is captured by the deterministic
S3T dynamics.

of motion are

C=AU)C+ CA(U)" +¢Q, (A11)
U=R-r,U, (A12)

where € = (Cypen), R = (1/4)k(k: — k})Ci3, and Ci3 = (Y.4). The thick curves in
figure 24(a,b) show the time evolution of the S3T state. The S3T dynamics captures
the time evolution of the VSHF as well as the time average of the rapidly fluctuating
perturbation momentum flux divergence.

Although working in the S3T formalism introduces some abstraction, the S3T
equations provide understanding by enabling direct interpretation and analysis of the
second-order statistical relationships that are explicit in S3T. A statistical quantity
of central interest is (i,¥,), which is proportional to R and so directly drives the
VSHF. The S3T dynamics of (v, ) are

d k k
g Vev) = —200ev) + é(beer) - E<web+>

K o UMY — @2 —myu(y? A13
_ﬁ(my_ 2 (I/fe)—szg( L mp)U), (A13)
which is the (1, 3) component of (A 11). The direct feedback between U and R is
expressed in the fourth term on the right-hand side of (A 13). For our parameter
choices (m?, — k*) > 0 so this feedback suppresses VSHF formation. The flux
divergence R is instead produced by covariances involving the buoyancy field,
expressed in the second and third terms on the right-hand side of (A 13). These
covariances are in turn produced through direct interactions with U which are
expressed in other components of (A 11).

VSHF formation in the LOM can be understood through linear stability analysis
of the S3T system in analogy with §6. The fixed point of the S3T equations
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FIGURE 25. Comparison between the S3T LOM (solid curves), in which a standing wave
is stochastically excited, and the full S3T dynamics when a closely related homogeneous
excitation is chosen, referred to as S3T-§ (dots). (a) Growth rate of the linear instability
responsible for VSHF formation, maximized over all VSHF wavenumbers, as a function
of NZ for e =0.5. (b) Equilibrium amplitude of the m; /2w =7 VSHF as a function of ¢
for Ng =100. The control parameters are (k, m) =2m(6,3) and r,, =0.1. This figure shows
that the S3T LOM accurately captures the instability responsible for VSHF formation,
indicating that the highly simplified LOM has correct physics at the linear level and can
be used to understand the process of VSHF formation. The VSHF equilibration process,
however, is not captured correctly even for weakly supercritical excitation strengths.

corresponding to turbulence without a VSHF is obtained by solving (A11) with
U =0, which gives

* —_—
Cll -

2 K2N2 26kN? 2612N?
8( _ ) = s = 280 (A lda—c)
k2

K2 ¥ IeN? T RN 2T RN

with C3, = C}, and the other elements of C* being zero. Linearizing equations (A 11)-
(A12) about the fixed point (C, U) = (C*, 0) we find that VSHF perturbations, éU,
evolve together with covariance matrix perturbations of the form

0 seet
5C= ((ace,-F)T 0 ) ) (A 15)

independently of perturbations to the other elements of C, according to the linearized
equations

§ET =W SC +8CT (W) +8U(C) (Ly.)T, (A16)
SU = —1,,8U + (1/Hk(k2 — k1)5CS, (A 17)

in which (C“°)* denotes the upper-left non-zero 2 x 2 submatrix of C*. This system
of five linear ODEs can be rearranged as a 5 x 5 matrix—vector system and the
eigenvalues and eigenvectors can be calculated as usual. For sufficiently strong
excitation, the dominant eigenvalue has a positive real part and the U =0 fixed point
is unstable to eigenmodes associated with VSHF formation. Figure 25(a) (solid curve)
shows the instability growth rate as a function of N3, maximized over all mean flow
wavenumbers ;.
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At the level of the linear instability responsible for VSHF formation, the S3T
dynamics of the LOM captures the dynamics of the full S3T system (6.6)—(6.8)
when the excitation of the full system is appropriately chosen. Figure 25(a) (dots)
shows the instability growth rate in the full S3T dynamics when ./eS excites only
the four Fourier components with (k, m) =2mw(£6, £3), which is a homogeneous but
anisotropic excitation. We refer to this configuration of the S3T system as S3T-§, as
the excitation spectrum consists of delta functions at the excited wavenumbers.
Although this excitation is not identical to the LOM excitation, which is not
homogeneous, the correspondence between the growth rates indicates that the LOM
accurately captures the dynamics of the full S3T system in this case. We note that,
in contrast to the results of §6, the VSHF growth rate remains positive as N7 — 0
for this choice of anisotropic excitation.

Although the LOM correctly captures the linear instability that produces the VSHE,
it fails to capture the finite-amplitude equilibration of the VSHF. Figure 25(b) shows
the fixed point value of U as a function of & for the S3T dynamics of the LOM
alongside max(U) for the S3T-§ system. Although the VSHF in the LOM S3T
dynamics forms through a bifurcation at the same value of & as in the full S3T
dynamics, the LOM does not capture the equilibrium amplitude of the VSHF even
very near the bifurcation point. This failure of the LOM occurs because the dynamics
of weakly supercritical VSHF equilibration, as explained in § 7, are related to the
negative curvature of the flux divergence as a function of the VSHF strength (see
figure 17). This curvature is due to the production via wave—mean flow interaction
of perturbations with vertical wavenumbers that are not included in the LOM.

Appendix B. The covariance matrix of homogeneous turbulence

In this appendix we show details of the analytical solution of the time-independent
Lyapunov equation (6.1). We define the N x N submatrices of C; as

" Cyoyn Cybau
C = ' R B1
" (C:rbb,n Cbb,n) ( )

Defining R, =1 —vA, and M, = A, I we expand (6.1) into the three independent
matrix equations

—R,Cyy .+ ik,,MnCwa,n — Cyy Ry —1k,Cyp M, = —Qyy ,, (B2)
_Rncx//b,n + iananb,n + ianécwlﬂ,n - C\//b,an =0, (B 3)
—ik,N3 Cypn — RiChpon + ikuNy €l , — CipnRy = 0. (B4)

We note the following: (i) for our boundary conditions and excitation the matrices
R,, M,, and Qy, , are real, symmetric, and circulant; (ii) inverses, products and sums
of circulant matrices are circulant; (iii) circulant matrices commute with one another
(Davis 1978). The form of (B2)—(B4) suggests that we seek solutions with Cy;, =
iéwb,n and real Cyy ,, &wb_n, Cyp,n. We further seek solutions in which Cyy ,, &W,,n,
and Cy, are also circulant and symmetric, corresponding to homogeneous turbulence.
Using these properties we rewrite (B2)-(B4) as

_2Rn Cx/fx//,n + 2ann él/fb,n = _Soljfljf,n, (B 5)
—2R, &1//h,n + an(%CI/m//,n + annchh,n =0, (B 6)
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—2R, Chpn + 2k,N3Cyp, = 0. B7)
Equations (B 5)—(B7) can be solved to give
Cibn =kaNg R, Cpn, (B8)
Cypn=—kuNI[—2R, + K2NM,R;'17'Cyy s (B9)
Cyyn=1{2R, + 22N M,[—2R, + ICN;M,R,' 17"} e Qyy - (B 10)

Equations (B 8)—-(B 10) can be inverted to obtain C; explicitly in terms of Q. , and
constitute our final solution for the homogeneous turbulent fixed point.
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