Accumulation of bosons between fermions due to the Pauli exclusion principle
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We examine the field theoretical impact of the Pauli exclusion principle on the formation of the
ground state of two fermions that are coupled with each other through the interaction with bosons.
As expected, in case where the two fermions are indistinguishable, their binding strength due to the
force-mediating bosons is reduced and their spatial distribution in the ground state is wider
compared to the corresponding state for the distinguishable particles. Surprisingly, the spatial
distribution of the bosons in the ground states is even fundamentally different for both systems. In
fact, the Pauli exclusion principle leads to a strong accumulation of the bosons between the two

fermions.
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Quantum field theory is the most accurate and the best confirmed theory in modern physics. In
recent decades, it was pivotal for reliable predictions of few-electron systems in the presence of
nuclear fields such as the energy levels of positronium and muonium. The bound states (and
resonances, which are metastable bound states) correspond to poles in the scattering matrix for the
interacting quanta [1]. In principle, the appropriate tool to study bound states is the Bethe-Salpeter
formalism [2,3]. However, for various practical reasons its applications to both quantum
electrodynamics and chromodynamics is limited, as the Bethe-Salpeter equation can only be solved
perturbatively within the so-called ladder approximation. The accurate computation of the
fermionic and especially the bosonic properties of bound states within the framework of quantum
field theory remains a challenging task.

In order to have a more universal approach for general interactions with arbitrary coupling
strength, a computational method was recently proposed that is based on the construction of the
Hamiltonian from the quantum field theoretical Lagrangian density [4, 5]. By choosing a suitable
set of discretized basis states [6], the energy eigenvalues and eigenfunctions can be calculated by
diagonalizing the matrix representation for the Hamiltonian numerically.

In this work, this numerical approach is applied to examining the effect of the
indistinguishability of two interacting fermions on their quantum field theoretical bound state as
well as on the properties of the force-intermediating bosons. It is well-known that for two free
indistinguishable particles (such as protons) the antisymmetry of the wave function under particle
exchange and the resulting Pauli exclusion principle [7] prohibit the double occupation of the same
position or momentum state. While two protons are not allowed to share exactly the same location
and momentum and therefore effectively repell each other (at least locally), there is no principle
that would prohibit them from becoming arbitrarily close to each other. However, in the presence
of interactions this principle has significant energetic and also spatially long-ranged implications
for the fermions. Their binding energies are reduced as the exchange interaction increases the
average distance between two identical particles. The Pauli repulsion mechanism is therefore in
competition with the binding mechanism due to the interaction with the bosons. While all of these
phenomena are fundamental to atomic and molecular physics, to the best of our knowledge, the
impact of this fermionic principle on the force-intermediating bosons (such as mesons for nuclear
forces or photons for electromagnetic forces) has not received a lot of attention.

In order to be able to focus solely on the effect of the Pauli mechanism, we compare two simple

models of distinguishable and indistinguishable particles, where all parameters as well as the
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chosen interaction with the bosons are kept identical for both systems. We will first confirm the
expected impact on the energy and the spatial distribution of the fermions in the ground state and
then apply this model to obtain some new insight on the role of the bosons.

Let us first discuss some technical details of the two model systems and then proceed to the

results. The (1+1)-dimensional Yukawa-like interaction [8,9] of the fermions with the bosons is
given by the energy V =2 [ dx [ ‘PbT(x) VO Py(x) + ‘PdT(x) v W4(x)] ¢(x), where the parameter A is
the coupling strength, ¥}, and W4 are the two-component Dirac field operators for the protons (b)

and neutrons (d) and ¢ denotes the scalar boson operator. For the special case of massless bosons
this system could also be viewed as a simplified model to explore QED interactions, where the
“photon” has spin zero [10]. The three field operators can be expanded in terms of annihilation and

creation operators that fulfill the usual anti-commutator and commutator relationships [b(p),

b'(p")] = [d(p), d" (")} =[a(p), a' (p")]- = 8(p-p") and [b(p), d(p")]-= [b(p), d'(p*)}-= 0. For
coupling strengths A that are not exceedingly large, such that anti-fermions can be neglected, the
corresponding Hamiltonian for the distinguishable particles (called below loosely

