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ABSTRACT

The emerging class of wide-area streaming analytics faces

the challenge of scarce and variable WAN bandwidth. Non-

adaptive applications built with TCP or UDP suffer from

increased latency or degraded accuracy. State-of-the-art ap-

proaches that adapt to network changes require developer writ-

ing sub-optimal manual policies or are limited to application-

specific optimizations.

We present AWStream, a stream processing system that

simultaneously achieves low latency and high accuracy in the

wide area, requiring minimal developer efforts. To realize this,

AWStream uses three ideas: (i) it integrates application adap-

tation as a first-class programming abstraction in the stream

processing model; (ii) with a combination of offline and on-

line profiling, it automatically learns an accurate profile that

models accuracy and bandwidth trade-off; and (iii) at runtime,

it carefully adjusts the application data rate to match the avail-

able bandwidth while maximizing the achievable accuracy.

We evaluate AWStream with three real-world applications:

augmented reality, pedestrian detection, and monitoring log

analysis. Our experiments show that AWStream achieves sub-

second latency with only nominal accuracy drop (2-6%).
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1 INTRODUCTION

Wide-area streaming analytics are becoming pervasive, espe-

cially with emerging Internet of Things (IoT) applications.

Large cities such as London and Beijing have deployed mil-

lions of cameras for surveillance and traffic control [46, 85].

Buildings are increasingly equipped with a wide variety of

sensors to improve energy efficiency and occupant comfort [44].

Geo-distributed infrastructure, such as content delivery net-

works (CDNs), analyze requests from machine logs across

the globe [54]. These applications all transport, distill, and

process streams of data across the wide area, in real time.

A key challenge that the above applications face is dealing

with the scarce and variable bandwidth in the wide area [38,

91]. As many have observed, WAN bandwidth growth has

been decelerating for many years while traffic demands are

growing at a staggering rate [21, 56, 84]. In addition, scarcity

in last-mile bandwidth remains a problem across wireless [13],

cellular [58], and even broadband [35, 82] networks. Finally,

as we elaborate on in §2, not only is WAN bandwidth scarce,

it is also relatively expensive, and highly variable.

For all of the above reasons, it is important that streaming

applications be adaptive, incorporating the ability to optimally

trade-off accuracy for bandwidth consumption and hence a

key system challenge is to design the programming abstrac-

tions and tools that simplify the development of such adaptive

applications.

In recent years, systems such as Storm [86], Spark Stream-

ing [95], and VideoStorm [96], have emerged in support of

stream processing. These systems enable efficient processing

of large streams of data, but are designed to work within a sin-

gle datacenter cluster (where network bandwidth is typically

not the bottleneck) and hence they do not focus on support

for adapting to the vagaries of WAN bandwidth.

Recent research on WAN-aware systems promote push-

ing computation to the network edge [65, 73]. However, even

with edge computing, the need for adaptation remains because

end-devices such as cameras and mobile phones still suffer

from limited bandwidth in the last-hop infrastructure [3, 97].

In addition, edge computing is not a panacea as wide-area
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2 MOTIVATION

In this section, we first examine the gap between high applica-

tion demands and limited WAN bandwidth. We then show that

neither manual policies nor application-specific optimizations

solve the problem.

2.1 Wide-area Streaming Applications

We focus on wide-area streaming analytics, especially the

emerging IoT applications. We give two concrete examples.

Video Surveillance. We envisage a city-wide monitoring sys-

tem that aggregates camera feeds, from stationary ground cam-

eras and moving aerial vehicles, and analyzes video streams

in real time for surveillance, anomaly detection, or busi-

ness intelligence [60]. Recent advances in computer vision

have dramatically increased the accuracy for automatic vi-

sual scene analysis, such as pedestrian detection [26], vehicle

tracking [22], and facial recognition to locate people of inter-

est [50, 63]. While some surveillance cameras use dedicated

links, an increasing number of surveillance systems, such as

Dropcam [34] and Vigil [97], use the public Internet and wire-

less links to reduce the cost of deployment and management.

Infrastructure Monitoring. Large organizations today are

managing tens of datacenters and edge clusters worldwide [15].

This geo-distributed infrastructure continuously produces

large volumes of data such as data access logs, server moni-

toring logs, and performance counters [7, 64, 91]. While most

log analysis today runs in a batch mode on a daily basis, there

is a trend towards analyzing logs in real time for rapid opti-

mization [65]. For example, CDNs can improve the overall

efficiency by optimizing data placement if the access logs

can be processed in real time. In Industrial IoT, large-scale

real-time sensor monitoring is becoming pervasive to detect

anomalies, direct controls, and predict maintenance [11, 33].

2.2 Wide-area Bandwidth Characteristics

WAN bandwidth is insufficient and costly, as shown by other

systems [38, 64, 90, 91]. Using Amazon EC2 as a case study,

the WAN bandwidth capacity is 15x smaller than their LAN

bandwidth on average, and up to 60x smaller in the worst

case [38]. In terms of pricing, the average WAN bandwidth

cost is up to 38x of the cost of renting two machines [8, 38].

