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Precise synaptic connections among neurons in the
neocortex generate the circuits that underlie a broad
repertoire of cortical functions including perception, learning
and memory, and complex problem solving. The specific
patterns and properties of these synaptic connections are
fundamental to the computations cortical neurons perform.
How such specificity arises in cortical circuits has remained
elusive. Here, we first consider the cell-type, subcellular and
synaptic specificity required for generating mature patterns of
cortical connectivity and responses. Next, we focus on recent
progress in understanding how the synaptic connections
among excitatory cortical projection neurons are established
during development using the primary visual cortex of the
mouse as a model.
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Introduction

The neocortex is composed of many different types of
neurons, each with distinct patterns of synaptic connec-
tivity conferring different functions 7z vive. The majority
of these cell types are excitatory cortical projection neu-
rons, with intracortical axons forming local synaptic con-
nections within the cortex and long-range axons targeting
distinct subsets of distant cortical and subcortical regions
[1-3]. Although precise patterns of local intracortical
synaptic connections are essential for proper cortical
function, how local cortical circuits are established
remains elusive. With the advent of two-photon iz vive
imaging combined with whole-cell recordings of unitary
synaptic connections among other techniques, recent

Check for
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work focused on mouse primary visual cortex (V1) has
begun to shed light on the time course and mechanisms
that generate the mature patterns of intracortical synaptic
connections and resulting response properties of cortical
neurons.

Mouse visual cortex as a model for cortical
circuit development

T'he primary visual cortex of the mouse is traditionally
divided into six layers. Following the canonical cortical
microcircuit, incoming sensory information primarily
enters layer 4 (L4), passes to layer 2/3 (L2/3) and then
on to layers 5 and 6 (L5, L.6) [4-6]. Although early work
suggested that neurons with different response properties
in mouse V1 were intermingled in a ‘salt-and-pepper’
pattern [7-9], recent studies have demonstrated more
functional organization than previously appreciated
[10,11°°,12°,13°,14]. For instance, neurons that share ori-
entation preferences are weakly clustered into vertical
columns [12°,13°], and L5 pyramids with similar long-
range projection patterns are also clustered into micro-
columns in mouse V1 [10,11°°]. In the horizontal plane,
clusters of .2/3 neurons with distinct tuning preferences
are aligned with patches of M2 muscarinic acetylcholine
receptor expression and L1 patches, defined by the
termination patterns of geniculocortical and feedback
inputs into V1 [14]. Taken together, these studies indi-
cate that the patterns of synaptic connectivity in mouse
V1 exist within a columnar and tangential cortical
organization.

Specificity of synaptic connections within the
neocortex

Within this overarching organization, cortical projection
neurons form precise synaptic connections defined at
different scales. First, they establish cell-type specific
patterns of synaptic connections. For example, the prob-
ability of forming synaptic connections among different
classes of L5 cortical projection neurons defined by their
long-range axonal targets depends on the identity of the
presynaptic and postsynaptic cell types [15-17]. Simi-
larly, 1.2/3 neurons defined by similar receptive field
properties are preferentially connected [18,19°,20,21°].
Second, specific subcellular compartments of projection
neurons receive distinct synaptic inputs. Inhibitory
Chandelier cells, which synapse onto the axon initial
segments of cortical projection neurons, are perhaps the
most famous example [22]. However, Chandelier cells
are not exceptional as other classes of inhibitory neuron
similarly target particular dendritic compartments of
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cortical projection neurons [23,24]. Similarly, long-range
inputs to the cortex also synapse onto specific dendritic
compartments [25] as do local connections among corti-
cal projection neurons [26-31]. Third, alongside speci-
ficity in target choice and location for synapse formation,
developmental mechanisms must establish the appropri-
ate synaptic properties for each connection (for review,
see [32]). For example, in addition to being preferen-
tially interconnected, 1.2/3 neurons with shared response
properties also form stronger synaptic connections than
average [19°,21°]. These studies highlight the many
challenges in establishing the mature patterns of intra-
cortical synaptic connectivity that shape the activity of
adult cortex.