"proton-neutron") takes the form H =Hp + V with

Ho = [ dp e(p) [b! (p)b(p) + d"(p)d(p)] + [ dk w(k) al(k)a(k) (1a)

V = A [dp [ dk T(p,k) [bT (p+k)b(p) + d T (p+)d(p)] [a(k) +aT(-k)]  (1b)

The coupling function I'(p,k) = [e(p+k)e(p)+Mzc4—p(p+k)cz] 12 [87tm(k)e(p+k)e(p)]'1/2 is the
result of the scalar product among the Dirac spinors and acts as a natural cut-off function as it
decreases with increasing fermion and boson momenta p and k. Here M and m denote the the
fermions’ and bosons' masses. For the indistinguishable fermions (called loosely "proton-proton"),

we omit the operator d(p) and the model Hamiltonian can be written as

Ho = [dp e(p) b (p)b(p) + | dk w(k) a'(K)a(k) (Ic)

V = 1Jdp [ dk T(p.k) b (p+k)b(p) [a(k) + a' (k)] (1d)
Note that in atomic units (c=137.036 a.u.) the free energies of the fermions and bosons are given by
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e(p) = (Mzc4+czp2)1/ 2 and o(k) = (m2c4+c2k2)1/ 2, respectively.
The system becomes computationally accessible if we represent the states on a discretized
spatial grid of total length L such that all creation and annihilation operators and the Hamiltonian H

can then be represented by a matrix. In order to preserve the operator algebra, we have defined the

dimensionless discretized operators by = (2n/L)"? b(p Ap), which satisfy [bp, bp’T]Jr = [dp, dp’T]+ =

[ap,ap’T]_Z dp,p> based on the Kronecker symbol. The same parameter Ap = (2n/L) corresponds to

the spacing between the momentum modes of the bosons as well as the fermions. The matrix

elements for the Hamiltonian related to the distinguishable particle system in the chosen basis are

given by
(p.q|H|p’.q") = (epteq) 8p,p’ 8q,q’ (2a)
(p,a:k| H|p’,q k") = (ep +eq+ k) dpp> dq,q” Ok (2b)
(paH|p.q:k) = xI'(p’ k) [Sp,p”rk’ 8q,q’ + 8q,q’+k’ 8p,p’] (2¢)

where the Kk = A (2n/L)1/ 2 appears as an effective coupling constant and p, q and k denote integers.
For the proton-proton case, the Hilbert space is different as | p,q) =— | q,p) and the Pauli
principle forbids the two particles to occupy the same state. To avoid overcounting, we have to

restrict the basis states [p,q) and |p,q; k) to fulfill p<q. The matrix elements for the Hamiltonian take

the form
(p.q|/H|p.q") = (epteq) Oppdqq’ (2d)
(p.q:k| H|p’,q":k") = (ep+eq+ o) Spp Sq.q° Ok (2¢)
(pa H|p.qsk) = x[(p’k") [Spp+k 8q.q” T Spp* Oq.qk

+8p,q° 8q, p>+k + Bp, g +k’ Oq,p’] (21)

The states are dimensionless, i.e. {p,q:;k| p’,q’;k') = 8p p Oq,q’ Ok k* and the scalar products correspond
to summations. The size of the Hilbert space can be controlled by the number of permitted states
and by the largest possible momentum (denoted by Pmax) on our grid. Both numbers were chosen

sufficiently large in each simulation to have fully converged results. Due to the translation
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invariance of the interaction V, states with different total momentum Py are not coupled with each
other and the operator | dp p [bT(p)b(p) + dT(p)d(p) + aT(p)a(p)] is conserved in time.

Let us now proceed to our results. As a first step we have to calculate the energy Eq(2) of the
lowest energetic state for the two fermions for both systems. In order to remove the effect of the

unavoidable single-fermion dressing due to the bosons (renormalization), we subtract from Eg(2)
twice the lowest energy of the corresponding one-fermion sector, denoted by Eg(1). The binding
energy is therefore defined here [11] by the energy difference as Eb= Eg(2) — 2 Eg(1). If the

interaction with the bosons lowers the energy of the two-fermion ground state from 2Mc? by a

larger amount than that of the single-fermion ground state, then E, is negative and the two

(boson-dressed) fermions effectively attract each other.

