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ABSTRACT: It has been suspected since the early days of
the random-phase approximation (RPA) that corrections to
RPA correlation energies result mostly from short-range
correlation effects and are thus amenable to perturbation
theory. Here we test this hypothesis by analyzing formal and
numerical results for the most common beyond-RPA
perturbative corrections, including the bare second-order
exchange (SOX), second-order screened exchange (SOSEX),
and approximate exchange kernel (AXK) methods. Our
analysis is facilitated by efficient and robust algorithms
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based on the resolution-of-the-identity (RI) approximation and numerical frequency integration, which enable benchmark
beyond-RPA calculations on medium- and large-size molecules with size-independent accuracy. The AXK method
systematically improves upon RPA, SOX, and SOSEX for reaction barrier heights, reaction energies, and noncovalent
interaction energies of main-group compounds. The improved accuracy of AXK compared with SOX and SOSEX is attributed
to stronger screening of bare SOX in AXK. For reactions involving transition-metal compounds, particularly 3d transition-metal
dimers, the AXK correction is too small and can even have the wrong sign. These observations are rationalized by a measure @
of the effective coupling strength for beyond-RPA correlation. When the effective coupling strength increases beyond a critical @
value of approximately 0.5, the RPA errors increase rapidly and perturbative corrections become unreliable. Thus, perturbation
theory can systematically correct RPA but only for systems and properties qualitatively well captured by RPA, as indicated by

small @ values.

1. INTRODUCTION

Electronic structure methods based on the random-phase
approximation (RPA)' yield consistent accuracy at reason-
able computational cost for a wide range of applications in
quantum chemistry and solid-state physics. Compared with
finite-order perturbation methods, such as second-order
Moller—Plesset (MP2) theory,” RPA is relatively insensitive
to the gap size and free of the divergence problem for metallic
systems.” RPA captures long-range correlation effects and
“seamlessly” accounts for dispersion interactions.”~ While
RPA takes into account some of the strong correlation arising
in dissociating electron pair bonds,'”'" it has long been
recognized that RPA is qualitatively deficient at higher electron
coupling strengths and short interaction range,'>"” as reflected
in its inadequate accuracy for ionization and atomization
energies.2

The formal and computational appeal of RPA has triggered a
search for simple remedies to these deficiencies. Corrections
based on ground-state density functional theory (DFT),"*'?
including range-separated RPA methods,'*™" incorporate
semilocal density functionals to correct RPA.>**" “Local-field
corrections” to RPA were pioneered by Singwi, Tosi, Land, and
Sjolander (STLS) in the 1960s'> and may be viewed as an
early, physically inspired attempt to devise approximate
exchange—correlation (XC) kernels accounting for short-
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range correlations beyond RPA. Further developments along
these lines include the inhomogeneous STLS method,*
semilocal kernels,” local”* and nonlocal***° energy-optimized
kernels, as well as model kernels derived from the uniform
electron gas by momentum space cutoff,””*® frequency-
dependent effective interaction models,” and jellium-with-
gap models.” While these corrections can be designed to
deliver high accuracy for certain applications, uniform
improvement upon RPA for a wide range of systems and
properties at moderate computational cost has been difficult to
achieve.

The notion of “beyond-RPA corrections” is based on the
implicit assumption that beyond-RPA correlation is, in some
sense, small compared with correlation effects captured by
RPA. For the uniform electron gas, conventional many-body
perturbation theory diverges in every order due to the long
range of the bare electron—electron Coulomb interaction.’’
On the other hand, the effective interaction accounting for
beyond-RPA correlation is shorter ranged, at least for high to
intermediate densities,”” suggesting that perturbation theory
may be an effective means to derive beyond-RPA corrections.
This led to the development of second-order perturbative
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corrections to RPA, starting with the second-order screened
exchange (SOSEX) method."”**** Unlike RPA, SOSEX is
one-electron  self-correlation-free,>> but it incorrectly disso-
ciates covalent bonds within the spin-restricted formalism®
and ;)roduces less accurate reaction barrier heights than
RPA.*°"*® RPA-renormalized many-body perturbation theory
is based on a perturbative expansion of the Bethe—Salpeter
equation (BSE)*”*" starting from RPA as the zero-order
solution.”® The second-order RPA-renormalized perturbation
method using the approximate exchange kernel (AXK)—
hereafter referred to as the AXK method—yielded more
accurate energetics than RPA for small molecules, consistently
improvin§ upon RPA for ionization and atomization
energies.”” These results also suggested that AXK preserves
the accuracy of RPA and outperforms SOSEX for reaction
barrier heights. Nevertheless, the lack of efficient implementa-
tions has hampered thorough assessment of AXK in the past.

In this paper, we present two AXK algorithms that scale as

O(N°InN) and O(N* In N) with the system size N. These
algorithms also enable efficient SOSEX and bare second-order
exchange (SOX) calculations. Low-scaling SOSEX and AXK
algorithms have been proposed in refs 38 and 41—46, and a
SOSEX implementation with subcubic effective scaling for
linear alkanes has been recently reported in ref 46. Our primary
aim is to enable efficient calculations for moderately large
molecular systems with constant, predetermined accuracy
regardless of scaling. This enables critical assessment of
second-order beyond-RPA corrections using diverse bench-
mark sets for reaction barrier heights, reaction energies, and
noncovalent interaction energies. We also present tests on
dissociation energies of charged dimers where the RPA self-
correlation error is pronounced and of transition-metal
compounds that feature diverse bondings. Finally, we discuss
whether, and under what circumstances, perturbative correc-
tions to RPA are worthwhile.

2. THEORY

2.1. Random-Phase Approximation. Within the zero-
temperature adiabatic-connection fluctuation—dissipation
(ACFD) DFT framework, the ground-state correlation energy
can be expressed as'”**

EC = _i /0 ' da Re /0 " dw (VL (i0) — M,(i)))
(1)

where

e >

V=

B" B" (2)
denotes the Hartree interaction between particle—hole (ph)
pairs. Bjy, = (ialjb) is a four-index Coulomb integral in
Mulliken notation; indices i, j, ... stand for occupied and g, b, ...
for unoccupied spin—orbitals in a spin-unrestricted Kohn—

Sham (KS) reference. Brackets denote the trace operation.
Orbitals are assumed to be real-valued throughout this paper.

0

-1
D - iwl
II,(iw) = —
0 D+inl 3)
is the noninteracting polarization propagator, where D;,;, = (e,

- ei)éiiﬁab is a diagonal matrix of KS orbital energy differences.
The adiabatic-connection polarization propagator Il, yields
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the same density—density response function as the interacting
polarization propagator’ and is related to I, through the
BSE*04

I, (i0) = (i) - aV - K, (i) )

where K,(iw) is the BSE XC kernel at coupling strength a.
Note that this BSE describes the response of the system
associated with the adiabatic-connection Hamiltonian*”°
rather than that of the interacting system. Analytic
continuation of the polarization propagators to the upper
complex frequency plane has been performed, permitting
frequency integration along the imaginary axis.

