AWStream: Adaptive Wide-Area Streaming Analytics

Ben Zhang
UC Berkeley
John Wawrzynek
UC Berkeley
ABSTRACT

The emerging class of wide-area streaming analytics faces
the challenge of scarce and variable WAN bandwidth. Non-
adaptive applications built with TCP or UDP suffer from
increased latency or degraded accuracy. State-of-the-art ap-
proaches that adapt to network changes require developer writ-
ing sub-optimal manual policies or are limited to application-
specific optimizations.

We present AW Stream, a stream processing system that
simultaneously achieves low latency and high accuracy in the
wide area, requiring minimal developer efforts. To realize this,
AWStream uses three ideas: (i) it integrates application adap-
tation as a first-class programming abstraction in the stream
processing model; (ii) with a combination of offline and on-
line profiling, it automatically learns an accurate profile that
models accuracy and bandwidth trade-off; and (iii) at runtime,
it carefully adjusts the application data rate to match the avail-
able bandwidth while maximizing the achievable accuracy.
We evaluate AWStream with three real-world applications:
augmented reality, pedestrian detection, and monitoring log
analysis. Our experiments show that AW Stream achieves sub-
second latency with only nominal accuracy drop (2-6%).

CCS CONCEPTS

* Networks — Application layer protocols; Cross-layer
protocols; Network performance modeling; Wide area net-
works; Network dynamics; Public Internet;

KEYWORDS
Wide Area Network; Adaptation; Learning; Profiling

ACM Reference Format:
Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Ed-
ward A. Lee. 2018. AWStream: Adaptive Wide-Area Streaming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5567-4/18/08. .. $15.00
https://doi.org/10.1145/3230543.3230554

Xin Jin
Johns Hopkins University

236

Sylvia Ratnasamy
UC Berkeley

Edward A. Lee
UC Berkeley

Analytics. In SIGCOMM ’18: ACM SIGCOMM 2018 Conference,
August 20-25, 2018, Budapest, Hungary. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3230543.3230554

1 INTRODUCTION

Wide-area streaming analytics are becoming pervasive, espe-
cially with emerging Internet of Things (IoT) applications.
Large cities such as London and Beijing have deployed mil-
lions of cameras for surveillance and traffic control [46, 85].
Buildings are increasingly equipped with a wide variety of
sensors to improve energy efficiency and occupant comfort [44].
Geo-distributed infrastructure, such as content delivery net-
works (CDNs), analyze requests from machine logs across
the globe [54]. These applications all transport, distill, and
process streams of data across the wide area, in real time.

A key challenge that the above applications face is dealing
with the scarce and variable bandwidth in the wide area [38,
91]. As many have observed, WAN bandwidth growth has
been decelerating for many years while traffic demands are
growing at a staggering rate [21, 56, 84]. In addition, scarcity
in last-mile bandwidth remains a problem across wireless [13],
cellular [58], and even broadband [35, 82] networks. Finally,
as we elaborate on in §2, not only is WAN bandwidth scarce,
it is also relatively expensive, and highly variable.

For all of the above reasons, it is important that streaming
applications be adaptive, incorporating the ability to optimally
trade-off accuracy for bandwidth consumption and hence a
key system challenge is to design the programming abstrac-
tions and tools that simplify the development of such adaptive
applications.

In recent years, systems such as Storm [86], Spark Stream-
ing [95], and VideoStorm [96], have emerged in support of
stream processing. These systems enable efficient processing
of large streams of data, but are designed to work within a sin-
gle datacenter cluster (where network bandwidth is typically
not the bottleneck) and hence they do not focus on support
for adapting to the vagaries of WAN bandwidth.

Recent research on WAN-aware systems promote push-
ing computation to the network edge [65, 73]. However, even
with edge computing, the need for adaptation remains because
end-devices such as cameras and mobile phones still suffer
from limited bandwidth in the last-hop infrastructure [3, 97].
In addition, edge computing is not a panacea as wide-area

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

<
& 1.0 5 3
> q
) Streamin: O N
g over TCIg Manual ——
§ 054 Policies App-specific
©
. <)

= € Streaming
D V over UDP
S 0.0 o
[T T T T

100 10 1 0.1

Freshness, latency reversed (seconds)

Figure 1. The trade-off space between data freshness and fidelity
when facing insufficient bandwidth (details in §5.3).

communication is often not entirely avoidable: e.g., some ana-
Iytical jobs require joining or aggregating data from multiple
geo-distributed sites [64, 89], while in some cases processing
benefits substantially from specialized computing resources
such as GPUs and TPUs [2] in the cloud.

The core difficulty with adaptive streaming analytics is
that, when bandwidth is scarce, developers are faced with
the decision of how to reconcile data fidelity (i.e., not losing
any data) with data freshness (i.e., sending data as quickly
as possible). A deterioration in either fidelity or freshness
can impact application accuracy but the exact impact varies
depending on the application.! Figure | illustrates this trade-
off with a few sample points in the design space.

Applications that simply use existing protocols without any
attempt at adaptation can result in extreme design points. For
example, streaming over TCP ensures reliable delivery (hence
high fidelity) but backlogged data delays the delivery of data
(hence freshness suffers). On the other hand, streaming over
UDP minimizes latency by sending packets as fast as possible,
but uncontrolled packet loss can devastate data fidelity.

Manual policies, such as sampling, allow developers to
trade data fidelity for freshness [65]. However, it’s difficult to
write accurate policies without extensive domain expertise or
considerable effort. In practice, developers write manual poli-
cies based on heuristics rather than quantitative measurements
and, as we show in §5, such policies can lead to sub-optimal
performance in terms of both freshness and fidelity.

Furthermore, application-specific optimizations often do
not generalize. A fine-tuned adaptation algorithm for one
application works poorly for a different application, if per-
formance metrics or data distributions change. For example,
video streaming focuses on quality of experience (QoE) [52,
62, 94]. Because humans favor smoothness over image qual-
ity, these systems maintain a high frame rate (e.g., 25 FPS),
and reduce the resolution under bandwidth limitation. How-
ever, low resolution images can lead to poor accuracy for
video analytics that rely on the image details (e.g., face detec-
tion [88]).

!For example, an application tracking the current value of a variable might
prioritize freshness while one that is computing an average might prioritize
fidelity.

237

B. Zhang et al.

In this paper, we present AW Stream, a framework for build-
ing adaptive stream processing applications that simultane-
ously simplifies development and improves application accu-
racy in the face of limited or varying wide-area bandwidth.
AWStream achieves this with three novel contributions:

1. AWStream introduces new programming abstractions by
which a developer expresses what degradation functions
can be used by the framework. Importantly, developers
do not have to specify exactly when and how different
degradation functions are to be used which is instead left
to the AWStream framework.

2. Rather than rely on manual policies, AW Stream automati-
cally learns a Pareto-optimal policy or strategy for when
and how to invoke different degradation functions. For
this, we design a methodology that uses a combination of
offline and online training to build an accurate model of
the relationship between an application’s accuracy and its
bandwidth consumption under different combinations of
degradation functions. Our solution exploits parallelism
and sampling to efficiently explore the configuration space
and learn an optimal strategy.

3. AWStream’s final contribution is the design and imple-
mentation of a runtime system that continually measures
and adapts to network conditions. AW Stream matches the
streaming data rate to the measured available bandwidth,
and achieves high accuracy by using the learned Pareto-
optimal configurations. Upon encountering network con-
gestion, our adaptation algorithm increases the degradation
level to reduce the data rate, such that no persistent queue
builds up. To recover, it progressively decreases the degra-
dation level after probing for more available bandwidth.

We implement AW Stream and use it to prototype three
streaming applications: augmented reality (AR), pedestrian
detection (PD), and distributed Top-K (TK). We use real-
world data to profile these applications and evaluate their
runtime performance on a geo-distributed public cloud. We
show that AWStream’s data-driven approach generates accu-
rate profiles and that our parallelism and sampling techniques
can speed up profiling by up to 29x and 8.7X respectively.

With the combination of AWStream’s ability to learn bet-
ter policies and its well-designed runtime, our evaluation
shows that AW Stream significantly outperforms non-adaptive
applications: achieving a 40—100x reduction in packet deliv-
ery times relative to applications built over TCP, or an over
45-88% improvement in data fidelity (application accuracy)
relative to applications built over UDP. We also compare
AWStream to JetStream [65], a state-of-the-art system for
building adaptive streaming analytics that is based on manual
policies. Our results show that besides the benefit of gener-
ating optimal policies automatically, AW Stream achieves a
15-20x reduction in latency and 1-5% improvement in accu-
racy simultaneously relative to JetStream.

AWStream: Adaptive Wide-Area Streaming Analytics

2 MOTIVATION

In this section, we first examine the gap between high applica-
tion demands and limited WAN bandwidth. We then show that
neither manual policies nor application-specific optimizations
solve the problem.

2.1 Wide-area Streaming Applications

We focus on wide-area streaming analytics, especially the
emerging IoT applications. We give two concrete examples.

Video Surveillance. We envisage a city-wide monitoring sys-
tem that aggregates camera feeds, from stationary ground cam-
eras and moving aerial vehicles, and analyzes video streams
in real time for surveillance, anomaly detection, or busi-
ness intelligence [60]. Recent advances in computer vision
have dramatically increased the accuracy for automatic vi-
sual scene analysis, such as pedestrian detection [26], vehicle
tracking [22], and facial recognition to locate people of inter-
est [50, 63]. While some surveillance cameras use dedicated
links, an increasing number of surveillance systems, such as
Dropcam [34] and Vigil [97], use the public Internet and wire-
less links to reduce the cost of deployment and management.

Infrastructure Monitoring. Large organizations today are

managing tens of datacenters and edge clusters worldwide [15].

This geo-distributed infrastructure continuously produces
large volumes of data such as data access logs, server moni-
toring logs, and performance counters [7, 64, 91]. While most
log analysis today runs in a batch mode on a daily basis, there
is a trend towards analyzing logs in real time for rapid opti-
mization [65]. For example, CDNs can improve the overall
efficiency by optimizing data placement if the access logs
can be processed in real time. In Industrial IoT, large-scale
real-time sensor monitoring is becoming pervasive to detect
anomalies, direct controls, and predict maintenance [11, 33].

2.2 Wide-area Bandwidth Characteristics

WAN bandwidth is insufficient and costly, as shown by other
systems [38, 64, 90, 91]. Using Amazon EC2 as a case study,
the WAN bandwidth capacity is 15x smaller than their LAN
bandwidth on average, and up to 60x smaller in the worst
case [38]. In terms of pricing, the average WAN bandwidth
cost is up to 38x of the cost of renting two machines [8, 38].