The calculation of the numerical values for Eg(1) and Eg(2) is actually non-trivial. By using a
momentum mode spacing of Ap = 21/40 and the largest momentum Ppax = 3500 a.u.
(corresponding to a Hilbert space of dimension 40,002) we obtained for a coupling strength of
A=7000 a.u. the energy Eg(1) = 18736.5267 a.u. This means that the interaction lowers the
unperturbed single fermion energy by Mc? — Eq(1) =42.3386 a.u., which is 0.225% of Mc?. The
coresponding gigantic size of the Hilbert space for the two-fermion sector (about 3,893,087 states)
would make the calculation for Eg(2) not feasible. However, fortunately, it turns out that while

bosons of large momentum are required to describe the boson-dressing of the single and
two-fermion system accurately, the impact on the energy shifts due to the bosons with large

momentum is essentially identical. Therefore only bosons with smaller momentum contribute to
the energy difference Eg(2) — 2Eq(1). It is therefore possible to calculate Ey, for a (numerically
feasible) Hilbert space based on only small momentum bosons. We have systematically varied the
two numerical parameters Ap as well as Py x and found that the binding energies are converged
within an uncertainty of less than 3%. This required the diagonalization of a non-sparse
196,412x196,412 dimensional matrix, which takes a CPU time of about 90 hours on a super
computer cluster with 400 processors. We obtained Ep=-15.6484 a.u. for the proton-neutron
system, while the Pauli exclusion principle decreases the binding strength |Ep| for the proton-proton

system to Ep = -12.0597 a.u.

This reduction confirms that the Pauli principle can be interpreted (at least locally) as an

5 3/20/2019



effective repulsive force [7]. This "Pauli-force" would be in competition with the attractive binding
mechanism due to the interaction with the bosons. This also suggests that the force intermediating
bosons play a dual role. In the absence of any coupling (A=0) the ground state energy of the
two-fermion sector is 2Mc? for both the proton-proton and proton-neutron system. Therefore the

Pauli exclusion principle has no direct energetic implication. Only the interaction with the bosons

uncovers any energetic signature of the indistinguishability of the fermions.

Next we analyze the ground states also from a spatially resolved perspective. In Figure 1 we
show the spatial distribution p(r) of the fermions as a function of the relative position r between the
two fermions. Due to the translational invariance of the state with Py, = 0, it is sufficient to freeze
the location of one particle at z;=0 and define the relative position r as r = z — z;. Therefore, p(r) is

determined from the expectation value of the spatial creation and annihilation operators
ppn(1) = (b7 (1) d(0) d(0) b(x) = [Z, d1(p) €™ P+ B | Zp a(pik) € (3a)

for the proton-neutron system. The spatial operators b(r) and d(r) are computed as the Fourier
transform of b(p) and d(p). Here ¢p1(p) and ¢2(p;k) denote the real ground state momentum

amplitudes in the expansion |gs) =X, ¢1(p) |-p,p) + Zp Zk $2(p;k) |-p-k,p;k) for the proton-neutron
system.
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Figure 1 The distribution of the two fermions p(r) as a function of their separation r = z3-z1 in the
lowest bound state in the two fermion sector. The other parameters are A=7000 a.u., Ap=2n/L with
L=40 a.u. and Pmax =600Ap. The masses of the particles are M=1.0 a.u. and m=0.1 a.u.
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For the indistinguishable particles (proton-proton), the corresponding distribution is given by

Ppp() = (b b7(0) b(0) b(r) )
= (S0 Y1(p) (€7 — )P+ i [z wa(psk) (€7 — )2 (3b)

Here yi(p) and wy2(p;k) denote the real ground state momentum amplitudes in the expansion |gs) =
2o=0 W1(P) |-p,p) + Xk Zp>i2 W2(p;K) |-p-k,p;k) for the proton-proton system.