The RPA, also known as bare or direct RPA, neglects the XC
kernel and only accounts for ph—ph interactions through the
Hartree kernel,”' eq 2; therefore

;" (iw) = (My(i0)™" — aV)™! (3)

The positive definiteness and symmetry of B warrant a
decomposition

(6)

Here the decomposition is full-rank and can be realized using,
e.g., the Cholesky factorization. Its low-rank approximation will
be presented in section 3.1. We may therefore write

B = ss'

V=mm' )
where
s
"= [s) (®)

Using the Sherman—Morrison—Woodbury formula,”" the RPA
polarization propagator can then be written as

I, (i) = Hy(iw) + I, (i0)W, ,(i0)H(io) 9)
where

W, (i0) = an,(io)'n" (10)

Kk, (iw) = 1 — an " ,(io)y (11)

are, respectively, the effective interaction and the generalized
dielectric function within RPA. These quantities assume
symmetrized forms that facilitate numerical implementations
and low-rank approximations, as will be discussed in section 3.
Similar definitions in reciprocal space were used in condensed
matter computations.sz’53 The effective interaction Wl,a(ia)) is
the only coupling-strength-dependent quantity in eq 9.
Analytic coupling strength integration can be performed for
W, 4(i®), leading to the RPA correlation energy”"**

CRPA __ 1 °°
E = /0 do (In(1 + Q(w)) — Q(w))

(12)
where we have defined
Q(w) = - My(iw)n = 28'G(w)S (13)
and
G(w) = D(D* + w’1)™" (14)

By egs 11 and 13, Q(w) = K (iw)l,.; — 1, ie, Q is a real-
valued matrix function that may be interpreted as a generalized
susceptibility accounting for dielectric screening due to
induced ph pairs.
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2.2. RPA Renormalization with AXK. The lack of an XC
kernel in RPA results in overcorrelation of electrons; bare RPA
overestimates the magnitudes of correlation energies by nearly
2-fold. In particular, RPA suffers from self-correlation and leads
to unphysical pair density at short electron separations.'” ph—
ph exchange corrections aim to reduce this self-correlation
error. Such exchange kernel corrections, however, need to be
judiciously constructed to preserve global properties of RPA
and avoid degrading the results where RPA is already accurate.
For example, the sum of the first-order Hartree and exchange
kernels produces instabilities that drastically limit the
usefulness of RPA with exchange’®® and Hartree—Fock-
based RPA.1210:56:57

In RPA-renormalized many-body perturbation theory,” the
adiabatic-connection polarization propagator is expressed in
terms of the RPA polarization propagator via

I, (iw) = (M (i)™ - K, (iw))™ (15)
The AXK method consists of choosing kernel
B* B*
K(?XK =aK = 0{ )
B* B® (16)
where B}, = —(iblja), and truncating the series expansion of eq

15 with respect to the kernel at first order.”® The resulting
AXK beyond-RPA correlation energy AE®*** correctly
recovers the SOX energy AECS°X but also contains higher-
order terms that amount to screening at higher coupling
strength. Using eq 9, we obtain

1 o
AECAXK = _ZL / da f do (W, (i), (i0)KI,(iw))  (17)
z Jo 0

1 © — . .
= = [ do (W) i) K ) (18)

where the effective interaction W, ,(iw) = ani, (i) ™" is
more strongly screened than the RPA effective interaction
W, ,(i@) defined in eq 10. W), the coupling strength average of

WZ,,,(,42 can be integrated analytically*>***

1
W) = [ da W, (10) = nf, Q)" 19)
where the function f, is defined on [0, 00) according to Table
1. We may rearrange eq 18 and write

caxk _ 1 % X
AE = [) dw (P,(w)B") (20)

where
P,(w) = 4G(0)Sf, (Q(@))S'G(w) 1)

P,(w) is positive semidefinite due to the positive semi-
definiteness of Q(w) and the positivity of the function f,. As a
result, AE“**X is always positive, mitigating the over-

. 1 oo )
correlation problem of RPA. —;fo dw P,(w) is an

exchange-type correction to the coupling-strength-averaged
two-electron reduced density matrix (2RDM); it diminishes
the 2RDM and therefore the pair density when ph pairs
interact through exchange. As a result, self-correlation of same-
spin electrons is removed exactly to second order and
approximately to higher orders in the correlation energy.*®
Similarly, the SOX and SOSEX beyond-RPA correlation
energies within the ACFD theorem can be cast into the forms
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Table 1. Definitions of the Effective Interaction W, and the
Function f for Different Second-Order beyond-RPA
Methods

method  subscript W, (iw) f(x)

SOX 0 av = anqq” 1/2

SOSEX 1 anic,(iw)~'n" 2 In(1 + x) + «7*

AXK 2 anic,(io)n" *2In(1 + &) — x7'(1 + x)7!

of egs 17, 18, and 20,** with altered effective interactions
labeled by subscripts 0 and 1, respectively. Analytic coupling
strength integration can also be performed.""*’ The
corresponding W,,, W, and f are defined in Table 1. The f
functions are plotted in Figure 1. It is readily shown that the
AXK beyond-RPA correlation correction is always lower than
the SOSEX correction, which is in turn lower than the SOX
correction.

T T T T T
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:\\\\
. 03F ™~ .
2
0.2 1
— SOX
0.1F SOSEX 1
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040 1 1 1 1 1
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Figure 1. Function specifying the coupling-strength-averaged effective
interaction for a beyond-RPA exchange correction method; see Table
1.

For each method, f is a function of Q(w) and characterizes
the coupling-strength-averaged effective interaction due to
screening. As shown in Figure 1, the AXK f, function decays
more rapidly than its SOSEX and SOX counterparts. Because
the SOSEX effective interaction W, ,(iw) is identical to that of
RPA, the AXK screening is stronger than the RPA screening,
particularly for large eigenvalues of Q(w). For the uniform
electron gas with high density, large eigenvalues of Q(®)
originate from small momentum transfers,”®>® which corre-
spond to long-range interelectron distances; therefore, the
AXK correction to the pair density in the long-range region is
strongly attenuated, and its main effects are in the short-range
region. This is consistent with the observation that beyond-
RPA correlation in the uniform electron gas is short-ranged at
high and intermediate densities.****°

3. IMPLEMENTATIONS

3.1. Rl Approximation. The resolution-of-the-identity
(RI) approximationGI’62 provides a low-rank approximation
of B" by introducing an auxiliary basis set of N, atom-
centered Gaussian functions labeled by P, Q, ... and setting S;,p
= ZQ(ialQ)[L_I]QP in eq 6, where (ialQ) is a three-index
Coulomb integral and L is the Cholesky factor of the N,,, X
N, matrix of two-index Coulomb integrals (PIQ). N, scales
only linearly with the system size N. In the following, the RI
approximation for S is assumed unless stated otherwise. A key
property of RI-RPA is that the RI-RPA correlation energy is
variationally bounded from below by the RPA correlation
energy obtained without RI.*" A formal proof of this property
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assuming weaker conditions than those of the prior work is
provided in the Appendix. The RI approximation is also
referred to as density fitting in the Coulomb metric. While
density fitting methods in local metrics may lead to more
favorable scaling,®>™® their lack of variational stability can give
rise to larger errors.””***> Schemes to recover® or partially
recover®” variational stability for density fitting in local metrics
are still under active development.