In addition to the scarcity and cost, the large variability
of WAN bandwidth also affects streaming workloads. We
conducted a day-long measurement with iPerf [28] to study
the pair-wise bandwidth between four Amazon EC2 sites (N.
California, N. Virginia, Tokyo, Ireland). The results show
large variance in almost all pairs—Figure 2 is one such pair.
There are occasions when the available bandwidth is below
25% of the maximum bandwidth.

The back-haul links between EC2 sites are better—if not
at least representative—in comparison to general WAN links.

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

238

e

E 100 T=ee v 7 = .

S o 757 Vel Yeatyegane SR pemteteetslm e

58 50 ¥ AR HAY,

CE 25 i

oS P

m 01 ‘ ‘ ‘ ‘

00:00 06:00 12:00 18:00 00:00

Time

Figure 2. Bandwidth variations throughout the day between Amazon
EC?2 sites (from Ireland to California).

Similar scarcity and variations exist in wireless networks [13],
broadband access networks [35, 82] and cellular networks [58].

2.3 Motivation for AWStream

To address bandwidth limits, existing solutions use manual
policies or application-specific solutions. We discuss their
drawbacks to motivate AW Stream (design in §3).

Manual polices are sub-optimal. JetStream [65] is the first
to use degradation to address bandwidth limits in wide area.
While effective in comparison to non-adaptive systems, Jet-
Stream requires developers to write manual policies, for ex-
ample, “if bandwidth is insufficient, switch to sending images
at 75% fidelity, then 50% if there still isn’t enough bandwidth.
Beyond that point, reduce the frame rate, but keep the im-
age fidelity.””> We discuss the problems with manual policies
below and present quantitative evaluations in §5.3.

First, this policy is not accurate. Developers write such
rules based on heuristics and do not back them up with mea-
surements. Images with 75% fidelity do not necessarily lead
to 75% application accuracy. In terms of bandwidth, naively
one would think that reducing the frame rate by half will also
half the data rate. But if video encoding such as H.264 [69]
is used, a reduction in frame rate increases the inter-frame
difference and creates P-frames with larger sizes. Figure 3e
shows that when reducing the frame rate to 33% (from 30 FPS
to 10 FPS), the bandwidth use can still be more than 50%.

Second, it is not scalable to specify rules one by one. A
fine-grain control requires many rules in the policy. Besides,
applications can degrade in multiple dimensions and each
dimension has different impacts (compare Figure 3a with
Figure 3b). Specifying rules in detail and across dimensions
manually is a tedious and error-prone process.

Lastly, this abstraction is too low-level. It forces developers
to study and measure the impact of individual operations,
prohibiting its wide adoption in practice.
Application-specific optimizations do not generalize. Be-
cause each application has different performance metrics and
relies on different features, a fine-tuned policy for one ap-
plication will often work poorly for another. For example,
DASH [79] optimizes QoE for video streaming; it keeps a
high frame rate and reduces resolutions for adaptation. Its pol-
icy that lowers the resolution works poorly for video analytics

2Excerpt from JetStream §4.3 [65].

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

I [Bandwidth (normalized as %) D [Accuracy (F1 Score as %)

B. Zhang et al.

100700 100100

92 90 87

%
!

A

\k

il
(¢)t=0s

small targets in far-field views

@t=1s
small difference compared to t=0s

100 84 | 100 7987 84
54
Stationary 50 50 2 |7,
Camera 0
3 10 5 3 2 1080p 900p 720p 540p 360p
(a) Frame Rate (b) Resolution
(resolution = 1080p) (frame rate = 30)
00100 0100 99 07 93 4
) 100 65 64 \ 100
Mobile 50 6 5y 34 5 2 50
Camera 10

10 5 3 2

(e) Frame Rate
(resolution = 1080p)

() Resolution

(frame rate = 30)

1080p 900p 720p 540p 360p

(@) t=0s
nearby and large targets

(hyt=1s
large difference compared to t=0s

Figure 3. The measured bandwidth and application accuracy for two video analytics applications. (1) Manual policies lack precision without
measurements and need to handle multiple dimensions, as in (a-b) and (c-d). (2) Application-specific optimizations do not generalize: degrading
frame rates works well for stationary camera (a), but not for mobile camera (e). (c-d) and (g-h) show example frames.

that relies on image details [49, 88]. In Figure 3b, we show
that pedestrian detection accuracy drops fast when reducing
resolutions as pedestrian are small in the scenes.

Similar applications face different data distributions, as
shown in Figure 3 between stationary cameras detecting
pedestrians (up) and mobile cameras recognizing objects (bot-
tom). For stationary cameras, when we consider the slow
walking speed of pedestrians, a high frame rate is not nec-
essary. But high-resolution images are crucial because these
surveillance cameras are far away from the targets. In the
mobile camera case, because the camera moves, reducing the
frame rate introduces significant errors.

3 AWSTREAM DESIGN

To address the issues with manual policies or application-
specific optimizations, AW Stream structures adaptation as
a set of approximate, modular, and extensible specifications
(§3.1). The well-defined structure allows us to build a generic
profiling tool that learns an accurate relationship—we call it
the profile—between bandwidth consumption and application
accuracy (§3.2). The profile then guides the runtime to react
with precision: achieving low latency and high accuracy when
facing insufficient bandwidth (§3.3). Figure 4 shows the high-
level overview of AW Stream.

3.1 API for Structured Adaptation

Most stream processing systems construct applications as a
directed graph of operators [86, 95]. Each operator transforms
input streams into new streams. AW Stream borrows the same
computation model and can support normal operators found
in existing stream processing systems such as JetStream [65]
(see example operators in Table 1).

239

Profil
Profiler rote

(§3-2)

Offline Adaptation

Profiling Controller
Online Resource
Profiling Allocation
(Deployment Manager (start / stop / update) J

EE e g

Runtime

(§33)

Develop

(§3.1)

bw var acc

Training
Data

10.7 1920 1
8.3 1920 0.91

Application
(§4)

Accuracy
maybe API Function

(§3.1)

client
(edge)

client
(edge)

server
Figure 4. AWStream’s phases: development, profiling, and runtime.
AWStream also manages wide-area deployment.

To integrate adaptation as a first-class abstraction, AW-
Stream introduces maybe operators that degrade data quality,
yielding potential bandwidth savings. Our API design has
three considerations. (i) To free developers from specifying
exact rules, the API should allow specifications with options.
(if) To allow combining multiple dimensions, the API should
be modular. (iii) To support flexible integration with arbi-
trary degradation functions, the API should take user-defined
functions. Therefore, our API is,

maybe (knobs: Vec<T>, f: (T, I) => I)

We illustrate the use of the maybe operator with an example
that quantizes a stream of integers in Rust:

AWStream: Adaptive Wide-Area Streaming Analytics

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

Normal Operators

sliding_window (count: Integer, f: Vec<I> = O)

Stream<I> = Stream<O>
Stream<I> = Stream<I>
Stream<I> = Stream<O>

map (f: 1= 0)
skip (i: Integer)

maybe (knobs: Vec<T>, f: (T, I) =)

maybe_skip (knobs: Vec<Integer>)

maybe_head (knobs: Vec<Integer>)
maybe_downsample (knobs: Vec<(Integer, Integer)>)

Degradation Operators

Stream<I> = Stream<I>

Stream<I> = Stream<I>
Stream<Vec<I>> = Stream<Vec<I>>
Stream<Image> = Stream<Image>

Table 1. Stream processing operators in AW Stream. Vec<T> represents a list of elements with type T.

vec![1, 2, 3, 4].into_stream()
.maybe(vec![2, 4], |k, vall| val.wrapping_div(k))
.collect();

let quantized_stream =

The snippet creates a stream of integers, chains a degra-
dation operation, and collects the execution result. In this
example, the knob is [2, 4] and the degradation function per-
forms a wrapping (modular) division where the divisor is the
chosen knob. The knob value modifies the quantization level,
affecting the output: [1, 2, 3, 4] (no degradation), [0, 1, 1, 2]
(k=2), or [0, 0, 0, 1] (k=4). If the stream is then encoded—for
example, run-length encoding as in JPEG [92]—for transmis-
sion, the data size will depend on the level of degradation.

Based on the maybe primitive, one can implement addi-
tional degradation operators for common data types. For in-
stance, maybe_head will optionally take the top values of a
list; maybe_downsample can resize the image to a configured
resolution. AWStream provides a number of such operations
as a library to simplify application development (Table 1).

With our API, the example mentioned in §2.3 can now be
implemented as follows:

let app = Camera::new((1920, 1080), 30)
.maybe_downsample (vec! [(1600, 900), (1280, 720)]1)
.maybe_skip(vec![2, 5])

.map (| frame| frame.show())
.compose () ;

This snippet first instantiates a Camera source, which pro-
duces Stream<Image> with 1920x1080 resolution and 30
FPS. Two degradation operations follow the source: one that
downsamples the image to 1600x900 or 1280x720 resolu-
tion, and the other that skips every 2 or 5 frames, resulting in
30/(2+1)=10 FPS or 30/(5+1)= 6 FPS. This example then dis-
plays degraded images. In practice, operators for further pro-
cessing, such as encoding and transmission, can be chained.

3.2 Automatic Profiling

After developers use maybe operators to specify potential
degradation operations, AW Stream automatically builds an
accurate profile. The profile captures the relationship between

240

Symbol Description

n number of degradation operations

ki the i-th degradation knob
¢ = [k, k2, ...kn] one specific configuration
C the set of all configurations
B(c) bandwidth requirement for ¢
A(c) accuracy measure for ¢

P Pareto-optimal set

Ci, Ci+1, Cmax current/next/maximal configuration at runtime

R network delivery rate (estimated bandwidth)
Qg, Qc messages when Queue is empty or congested
Rc message when Receiver detects congestion
ACprobe message when AC requests probing
SprobeDone Message when Socket finishes probing

Table 2. Notations used in this paper.

application accuracy and bandwidth consumption under dif-
ferent combinations of data degradation operations. We de-
scribe the formalism, followed by techniques that efficiently
perform offline and online profiling.