One could expect that due to the locality of the Pauli exclusion principle the difference between
the ground states for distinguishable and indistinguishable particle systems might occur only for
those positions that are identical to each other, i.e. for r equal to zero. However, we see a significant
differences even in the overall spatial structures of the proton-proton and proton-neutron systems.
In fact, the density for the proton-proton system is significantly lowered in an entire region around
r=0. This is a clear indication that due to the bosonic interaction the Pauli principle can be indeed
interpreted as an effectively repulsive force with a finite range whose action is not solely
constrained to those locations where the particles are exactly on top of each other. For larger
coupling strengths the separation between the two maxima reduces, but the likelihood of finding
two protons at the same location remains zero, i.e. pp-p(r=0) = 0.

In direct contrast, the Yukawa interaction makes the simultaneous occupation of the same
position state most likely for the proton-neutron system, 1.e., the density pp.y(r) takes its maximum
at =0. The difference between the zero and maximum density at r=0 can be tracked back to
different terms in the analytical expressions for pp-p(r) and pp-n(r) in Egs. (3).

As one might expect, the proton-proton bound state is less binding and has indeed a
significantly wider spatial distribution reflecting a larger average separation of the two protons than
the one for the proton-neutron case.

While the Pauli exclusion principle induced widening of the ground state is qualitatively
expected, the model permits us also to enter a new territory: to examine the properties of the bosons
in the ground state. While the interaction term with the bosons in the two Hamiltonians leads to an
identical single-fermion dressing, the resulting impact of the bosons on two fermions in the ground
state is apparently different. We will now show that this has also significant implications for the

spatial distribution y(z) of the force-mediating bosons. We examine the distributions of the bosons

in the ground state and fix the positions of the two fermions z; and z,. For the proton-neutron
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system, the density %p-n(z) can be calculated as

ton(2) = (b1 (z1) d'(22) d(z2) b(z1) a' (2) a(2))

= 2Ty P00 o prk) P (4a)

while the corresponding distribution for proton-proton system is given by

1op(@) = (bT(21) bT(22) bz2) blz1) a'(2) a(2) )

= [Tk Zpo k2 (e-i(p+k)21 elPz _ o i(ptk)z eipzl) olkz va(p:k))? (4b)

For the data displayed in Figure 2, we have assumed that the two fermions are at locations z;=—0.75

a.u and z,=0.75 a.u., respectively.
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Figure 2 The bosons’ spatial distribution x(z) in the ground state. The two fermions assumed to be at
locations z1=—0.75 a.u. and z2 =+0.75 a.u. corresponding to r = 1.5 a.u. in Figure 1. The other

parameters are the same as in Figure 1.

We can see that the bosonic distributions for the distinguishable and indistinguishable-particle
systems are fundamentally different. The proton-neutron system, x,-n(z) has two symmetric peaks
at z=+0.75 a.u., which means that the bosons are mainly accumulated around the two fermions. The
rather symmetric structure of yp-n(z) around z==0.75 a.u., suggests that the presence of the one

fermion does not affect the boson-dressing of the other particle. In fact, the distribution is very
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similar to the single-particle dressing [12]. In contrast, the bosonic distribution yp(z) for
proton-proton interaction reveals a large likelihood between the two fermions.
Last, we will consider if the different spatial structures of the binding bosons have also

implications for their momentum distributions S(k), which can be computed from the expectation

value of the bosonic particle number operator aT(k)a(k) in the ground state.
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Figure 3 The momentum spectrum of the bosons in the ground state of the two different model
systems. The other parameters are the same as in Figure 1.

For the ground state of the proton-neutron and proton-proton system we obtain
Spn(k) = (a' (k) a(k) ) = Zp| ¢a(ps kP (5a)

Sp-p(K) = (@' (k) a(k)) = p-re2 [ya(ps k)P (5b)

Note that while the final expressions for Sp_,(k) and Sp.(k) are functionally similar, they still reflect

the different properties of the systems as the Hilbert spaces and the amplitudes ¢, and y» are
different.