3.2. Molecular Orbital Based AXK Algorithm. A

straightforward evaluation of the integrand of eq 20 scales as

ON 6) because all of the matrices therein are NyN, X NN,
where Nj, and N, denote the numbers of occupied and virtual

orbitals, respectively. The scaling is reduced to O(N°) with the
RI approximation because AE® “** may be expressed in terms
of matrices that either scale as N* or N° or may be computed
on the fly.

With RI, the dimension of the Q(®) matrix defined in eq 13
is N, X N,y and scales quadratically with N. An eigen

decomposition of Q(@) can be readily performed with O(N%)
operations, yielding

Q) = X(w)q(®)X'(w)

A symmetric decomposition P,(w) = R(w)R'(w) thereby
follows, where

R(w) = 2G(w)SX(w)(f, (q()))"?

is an NN, X N, matrix. For a given @, R(@) and P,(®) can
be constructed with O(N*) and O(N®) operations, respec-
tively. We drop the subscript 2 in the following because the
same algorithm can also be applied to SOX and SOSEX.

The frequency integration can be performed using the same
Clenshaw—Curtis quadrature as in the RI-RPA algorithm,41
with quadrature points and weights denoted as {®w;} and {w,},
respectively, where I = 1,..,Ng. Because the integration is
mapped to an equidistant quadrature on the interval [0, 7/2], a
nested quadrature rule can be designed. The error of the
Clenshaw—Curtis quadrature decreases exponentially with
Ng.68 Therefore, an extra O(In N) scaling factor arises if size-
independent accuracy is desired.

Straightforward application of the RI approximation to B*

leads to O(N° In N) scaling, as outlined in Algorithm 1 in the
Supporting Information (SI). This algorithm is easily
parallelized using shared-memory parallel basic linear algebra
subprograms (BLAS).® The frequency integration loop is kept
outermost to facilitate future implementations of hierarchical
distributed-memory parallelism. The higher asymptotic scaling
of this algorithm compared with that of RI-RPA reflects the
well-known result that RI methods are significantly less
efficient for exchange-type contractions than for direct-type
contractions.

3.3. Atomic Orbital Based AXK Algorithm. The scaling
of evaluating AE® ¥ can be further reduced if the exchange-
type contraction in eq 20 is computed using integral-direct
techniques.”” This requires transformation of R(w), and
therefore P(w), to the atomic orbital (AO) basis according to

R/lﬂP(w) = Z Czlic;mRiaP(w)

(22)

(23)

(24)

where C is the orbital coefficient matrix; Greek indices denote
AO basis functions. We use the same symbol for quantities in
the molecule orbital (MO) and AO representations; they can
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be distinguished by the set of indices being used. The AXK
correction is obtained by contracting the AO exchange
integrals with the transformed P, i.e.

CAXK 1 0
A fo dw Y7 (@) (cluw)

KAuv (25)

Both P and the integrals are prescreened using the Cauchy—
Schwarz inequality.”" However, the screening is mainly due to
the sparsity of the integrals; the sparsity of P is not prominent,
as opposed to constructing the exchange part of the Fock
matrix, in which sparsity is enhanced by the difference density
matrix technique.”' As a result, the scaling of integral
computation is O(N*), and the construction of R(w) and
P(w) requires O(N *) and O(N®) operations, respectively, for a
given @. The algorithm, outlined in Algorithm 2 in the SI,
scales as O(N* In N) after numerical frequency integration.
The algorithm is parallelized over the x and A loops using
OpenMP.”” Again, the numerical frequency integration loop is
outermost to enable further parallelism over distributed
quadrature points and to facilitate more effective screening
for each frequency quadrature point.

4. COMPUTATIONAL DETAILS

Both the MO and AO based AXK algorithms were
implemented in the rirpa module of the TURBOMOLE
quantum chemistry program package”® and are scheduled for
a future public release. The SOX and SOSEX beyond-RPA
methods were implemented similarly according to section 2.2.
All reference KS calculations were performed in C; point group
symmetry using the Tao—Perdew—Staroverov—Scuseria
(TPSS) meta-generalized gradient approximation (meta-
GGA) functional,”* which has been shown to yield uniform
accuracy even for transition-metal compounds.”’® For the KS
calculations, density matrix and energy convergence criteria
were set to 107 or tighter, and fine density grids of at least mS
quality”” were used. Core electrons were kept frozen in RPA-
type calculations. Coupling-strength-dependent AXK and
SOSEX calculations without the RI approximation were
performed using the mpgrad module in TurBoMOLE 7.2.°°

Karlsruhe def2-series basis sets of double-{ (SVP), triple-¢
(TZVP), and quadruple-{ (QZVPP) quality were used.”®””
The corresponding auxiliary basis sets optimized for RI-
MP2°**! were used for the RI approximation in the RPA and
beyond-RPA calculations. For validation, the complete basis
set (CBS) limit of the correlation energy E(co) is estimated
using the two-point extrapolation scheme®™

E€(X) = E%(o0) + A/X° (26)

where X is the cardinal number of the basis set and A is a
coeflicient to be determined. The correlation-consistent basis
sets aug-cc-pVXZ (AVXZ; X = T, Q 5)%7% and
corresponding auxiliary basis sets®"*”*® were used for the
basis set extrapolation calculations. For all of the correlation
energy calculations using the AVXZ basis sets, the KS energy
expectation values were computed using the QZVPP basis set,
which yields small basis set superposition errors.”®

5. RESULTS

In this section, we first validate our implementations by
estimating the errors due to integral prescreening, the RI
approximation, and numerical frequency integration. Timings

DOI: 10.1021/acs.jctc.8b00777
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of the algorithms are measured using large mesityl-substituted
porphyrin molecules® as well as benchmark sets from the
GMTKNSS database for diverse reaction barrier heights
(BHDIV10), Diels—Alder reaction energies (DARC), and
interaction energies of n-alkane dimers (ADIM6).”"°" We then
test the accuracy of the AXK methods using these benchmarks
as well as a benchmark set for assessing the self-interaction
error (SIE4x4)°”°" and a 3d transition-metal reference set
proposed in ref 76. These benchmark systems contain diverse
types of molecules and bonding situations featuring weak to
moderately strong correlations.