Profiling formalism. Suppose a stream processing appli-
cation has n maybe operators. Each operator introduces a
knob k;. The combination of all knobs forms a configuration
¢ = k1, kg, ...k]. The set of all possible configurations C is
the space that the profiling explores. For each configuration
¢, there are two mappings that are of particular interest: a
mapping from c¢ to its bandwidth consumption B(c) and its
accuracy measure A(c). Table 2 summarizes these symbols.
The profiling looks for Pareto-optimal configurations; that
is, for any configuration c in the Pareto-optimal set P, there
is no alternative configuration ¢’ that requires less bandwidth
and offers a higher accuracy. Formally, P is defined as follows:

P={ceC:{c’ €eC:B() < B),Al) > Alc)y =2} (1)

We show examples of knobs, configurations, and accuracy
functions when we present applications in §4 and visualize
the profile of sample applications in Figure 8.

Offline Profiling. We first use an offline process to build
a bootstrap profile (or default profile). Because AW Stream
allows arbitrary functions as the degradation functions, it does

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

not assume a closed-form relationship for B(c) and A(c). AW-
Stream takes a data-driven approach: profiling applications
with developer-supplied training data. B(c) is measured as the
data rate (bps) at the point of transmission. The accuracy A(c)
is measured either against the groundtruth, or the reference
results when all degradation operations are off.

AWStream makes no assumptions on the performance mod-
els, and thus evaluates all possible configurations. While all
knobs form a combinatorial space, the offline profiling is only
a one-time process. We exploit parallelism to reduce the profil-
ing time. Without any a priori knowledge, all configurations
are assigned randomly to available machines.

Online Profiling: AWStream supports online profiling to
continuously refine the profile. The refinement handles model
drift, a problem when the learned profile fails to predict the
performance accurately. There are two challenges with online
profiling. (i) There are no ground-truth labels or reference data
to compute accuracy. Because labeling data is prohibitively
labor intensive and time consuming [71], AW Stream currently
uses raw data (data without degradation) as the reference. At
runtime, if the application streams raw data, it is used for
online profiling. Otherwise, we allocate additional bandwidth
to transmit raw data, but only do so when there is spare
capacity. (ii) Exhaustive profiling is expensive. If the profiling
takes too much time, the newly-learned profile may already
be stale. AWStream uses a combination of parallelization and
sampling to speed up profiling, as below:

e Parallelization with degradation-aware scheduling. Evalu-
ating each configuration takes a different amount of time.
Typically, an increase in the level of degradation leads to
a decrease in computation; for example, a smaller FPS
means fewer images to process. Therefore, we collect pro-
cessing times for each configuration from offline profiling
and schedule online profiling with longest first schedule
(LFS) [41] during parallelization.

e Sampling-based profiling. Online profiling can speed up
when we sample data or configurations. Sampling data re-
duces the amount of data to process, but at a cost of gener-
ating a less accurate profile. When sampling configuration,
we can evaluate a subset of the Pareto-optimal configu-
rations and compare their performances with an existing
profile. A substantial difference, such as more than 1 Mbps
of bandwidth estimation, triggers a full profiling over all
configurations to update the current profile.

3.3 Runtime Adaptation

At runtime, AW Stream matches data rate to available band-
width to minimize latency and uses Pareto-optimal config-
urations to maximize accuracy. This section focuses on the
details of our runtime design. We defer the evaluation and
comparisons with existing systems (e.g., JetStream) to §5.3.

241

B. Zhang et al.
— data () application
raw data ----> control () system
Source
Stream
data -
ﬂeiver HAnaIchs
Qz/Qci ACp e Serobenoe / raw data
Re

o

v
_______ Adaptation Controller | _[_---"~ Online
(AC) Profiler
B profile i

Client (Edge) it et B Server
Figure 5. Runtime adaptation system architecture.
Q: /¢ =cyy Q¢ I R; / adapt() Qc/inc_pace()

Q.88
CI < CI’HEX

4 Q

E
Degradeﬁ?:’@g
Qo1 Rg

/ adapt()

€ ==C, /c;=¢

‘max

ProbeDone i+1

(a) Rate adaptation as a state machine.

Probe

Startup

Steady D Steady Steady P Steady

Data Rate
(configuration)

t t t3 ta ts e t7

time
(b) An example illustrating the adaptation algorithm.

Figure 6. Runtime adaptation algorithm.

Figure 5 shows our runtime system architecture. AW Stream
applications’ source contains a Maybe module derived from
all maybe operators. This module allows the controller to up-
date the level of degradation. Data generated by the source
is then enqueued to Queue and subsequently dequeued by
Socket, which sends data over the network. Socket uses
TCP as the underlying protocol for congestion control and
estimates the available bandwidth using application-level de-
livery rate. When the data generation rate exceeds Socket’s
departure rate, the queue grows. In this case, the adaptation
controller (AC) queries the estimated bandwidth from Socket
and regulates the source stream by updating the configuration.
After the data is sent through the network, Receiver delivers
data to the application analytics. Receiver also performs
congestion detection and extracts raw data, if it is present.
It tracks the minimal latency (similar to how BBR tracks
RTprop [18]) and reports sudden application-level latency
spikes to clients as congestion signals (R¢). If a new pro-
file is learned by the online profiler, it is fed back to AC for
subsequent adaptation.

Figure 6a shows the adaptation algorithm with a state ma-
chine model and Figure 6b shows the state transitions with
an example. We first describe all symbols. AC loads the pro-
file and sorts all configurations with an ascending order of
bandwidth demand, resulting in a list [c1, . . ., cmax|- These
configurations follow a total order: ¢; < c; if B(c;) < B(c;).

AWStream: Adaptive Wide-Area Streaming Analytics

We denote the current configuration as ¢; and the next c;j.1.
AC receives messages from other modules: Qg when Queue
is empty; Qc when queued items exceed a threshold; and R¢
when Receiver detects congestion. AC can query Socket
for delivery rate R (arrow not shown) or request it to probe
(ACprobe) for a target bandwidth, often B(c;+1). If there is no
congestion during the probing and R > B(c;+1), Socket sends
back SprobeDone. Below, we describe each state and transitions.

e Startup: rapid growth. AWStream starts with ¢; and grows
the rate (¢; = c;+1) upon each Qg. The growth stops at cyax
(to Steady) or if it receives Qc/Rc (to Degrade).

e Degrade: reacting to congestion. Congestion is detected
in two ways: (1) when Queue grows and exceeds a thresh-
old, AC receives Qc; (2) when Receiver detects latency
spikes, AC receives Rc. During congestion, AC runs the
adapt () procedure by updating Maybe with the maximum-
allowed ¢ that satisfies B(c) < aR, where « € (0,1) and
R is Socket’s current delivery rate. A smaller a allows
a quicker draining of the queue. After the congestion is
resolved (Qg received), AWStream changes to Steady.

e Steady: low latency delivery. AW Stream achieves low la-
tency by spending most of the time in Steady. It changes
to Degrade when congestion occurs. If ¢ < cpax and it
receives Qg, AC starts Probe to check for more available
bandwidth.

e Probe: more bandwidth for a higher accuracy. Advanc-
ing ¢; directly may cause congestion if B(c;+1) > B(c;).
To allow a smooth increase, AC requests Socket to probe
by sending additional traffic controlled by probe_gain
(in inc_pace(), similar to BBR [18]). Raw data is used
for probing if available, otherwise we inject dummy traffic.
AWStream stops probing under two conditions: (1) upon
SprobeDone it advances c;; (2) upon Q¢ or R, it returns to
Steady. The explicit Probe phase stabilizes feedback loop
and prevents oscillation.

3.4 Resource Allocation & Fairness

In addition to rate adaptation, the profile is also useful for con-
trolling a single application’s bandwidth usage or allocating
resources among competing tasks.

For individual applications, developers can pin-point a con-
figuration for a given bandwidth or accuracy goal. They can
also specify a criterion to limit effective configurations. For
example, AWStream can enforce an upper bound on the band-
width consumption (e.g., do not exceed 1 Mbps) or a lower
bound on application accuracy (e.g., do not fall below 75%).

For multiple applications, their profiles allow novel band-
width allocation schemes such as utility fairness. Different
from resource fairness with which applications get an equal
share of bandwidth, utility fairness aims to maximize the
minimal application accuracy. With the profiles, bandwidth

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

242

Application Knobs Accuracy Dataset
Auemented resolution iPhone video clips
& R frame rate F1 score [70] training: office (24 s)
Reality N :
quantization testing: home (246 s)
Pedestrian resolution MOT16 [53]
Detéction frame rate F1 score training: MOT16-04
quantization testing: MOT16-03
EC.g
Log Analysis - head (N) e jaqpg 7 (41 Straciri(r)lv l Zgia[599]
(Top-K, K=50) threshold (T) ‘ g: & Cays

testing: 16 days

Table 3. Application details.

allocation is equivalent to finding proper configuration ¢’ for
application ¢t. We formulate utility fairness as follows:

@

Solving this optimization is coﬁlputationally hard. AW-
Stream uses heuristics similar to VideoStorm [96]: it starts
with ¢! and improves the application ¢ with the worst accu-
racy; this process iterates until all bandwidth is allocated. In
this paper, we demonstrate resource allocation with two appli-
cations as a proof-of-concept in §5.4 and leave an extensive
study regarding scalability for future.

4 IMPLEMENTATION

While our proposed API is general and not language spe-
cific, we have implemented AWStream prototype in Rust
(~4000 lines of code). AWStream is open source on GitHub.”
Applications use AWStream as a library and configure the
execution mode—profiling, runtime as client, or runtime as
server—with command line arguments.

Using AWStream, we have built three applications: aug-
mented reality (AR) that recognizes nearby objects on mobile
phones, pedestrian detection (PD) for surveillance cameras,
and a distributed log analysis to extract the Top-K mostly ac-
cessed files (TK). Table 3 summarizes the application-specific
parts: knobs, accuracy functions, and datasets.

max min(A’(c")) s.t. Z B'(c") <R

Augmented Reality. We target at augmented reality appli-
cations running on mobile phones that recognize objects by
offloading the heavy computation elsewhere (e.g., the cloud).
Our implementation uses OpenCV [14] for image-related
operations and YOLO [66, 67], a GPU-enabled pre-trained
neural network, for object recognition. Videos are encoded
with H.264 [69]. Our implementation uses GStreamer [83]
with x264enc plugin (zerolatency and constant quality).
The quantization factor affecting encoding quality becomes a
knob in addition to image resolutions and frame rates.
Object recognition returns a list of bounding boxes with the
object type. Each bounding box is a rectangle with normalized
coordinates on the image. We compare the detection against

3https://github.com/awstream/awstream

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

- 4)

1 (f2:2)
f2 (3:1) (f1: 4)
(2:2) oeeennns

f2 (f4: 1)

[4)
H2:2)

! maybe . © maybe
: head(N) ——: threshold(T)
N=3 | v T=2

(f2: 5)
(f1: 4)

N 13:49)[Top-k
M)|

- maybe . ¢ maybe .‘/ Analyti
Log Window head(N) —+ threshold(T) + (3: 4) Server (Analytics)
(1 second) LUN=3 ¢ (23

Client (Source)

Figure 7. A distributed Top-K application with two degradation
operations: head and threshold. In this example, £2, which is
not in Top-1 for either client, becomes the global Top-1 after the
merge. It would have been purged if the clients use threshold T=3,
demonstrating degradation that reduces data sizes affects fidelity.

the reference result from raw data, and declare it success if
the intersection over union (IOU) is greater than 50% [29]
and the object type matches. We use F1 score [70] as the
accuracy function. In terms of dataset, we collected our own
video clips: the training data is a 24-second long video of an
office environment; the test data is a 246-second long video
of a home environment.