The momentum distributions of the bosons graphed in Figure 3 are remarkably similar, with an
area of about 0.037. In contrast to their entirely different spatial distributions, the momentum
distributions for the distinguishable and indistinguishable particle systems both take a single

maximum at the center k=0. Furthermore, only bosons with relatively small momentum (<45 a.u.)
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are required for the binding. This is consistent with the monotonically decreasing coupling
function I'(p,k), which favors the fermion-boson interaction for lower energetic bosons and
confirms that only bosons with small momentum contribute to the binding energy for both systems.

In summary, we have proposed a numerical approach to calculate bound states in the framework
of quantum field theory. As expected, this method confirms that the binding energy |Ep| of the
distinguishable particle system is larger than the one for indistinguishable particle system as the Pauli
exclusion principle acts as an effective repulsion force. This indistinguishability can not only reduce
the binding of the system but also leads to a significant widening of the spatial distribution of the
fermions in the ground state. Most remarkably, the fermionic Pauli-principle leads to fundamentally
different spatial distributions of the force-intermediating bosons.

In contrast to the boson-induced binding mechanism whose strength depends on the coupling A,
the magnitude of the symmetry-based Pauli repulsion might be independent of A. One could
therefore conjecture that there might be a certain threshold coupling strength, below which the
Pauli repulsion dominates and the two fermions cannot even form a discrete bound state, manifest

by an Ey, that is positive. Preliminary data suggest that for small A, E can become positive for the

proton-proton system, while Ej for the proton-neutron system remains negative. However, in this
limit the physical extension of the bound state is very large and can become comparable to the size
of the finite numerical box, which makes the binding energy also depend on our numerical box
length [13].

On the more macroscopic (and non-quantum) level the action of the dynamical force
intermediating bosons is usually approximated by classical force-fields, given by the Yukawa or
Coulomb law. However, here these inter-particle forces are assumed to have exactly the same
position-dependence, independent of whether the two fermions are indistinguishable or not. This is
certainly quite different from our quantum field theoretical description where we have seen that the
position dependence of the binding bosons depends crucially on the exchange symmetries of the
fermions. In our opinion, it remains a future challenge to better understand how the bosonic
distributions are related to the traditional force fields in the classical limit. It suggests that the
observed transfer of the fermionic Pauli exclusion principle onto the bosons is likely an intrinsically

quantum field theoretical effect without any classical mechanical counterpart.

Acknowledgements

10 3/20/2019



QZL would like to thank ILP for the nice hospitality during his visit to Illinois State. We
acknowledge helpful discusions with S. Dong. This work has been supported by the NSF and the
NSFC (#11529402).

11 3/20/2019



References

[1]

[2]
[3]

[4]

[3]

[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

S.Weinberg, "The quantum theory of fields" Vol. 1 (Cambridge University Press,
Cambridge, UK, 1995).

E.E. Salpeter and H.A. Bethe, Phys. Rev. 84, 1232 (1951).

W. Greiner and J. Reinhardt, "Quantum electrodynamics" (Springer Verlag, Heidelberg,
Germany, 2012).

R.E. Wagner, M.R.Ware, B.T. Shields, Q. Su and R. Grobe, Phys. Rev. Lett. 106, 023601
(2011).

Q.Z. Lv, S. Norris, R. Brennan, E. Stefanovich, Q. Su and R. Grobe, Phys. Rev. A. 94,
032110 (2016).

D. Lee, N. Salwen and D. Lee, Phys. Lett. B 503, 223 (2001).

M. Massimi, “Pauli’s exclusion principle” (Cambridge Press, Cambridge, UK, 2005).

H. Yukawa, Proc. Phys. Math. Soc. Japan. 17, 48 (1935).

S.M. Dankoff, Phys. Rev. 78, 382 (1950).

J.S. Schwinger, Phys. Rev. 128, 2425 (1962).

Q.Z. Lv, E. Stefanovich, Q. Su and R. Grobe, Laser Phys. (in press).

R.E. Wagner, M.R. Ware, Q. Su and R. Grobe, Phys. Rev. A 82, 032108 (2010).

C. Lisowski, S. Norris, R. Pelphrey, E. Stefanovich, Q. Su and R. Grobe, Ann. Phys. (NY)
373, 456 (2016).

12 3/20/2019