5.1. Integral Prescreening. In the AO based algorithm,
the integral prescreening is performed according to

£

NNt
(27)
for a shell quadruple k, 4, y, v at a frequency point ;. Here, €
is the screening threshold, and Ny is the number of basis
functions. The l/Ng factor guarantees that the screening error
does not increase with the number of quadrature points. The

1
;wf(&w(wf)am(w»(Kﬁlm)(uku))”z <

1/ \/N_bf factor is included to make the screening error size-
independent, assuming that entries screened by eq 27 are
independent and mean zero.”” This is opposed to the recent
low-scaling SOSEX implementation,*® where a constant
screening threshold was used for all systems. Table 2

Table 2. Mean Errors (ME) and Maximum Absolute Errors
(MXE) of AEC**X (in E,) due to Integral Screening for
Compounds in the DARC Benchmark Set””* Relative to
Values Obtained with ¢ = 1077

€ 107¢ 1077 1078 1077
ME -29%x 107  -—24x107° —1.6 X 107° -85 % 1078
MXE 50 x 107* 42 %1073 29 x10°¢ 1.6 X 1077

“The TZVP basis set was used.

summarizes the integral screening errors with various screening
thresholds for AE® ** of molecules in the DARC benchmark
set. € = 1077 is chosen for all of the following AO based
beyond-RPA calculations.

5.2. Accuracy of the Rl Approximation. Two kinds of
RI approximation errors arise in the present implementations.
The first originates from the RI approximation of the Hartree
kernel in RPA. This kind of RI error is assumed to be similar to
that in the RI-RPA algorithm, where the error is bounded
thanks to the variational boundedness of Q(w) within the RI
approximation (see the Appendix). Here we assess the second
kind of RI error, which only exists in the MO based algorithm
and is due to the RI approximation of BX. It is readily shown
that this kind of RI approximation is variational and errors are
always negative. Table 3 summarizes the RI errors of the

second kind for molecules in the BHDIV10, DARC, and
ADIM6 benchmark sets.”” The errors are on the order of 100
UEy, for all of these systems.

5.3. Accuracy of the Quadrature. Figure 2 shows the
numerical integration errors in AXK beyond-RPA correlation

3 =¥— TM refset (AV5Z)
107 F —d— TM refset (AVQZ) ]
= —e— TMrefset (QZVPP) 4
S 10-5 F —o— DARC (QZVPP)
<
= 3
1077 F B
10-3 F E
=
w
o 10-5F 3
x |
= ]
1077 F k
1 1 1

13
50 100 150 200

Ng

Figure 2. Mean absolute errors (MAE) and maximum absolute errors
(MXE) of AE®**X due to the numerical frequency integration with
varying number of quadrature points N, for the transition-metal
reference set (TM refset)’® and the DARC benchmark set,”>"* using
the QZVPP, AVQZ, and AVSZ basis sets. Reference values were
obtained from calculations with fine quadratures of N, = 400.

energies for molecules in the DARC benchmark set’”* and
the 3d transition-metal reference set.”® The transition-metal
reference set contains small-gap open-shell species, which
demand large numbers of quadrature points.”’ These results
were obtained using the MO based algorithm. For both sets of
molecules, the errors decrease rapidly with increasing number
of quadrature points. Particularly, the exponential decay of the
error is observed for the DARC benchmark set with the
QZVPP basis set. Moreover, the numerical integration errors
for AEC **X are almost always positive, whereas the numerical
integration errors for ECRPA are almost always negative. The
errors in the total correlation energies are on the same order as
the errors in AECAXK, Generally, a quadrature with 100 points
leads to sub-mE; error due to numerical integration. For
energy differences, smaller quadratures may be used because of
error cancellation. A nested Clenshaw—Curtis rule doubling N,
until a predetermined precision is achieved was also
implemented. For benchmark purposes, very fine frequency
quadratures with 400 points were used unless otherwise stated.

5.4. Performance. We assess the performance of our
implementations using all of the molecules in the BHDIV10,
DARC, and ADIM6 benchmarks from the GMTKNSS
database”™ using different basis sets. We also carried out
AXK calculations for mesityl-substituted porphyrin monomer
and dimer® with 113 and 224 atoms, respectively, using the

Table 3. Mean Errors (ME) and Maximum Absolute Errors (MXE) of AEC**X (in E,) due to the RI Approximation of the

Exchange Integrals®

BHDIV10 DARC ADIM6
SVP TZVP SVP TZVP SVP TZVP
ME -3.6%x 1074 -1.9 x 107* -52%x107* -2.6 x 1074 —4.0 x 1074 -22 % 107*
MXE 6.7 x 107* 3.5x 107 83 x 107* 43 x 107* 8.4 x 107 4.6 x 107*

“Calculations were performed for all of the species in the BHDIV10, DARC, and ADIM6 benchmark sets” using the SVP and TZVP basis sets.
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SVP basis set. The timing results are shown in Figure 3,
wherein the effective scalings are also listed. Clearly, the

—— AO based algorithm
= MO based algorithm

102 4

109 4

102 4

N3A65

TZVP

Wall time (in hours)

N419 g0

100 3

102
NS.QG

QZVPP

104

" 1 il
102 103
Number of basis functions

Figure 3. Timing results for AXK total energy calculations on
molecules in the BHDIV10, DARC, and ADIM6 benchmark sets” as
well as mesityl-substituted porphyrins® (SVP only) using the SVP,
TZVP, and QZVPP basis sets. The effective scalings are listed next to
the fitted lines. The timings were done for calculations with N, = S0.
All calculations were performed on a 20-core Intel Xeon ES-2680 2.80

GHz workstation using a maximum of 80 GiB of memory.

asymptotic quintic and quartic scalings do not show up for
these test calculations yet. Although the AO based algorithm
scales more favorably, it is less efficient for most of the small-
and medium-size molecules due to a large scaling prefactor.
The AO based algorithm eventually becomes faster than the
MO based algorithm for the large mesityl-substituted
porphyrin dimer with the SVP basis set; see Table 4. However,
for calculations with quadruple-{ basis sets, the AO based
algorithm is impractical because the prefactor becomes larger
due to inefficient integral screening.

Table 4. Timing Results” for the Mesityl-Substituted
Porphyrin Monomelf (NiCs¢H;,N,) and Dimer

. 8
(NiyC,1,H 0oN;) ™

system Ny O O
NiCHy,N, 1196 8.53 2120
Ni,C;1,H;00N1o 2402 21245 200.04

“The timing results are wall time in hours. YThe calculations were
performed on a 20-core Intel Xeon ES-2680 2.80 GHz workstation
using a maximum of 80 GiB of memory.

As we shall see in the following benchmark calculations,
basis sets of at least triple-{ quality need to be used for accurate
AXK energetics. For this reason, the following benchmark
calculations were performed using the MO based algorithm.

5.5. Benchmarks. 5.5.1. Reaction Barrier Heights.
Accurate prediction of reaction barrier heights requires a
balanced treatment of static correlation and self-interac-
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tion.”>”® Semilocal DFT generally underestimates barrier

heights,”” whereas single-reference perturbation methods are
prone to overestimation.”””” Here we present benchmark
calculations for the BHDIV1O set”® which contains 10
reactions of medium-size molecules and features diverse
barrier heights ranging from 13.64 to 96.17 kcal/mol. Results
obtained using the QZVPP basis set are shown in Table 5.