Pedestrian Detection. This application analyzes streams of
videos from installed CCTV cameras and detects pedestrians
inside. We use a similar setup (OpenCV and GStreamer) as
our augmented reality application except for the analytical
function. To detect pedestrians, we use GPU-accelerated his-
togram of oriented gradients (HOG) [24] with the default
linear SVM classifier from OpenCV. Because we do not rec-
ognize individual pedestrians, a successful detection in this
case only requires matching the bounding box. Our evaluation
uses MOT'16 dataset [53] for both profiling and runtime.

Distributed Top-K. This application aggregates machine
logs from geo-distributed servers to find out the Top-K most
accessed files, similar to many Top-K queries [10].

Figure 7 illustrates our processing pipeline with two degra-
dation operations. First each source node summarizes the
log using Window operator to reduce the data size, a pre-
processing step. As many real-world access patterns follow a
long tail distribution, there can be a large-but-irrelevant tail
that contributes little to the final Top-K. Each source node
then filters the tail: (1) head(N) takes the top N entries; (2)
threshold(T) filters small entries whose count is smaller than
T. These two operations affect the final result and the exact
impact depends on data distribution. We implement these two
operators by using AW Stream’s maybe abstraction.

To measure the accuracy, we need to compare the correla-
tion between two ranked list. Kendall’s 7 [4] is a correlation
measure of the concordance between two ranked list. The
output ranges from —1 to 1, representing no agreement to
complete agreement. To integrate with AW Stream, we con-
vert Kendall’s 7 to [0, 1] with a linear transformation. For our
evaluation, we set K as 50 and use Apache log files that record
and store user access statistics for the SEC.gov website. The

243

B. Zhang et al.

logs are split into four groups, simulating four geo-distributed
nodes monitoring web accesses. To match the load of popular
web servers, we compress one hour’s logs into one second.

S EVALUATION

In this section, we show the evaluations of AW Stream, sum-
marizing the results as follows.

§5.1 AWStream generates Pareto-optimal profiles across
multiple dimensions with precision (Figure 8).

§5.2 Our parallel and sampling techniques speeds up offline
and online profiling (Figure 9, Figure 10).

§5.3 At runtime, AWStream achieves sub-second latency
and nominal accuracy drop for all applications (Fig-
ure 11, Figure 12) and across various network condi-
tions (Figure 13).

§5.4 AWStream profiles allow different resource allocations:
resource fairness and utility fairness (Figure 14).

5.1 Application Profiles

We run offline profiling using the training dataset described
in Table 3 and show the learned profiles in Figure 8. In each
figure, the cross dots represent the bandwidth demand and
application accuracy for one configuration. We highlight the
Pareto-optimal boundary P with blue dashed lines. To under-
stand each dimension’s impact on the degradation, we high-
light configurations from tuning only one dimension. From
these profiles, we make the following observations:

Large bandwidth variation. For all three applications, The
bandwidth requirements of all three applications have two to
three orders of magnitude of difference (note the x-axis is in
log scale). For AR and PD, the most expensive configuration
transmits videos at 1920x1080, 30 FPS and 0 quantization;
it consumes 230 Mbps. In contrast to the large bandwidth
variation, there is a smaller variation in accuracy. In PD, for
example, even after the bandwidth reduces to 1 Mbps (less
than 1% of the maximum), the accuracy is still above 75%.
The large variation allows AW Stream to operate at a high ac-
curacy configuration even under severe network deterioration.

Distinct effects by each dimension. Comparing dashed lines
in each profile, we see that the Pareto-optimal configurations
are only achievable when multiple knobs are in effect. Tuning
only one dimension often leads to sub-optimal performance.
Within a single profile, the difference between tuning individ-
ual dimensions is evident. For PD, tuning resolution (the red
line) leads to a quicker accuracy drop than tuning frame rate
(the yellow line). Comparing AR and PD, the same dimension
has different impact. Tuning resolution is less harmful in AR
than PD; while tuning frame rate hurts AR more than PD. This
echoes our initial observation in §2.3 that application-specific
optimizations do not generalize.

AWStream: Adaptive Wide-Area Streaming Analytics

- *- Pareto boundary - = - tune quantizer

tune framerate

- +- tune resolution

B 0.75- IR ks

L 050 o f ¥

€ 0251 .- !

3 ¢ i

8 0.00-] ,
1 100

- - Pareto boundary - = - tune quantizer

Bandwidth (Mbps)

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

- e- Pareto boundary - =- tune T

tune framerate - +- tune resolution = tune N
L 1.004 7 » 1.0 —
8 M,._,_.-""’r ++ = ,,;,r"*"g.‘.
@ 0.751 " I 2 o8- ar o™’
o . 1 1 Q . “'
= 0500 : < s

, ’ 1 > -
§ 025{ ¢/ p g 06 !'f
a '] + 5
2 000 : 8 0441 : :
1 100 10 100 1000

Bandwidth (Mbps)

Bandwidth (Kbps)

(a) Augmented Reality (AR)

(b) Pedestrian Detection (PD)

(¢) Top-K (TK)

Figure 8. Application profiles of three applications. Each cross point is one configuration ¢’s performance (B(c), A(c)). All figures show the
Pareto boundary as well as the performance if only tuning one dimension. Note the x-axis is in log scale.

60
- |j2 52 [l Offiine " Online
T

g5 10

g 10 7.6
e 52 42 Lo 40 175

0 | .
1 10 20 30

#GPUs

Figure 9. Parallelism speeds up both offline and online profiling.
The y-axis shows the profiling time for 1-second video.

5.2 Profiling Efficiency & Online Profiling

This section focuses on the AR application as a case study;
our profiling techniques—parallelism and sampling—do not
make assumptions about the application; therefore, the evalu-
ation results can be generalized to other applications.

In AR, there are 216 different configurations: 6 resolutions,
6 frame rates and 6 quantization levels. AR uses YOLO [67],
a neural network model for object detection. It takes roughly
30 ms to process one frame on GeForce® GTX 970.* But
different configurations require different times for processing.
For example, a 10 FPS video has 1/3 of the frames to process
in comparison to a 30 FPS video. In our experiment, to eval-
uate all 216 configurations, it takes 52 seconds for 1 second
worth of data. We denote such overhead as 52X. Section 3.2
discusses parallel and sampling techniques to improve the
profiling efficiency; we present their evaluations as follows.

Parallelism reduces the profiling time (Figure 9). Because
evaluating each individual configuration is independent of
other configurations, we parallelize the profiling task by as-
signing configurations to GPUs. (i) Our offline profiling as-
signs configurations randomly. With the increased number of
GPUs, the overhead reduces from 52X to 4X with 30 GPUs.
(if) Our online profiling assigns configurations based on the
processing times collected during offline. AWStream uses

4YOLO resizes images to fixed 416x416 resolutions as required by the neural
network. Evaluating images with different resolutions takes similar time.

244

LFS [41] to minimize the makespan and reduces the overhead
to 1.75X with 30 GPUs (29% gain).

Sampling techniques speed up online profiling (Figure 10).
Before we evaluate the speed up, we validate model drift with

real-world data. When using the profile trained in an office

environment, the application should use a configuration of
1280x720, 30 FPS and 20 quantization to meet an 11 Mbps

goal. We test it against a home environment; but at about

t=100s, the camera points out of the window to detect objects

on the street. Because of the scene change, the configuration

fails to predict bandwidth, as illustrated in Figure 10a.

To correct the profile, if we continuously run the profiling
online and update the profile, the application will choose the
right configuration to meet the bandwidth limit. Figure 10b
shows the bandwidth prediction when we continuously profile
with the past 30 seconds of video. At time t=120s, the new
prediction corrects the drift. The downside of continuous
profiling, as discussed earlier, is the cost: 52X overhead with
1 GPU. In addition to parallelism, AW Stream uses sampling
techniques for online profiling (improvements in Table 4):

(i) Partial data. Instead of using all the past data, we run
profiling with only a fraction of the raw data. Figure 10c
shows the bandwidth consumption if the profiling uses only
10 seconds of data out of the past 30 seconds. In this way,
although the profile may be less accurate (the mis-prediction
at t=80-100s), and there is a delay in reacting to data change
(the mis-prediction is corrected after t=125s), we save the
online profiling by 3x (from 52X to 17X).

(i1) Partial configurations. If we use the past profile as a
reference and only measure a subset of PP, the savings can be
substantial. A full profiling is only triggered if there is a signif-
icant difference. Figure 10d shows the bandwidth prediction
if we evaluate 5 configurations continuously and trigger a full
profiling when the bandwidth estimation is off by 1 Mbps or
the accuracy is off by 10%. For our test data, this scheme
is enough to correct model drifts by predicting an accurate
bandwidth usage (compare Figure 10b and Figure 10d). The

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

£ 25 £ 25
S% 20 Potosestes S% 20 r
28 15 ! 22 15 K3
BS 10 |ageeenetese - mimime s BS 10 [aaeseetess - sisisiniee
IS 5 TS 5
m 0 m 0
0 50 100 150 200 0 50 100 150 200
time (seconds) time (seconds)
(a) Offline only (b) Online (continuous)
£ 25 £ 25
S% 20 g % 20 2
28 15 P 232 15 e
BS 10 |wesweni ol beverinees BS 10 [ssaeeeatene - wminininiee
T 5 ooe T 5
m 0 m 0
0 50 100 150 200 0 50 100 150 200

time (seconds) time (seconds)

(c) Partial data (d) Partial configurations

Figure 10. The horizontal reference line is the target bandwidth
(11 Mbps). (1) Online profiling is necessary to handle model drift
((a) vs. (b-d)). (2) Sampling techniques—partial data (c) and partial
configurations (d)—can correct model drift with less profiling over-
head (see Table 4), compared to continuous (b). We omit accuracy
predictions since in all schemes AWStream finds configurations that
achieve similarly high accuracy (~90%).

