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Precise synaptic connections among neurons in the

neocortex generate the circuits that underlie a broad

repertoire of cortical functions including perception, learning

and memory, and complex problem solving. The specific

patterns and properties of these synaptic connections are

fundamental to the computations cortical neurons perform.

How such specificity arises in cortical circuits has remained

elusive. Here, we first consider the cell-type, subcellular and

synaptic specificity required for generating mature patterns of

cortical connectivity and responses. Next, we focus on recent

progress in understanding how the synaptic connections

among excitatory cortical projection neurons are established

during development using the primary visual cortex of the

mouse as a model.
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Introduction
The neocortex is composed of many different types of

neurons, each with distinct patterns of synaptic connec-

tivity conferring different functions in vivo. The majority

of these cell types are excitatory cortical projection neu-

rons, with intracortical axons forming local synaptic con-

nections within the cortex and long-range axons targeting

distinct subsets of distant cortical and subcortical regions

[1–3]. Although precise patterns of local intracortical

synaptic connections are essential for proper cortical

function, how local cortical circuits are established

remains elusive. With the advent of two-photon in vivo
imaging combined with whole-cell recordings of unitary

synaptic connections among other techniques, recent
www.sciencedirect.com 
work focused on mouse primary visual cortex (V1) has

begun to shed light on the time course and mechanisms

that generate the mature patterns of intracortical synaptic

connections and resulting response properties of cortical

neurons.

Mouse visual cortex as a model for cortical
circuit development
The primary visual cortex of the mouse is traditionally

divided into six layers. Following the canonical cortical

microcircuit, incoming sensory information primarily

enters layer 4 (L4), passes to layer 2/3 (L2/3) and then

on to layers 5 and 6 (L5, L6) [4–6]. Although early work

suggested that neurons with different response properties

in mouse V1 were intermingled in a ‘salt-and-pepper’

pattern [7–9], recent studies have demonstrated more

functional organization than previously appreciated

[10,11��,12�,13�,14]. For instance, neurons that share ori-

entation preferences are weakly clustered into vertical

columns [12�,13�], and L5 pyramids with similar long-

range projection patterns are also clustered into micro-

columns in mouse V1 [10,11��]. In the horizontal plane,

clusters of L2/3 neurons with distinct tuning preferences

are aligned with patches of M2 muscarinic acetylcholine

receptor expression and L1 patches, defined by the

termination patterns of geniculocortical and feedback

inputs into V1 [14]. Taken together, these studies indi-

cate that the patterns of synaptic connectivity in mouse

V1 exist within a columnar and tangential cortical

organization.

Specificity of synaptic connections within the
neocortex
Within this overarching organization, cortical projection

neurons form precise synaptic connections defined at

different scales. First, they establish cell-type specific

patterns of synaptic connections. For example, the prob-

ability of forming synaptic connections among different

classes of L5 cortical projection neurons defined by their

long-range axonal targets depends on the identity of the

presynaptic and postsynaptic cell types [15–17]. Simi-

larly, L2/3 neurons defined by similar receptive field

properties are preferentially connected [18,19�,20,21�].
Second, specific subcellular compartments of projection

neurons receive distinct synaptic inputs. Inhibitory

Chandelier cells, which synapse onto the axon initial

segments of cortical projection neurons, are perhaps the

most famous example [22]. However, Chandelier cells

are not exceptional as other classes of inhibitory neuron

similarly target particular dendritic compartments of
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cortical projection neurons [23,24]. Similarly, long-range

inputs to the cortex also synapse onto specific dendritic

compartments [25] as do local connections among corti-

cal projection neurons [26–31]. Third, alongside speci-

ficity in target choice and location for synapse formation,

developmental mechanisms must establish the appropri-

ate synaptic properties for each connection (for review,

see [32]). For example, in addition to being preferen-

tially interconnected, L2/3 neurons with shared response

properties also form stronger synaptic connections than

average [19�,21�]. These studies highlight the many

challenges in establishing the mature patterns of intra-

cortical synaptic connectivity that shape the activity of

adult cortex.