As expected, the TPSS meta-GGA functional underestimates
the BHDIV10 barrier heights, except for reaction 2, which is
the isomerization from 1,4-azaborine to B—N Dewar benzene.
Adding the D3 dispersion correction'” does not improve the
results, indicating that the dispersion interaction energy does
not change much from the reactants to the transition states.
The RPA barrier heights are significantly more accurate, yet
they are still statistically slightly lower than the reference
values. Compared with RPA, AXK systematically increases the
calculated barrier heights and further reduces the mean
absolute error (MAE) from 1.64 to 1.30 kcal/mol. SOSEX
yields even larger barrier heights and overcorrects RPA,
especially for reactions that break 7 bonds (reactions 2, 4, and
8). These results are consistent with previous tests on small-
molecule reactions.”® The barrier heights from the bare SOX
correction are too high, as expected from the reduced KS gaps
of transition states relative to those of the reactants. The poor
accuracy of bare SOX reflects the fact that the SOX coupling
strength dependence is linear (see Table 1); thus, bare SOX
works for only very weakly correlated systems such as the
uniform electron gas in the high-density limit or weak
interactions of closed-shell systems at large separation but
falls short even for the slightly stronger correlations present in
the transition states in our test calculations.

More extensive tests using different basis sets are
summarized in Table S1. The basis set convergence for RPA
and AXK is significantly slower than that for semilocal DFT; as
a result, basis sets of at least triple-{ quality are required to
make an AXK calculation of energy differences worthwhile.

5.5.2. Diels—Alder Reaction Energies. A Diels—Alder (DA)
reaction is an example of pericyclic reactions and involves
concertedly breaking and forming 7 and ¢ bonds. Semilocal
DFT predicts DA reaction energies that are less exothermic
than those of explicitly correlated coupled-cluster calculations
at the CBS limit.”””” It has been suggested that the errors are
due to self-interaction”® and intramolecular dispersion
interactions.'”’ RPA has been shown to be quite accurate for
DA reaction energies; however, the RPA+ short-range
semilocal correction method"> and SOSEX lead to systematic
over- and underestimation, respectively.'*’

In Table 6, we present reaction energy calculations on a set
of 14 DA reactions (the DARC benchmark).”””* Table S2
summarizes the results obtained using different basis sets. We
note in passing that basis sets of at least triple-{ quality are
necessary for RPA-type calculations. As with the results in ref
93, semilocal DFT calculations with the TPSS functional
overestimate the DA reaction energies. The description of
dispersion interactions is indeed important, as indicated by the
TPSS calculations with the D3 dispersion correction. The RPA
reaction energies are within chemical accuracy, reflecting that
RPA adequately accounts for dispersion interactions and
reduces self-interaction error through the exact first-order
exchange. Nevertheless, RPA slightly underestimates energies
of the reactions that yield bicyclic and tricyclic products with
close-lying bridgehead carbons (reactions 3, 4, and 7—14)
while overestimating the others. AXK almost uniformly
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Table S. Errors of Calculated Reaction Barrier Heights in kcal/mol Using the QZVPP Basis Set for the BHDIV10 Benchmark
Set Relative to Explicitly Correlated Coupled-Cluster Results in Reference 90

reaction

O 0 NI N LW N =

ref TPSS
25.65 —10.11
56.90 1.37
36.53 —7.82
96.17 —6.64
15.94 —-7.00
13.64 —4.39
27.49 —-2.73
50.24 —10.12
65.84 —-7.17
64.93 —341
-5.80

6.08

10.12

TPSS-D3

-10.37
0.94
=721
=7.51
—7.23
—4.84
-3.16
—10.29
=7.19
-3.37
—6.02
6.21
10.37

“The structures of the reactants and transition states are provided in ref 91.

RPA

-2.33
—1.40
-1.32
—-1.24
0.52
1.79
—0.18
2.88
—1.49
—-3.29
—-0.61
1.64
3.29

—0.75
0.84
—0.43
0.64
0.92
221
0.91
3.38
—0.40
-2.50
0.48
1.30
3.38

SOSEX SOX
1.69 10.0S
4.27 14.38
113 5.54
3.61 13.47
122 2.46
2.09 1.74
1.71 3.77
3.59 3.88
1.11 S.12

—-1.90 -3.32
1.85 571
223 6.37
4.27 14.38

Table 6. Errors of Calculated Reaction Energies in kcal/mol Using the QZVPP Basis Set

Relative to Explicitly Correlated Coupled-Cluster Results from Reference 90

O 00 NI NN bW

—
- O

2 ==
ém-:aww

MXE

reaction

ethene + butadiene

ethyne + butadiene

ethene + cyclopentadiene

ethyne + cyclopentadiene

ethene +1,3-cyclohexadiene

ethyne +1,3-cyclohexadiene

furane + maleic anhydride (endo)

furane + maleic anhydride (exo)

furane + maleimide (endo)

furane + maleimide (exo)
cyclopentadiene + maleic anhydride (endo)
cyclopentadiene + maleic anhydirde (exo)
cyclopentadiene + maleimide (endo)

cyclopentadiene + maleimide (exo)

ref

—45.4
—60.8
-29.9
—33.6
-37.6
—49.0
—-14.0
—15.9
—16.8
—18.9
—-31.7
—-32.2
—34.2
—34.6

TPSS

9.23

4.66

9.49

5.00
10.64

5.90
14.36
14.32
14.47
14.28
14.40
14.05
14.47
14.10
11.38
11.38
14.47

TPSS-D3

6.22
2.88
5.96
2.69
6.55
3.07
8.98
9.28
8.97
9.11
8.52
8.26
8.46
8.22
6.94
6.94
9.28

“For reactions 7—14, the products can be of endo or exo form, as indicated in parentheses.

RPA

0.91
1.06
—0.24
—0.73
0.30
0.35
—0.96
—0.79
—0.78
—0.53
—0.92
—0.70
—0.65
—0.42
—0.29
0.67
1.06

for the DARC Benchmark Set’>**

AXK SOSEX SOX
0.31 —4.83 —22.07
0.05 —4.88 —22.32
0.33 —3.12 —15.24

—0.03 —2.51 —-12.23
0.42 —3.78 —18.12
0.07 —3.85 —17.74
0.52 —1.58 —10.53
0.47 —-1.82 —-11.25
0.56 —1.87 —12.06
0.60 -1.99 —12.58
0.01 —3.52 —16.77
0.18 -3.35 —16.53
0.13 —3.72 —18.23
0.30 —3.56 —-17.99
0.28 —3.17 —15.98
0.29 3.17 15.98
0.60 4.88 22.32