Clonally related neurons are connected via
gap junctions in the first postnatal week

One possibility is that cell linecage seeds the initial
synaptic organization of local cortical circuits. Radial
glial progenitors (RGPs) in the ventricular zone generate
cortical neurons in an inside-out fashion, such that L.6
neurons are born first and L2 neurons last. This process
produces clonally related sister neurons arising from the
same RGP that may represent the basis of the cortical
column [33]. Gap junctions, which mediate coordinated
electrical activity and the passage of small molecules
among connected cells (for review, see [34]), preferen-
tially connect vertically aligned, clonally related neurons
through the first postnatal week before disappearing by
postnatal day (P)6 [35,36°°] (Figure 1, PO-P6 panel).
These clonally related sister neurons go on to preferen-
tially form chemical synaptic connections after the initial
electrical connections have been eliminated [35,37].
Strikingly, these chemical connections within ontoge-
netic columns reflect the flow of information through the
canonical cortical microcircuit, from L4 to L2/3 to L5
and L6 [37]. The formation of these early gap junctions
and the subsequent preferential chemical synaptic con-
nections among sister neurons is disrupted when normal
neuronal migration is disturbed either by abolishing
Reelin signaling, essential for the normal inside-out
development of the neocortex, or by altering the tan-
gential migration of sister neurons through Ephrin-A
signaling [36°°].

Projection neurons within cortical
microcolumns are connected via gap
junctions

In addition to clonal networks, small clusters of verti-
cally aligned neuronal cell bodies form microcolumns
within the cortex [10,11°°,12°]. The neurons within
microcolumns share long-range axonal projection pat-
terns [10], and these cell-type specific columnar clus-
ters in L5 tile the cortex in a hexagonal lattice, with a
period of approximately 30 pm [10,11°°]. Although
most neurons in a microcolumn are not clonally related,
they are also electrically coupled early in cortical

development via cell-type specific gap junctions
[11°°] (Figure 1, P7-P14 panel). Unlike gap junctions
among clonally related sister cells which have largely
disappeared by P6-7 [35], the electrical coupling within
L5 microcolumns persists longer, becoming undetect-
able around P10-14, before the time of eye opening
[11°°]. In contrast to clonally related cortical neurons,
no preferential chemical synapses were found within
microcolumns after gap junctions among neurons
within a microcolumn had disappeared [11°°,38]. How-
ever, neurons within microcolumns share strong, com-
mon synaptic inputs [11°°]. The relationship between
electrical coupling of clonally related neurons and elec-
trical coupling of neurons within microcolumns remains
unclear.

Inhibiting gap junctions in early development
disrupts cortical circuit formation

These ecarly electrical connections play an important
role in establishing local cortical connections and corti-
cal receptive field properties [35,39,40]. Connexin26 is
a gap junction protein highly expressed in the devel-
oping cortex. Expressing a dominant negative form of
Connexin26, for example, in 1.2/3 projection neurons
starting at embryonic day (E) 12-13 reduced the sub-
sequent formation of preferential chemical synaptic
connections between related sister neurons in V1 of
P12-17 mice [35] and also the similarity in response
properties among sister neurons [40]. However, any
differences in the contributions of gap junctions spe-
cifically among clonally related neurons, among neu-
rons within a microcolumn, or among yet to be defined
neurons to the initial establishment of cortical circuits,
remains to be clarified.

How these gap junctions influence the later synaptic
organization of cortical circuits also remains unclear.
One possibility is that spontaneous activity before eye
opening coordinates the activity of electrically coupled
neurons [35] and contributes to the initial formation of
preferential connectivity between neurons that share
receptive field properties [18,19°,20,21°,41]. Modeling
studies suggested that cell pairs are more likely to stabi-
lize the same set of feedforward thalamocortical inputs
and share similar receptive field properties if they were
connected via gap junctions during the first postnatal
week [41]. This prediction is consistent with the finding
that clonally related sister neurons have more similar
orientation preferences than unrelated cortical neurons
in mature circuits [40,42].