Clonally related neurons are connected via
gap junctions in the first postnatal week
One possibility is that cell lineage seeds the initial

synaptic organization of local cortical circuits. Radial

glial progenitors (RGPs) in the ventricular zone generate

cortical neurons in an inside-out fashion, such that L6

neurons are born first and L2 neurons last. This process

produces clonally related sister neurons arising from the

same RGP that may represent the basis of the cortical

column [33]. Gap junctions, which mediate coordinated

electrical activity and the passage of small molecules

among connected cells (for review, see [34]), preferen-

tially connect vertically aligned, clonally related neurons

through the first postnatal week before disappearing by

postnatal day (P)6 [35,36��] (Figure 1, P0–P6 panel).
These clonally related sister neurons go on to preferen-

tially form chemical synaptic connections after the initial

electrical connections have been eliminated [35,37].

Strikingly, these chemical connections within ontoge-

netic columns reflect the flow of information through the

canonical cortical microcircuit, from L4 to L2/3 to L5

and L6 [37]. The formation of these early gap junctions

and the subsequent preferential chemical synaptic con-

nections among sister neurons is disrupted when normal

neuronal migration is disturbed either by abolishing

Reelin signaling, essential for the normal inside-out

development of the neocortex, or by altering the tan-

gential migration of sister neurons through Ephrin-A

signaling [36��].

Projection neurons within cortical
microcolumns are connected via gap
junctions
In addition to clonal networks, small clusters of verti-

cally aligned neuronal cell bodies form microcolumns

within the cortex [10,11��,12�]. The neurons within

microcolumns share long-range axonal projection pat-

terns [10], and these cell-type specific columnar clus-

ters in L5 tile the cortex in a hexagonal lattice, with a

period of approximately 30 mm [10,11��]. Although

most neurons in a microcolumn are not clonally related,

they are also electrically coupled early in cortical
Current Opinion in Neurobiology 2018, 53:103–109 
development via cell-type specific gap junctions

[11��] (Figure 1, P7–P14 panel). Unlike gap junctions

among clonally related sister cells which have largely

disappeared by P6–7 [35], the electrical coupling within

L5 microcolumns persists longer, becoming undetect-

able around P10–14, before the time of eye opening

[11��]. In contrast to clonally related cortical neurons,

no preferential chemical synapses were found within

microcolumns after gap junctions among neurons

within a microcolumn had disappeared [11��,38]. How-

ever, neurons within microcolumns share strong, com-

mon synaptic inputs [11��]. The relationship between

electrical coupling of clonally related neurons and elec-

trical coupling of neurons within microcolumns remains

unclear.

Inhibiting gap junctions in early development
disrupts cortical circuit formation
These early electrical connections play an important

role in establishing local cortical connections and corti-

cal receptive field properties [35,39,40]. Connexin26 is

a gap junction protein highly expressed in the devel-

oping cortex. Expressing a dominant negative form of

Connexin26, for example, in L2/3 projection neurons

starting at embryonic day (E) 12–13 reduced the sub-

sequent formation of preferential chemical synaptic

connections between related sister neurons in V1 of

P12–17 mice [35] and also the similarity in response

properties among sister neurons [40]. However, any

differences in the contributions of gap junctions spe-

cifically among clonally related neurons, among neu-

rons within a microcolumn, or among yet to be defined

neurons to the initial establishment of cortical circuits,

remains to be clarified.

How these gap junctions influence the later synaptic

organization of cortical circuits also remains unclear.

One possibility is that spontaneous activity before eye

opening coordinates the activity of electrically coupled

neurons [35] and contributes to the initial formation of

preferential connectivity between neurons that share

receptive field properties [18,19�,20,21�,41]. Modeling

studies suggested that cell pairs are more likely to stabi-

lize the same set of feedforward thalamocortical inputs

and share similar receptive field properties if they were

connected via gap junctions during the first postnatal

week [41]. This prediction is consistent with the finding

that clonally related sister neurons have more similar

orientation preferences than unrelated cortical neurons

in mature circuits [40,42].

Contributions of neural activity to early circuit
formation
Early in development, the transmission frequency of

dendritic spine responses that are poorly synchronized

with their neighbors during spontaneous activity becomes

reduced [43]. This process may contribute to functional
www.sciencedirect.com
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Figure 1

P0-P6 P7-P14 P14-P21 P22+

L1

L2/3

L4

L5

L6

RGP

L5 L5 L5

L2/3 L2/3

Microcolumns Microcolumns Microcolumns

Electrical coupling between
clonally related neurons and

radial glial progenitors.