Table 7. Errors of Calculated Noncovalent Interaction Energies in kcal/mol Using the QZVPP Basis Set and 3-4 Extrapolated
Complete Basis Set (CBS) Limit for n-Alkane Dimers in the ADIM6 Benchmark Set'*’ Relative to Explicitly Correlated
Coupled-Cluster Results in Reference 90

dimer

(CHe),
(C3Hy),
(CiHio)
(CsHp),
(CeHia)a
(CHie)
ME
MAE
MXE

TPSS TPSS-D3 RPA AXK SOSEX SOX
ref QZVPP QZVPP QZVPP CBS QZVPP CBS QZVPP CBS QZVPP

1.34 -1.76 0.22 —0.31 —0.33 —0.27 —0.28 -0.29 —0.28 —0.38
1.99 -2.71 0.27 -0.37 —0.51 —0.33 —0.42 —0.36 —0.43 —0.51
2.89 —4.03 0.38 —0.50 —0.73 —0.46 —0.61 —0.50 —0.62 -0.72
3.78 —=5.32 0.41 —0.63 —0.95 —0.57 —0.79 —0.63 —0.79 —-0.91
4.60 —6.59 0.56 —0.68 -1.11 —0.62 —0.92 —0.69 -0.92 —1.05
S.5§ —8.05 0.40 —0.80 —1.34 -0.73 -1.10 —0.80 -1.09 —-1.21
—4.75 0.37 —0.55 —0.83 —0.50 —0.69 —0.54 —0.69 —0.79

4.75 0.37 0.55 0.83 0.50 0.69 0.54 0.69 0.79

8.05 0.56 0.80 1.34 0.73 1.10 0.80 1.09 1.21

improves upon RPA, reducing the MAE from 0.67 kcal/mol of
RPA to 0.29 kcal/mol. The AXK errors are positive, except for
reaction 4, for which the AXK error is almost zero. SOSEX, on
the other hand, worsens the RPA reaction energies, leading to

appreciable negative errors. The SOSEX results are in line with

ref 101, wherein only the first four reactions in the DARC
benchmark set were investigated. Bare SOX dramatically

underestimates the reaction energies, thus providing another

example of the inadequacy of low-order perturbation theory for
pericyclic reactions.'”” The trends of SOSEX and SOX errors
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Table 8. Errors of Calculated Dissociation Energies in kcal/mol Using the QZVPP Basis Set for Positively Charged Dimers in

the SIE4x4 Benchmark Set’”“

Fhyan ref TPSS TPSS-D3
(H-~H)"
1.00 64.4 4.82 4.82
1.25 58.9 7.81 7.81
1.50 487 1123 11.24
1.75 383 1491 14.95
(He---He)*
1.00 56.9 25.53 25.53
1.25 46.9 32.40 32.41
1.50 31.3 40.39 40.45
1.75 19.1 4828 48.42
(H3N--~NH3)+
1.00 35.9 7.75 9.01
1.25 25.9 14.29 1525
1.50 134 20.42 20.98
1.75 49 25.81 26.08
(H,0--OH,)*
1.00 39.7 14.19 15.15
1.25 29.1 2248 23.37
1.50 16.9 29.72 30.27
1.75 9.3 35.32 35.59
ME 2221 22.58
MAE 2221 22.58
MXE 4828 48.42

“The reference is explicitly correlated coupled-cluster theory.”® For each dimer, calculations were performed

RPA AXK SOSEX SOX
3.42 0.83 —0.48 —2.56
4.99 175 —0.92 —5.60
8.22 3.71 —1.48 —12.08

15.75 9.11 —-2.25 —33.41

14.49 5.70 —3.30 -21.99

26.39 13.96 —6.64 —66.59

41.83 27.94 —9.91 —181.69

58.36 45.54 —12.47 —460.35
4.30 —0.59 —6.81 —25.22

11.49 4.24 —11.57 —78.69

20.83 13.09 —16.28 —232.54

30.49 23.95 —19.75 —658.38
7.46 0.17 —11.73 —54.22

18.43 8.88 —18.80 —178.55

30.55 21.59 —24.35 —530.66

41.33 34.38 —27.90 —1462.47

21.15 13.39 —10.91 —250.31

21.15 13.46 1091 250.31

58.36 45.54 27.90 1462.47

at four different intermonomeric

distances dy;y measured by the ratio dyp/dyy, Where diyy is the equilibrium distance.

are similar. This suggests that the screening in SOSEX is too
weak to sufficiently correct bare SOX, which becomes
unphysical for higher coupling strengths.

5.5.3. Noncovalent Interaction Energies. The accurate
prediction of noncovalent interactions is important for, e.g.,
diastereoselective reactions.'”® Accuracy within a fraction of a
kcal/mol is often desired for these weak interactions, posing a
challenging requirement for electronic structure methods. Here
we test our implementations on n-alkane dimers in the ADIM6
benchmark set.'” Basis set extrapolations using the Dunning
basis sets were performed to investigate basis set convergence
because RPA noncovalent interaction energies have been
shown to be strongly affected by basis set incompleteness.'**

As shown in Tables 7 and S3, RPA, AXK, and SOSEX give
similar results, with the AXK and SOSEX results being slightly
more accurate than those of RPA. For all three methods, the
AVTZ basis set overbinds the dimers and yields larger errors
for larger systems, while the AVQZ basis set fortuitously gives
consistently small errors for all systems (Table S3). In the 3-4
extrapolated CBS limit, the MAEs are below 62, 51, and 51%
of the smallest interaction energy within the benchmark set for
RPA, AXK, and SOSEX, respectively. Table 7 also lists the
results using the QZVPP basis set. Similar to the RPA case,'*
the Karlsruhe quadruple-{ basis sets provide a good balance
between computational cost and accuracy for most practical
calculations.

5.5.4. Charged Dimer Dissociation Energies. To assess the
magnitude of the self-correlation error in RPA and beyond-
RPA methods, dissociation energies of radical cations of
symmetric dimers contained in the SIE4x4 benchmark set™
were computed at various intermonomeric distances; see Table
8. In these radical cations, the positive charge is excessively
delocalized in semilocal DFT, producing overbinding and
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artificial barriers along the potential energy surface.'”> The
errors are particularly large for stretched dimers, reflecting
incorrect fractional charges'’ in the semilocal DFT picture.
RPA removes self-interaction to the first order due to exact
first-order exchange, but the missing higher-order terms in the
RPA correlation energy still cause a significant self-correlation
error. The AXK results are consistently more accurate than the
semilocal DFT and RPA ones. In particular, AXK remains
fairly accurate close to the equilibrium structures. SOSEX is
constructed to be one-electron self-correlation-free. Indeed,
SOSEX is nearly exact for HJ; the small errors result from the
use of TPSS densities to evaluate the energy. The SOSEX
dissociation energies are also more accurate at large dimer
separations. Nevertheless, SOSEX is less accurate than RPA
and AXK for the dissociations of (NH;); and (H,0)3 close to
the equilibrium intermonomeric distances. This illustrates that
freedom from one-electron self-interaction does not necessarily
translate to many-electron systems.'?”'*®

Radical cations at stretched intermonomeric distances are
highly challenging for beyond-RPA perturbative methods, as
reflected by the AXK and SOSEX MAEs being greater than 10
kcal/mol for the SIE4x4 benchmark. The catastrophic failure
of bare SOX for these systems also suggests that perturbative
corrections are inadequate here and points to a need for self-
consistent approaches.109