Online scheme Overhead Improvements
Continuous 52X Baseline
Partial data 17X 3x

Partial configurations 6X 8.7x

Table 4. Compared to the continuous profiling baseline (52X over-
head), our sampling techniques speed up by 3x or 8.7x.

overhead reduces to 6X because we run full profiling less
often (only two full profiling). It is an 8.7 gain.

Note that these techniques—parallelization, sampling data,
and sampling configurations—can be combined to further re-
duce the profiling overhead. For example, scheduling 5 GPUs
running 5 configurations continuously to check for model drift
will reduce the overhead to 1X. In practice, the amount of
resources to use depends on the budget and the importance of
the job. AWStream currently requires developers to configure
the application with proper online profiling techniques.

5.3 Runtime Adaptation

In this section, we evaluate the runtime performance by con-
trolling bandwidth across geo-distributed sites and compare
AW Stream with baselines including streaming over TCP/UDP,
JetStream, and video streaming. Due to limited space, we dis-
cuss AR in depth and only present the results of PD/TK.

Experiment setup. We conduct our experiments on four geo-
distributed machines from Amazon EC2, spanning four dif-
ferent regions. Three (at N. Virginia, Ohio, Oregon) act as
worker nodes and one (at N. California) acts as the analytics
server. The average RTTs from the workers to the server are
65.2ms, 22.2ms, and 50.3 ms.

245

B. Zhang et al.

During the experiment, each worker transmits test data (Ta-
ble 3) for about 10 mins. If the duration of the test data is less
than 10 mins, it loops. Because B(cyay) is prohibitively large
(raw videos consumes 230 Mbps), we use a reasonable con-
figuration to limit the maximum rate. In our AR experiment,
Cmax 18 1600x900 resolution, 30 FPS and 20 quantization; it
consumes about 14 Mbps.

Our bandwidth control scheme follows JetStream [65].
During the experiment, we use the Linux tc utility with
HTB [25, 40] to control the clients’ outgoing bandwidth. Each
experiment involves four phases: (i) before t=200s, there is no
shaping; (ii) at t=200s, we limit the bandwidth to 7.5 Mbps for
3 minutes; (iii) at t=380s, we further decrease the bandwidth
to 5 Mbps; (iv) at t=440s, we remove all traffic shaping. For
UDP, HTB doesn’t emulate the packet loss or out-of-order
delivery; so we use netem and configure the loss probability
according to the delivery rate. Because each pair-wise con-
nection has a different capacity, we impose a background
bandwidth limit—25 Mbps—such that all clients can use at
most 25 Mbps of network bandwidth.

We compare AW Stream with the following baselines:

o Streaming over TCP/UDP (non-adaptive). For TCP, we re-
use AWStream runtime that runs over TCP but disable the
adaptation. For UDP, we use FFmpeg [12] to stream video:
RTP/UDP [74] for media and RTSP for signaling [75]; as
in typical video conferencing and IP cameras [27, 42].

e Adaptive video streaming. We use HTTP Live Streaming
(HLS) to represent popular adaptive video streaming tech-
niques. Our setup resembles personalized live streaming
systems [93] but uses a smaller chunk for low latency (1
second instead of typical 2-10 seconds).

o JetStream with the manual policy described in §2.3.

e JetStream++, a modified version of JetStream that uses the
profile learned by AW Stream.

At runtime, AW Stream differs from JetStream in both pol-
icy and adaptation. JetStream++ improves over JetStream by
using our Pareto-optimal profile. AWStream improves the
performance further with two major changes: (i) AWStream
directly measures the delivery rate to select an appropriate
configuration to match available bandwidth while JetStream
employs a latency-based measure of capacity ratio; (ii) AW-
Stream has an explicit probe phase while JetStream changes
its policy immediately after capacity ratio changes.

Results. Figure 11a shows the runtime behavior of AW Stream
and all baselines in time series. Figure 11b summarizes the
latency and accuracy with box plots during bandwidth shaping
(between t=200s and t=440s).

The throughput figure (Figure 11a) shows the effect of
traffic shaping. During the shaping, TCP and UDP make full
use of the available bandwidth; in comparison, AW Stream,
JetStream, JetStream++, and HLS are conservative because of

AWStream: Adaptive Wide-Area Streaming Analytics

- = — AWStream
-+ = HLS

JetStream++ — = - JetStream
Streaming over TCP — % — Streaming over UDP

25.0 1
o 20.01

15.01
10.0 1
5.01
0.0+
0 200

(mbps

Throughput

100
10.0 1
1.0 1

Latency
(seconds)
o

600

1.00 1
0.75 1
0.50 1
0.25 1

]

Accuracy
(F1 Score)
o

8

e

400 600

Time (seconds)

200

o

(a) Time-series plot of the runtime behaviors: throughput (top), show-
ing the effect of bandwidth shaping; latency (middle) in log scale;
and accuracy (bottom). Overlapped lines may be hard to read; we
present the same results in Figure 11b for clarity.

Latency (ms)

Accuracy (F1 score)

AWStream
JetStream++

or—
~—{T-

JetStream - —_—
HLS 4 4
Streaming over TCP - —TF
Streaming over UDP 1 } 13 - -
100 1000 10000 0 02 04 06 08 1
(b) Latency and accuracy during the traffic shaping (t=200s—440s).

._II]_

I

Figure 11. For AR, AWStream simultaneously achieves low latency
and high accuracy (accuracy has a smaller variation).

adaptation (see their throughput drops). When we stop shap-
ing at t=440s, TCP catches up by sending all queued items as
fast as possible. JetStream also has queued items because the
policy in use (with only three rules) cannot sustain 5 Mpbs
bandwidth. AW Stream’s throughput increases gradually due
to the explicit probing phase. HLS is the most conservative
scheme; it does not recover from degradation until t=500s.
The latency figures (both Figure 11a and Figure 11b) show
that AW Stream is able to maintain sub-second latency. During
the traffic shaping, TCP queues items at the sender side for
up to hundreds of seconds. In contrast, UDP always trans-
mits as fast as possible, leading to a consistent low latency.”
HLS’s latency fluctuates around 4-5 seconds due to chunking,
buffering, and network variations, on par with recent litera-
ture [93]. Both JetStream and JetStream-++ are able to adapt
during traffic shaping. With a more precise and fine-grain pol-
icy, JetStream++ achieves a lower latency (median 539 ms)
in comparison to JetStream (median 1732 ms). Because Jet-
Stream’s runtime reacts instantaneously when the congestion
condition changes, both baselines easily overcompensate and

SFFmpeg discards packets that miss a deadline (33 ms for 30 FPS).

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

246

(a) PD Latency (ms) Accuracy (F1 score)
AWStream-{ H}—- I
JetStream++4 =-~—T+H —T+
JetStream{ - -« === fp— I+
HLS - + I+
Streaming over TCP -—ATH -
Streaming over UDP | I--
100 1000 10000 0 02 04 06 08 1
(b) TK Latency (ms) Accuracy (F1 score)
AWStream — 1+ 1
Streaming over TCP - —T}F i
Streaming over UDP { | —{ T+
100 1000 10000 0.00 0.25 0.50 0.75 1.00

Figure 12. PD and TK performance summary. Box plot shows la-
tency and accuracy during the traffic shaping (i.e., t=200s-440s).

exhibit oscillation among polices during the experiment. AW-
Stream effectively addresses the oscillation with probing and
achieves a much lower latency: median 118 ms, 15X improve-
ment over JetStream and 5X improvement over JetStream-++.

The accuracy figures (both Figure 11a and Figure 11b)
show that other than UDP, most schemes are able to maintain
high accuracy. streaming over TCP always sends data at high
fidelity, achieving the highest accuracy (median 93%), but at
a cost of high latency. JetStream uses a manual policy that
are sub-optimal in comparison to our learned profile, so its
accuracy is low (median 84%). Using Pareto-optimal config-
urations, JetStream++ is able to achieve a higher accuracy
(median 89%); but because JetStream’s runtime oscillates the
policy, the accuracy has a large variation (standard deviation
14%). In contrast, AWStream chooses configurations care-
fully to stay in a steady state as much as possible. It achieves
a high accuracy of 89% with a small variation (standard devi-
ation 7.6%). HLS also achieves reasonable accuracy (median
87%) because its adaptation of tuning resolution and encod-
ing quality is effective in AR. However, HLS’s adaptation
works poorly for PD (6% accuracy as in Figure 12a).

In summary, Figure 11 shows that AWStream achieves
low latency and high accuracy simultaneously. The latency
improvement over JetStream allows interactive applications,
such as AR, to feel responsive rather than interrupted [57]. We
show the results during shaping in a different form in Figure 1
to discuss the trade-off between fidelity and freshness.°

Pedestrian Detection. The setup for PD is the same with
AR: three clients and one server on EC2. ¢y« is 1920x1080
resolution, 10 FPS and 20 quantization; it consumes about
12 Mbps. For PD, AW Stream learns that resolution is more
important than frame rate. Hence it favors 1080p with 10FPS
over 900p with 30FPS. We use the same bandwidth shaping
schedule and baselines as AR. Figure 12a shows the result
and most observations about latency/accuracy are the same as
AR. HLS has a poor accuracy because it reduces resolution

%We obtain Figure 1’s app-specific data by feeding PD’s profile to AR. We
refer to JetStream as manual policies in Figure 1.

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

x Latency (ms) Accuracy (F1 score)
£a off=- w— LT
£ £ 50 O - — T —
22100 O—=- - - —L—
5 & 1504 O—~- L
® @ 200 —-—- LT
8Q 250 Ch——me || - o o T3
< 0 1000 2000 06 0.7 08 0.9

Figure 13. AWStream maintains low latency and high accuracy
under different network delay conditions.

and encoding quality during adaptation. AW Stream is able
to achieve the lowest latency (78 ms) with small accuracy
drop (86%, 6% drop in comparison to TCP). In comparison
to JetStream, AW Stream improves the latency by 20x (from
1535 ms to 78 ms) and accuracy by 1% (from 84% to 85%).