Electrical coupling between clonally
related neurons disappears.

Clonally related neurons are connected via
 chemical synapses. Small clones of sister neurons

have similar receptive field properties.

Large clones of sister neurons have similar
receptive field properties.

Electrical coupling between neurons
within cell type-specific microcolumns.

Electrical coupling between neurons
within cell type-specific

microcolumns disappears.

Microcolumns receive common large
synaptic inputs and have similar receptive

field properties.

Neurons with similar receptive fields
strengthen their synaptic connections while

non-responsive neurons weaken theirs.

Cells with similar receptive field
properties are preferentially connected.

Current Opinion in Neurobiology

Development of intracortical synaptic connections in the visual cortex of the mouse. The formation of specific patterns of intracortical synaptic

connectivity is regulated by activity-dependent and independent mechanisms. Because most studies sample only a subset of developmental time

points, the precise biological start and end of the processes illustrated and their temporal relationships remain unclear. How these mechanisms

act together to elaborate synaptic connections among clonally related cortical projection neurons (orange), among neurons in cortical

microcolumns (cyan), and among neurons with related response properties (dark blue) at the cell-type, subcellular and synaptic level remains to

be fully elucidated.
clustering of spines within the dendritic arbor of cortical

neurons [44�,45] and the formation of strong, shared,

inputs between L5 neurons within a microcolumn

[11��]. The resulting clustering of coordinately active

inputs may also be reflected in the clustered distribution

of synaptic inputs with particular receptive field proper-

ties within the dendritic arbors of mature L2/3 neurons:

spines responding to the same location in visual space as a

neuron’s receptive field preferentially cluster on neigh-

boring spines of proximal dendrites while spines respond-

ing to regions beyond the receptive field are found on

higher order branches [44�].

These findings have been interpreted to mean that

mechanisms dependent on spontaneous activity prior

to eye opening underlie the formation of early cortical

circuits. However overexpression of the potassium chan-

nel Kir2.1, to suppress L2/3 neurons beginning at late

embryonic stages, suppressed spontaneous activity before

eye opening but did not affect the initial development of

orientation and direction selectivity, suggesting that these
www.sciencedirect.com 
receptive field properties develop in an activity-indepen-

dent manner [46��]. Whether this manipulation affected

the pattern of chemical synaptic connections among

neurons with similar receptive field properties or among

clonally related neurons akin to inhibition of gap junc-

tions was not tested. Thus, the precise mechanisms by

which gap junctions and spontaneous activity contribute

to the patterns of synaptic connectivity in mouse V1 prior

to visual experience remain to be fully elucidated.

Molecular contributions to early cortical
development
Additional molecular mechanisms have also been impli-

cated in establishing synaptic relationships prior to visual

experience, but how they influence specificity in circuit

formation is not well understood. For example, a recent

study implicated Dnmt3b DNA methyltransferase in

stabilizing reciprocal chemical connections among clon-

ally related layer 4 sister neurons in somatosensory cortex

[47]. The authors proposed that methylation patterns

influence the expression patterns of clustered
Current Opinion in Neurobiology 2018, 53:103–109
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protocadherins, cell adhesion molecules thought to play

roles in self-recognition and non-self-recognition [47].

Other molecular mechanisms involved in input-specific

regulation of synapse formation in primary somatosensory

cortex may also contribute to circuit formation in V1

[43,48], as may mechanisms implicated in the regulation

of synapse formation in specific cortical cell types and

dendritic compartments [49–52]. Together, these studies

demonstrate that, before visual experience, multiple

mechanisms likely work in concert to establish early

patterns of synaptic connections that generate initial

receptive field properties — including the spatial struc-

ture, orientation tuning, and direction preference of

mouse V1 neurons [41,46��,53–55].