5.5.5. Transition-Metal Compound Dissociation Energies.
Finally, we assess the implemented methods using a set of 3d
transition-metal dissociation reactions proposed in ref 76. This
benchmark contains dissociation reactions of 22 transition-
metal compounds that represent diverse types of transition-
metal bonding. Many species involved in these reactions are
small-gap open-shell systems, which provide a demanding test
for electronic structure methods. The reference values are
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Table 9. Errors of Calculated Dissociation Energies in kcal/mol of the 3d Transition-Metal Reference Set Relative to Back-

Corrected Experimental Values from Reference 76

TPSS  TPSS-D3 RPA AXK SOSEX SOX
reaction ref QZVPP QZVPP  QZVPP CBS QZVPP CBS QZVPP CBS QZVPP
Sc, — 2S¢ 398  -7.51 —7.47 -19.70  -20.52  —3243  —32.57  —48.16  —48.04  —158.78
V, - 2V 646  —0.12 —0.12 -1597  —1688  —3460  —2871 —60.93  —5550  —293.63
Ni, — 2Ni 49.7 8.31 8.34 -11.80  —1142  -=33.72 =315 -8457  —8281 —803.58
CH - Cr+ H 457 11.72 11.72 6.75 4.01 6.06 5.46 241 218 -8.65
MnH — Mn + H 323 20.04 20.07 3.19 323 1.77 1.45 2.06 1.76 343
CoH — Co + H 46.6 17.87 17.88 14.41 15.54 16.47 18.52 13.87 13.23 291
TiO - Ti + O 158.8 17.37 17.37 0.40 2.51 328 —0.62 —9.85 -7.01 —49.01
MnO — Mn + O 91.1 29.21 29.21 -6.01 —-363  -2000  —-1673  —3552  —-3216 = —107.22
CuO - Cu + O 63.7 9.49 9.49 -0.90 —2.09 -5.91 -580  —17.75 —17.46 —71.73
ScF — Sc + F 143.0 8.44 8.44 —6.00 -5.33 -5.65 —4.68 —7.20 —6.09 —20.11
CrF - Cr+F 105.1 12.82 12.83 171 0.56 1.72 2.27 —0.84 0.05 —15.39
CuF > Cu + F 102.5 291 -2.90 -1173  -1136  —10.02 —925  —1223 ~11.35 —27.84
Fe,Cl, — 2FeCl, 350  —829 —6.42 -3.79 -1.94 -1.86 0.13 -0.07 1.47 4.09
CoCl, — (1/2)Cl, + CoCl, 16.7 9.48 10.50 171 0.67 —978  —1039  —2124 2175 —90.46
Fe(CO); — Fe(CO), + CO 422 431 6.00 -3.07 -437 -2.73 -3.54 1.50 0.81 15.97
Ni(CO), — Ni(CO); + CO 24.9 3.95 5.17 —-0.36 —4.56 -2.75 —5.64 —2.71 537 —14.08
(1/2)CtBz, — (1/2)Cr + Bz 318 6.90 10.06 875 0.32 3.13 —0.66 -2.72 —5.70 —37.84
(1/2)FeCp, — (1/2)Fe + Cp 80.1 14.67 18.61 11.88 8.53 825 6.82 8.62 7.41 6.65
ME 8.65 9.38 —1.70 ~2.60 —6.96 —6.45 1530  —14.80 —92.51
MAE 10.75 11.26 7.12 6.53 1112 10.30 18.46 17.79 96.19
MXE 2921 29.21 19.70 20.52 34.60 32.57 84.57 48.04 803.58

based on high-quality experimental data and are corrected for
zero-point and thermal vibrational energies and scalar-
relativistic effects.

All calculations were performed using TPSS structures
reported in ref 76, except for Fe,Cl, and CoCl;, for which D,;
and Dy, structures, respectively, were found to yield lower
ground-state energies.“o As summarized in Tables 9 and S4,
the accuracy of each method varies considerably with different
types of compounds. The TPSS results confirm that the errors
from meta-GGA calculations are around 10 kcal/mol per
bond.”® In general, RPA reduces the errors, but there exist
cases where RPA gives less accurate results than TPSS, e.g,
metal dimers. The AXK MAE is slightly higher than that of
RPA, yet this deterioration is due to only a few types of
molecules, as will be discussed below. In general, AXK
performs well if the corresponding RPA error is already small.
SOSEX and SOX are generally less accurate than AXK.

For RPA and the beyond-RPA methods, the metal dimers
give rise to the largest errors in the predicted dissociation
energies. These dimers, Sc,, V,, and Ni,, exhibit strong static
correlation due to the left—right effect and the near degeneracy
of the 4s and 3d subshells.''" For these systems, semilocal
functionals such as TPSS give relatively accurate results in
comparison with hybrid functionals’® and RPA. This trend is
related to the XC hole bein§ short-ranged for systems with
strong static correlation.''” The deficiency of RPA in
accounting for strong static correlation renders it a poor
starting point for perturbative corrections. Consequently, the
AXK corrections are in the wrong direction, and both SOSEX
and SOX give qualitatively wrong results.

Other types of molecules where the AXK error is
significantly larger than that of RPA are the monoxides,
particularly MnO. Again, SOSEX and SOX errors are even
larger. This trend is consistent with previous calculations on
metal monoxides with structures optimized using each
respective method. Nevertheless, ref 38 points out that,
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although AXK worsens RPA for dissociation energies, the
former leads to smaller errors in bond lengths and frequencies.
Somewhat surprisingly, for CoH dissociation, bare SOX is
more accurate than AXK and SOSEX; a similar trend is
observed for the homolytic dissociation of ferrocene,
(1/2)FeCp, — (1/2)Fe + Cp. The good accuracy of bare
SOX in these cases might result from fortuitous cancellation of
higher-order corrections, which is incompletely captured by
AXK and SOSEX. To further understand this result, we
consider the heterolytic dissociation energy of ferrocene, i.e.,
(1/2)FeCp, — (1/2)Fe* + Cp~, where the experimental
value after correcting for scalar-relativistic, zero-point vibra-
tional, and thermal energies is 318 keal/mol."*® With the
QZVPP basis set, RPA overestimates the homolytic dissoci-
ation energy by 6.8 kcal/mol, while AXK and SOSEX
underestimate by 4.4 and 13.8 kcal/mol, respectively. Unlike
homolytic ferrocene dissociation, the heterolytic dissociation
energy is severely underestimated by bare SOX, which yields
an error of —64.2 kcal/mol. The magnitude of the SOX error is
comparable to that of the MP2 CBS calculation in the
literature, which is 59 kcal/mol too high.114 The large negative
SOX error suggests that ferrocene is relatively strongly
correlated and thus confirms the error cancellation in the
SOX calculation for the homolytic ferrocene dissociation.

6. DISCUSSION

The above results suggest a simple explanation for when and
why perturbative corrections to RPA break down. At higher
coupling strength, any low-order corrections and RPA itself
eventually become unphysical. A qualitative measure of
correlation strength is the relative difference between the
AXK and SOX beyond-RPA correlation energies

AECSOX _ A RCAXK

AEC SOX

(28)
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@ is non-negative and goes to zero as AXK approaches SOX for
small coupling. With increasing coupling strength, AXK but
not SOX is screened, giving rise to more positive & values. &
may be understood as an effective average coupling strength
for beyond-RPA correlation. This concept may be extended to
energy differences by defining @ as the maximum of the
individual @ values of all involved species.