Top-K. For TK, we use four clients and one server because
our logs are split into four groups. cpax is N = 9750 for
head and T = 0 for threshold; it consumes about 1.2 Mbps.
Because the overall bandwidth consumption is much smaller
than video analytics, we modify the bandwidth parameter: dur-
ing t=200-380s, we limit the bandwidth to 750 Kbps; during
t=380-440s, the bandwidth is 500 Kbps; the background limit
is 2.5 Mpbs. We only compared AW Stream with streaming
over TCP and UDP. JetStream’s Top-K is based on TPUT [16]
that targets at queries asked hourly or daily. We did not imple-
ment our Top-K pipeline (Figure 7) with JetStream because
video analytics suffice the purpose of comparison. Figure 12b
shows the evaluation results. Streaming over TCP has the
highest accuracy (99.7%) but the worst latency (up to 40 sec-
onds). Streaming over UDP has the lowest latency but the
worst accuracy (52%). AWStream achieves low latency (1.1
seconds) and high accuracy (98%) simultaneously. Notice
that because TK’s source generates data every second after
Window, one object in the queue leads to one second latency.

Performance with Varying Network Delays

AWStream targets at wide area whose key characteristic is
the large variation in latency [48]. While we have conducted
experiments using real-world setup on EC2, the latency be-
tween EC2 sites is relatively low. To evaluate how AW Stream
performs with increased network delays, we conducted an-
other experiment with one pair of client and server under
different network conditions. We use netem to add delays,
up to 250 ms each way, so the added RTT can be as high as
500 ms. The delay follows a normal distribution where the
variation is 10% (e.g., 250 + 25ms).

Figure 13 shows the runtime behavior with various added
network delays. While the latency increases with the added
delay, AWStream mostly manages to achieve sub-second la-
tency for all conditions. We see a higher variation in latency
and more outliers as network delay increases, because the
congestion detection is slow when the RTT is high. In terms
of accuracy, because AWStream mostly stays in Steady state
and accuracy only depends on the level of degradation, AW-
Stream achieves similar accuracy for different network delays.

247

B. Zhang et al.
= = = Pedestrian Detection Augmented Reality
5 15.0 5 1509
£ 100{" 25 100{" 1
32 50 N 32 50 N
E g pameant S PR x_c— g 0000000000000000000000000%:
= 0.0 . . = 0.0 ; ;
100 200 100 200
D 1.00 D 1.00
&5 0901==w_____ 35 090==_
€ O 0.80 i 8o pgo{ TTmTm===
3% 0701 39 0704
S 0601 QL 0601
<<= 050+ i i < <= 050+ i i
100 200 100 200
Time (seconds) Time (seconds)
(a) Resource Fairness (b) Utility Fairness

Figure 14. AWStream allows different resource allocation schemes.

5.4 Resource Allocation and Fairness

We evaluate resource allocations with two applications. In
this way, the result also covers the case of a single application,
and can generalize to more applications.

We choose AR and PD as the example applications. The
clients and servers of both applications are co-located so that
they share the same bottleneck link. The experiment starts
with sufficient bandwidth. At t=60s, we start traffic shaping
to limit the total bandwidth to 6 Mbps. When we allocate re-
source equally between two applications (Figure 14a), each
application gets 3 Mbps. Under this condition, PD runs with a
higher accuracy of 85% while AR only achieves 77%. In addi-
tion to resource fairness, AWStream supports utility fairness:
it chooses configurations that maximize the minimal accu-
racy. In this experiment, PD receives 2 Mbps and AR receives
4 Mbps; and both achieve 80% accuracy (Figure 14b).

6 DISCUSSION AND FUTURE WORK

Reducing Developer Effort. While AWStream simplifies
developing adaptive applications, there are still application-
specific parts required for developers: wrapping appropriate
maybe calls, providing training data, and implementing accu-
racy functions. Because AWStream’s API is extensible, we
plan to build libraries for common degradation operations and
accuracy functions, similar to machine learning libraries.

Fault-tolerance and Recovery. AWStream tolerates band-
width variation but not network partition or host failure. Al-
though servers within data centers can handle faults in existing
systems, such as Spark Streaming [95], it is difficult to make
edge clients failure-oblivious. We leave failure detection and
recovery as a future work.

Profile Modeling. AW Stream currently performs an exhaus-
tive search when profiling. While parallelism and sampling
are effective, profiling complexity grows exponentially with
the number of knobs. Inspired by recent success of using
Bayesian Optimization [61, 78, 80] to model black-box func-
tions, we are currently exploring multi-objective Bayesian

AWStream: Adaptive Wide-Area Streaming Analytics

Optimization [37] that can find near-optimal configurations
without exhaustive search.

Bandwidth Estimation and Prediction. Accurately estimat-
ing and predicting available bandwidth in wide area remains
a challenge [39, 98]. AWStream uses network throughput and
behaves cautiously to avoid building up queues: congestion
is detected at both sender/receiver; data rate only increases
after probing. Recent research on adaptive video streaming
explores model predictive control (MPC) [81, 94] and neural
network [51]. We plan to explore these techniques next.

7 RELATED WORK

JetStream. JetStream is the first to use degradation to re-
duce latency for wide-area streaming analytics. Compared to
JetStream, AW Stream makes five major contributions: (1) a
novel API design to specify degradation in a simple and
composable way; (2) automatic offline profiling to search for
Pareto-optimal configurations; (3) online profiling to address
model drift; (4) an improved runtime system achieving sub-
second latency (comparison in §5.3); (5) support for different
resource allocation policies for multiple applications.

Stream Processing Systems. Early streaming databases [1,
19] have explored the use of dataflow models with special-
ized operators for stream processing. Recent research projects
and open-source systems [6, 17, 45, 86, 95] primarily focus
on fault-tolerance in the context of a single cluster. When
facing back pressure, Storm [86], Spark Streaming [95] and
Heron [45] throttle data ingestion; Apache Flink [17] uses
edge-by-edge back-pressure techniques similar to TCP flow
control; Faucet [47] leaves the flow control logic up to de-
velopers. While our work has a large debt to prior streaming
work, AWStream targets at the wide area and explicitly ex-
plores the trade-off between data fidelity and freshness.

Approximate Analytics. The idea of degrading computation
fidelity for responsiveness is also explored elsewhere, such
as SQL queries [5, 9], real-time processing [30], and video
processing within large clusters [96]. They employ techniques
such as programming language support [72], sampling [32],
sketches [23], and online aggregation [36]. The trade-off be-
tween available resource and application accuracy is a com-
mon theme among all these systems. AW Stream targets at
wide-area streaming analytics, an emerging application do-
main especially with the advent of IoT.

WAN-Aware Systems. Geo-distributed systems need to cope
with high latency and limited bandwidth. While some systems
assume the network can prioritize a small amount of critical
data under congestion [20], most systems reduce data sizes
in the first place to avoid congestion (e.g., LBFS [55]). Over
the past two years, we have seen a plethora of geo-distributed
analytical frameworks [43, 64, 89-91] that incorporate hetero-
geneous wide-area bandwidth into query optimization to mini-
mize data movement. While effective in speeding up analytics,

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

248

these systems focus on batch tasks such as MapReduce jobs or
SQL queries. Such tasks are often executed infrequently and
without real time constrain. In contrast, AW Stream processes
streams continuously in real time.

(Adaptive) Video Streaming. Multimedia streaming proto-
cols (e.g., RTP [74]) aim to be fast instead of reliable. While
they can achieve low latency, their accuracy can be poor un-
der congestion. Recent work has moved towards HTTP-based
protocols and focused on designing adaptation strategy to im-
prove QoE, as in research [51, 81, 94] and industry (HLS [62],
DASH [52, 79]). These adaptation strategies are often pull-
based: client keeps checking the index file for changes. And
clients have to wait for the next chunk (typically 2-10 sec-
onds). In addition, as we have shown in §5.3, their adapta-
tion is a poor match for analytics that rely on image details
(e.g., 6% accuracy for PD). In contrast, AWStream learns an
adaptation strategy for each application (also not limited to
video analytics); and the runtime is optimized for low latency.

QoS. Most QoS work [31, 76, 77] in the 1990s focuses on
network-layer solutions that are not widely deployable. AW-
Stream adopts an end-host application-layer approach ready
today for WAN. For other application-layer approaches [87],
AWStream’s API can incorporate their techniques, such as
encoding the number of layers as a knob to realize the lay-
ered approach in Rejaie et al [68]. Fundamentally, AW Stream
does not provide hard QoS guarantees; instead AW Stream
maximizes achievable accuracy (application performance)
and minimizes latency (system performance) with respect to
bandwidth constraints: a multidimensional optimization.

8 CONCLUSION

This paper presents AW Stream, a stream processing system
for a wide variety of applications by enabling developers to
customize degradation operations with maybe operators. Our
automatic profiling tool generates an accurate profile that
characterizes the trade-off between bandwidth consumption
and application accuracy. The profile allows the runtime to
react with precision. Evaluations with three applications show
that AWStream achieves sub-second latency with nominal
accuracy drop. AWStream enables resilient execution of wide-
area streaming analytics with minimal developer effort.

ACKNOWLEDGMENTS

We thank the anonymous SIGCOMM reviewers and our shep-
herd Mosharaf Chowdhury for their thoughtful feedback on
this paper. Kaifei Chen and Pan Hu provided valuable feed-
back to an early version of this manuscript.

This work was supported in part by TerraSwarm, one of
six centers of STARnet, a Semiconductor Research Corpo-
ration program sponsored by MARCO and DARPA. Xin Jin
is supported by NSF under grant CRII-NeTS-1755646 and a
Facebook Communications & Networking Research Award.

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

REFERENCES

(1]

[2

—

(3]

[4

—_

[5

—

[6

—

[7

—

(8]

[9

—

(10]

[11]
[12]

[13]

Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, et al. 2005. The Design of
the Borealis Stream Processing Engine. In CIDR, Vol. 5. Asilomar, CA,
277-289.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-
scale Machine Learning. In /2th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Associa-
tion, GA, 265-283. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi

Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi.
2017. Enabling High-Quality Untethered Virtual Reality. In /4th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). USENIX Association, Boston, MA, 531-544.
https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/abari

Hervé Abdi. 2007. The Kendall Rank Correlation Coefficient. Encyclo-
pedia of Measurement and Statistics. Sage, Thousand Oaks, CA (2007),
508-510.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. 2013. BlinkDB: Queries with Bounded
Errors and Bounded Response Times on Very Large Data. In Pro-
ceedings of the 8th ACM European Conference on Computer Sys-
tems (EuroSys '13). ACM, 29-42. https://doi.org/10.1145/2465351.
2465355

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. 2013. MillWheel: Fault-tolerant Stream Processing
at Internet Scale. Proceedings of the VLDB Endowment 6, 11 (2013),
1033-1044. https://dl.acm.org/citation.cfm?id=2536229

Sara Alspaugh, Bei Di Chen, Jessica Lin, Archana Ganapathi, Marti A
Hearst, and Randy H Katz. 2014. Analyzing Log Analysis: An
Empirical Study of User Log Mining. In Proceedings of the 28th
USENIX Conference on Large Installation System Administration
(LISA’14). USENIX Association, Berkeley, CA, USA, 53-68. http:
/[dl.acm.org/citation.cfm?id=2717491.2717495

Amazon. 2017. Amazone EC2 Pricing. https://aws.amazon.com/
ec2/pricing/. (2017). Accessed: 2017-04-12.

Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi
Ren, Ion Stoica, Adam Wierman, and Minlan Yu. 2014. GRASS:
Trimming Stragglers in Approximation Analytics. In 7/th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 14). USENIX Association, Seattle, WA, 289-302.
https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/ananthanarayanan

Brian Babcock and Chris Olston. 2003. Distributed Top-K Monitoring.
In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data (SIGMOD’03). ACM, New York, NY, USA,
28-39. https://doi.org/10.1145/872757.872764

Naveen Balani and Rajeev Hathi. 2016. Enterprise IoT: A Definitive
Handbook. CreateSpace Independent Publishing Platform.

Fabrice Bellard, M Niedermayer, et al. 2012. FFmpeg. https://www.
ffmpeg.org/. (2012).

Sanjit Biswas, John Bicket, Edmund Wong, Raluca Musaloiu-e, Apurv
Bhartia, and Dan Aguayo. 2015. Large-scale Measurements of Wireless
Network Behavior. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM’15). ACM,
New York, NY, USA, 153-165. https://doi.org/10.1145/2785956.
2787489

249

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

B. Zhang et al.

G. Bradski. 2000-2017. The OpenCV Library. Doctor Dobbs Journal
(2000-2017). http://opencv.org

Matt Calder, Xun Fan, Zi Hu, Ethan Katz-Bassett, John Heidemann,
and Ramesh Govindan. 2013. Mapping the Expansion of Google’s
Serving Infrastructure. In Proceedings of the 2013 Conference on Inter-
net Measurement Conference (IMC’13). ACM, New York, NY, USA,
313-326. https://doi.org/10.1145/2504730.2504754

Pei Cao and Zhe Wang. 2004. Efficient Top-K Query Calculation in
Distributed Networks. In Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing. ACM, 206-215.
Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache flink: Stream and
batch processing in a single engine. Data Engineering 38, 4 (2015).
https://flink.apache.org/

Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, et al. 2017. BBR: Congestion-based Congestion Control.
Commun. ACM 60, 2 (2017), 58-66. http://dl.acm.org/citation.cfm?
id=3042068.3009824

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J
Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R Madden, Fred Reiss, and Mehul A Shah. 2003. Tele-
graphCQ: Continuous Dataflow Processing. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of
Data (SIGMOD’03). ACM, New York, NY, USA, 668-668. https:
//doi.org/10.1145/872757.872857

Brian Cho and Marcos K Aguilera. 2012. Surviving Congestion in Geo-
Distributed Storage Systems. In USENIX Annual Technical Conference
(USENIX ATC 12). USENIX, 439-451. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/cho

Cisco. 2013. The Zettabyte Era: Trends and Analysis. http:
/lwww.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.html. Cisco
White Paper (2013).

Benjamin Coifman, David Beymer, Philip McLauchlan, and Jitendra
Malik. 1998. A Real-time Computer Vision System for Vehicle Track-
ing and Traffic Surveillance. Transportation Research Part C: Emerging
Technologies 6, 4 (1998), 271-288.

Graham Cormode. 2011. Sketch Techniques for Massive Data. Syn-
poses for Massive Data: Samples, Histograms, Wavelets and Sketches
(2011), 1-3.

Navneet Dalal and Bill Triggs. 2005. Histograms of Oriented Gradients
for Human Detection. In Proceedings of the 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR’05)
- Volume 1 - Volume 01 (CVPR ’05). IEEE Computer Society, Washing-
ton, DC, USA, 886-893. https://doi.org/10.1109/CVPR.2005.177
Martin Devera. 2001-2003. HTB Home. http://luxik.cdi.cz/~devik/
gos/htb/. (2001-2003). Accessed: 2017-04-08.

Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. 2012.
Pedestrian Detection: An Evaluation of the State of the Art. /[EEE
transactions on pattern analysis and machine intelligence 34, 4 (2012),
743-761.

Arjan Durresi and Raj Jain. 2005. RTP, RTCP, and RTSP-Internet
Protocols for Real-Time Multimedia Communication. (2005).

ESnet. 2014-2017. iPerf: The TCP/UDP bandwidth measurement tool.
http://software.es.net/iperf/. (2014-2017). Accessed: 2017-03-07.
Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and
Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC)
Challenge. Int. J. Comput. Vision 88, 2 (June 2010), 303-338. https:
//doi.org/10.1007/s11263-009-0275-4

Anne Farrell and Henry Hoffmann. 2016. MEANTIME: Achieving
Both Minimal Energy and Timeliness with Approximate Computing.
In 2016 USENIX Annual Technical Conference (USENIX ATC 16).
USENIX Association, Denver, CO, 421-435. https://www.usenix.
org/conference/atc16/technical-sessions/presentation/farrell

AWStream: Adaptive Wide-Area Streaming Analytics

(31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Domenico Ferrari and Dinesh C Verma. 1990. A Scheme for Real-
time Channel Establishment in Wide-area Networks. IEEE journal on
Selected Areas in communications 8, 3 (1990), 368-379.

Minos N. Garofalakis and Phillip B. Gibbon. 2001. Approximate
Query Processing: Taming the TeraBytes. In Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB '01).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 725-.
http://dl.acm.org/citation.cfm?id=645927.672356

GE. 2017. Industrial Internet Insights. https://www.ge.com/digital/
industrial-internet. (2017). Accessed: 2017-09-23.

Google. 2009-2017. Nest Cam Indoor. https://www.dropcam.com.
(2009-2017). Accessed: 2017-04-03.

Sarthak Grover, Mi Seon Park, Srikanth Sundaresan, Sam Burnett,
Hyojoon Kim, Bharath Ravi, and Nick Feamster. 2013. Peeking Behind
the NAT: An Empirical Study of Home Networks. In Proceedings of the
2013 Conference on Internet Measurement Conference (IMC’13). ACM,
New York, NY, USA, 377-390. https://doi.org/10.1145/2504730.
2504736

Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online
Aggregation. In Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data (SIGMOD’97). ACM, New York,
NY, USA, 171-182. https://doi.org/10.1145/253260.253291
Daniel Hernandez-Lobato, Jose Hernandez-Lobato, Amar Shah, and
Ryan Adams. 2016. Predictive Entropy Search for Multi-Objective
Bayesian Optimization. In Proceedings of The 33rd International
Conference on Machine Learning (Proceedings of Machine Learn-
ing Research), Maria Florina Balcan and Kilian Q. Weinberger (Eds.),
Vol. 48. PMLR, New York, New York, USA, 1492-1501. http:
/Iproceedings.mir.press/v48/hernandez-lobatoa16.html

Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R Ganger, Phillip B Gibbons, and Onur Mutlu. 2017.
Gaia: Geo-Distributed Machine Learning Approaching LAN
Speeds. In [4th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). USENIX Association,
USENIX Association. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/hsieh

Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown,
and Ramesh Johari. 2012. Confused, Timid, and Unstable: Picking
a Video Streaming Rate is Hard. In Proceedings of the 2012 Internet
Measurement Conference (IMC "12). ACM, New York, NY, USA, 225-
238. https://doi.org/10.1145/2398776.2398800

Bert Hubert. 2002. Linux Advanced Routing & Traffic Control. http:
/Nlartc.org/. (2002). Accessed: 2017-04-06.

David Karger, Cliff Stein, and Joel Wein. 2010. Algorithms and Theory
of Computation Handbook. Chapman & Hall/CRC. 20-20 pages. http:
//dl.acm.org/citation.cfm?id=1882723.1882743

Joel W King. 2009. Cisco IP Video Surveillance De-
sign Guide. https://www.cisco.com/c/en/us/td/docs/solutions/
Enterprise/Video/IPVS/IPVS_DG/IPVS-DesignGuide.pdf. (2009).
Konstantinos Kloudas, Margarida Mamede, Nuno Preguica, and Ro-
drigo Rodrigues. 2015. Pixida: optimizing data parallel jobs in wide-
area data analytics. Proceedings of the VLDB Endowment 9, 2 (2015),
72-83. https://dl.acm.org/citation.cfm?id=2850582

Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler.
2012. Building Application Stack (BAS). In Proceedings of the
Fourth ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings (BuildSys ’12). ACM, New York, NY, USA,
72-79. https://doi.org/10.1145/2422531.2422546

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing
at Scale. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’15). ACM, New York, NY,

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

250

[46]

[47]

[48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(571
[58]

[59]

[60]

USA, 239-250. https://doi.org/10.1145/2723372.2742788

Frank Langfitt. 2013. In China, Beware: A Camera May
Be Watching You. http://www.npr.org/2013/01/29/170469038/
in-china-beware-a-camera-may-be-watching-you. (2013). Ac-
cessed: 2017-04-04.

Andrea Lattuada, Frank McSherry, and Zaheer Chothia. 2016. Faucet: a
User-Level, Modular Technique for Flow Control in Dataflow Engines.
In Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and
Systems for MapReduce and Beyond. ACM, 2.

Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010.
CloudCmp: Comparing Public Cloud Providers. In Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement (IMC’10).
ACM, New York, NY, USA, 1-14. https://doi.org/10.1145/1879141.
1879143

David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant
Keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004), 91-110. https:
//doi.org/10.1023/B:VIS1.0000029664.99615.94

Chaochao Lu and Xiaoou Tang. 2015. Surpassing Human-level Face
Verification Performance on LFW with Gaussian Face. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI'15). AAAI Press, 3811-3819. https:/dl.acm.org/citation.
cfm?id=2888245

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neu-
ral Adaptive Video Streaming with Pensieve. In Proceedings of the
Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’17). ACM, New York, NY, USA, 197-210.
https://doi.org/10.1145/3098822.3098843

MG Michalos, SP Kessanidis, and SL Nalmpantis. 2012. Dynamic
Adaptive Streaming over HTTP. Journal of Engineering Science and
Technology Review 5, 2 (2012), 30-34.

Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad
Schindler. 2016. MOT16: A Benchmark for Multi-Object Tracking.
arXiv preprint arXiv:1603.00831 (2016). https://motchallenge.net/
Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han,
Srinivasan Seshan, and Hui Zhang. 2015. Practical, Real-time Cen-
tralized Control for CDN-based Live Video Delivery. ACM SIG-
COMM Computer Communication Review 45, 4 (2015), 311-324.
https://dl.acm.org/citation.cfm?id=2787475

Athicha Muthitacharoen, Benjie Chen, and David Maziéres. 2001. A
Low-bandwidth Network File System. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles (SOSP’01). ACM,
New York, NY, USA, 174-187. https://doi.org/10.1145/502034.
502052

Cisco Visual Networking. 2016. Cisco Visual Networking In-
dex: Global Mobile Data Traffic Forecast Update, 2016-2021
White Paper. https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html. Cisco White Paper
(2016).

Jakob Nielsen. 1994. Usability Engineering. Elsevier.

Ashkan Nikravesh, David R Choffnes, Ethan Katz-Bassett, Z Morley
Mao, and Matt Welsh. 2014. Mobile Network Performance from User
Devices: A Longitudinal, Multidimensional Analysis. In Proceedings of
the 15th International Conference on Passive and Active Measurement
- Volume 8362 (PAM 2014). Springer-Verlag New York, Inc., New York,
NY, USA, 12-22. https://doi.org/10.1007/978-3-319-04918-2_2
The Division of Economic and Risk Analysis (DERA). 2003—
2016. EDGAR Log File Data Set. https://www.sec.gov/data/
edgar-log-file-data-set. (2003-2016). Accessed: 2017-01-25.
Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-
Chih Chen, Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyung-
tae Lee, Larry Davis, et al. 2011. A Large-scale Benchmark Dataset
for Event Recognition in Surveillance Video. In Proceedings of the

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

2011 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’11). IEEE Computer Society, Washington, DC, USA, 3153—
3160. https://doi.org/10.1109/CVPR.2011.5995586

Omid Alipourfard and Honggiang Harry Liu and Jianshu Chen and

Shivaram Venkataraman and Minlan Yu and Ming Zhang. 2017. Cher-

ryPick: Adaptively Unearthing the Best Cloud Configurations for

Big Data Analytics. In /4th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 17). USENIX Association,

Boston, MA, 469-482. https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/alipourfard

Roger Pantos and William May. 2016. HTTP Live Streaming. (2016).

https://tools.ietf.org/html/draft-pantos-http-live-streaming-19

Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015.

Deep Face Recognition. In Proceedings of the British Machine Vi-

sion Conference (BMVC). BMVA Press, Article 41, 12 pages. https:

//doi.org/10.5244/C.29.41

[64] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kan-

dula, Aditya Akella, Paramvir Bahl, and Ion Stoica. 2015. Low La-

tency Geo-Distributed Data Analytics. In Proceedings of the 2015

ACM Conference on Special Interest Group on Data Communica-

tion (SIGCOMM’15). ACM, New York, NY, USA, 421-434. https:

//doi.org/10.1145/2785956.2787505

Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J

Freedman. 2014. Aggregation and Degradation in JetStream: Streaming

Analytics in the Wide Area. In Proceedings of the 11th USENIX Con-

ference on Networked Systems Design and Implementation (NSDI’14).

USENIX Association, Berkeley, CA, USA, 275-288. http://dl.acm.

org/citation.cfm?id=2616448.2616474

Joseph Redmon. 2013-2017. Darknet: Open Source Neural Networks

in C. http://pjreddie.com/darknet/. (2013-2017).

Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster,

Stronger. arXiv preprint arXiv:1612.08242 (2016). http://arxiv.org/

abs/1612.08242

Reza Rejaie, Mark Handley, and Deborah Estrin. 2000. Layered Quality

Adaptation for Internet Video Streaming. /EEE Journal on Selected

Areas in Communications 18, 12 (2000), 2530-2543.

[69] Iain E. Richardson. 2010. The H.264 Advanced Video Compression
Standard (2nd ed.). Wiley Publishing.

[70] C. J. Van Rijsbergen. 1979. Information Retrieval (2nd ed.).
Butterworth-Heinemann, Newton, MA, USA.

[71] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T
Freeman. 2008. LabelMe: a Database and Web-based Tool for Image
Annotation. Int. J. Comput. Vision 77, 1-3 (May 2008), 157-173.
https://doi.org/10.1007/s11263-007-0090-8

[72] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate
Data Types for Safe and General Low-power Computation. In ACM
SIGPLAN Notices, Vol. 46. ACM, 164-174.

[73] Mahadev Satyanarayanan, Paramvir Bahl, Ramén Caceres, and Nigel
Davies. 2009. The Case for VM-based Cloudlets in Mobile Computing.
IEEE Pervasive Computing 8, 4 (Oct. 2009), 14-23. https://doi.org/
10.1109/MPRV.2009.82

[74] H Schulzrinne, S Casner, R Frederick, and V Jaconson. 2006. RTP: A
Transport Protocol for Real-Time. (2006).

[75] H Schulzrinne, A Rao, and R Lanphier. 1998. RTSP: Real time stream-
ing protocol. IETF RFC2326, april (1998).

[76] Scott Shenker. 1995. Fundamental Design Issues for the Future Internet.
IEEE Journal on selected areas in communications 13, 7 (1995), 1176—
1188.

[77] Scott Shenker, R Braden, and D Clark. 1994. Integrated services in the
Internet architecture: an overview. IETF Request for Comments (RFC)
1633 (1994).

[78] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical
Bayesian Optimization of Machine Learning Algorithms. In Advances

[61]

[62]

[63]

[65]

[66]

[67]

[68]

251

[79]

(80]

(81]

(82]

(83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

B. Zhang et al.

in neural information processing systems. 2951-2959.

Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Stream-
ing over the Internet. IEEE MultiMedia 18, 4 (Oct. 2011), 62-67.
https://doi.org/10.1109/MMUL.2011.71

Benjamin Solnik, Daniel Golovin, Greg Kochanski, John Elliot Karro,
Subhodeep Moitra, and D Sculley. 2017. Bayesian Optimization for a
Better Dessert. (2017). https://research.google.com/pubs/archive/
46507.pdf

Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu
Wang, Tao Liu, and Bruno Sinopoli. 2016. CS2P: Improving Video
Bitrate Selection and Adaptation with Data-Driven Throughput Pre-
diction. In Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference. ACM, ACM, 272-285. https://doi.org/10.1145/
2934872.2934898

Srikanth Sundaresan, Sam Burnett, Nick Feamster, and Walter De Do-
nato. 2014. BISmark: A Testbed for Deploying Measurements and
Applications in Broadband Access Networks. In Proceedings of the
2014 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 383—
394. http://dl.acm.org/citation.cfm?id=2643634.2643673
GStreamer Team. 2001-2017. GStreamer: Open Source Multimedia
Framework. (2001-2017). https://gstreamer.freedesktop.org/
TeleGeography. 2016. Global Internet Geography.
https://www.telegeography.com/research-services/
global-internet-geography/. (2016). Accessed: 2017-04-10.

James Temperton. 2015. One nation under CCTV: the fu-
ture of automated surveillance. http://www.wired.co.uk/article/
one-nation-under-cctv. (2015). Accessed: 2017-01-27.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, et al. 2014. Storm@ twitter. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 147-156. https://dl.acm.org/citation.cfm?id=2595641
Bobby Vandalore, Wu-chi Feng, Raj Jain, and Sonia Fahmy. 2001. A
Survey of Application Layer Techniques for Adaptive Streaming of
Multimedia. Real-Time Imaging 7,3 (2001), 221-235.

Paul Viola and Michael Jones. 2001. Rapid Object Detection Using
a Boosted Cascade of Simple Features. In Proceedings of the 2001
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, Vol. 1.1-511-1-518 vol.1. https://doi.org/
10.1109/CVPR.2001.990517

Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya
Akella. 2016. Clarinet: WAN-Aware Optimization for Ana-
lytics Queries. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16). USENIX Associa-
tion, GA, 435-450. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/viswanathan

Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jung-
blut, Konstantinos Karanasos, Jitendra Padhye, and George Varghese.
2015. WANalytics: Geo-Distributed Analytics for a Data Intensive
World. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’15). ACM, New York, NY,
USA, 1087-1092. https://doi.org/10.1145/2723372.2735365
Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas
Jungblut, Jitu Padhye, and George Varghese. 2015. Global Analyt-
ics in the Face of Bandwidth and Regulatory Constraints. In /2th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15). 323-336. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/vulimiri

Gregory K Wallace. 1991. The JPEG Still Picture Compression Stan-
dard. Commun. ACM 34, 4 (April 1991), 30—44. https://doi.org/10.
1145/103085.103089

AWStream: Adaptive Wide-Area Streaming Analytics

[93]

[94]

[95]

[96]

Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y
Zhao. 2016. Anatomy of a Personalized Livestreaming System. In
Proceedings of the 2016 ACM on Internet Measurement Conference.
ACM, 485-498.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A
Control-Theoretic Approach for Dynamic Adaptive Video Streaming
over HTTP. In Proceedings of the 2015 ACM Conference on Spe-
cial Interest Group on Data Communication (SIGCOMM’15). ACM,
New York, NY, USA, 325-338. https://doi.org/10.1145/2785956.
2787486

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant
Streaming Computation at Scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP’13). ACM,
New York, NY, USA, 423-438. https://doi.org/10.1145/2517349.
2522737

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai
Philipose, Paramvir Bahl, and Michael J. Freedman. 2017. Live

SIGCOMM ’18, August 20—25, 2018, Budapest, Hungary

252

[97]

(98]

Video Analytics at Scale with Approximation and Delay-Tolerance.
In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston,
MA, 377-392. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/zhang

Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle
Jamieson, and Suman Banerjee. 2015. The Design and Implementation
of a Wireless Video Surveillance System. In Proceedings of the 21st An-
nual International Conference on Mobile Computing and Networking.
ACM, 426-438. https://dl.acm.org/citation.cfm?id=2790123
Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Hale-
povic, Rittwik Jana, Xin Jin, Jennifer Rexford, and Rakesh K. Sinha.
2015. Can Accurate Predictions Improve Video Streaming in Cellular
Networks?. In Proceedings of the 16th International Workshop on Mo-
bile Computing Systems and Applications (HotMobile ’15). ACM, New
York, NY, USA, 57-62. https://doi.org/10.1145/2699343.2699359