Changes in synaptic connectivity following
eye opening in the mouse
Significant synaptogenesis and maturation of receptive

field properties occurs around eye opening (around P14),

but little is known regarding the specific changes in

cortical circuits during this time period [56,57]. The

patterns of synaptic connectivity and selectivity in recep-

tive field properties continue to be shaped after eye

opening (Figure 1, P14–P21 and P22+ panels). However,

only some of these changes depend on visual experience.

For example, prior to eye opening, the preferential con-

nectivity between L2/3 neurons with similar orientation

preferences is immature. Only after eye opening does the

probability of synaptic connection among L2/3 pyramids

with similar receptive field properties and the proportion

of bidirectionally connected L2/3 neurons sharing recep-

tive field properties increase significantly, as does the

synaptic strength of these connections [19�,41,58,59��].
This increase in preferential connectivity represents both

an increase and strengthening of connections among L2/3

neurons with similar response properties as well as a

decrease in the connectivity of non-responsive neurons

[41,59��]. Interestingly, the emergence of reciprocal syn-

aptic connections among neurons with shared response

properties proceeds largely unaffected by the absence of

visual experience [59��]. In contrast, the elimination of

connections among visually non-responsive L2/3 neurons

was inhibited by dark-rearing [59��]. The significant

increases in the probability of connection and synaptic

strength among randomly selected L2/3 neurons in rats

following eye opening were also eliminated by dark-

rearing but not by binocular eyelid suturing [58], suggest-

ing a role for patterned visual input. Whether visual

experience shapes the chemical connections formed

among clonally related sister neurons has not been tested.

As with the patterns of intracortical connectivity, only

some changes in receptive field properties following eye

opening are dependent on visual experience. For exam-

ple, the correspondence between ON and OFF subfields

received from the two eyes and binocular matching of

orientation preferences in mouse V1 is disrupted by dark-
Current Opinion in Neurobiology 2018, 53:103–109 
rearing, although experience-independent mechanisms

generate the ON and OFF subregions and the overlap

of the receptive fields in visual space [54,55]. The broad-

ening of the orientation tuning of L2/3 fast-spiking neu-

rons was also disrupted by dark-rearing [60]. In contrast,

the elimination of initial biases in the distribution of

preferred orientations and preferred directions in L2/3

excitatory neurons required neuronal activity but not

visual experience [46��,53,60]. The sparsification of V1

neuronal responses in L2/3 also proceeded, although

delayed, without visual experience [61]. How the evolu-

tion of response properties during the first weeks follow-

ing eye opening relates to underlying changes in synaptic

connectivity remains unclear. Furthermore, the contribu-

tions of molecular mechanisms implicated in shaping

synaptic connections in visual and somatosensory cortex

in later development, including specifying connections

among cortical neurons at the cell-type or subcellular

levels, remains to be fully elucidated [48,50,62,63��,64]
(for reviews, see [65,66]). Nonetheless, together, these

results indicate that experience-dependent, activity-

dependent and activity-independent mechanisms con-

tribute to cortical circuit development after eye opening.

Summary
The advent of two-photon imaging of calcium indicators

in combination with recordings of unitary synaptic con-

nections has begun to generate insights into how the

patterns of synaptic connectivity in primary visual cortex

of the mouse change during development. However,

technical limits of these approaches have largely limited

analyses to the supragranular layers of the cortex and to

only a subset of time points and conditions. Many studies

focus only on one level of specificity, making it challeng-

ing to understand how mechanisms may work in concert.

Do, for example, molecular signals guide axons to a

particular cortical layer to restrict the choice of available

targets for synapse formation while additional mecha-

nisms confer further cell-type or subcellular specificity?

Whether all synaptic connections require each of these

levels of specificity also remains unclear. For example, a

recent study suggested that L4 spiny stellate cells target

the apical tufts of L6 pyramids, while L4 star pyramids

target basal and proximal dendrites, exhibiting compart-

ment-specific targeting [31]. However, these connections

did not distinguish between the type of L6 neurons

targeted, L6 corticothalamic neurons or L6 corticocortical

neurons, thus showing no specificity with regard to cell

type. Generating a framework that integrates these dis-

tinct levels of specificity, and understanding how differ-

ent mechanisms, including experience-dependent, activ-

ity-dependent and activity-independent processes, work

in concert to produce mature cortical circuits remain

important challenges.
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