Figure 4 shows that @ is positively correlated with the
absolute error of AXK. When @ is greater than 0.5, the SOX
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Figure 4. Correlation between the absolute error of AXK and the @
value for all of the QZVPP energy difference calculations for the
BHDIV10, DARC, ADIMS6, and SIE4x4 benchmark sets” as well as
the 3d transition-metal reference set.”

beyond-RPA correlation energy is more than twice that of
AXK. For such systems, AXK typically does not deliver
acceptable accuracy. This suggests that @ may be used as a
diagnostic for the reliability of AXK.

Large @ values, however, do not always imply incorrect
results. For the first CO dissociation of Fe(CO); and the
homolytic dissociation of ferrocene, the @ values are 0.51 and
0.58, but the AXK errors are —2.71 and 8.62 kcal/mol,
respectively. This unexpectedly good accuracy of AXK for
these two reactions may be attributed to error cancellation
between the reactants and the products.

Ni, exhibits an @ value of 0.79, the largest among all species
in the 3d transition-metal reference set. (Even higher @ values
are observed for charged dimers in the SIE4x4 benchmark set
but not at equilibrium distances.) The coupling strength
integrands AU}, of the beyond-RPA correlation energy of Ni,
for SOX, SOSEX, and AXK are plotted in Figure S; the total
beyond-RPA correlation energy is the coupling strength

11
average47’ S

1

C C
AEC = /0 da AUS 9)
Although the AUS *** curve tends to the linear SOX integrand
at @ = 0, it is rapidly screened at larger coupling strength,
which is reflected in the high value of @. Figure S also reveals a
simple geometrical meaning of @: it measures the relative
difference of the area under the SOX and AXK coupling
strength integrands. For Ni,, even the strong AXK screening is
insufficient, as reflected in the large AXK error of the Ni,
binding energy.
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Figure 5. Coupling strength dependence of AUS **X, AUS S°%X, and
AUS 5% for Ni,. The area under each curve is the beyond-RPA
correlation energy of the corresponding method. The AXK and
SOSEX calculations were performed with a seven-point Gauss—
Legendre coupling strength quadrature using the QZVPP basis set.
The effective coupling strength @ equals the relative difference of the
areas under the SOX and AXK curves.

7. CONCLUSIONS

Two efficient and robust implementations of the AXK methods
using the RI approximation and numerical frequency

integration were presented: The AO based O(N*InN)
algorithm is fast for molecules of over 200 atoms with small

basis sets, while the MO based O(N® In N) algorithm enables
calculations on a single workstation computer for molecules of
up to 100 atoms with triple- and quadruple-{ basis sets, which
are necessary for accurate energy difference predictions. The
bare SOX and SOSEX beyond-RPA correlation energies can
also be computed using these algorithms, facilitating
comparison of these methods for large systems.

The AXK method yields improved accuracy for ground-state
energy differences of systems with relatively weak correlation.
Systematic improvement over RPA is observed for reaction
barrier heights, reaction energies, and noncovalent interaction
energies of main-group compounds. In these benchmarks,
AXK reduces RPA errors by 25-50% and outperforms
SOSEX. In particular, for the DARC benchmark, the AXK
errors are less than half of the RPA errors on average and are
an order of magnitude lower than those of SOSEX. These
systems are characterized by relatively small average coupling
strengths @, and thus, perturbative corrections are viable. For
these weakly correlated systems, including higher-order terms
in the geometric series expansion of eq 15, along the lines
recently proposed by Bates and co-workers,"'” is likely to yield
further accuracy gains. The increased computational effort of
AXK compared with bare RPA may be particularly worthwhile
for systems with small but non-negligible @& values, where bare
perturbation theory such as MP2 is insufficient and coupled-
cluster methods are too costly.

For systems with strong correlation, indicated by effective
coupling strength values of 0.5 or above, perturbative beyond-
RPA corrections break down because the underlying
assumption that “XC kernel corrections” are small is no longer
justified. Indeed, RPA itself relies on this assumption and
becomes an increasingly unphysical reference with increasing
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coupling strength. Such strongly correlated systems include
transition-metal compounds exhibiting strong static correla-
tions or metallic systems at low electron density.

An additional source of errors independent of the effective
coupling strength is inaccuracies in the KS input orbitals, or
“density-driven errors”.''® These types of errors are addressed
by variational self-consistent approaches such as generalized

KS RPA.'”

B APPENDIX: VARIATIONAL BOUNDEDNESS OF
RI-RPA CORRELATION ENERGY

Reference 41 showed that the RI-RPA correlation energy
EC ®PA s an upper bound of the exact RPA correlation energy
E€ ®PA However, the proof therein assumes that the RI error in
the direct ring coupled-cluster doubles amplitude is negligible.
This Appendix presents a more general proof without this
assumption. Throughout this Appendix, tildes denote quanti-
ties with the RI approximation, while quantities without tildes
are associated with the full-rank representation.

The RI counterpart of eq 6 can be written as

BH = 8§87 (30)
where
Sup = (ialP) (31)

is an NyN, X N, matrix as defined in section 3.1; the bar
notation denotes orthonormalized vectors in the space with an
inner product defined by the Coulomb integrals, i.e.

P) = Y IQ)L Igp
Q (32)

S is related to the full-rank S defined in eq 6 through a matrix
U

§=SU (33)
It is readily shown that
v'u =8§"B")"'S (34)
and
[U'Uly, = ) (Plia)(@lQ)
ia (35)
where
@) = Y 1ib)S ™
b (36)
Lemma A.1. For any N, -dimensional unit vector v
viU'uv <1 (37)

Proof: Define Iv) = Y pIP)vp. This is a unit vector in the
inner product space. The conclusion follows from eq 35.

Theorem A.2. Let q;(w) < - < thNp(a)) and §,(w) < - <
qn, () be the eigenvalues of Q(w) and Q(w), respectively.
They satisfy

0 S qp(w) S thNP_M“X+P(w) (38)
for 1 <P <N, )

Proof: By definition, eq 13, Q(®) is related to Q(®)
through

Q(») =U'Qw)U (39)
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The rest of the proof closely follows the proof of the Cauchy
interlacing property from the Courant—Fischer min—max
theorem. The only difference is that UU is not an orthogonal
projection here but satisfies eq 37. As a result, only “half” of the
interlacing property can be shown, as stated in this theorem.

Theorem A.3. EC RPA < ECRPA

Proof: The RPA correlation energy, eq 12, may be rewritten
as

NN,

BN = = [T ) g(g,()
Zﬂfo a)ggqpa) (40)

where g is defined on [0, 00) by g(x) = —a*f;(x) = In(1 + x) —
x. Because g is nonpositive and monotonically decreasing, we
see that

N,

CRPA 1 *© .l
E < [0 Y gl @) (41)

P=1

1 o0 Naux
< — dow i (@ 42
~/ fggm},(l» (#2)
— ECReA (43)
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