Contributions of neural activity to early circuit
formation

Early in development, the transmission frequency of
dendritic spine responses that are poorly synchronized
with their neighbors during spontaneous activity becomes
reduced [43]. This process may contribute to functional
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Development of intracortical synaptic connections in the visual cortex of the mouse. The formation of specific patterns of intracortical synaptic
connectivity is regulated by activity-dependent and independent mechanisms. Because most studies sample only a subset of developmental time
points, the precise biological start and end of the processes illustrated and their temporal relationships remain unclear. How these mechanisms
act together to elaborate synaptic connections among clonally related cortical projection neurons (orange), among neurons in cortical
microcolumns (cyan), and among neurons with related response properties (dark blue) at the cell-type, subcellular and synaptic level remains to

be fully elucidated.

clustering of spines within the dendritic arbor of cortical
neurons [44°45] and the formation of strong, shared,
inputs between L5 neurons within a microcolumn
[11°°]. The resulting clustering of coordinately active
inputs may also be reflected in the clustered distribution
of synaptic inputs with particular receptive field proper-
ties within the dendritic arbors of mature 1.2/3 neurons:
spines responding to the same location in visual space as a
neuron’s receptive field preferentially cluster on neigh-
boring spines of proximal dendrites while spines respond-
ing to regions beyond the receptive field are found on
higher order branches [44°].

These findings have been interpreted to mean that
mechanisms dependent on spontaneous activity prior
to eye opening underlie the formation of early cortical
circuits. However overexpression of the potassium chan-
nel Kir2.1, to suppress .2/3 neurons beginning at late
embryonic stages, suppressed spontancous activity before
eye opening but did not affect the initial development of
orientation and direction selectivity, suggesting that these

receptive field properties develop in an activity-indepen-
dent manner [46°°]. Whether this manipulation affected
the pattern of chemical synaptic connections among
neurons with similar receptive field properties or among
clonally related neurons akin to inhibition of gap junc-
tions was not tested. Thus, the precise mechanisms by
which gap junctions and spontaneous activity contribute
to the patterns of synaptic connectivity in mouse V1 prior
to visual experience remain to be fully elucidated.

Molecular contributions to early cortical
development

Additional molecular mechanisms have also been impli-
cated in establishing synaptic relationships prior to visual
experience, but how they influence specificity in circuit
formation is not well understood. For example, a recent
study implicated Dnmt3b DNA methyltransferase in
stabilizing reciprocal chemical connections among clon-
ally related layer 4 sister neurons in Somatosensory cortex
[47]. The authors proposed that methylation patterns
influence the expression patterns of clustered
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protocadherins, cell adhesion molecules thought to play
roles in self-recognition and non-self-recognition [47].
Other molecular mechanisms involved in input-specific
regulation of synapse formation in primary somatosensory
cortex may also contribute to circuit formation in V1
[43,48], as may mechanisms implicated in the regulation
of synapse formation in specific cortical cell types and
dendritic compartments [49-52]. Together, these studies
demonstrate that, before visual experience, multiple
mechanisms likely work in concert to establish early
patterns of synaptic connections that generate initial
receptive field properties — including the spatial struc-
ture, orientation tuning, and direction preference of
mouse V1 neurons [41,46°°,53-55].

Changes in synaptic connectivity following
eye opening in the mouse

Significant synaptogenesis and maturation of receptive
field properties occurs around eye opening (around P14),
but little is known regarding the specific changes in
cortical circuits during this time period [56,57]. The
patterns of synaptic connectivity and selectivity in recep-
tive field properties continue to be shaped after eye
opening (Figure 1, P14-P21 and P22+ panels). However,
only some of these changes depend on visual experience.
For example, prior to eye opening, the preferential con-
nectivity between 1.2/3 neurons with similar orientation
preferences is immature. Only after eye opening does the
probability of synaptic connection among [.2/3 pyramids
with similar receptive field properties and the proportion
of bidirectionally connected 1.2/3 neurons sharing recep-
tive field properties increase significantly, as does the
synaptic strength of these connections [19°,41,58,59°°].
"This increase in preferential connectivity represents both
an increase and strengthening of connections among [.2/3
neurons with similar response properties as well as a
decrease in the connectivity of non-responsive neurons
[41,59°°]. Interestingly, the emergence of reciprocal syn-
aptic connections among neurons with shared response
properties proceeds largely unaffected by the absence of
visual experience [59°°]. In contrast, the elimination of
connections among visually non-responsive 1.2/3 neurons
was inhibited by dark-rearing [59°°]. The significant
increases in the probability of connection and synaptic
strength among randomly selected 1.2/3 neurons in rats
following eye opening were also eliminated by dark-
rearing but not by binocular eyelid suturing [58], suggest-
ing a role for patterned visual input. Whether visual
experience shapes the chemical connections formed
among clonally related sister neurons has not been tested.

As with the patterns of intracortical connectivity, only
some changes in receptive field properties following eye
opening are dependent on visual experience. For exam-
ple, the correspondence between ON and OFF subfields
received from the two eyes and binocular matching of
orientation preferences in mouse V1 is disrupted by dark-

rearing, although experience-independent mechanisms
generate the ON and OFF subregions and the overlap
of the receptive fields in visual space [54,55]. The broad-
ening of the orientation tuning of L.2/3 fast-spiking neu-
rons was also disrupted by dark-rearing [60]. In contrast,
the elimination of initial biases in the distribution of
preferred orientations and preferred directions in 1.2/3
excitatory neurons required neuronal activity but not
visual experience [46°°,53,60]. The sparsification of V1
neuronal responses in [.2/3 also proceeded, although
delayed, without visual experience [61]. How the evolu-
tion of response properties during the first weeks follow-
ing eye opening relates to underlying changes in synaptic
connectivity remains unclear. Furthermore, the contribu-
tions of molecular mechanisms implicated in shaping
synaptic connections in visual and somatosensory cortex
in later development, including specifying connections
among cortical neurons at the cell-type or subcellular
levels, remains to be fully elucidated [48,50,62,63°°,64]
(for reviews, see [65,60]). Nonetheless, together, these
results indicate that experience-dependent, activity-
dependent and activity-independent mechanisms con-
tribute to cortical circuit development after eye opening.

Summary

The advent of two-photon imaging of calcium indicators
in combination with recordings of unitary synaptic con-
nections has begun to generate insights into how the
patterns of synaptic connectivity in primary visual cortex
of the mouse change during development. However,
technical limits of these approaches have largely limited
analyses to the supragranular layers of the cortex and to
only a subset of time points and conditions. Many studies
focus only on one level of specificity, making it challeng-
ing to understand how mechanisms may work in concert.
Do, for example, molecular signals guide axons to a
particular cortical layer to restrict the choice of available
targets for synapse formation while additional mecha-
nisms confer further cell-type or subcellular specificity?
Whether all synaptic connections require each of these
levels of specificity also remains unclear. For example, a
recent study suggested that 1.4 spiny stellate cells target
the apical tufts of L6 pyramids, while L4 star pyramids
target basal and proximal dendrites, exhibiting compart-
ment-specific targeting [31]. However, these connections
did not distinguish between the type of L6 neurons
targeted, L6 corticothalamic neurons or L6 corticocortical
neurons, thus showing no specificity with regard to cell
type. Generating a framework that integrates these dis-
tinct levels of specificity, and understanding how differ-
ent mechanisms, including experience-dependent, activ-
ity-dependent and activity-independent processes, work
in concert to produce mature cortical circuits remain
important challenges.
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