In addition to the scarcity and cost, the large variability

of WAN bandwidth also affects streaming workloads. We

conducted a day-long measurement with iPerf [28] to study

the pair-wise bandwidth between four Amazon EC2 sites (N.

California, N. Virginia, Tokyo, Ireland). The results show

large variance in almost all pairs—Figure 2 is one such pair.

There are occasions when the available bandwidth is below

25% of the maximum bandwidth.

The back-haul links between EC2 sites are better—if not

at least representative—in comparison to general WAN links.
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Figure 2. Bandwidth variations throughout the day between Amazon

EC2 sites (from Ireland to California).

Similar scarcity and variations exist in wireless networks [13],

broadband access networks [35, 82] and cellular networks [58].

2.3 Motivation for AWStream

To address bandwidth limits, existing solutions use manual

policies or application-specific solutions. We discuss their

drawbacks to motivate AWStream (design in §3).

Manual polices are sub-optimal. JetStream [65] is the first

to use degradation to address bandwidth limits in wide area.

While effective in comparison to non-adaptive systems, Jet-

Stream requires developers to write manual policies, for ex-

ample, “if bandwidth is insufficient, switch to sending images

at 75% fidelity, then 50% if there still isn’t enough bandwidth.

Beyond that point, reduce the frame rate, but keep the im-

age fidelity.”2 We discuss the problems with manual policies

below and present quantitative evaluations in §5.3.

First, this policy is not accurate. Developers write such

rules based on heuristics and do not back them up with mea-

surements. Images with 75% fidelity do not necessarily lead

to 75% application accuracy. In terms of bandwidth, naively

one would think that reducing the frame rate by half will also

half the data rate. But if video encoding such as H.264 [69]

is used, a reduction in frame rate increases the inter-frame

difference and creates P-frames with larger sizes. Figure 3e

shows that when reducing the frame rate to 33% (from 30 FPS

to 10 FPS), the bandwidth use can still be more than 50%.

Second, it is not scalable to specify rules one by one. A

fine-grain control requires many rules in the policy. Besides,

applications can degrade in multiple dimensions and each

dimension has different impacts (compare Figure 3a with

Figure 3b). Specifying rules in detail and across dimensions

manually is a tedious and error-prone process.

Lastly, this abstraction is too low-level. It forces developers

to study and measure the impact of individual operations,

prohibiting its wide adoption in practice.

Application-specific optimizations do not generalize. Be-

cause each application has different performance metrics and

relies on different features, a fine-tuned policy for one ap-

plication will often work poorly for another. For example,

DASH [79] optimizes QoE for video streaming; it keeps a

high frame rate and reduces resolutions for adaptation. Its pol-

icy that lowers the resolution works poorly for video analytics

2Excerpt from JetStream §4.3 [65].
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Normal Operators

map (f: I ) O) Stream<I> ) Stream<O>

skip (i: Integer) Stream<I> ) Stream<I>

sliding_window (count: Integer, f: Vec<I> ) O) Stream<I> ) Stream<O>

... ...

Degradation Operators

maybe (knobs: Vec<T>, f: (T, I) ) I) Stream<I> ) Stream<I>

maybe_skip (knobs: Vec<Integer>) Stream<I> ) Stream<I>

maybe_head (knobs: Vec<Integer>) Stream<Vec<I>> ) Stream<Vec<I>>

maybe_downsample (knobs: Vec<(Integer, Integer)>) Stream<Image> ) Stream<Image>

... ...

Table 1. Stream processing operators in AWStream. Vec<T> represents a list of elements with type T.

let quantized_stream = vec![1, 2, 3, 4].into_stream()

.maybe(vec![2, 4], |k, val| val.wrapping_div(k))

.collect();

The snippet creates a stream of integers, chains a degra-

dation operation, and collects the execution result. In this

example, the knob is [2, 4] and the degradation function per-

forms a wrapping (modular) division where the divisor is the

chosen knob. The knob value modifies the quantization level,

affecting the output: [1, 2, 3, 4] (no degradation), [0, 1, 1, 2]

(k=2), or [0, 0, 0, 1] (k=4). If the stream is then encoded—for

example, run-length encoding as in JPEG [92]—for transmis-

sion, the data size will depend on the level of degradation.

Based on the maybe primitive, one can implement addi-

tional degradation operators for common data types. For in-

stance, maybe_head will optionally take the top values of a

list; maybe_downsample can resize the image to a configured

resolution. AWStream provides a number of such operations

as a library to simplify application development (Table 1).

With our API, the example mentioned in §2.3 can now be

implemented as follows:

let app = Camera::new((1920, 1080), 30)

.maybe_downsample(vec![(1600, 900), (1280, 720)])

.maybe_skip(vec![2, 5])

.map(|frame| frame.show())

.compose();

This snippet first instantiates a Camera source, which pro-

duces Stream<Image> with 1920x1080 resolution and 30

FPS. Two degradation operations follow the source: one that

downsamples the image to 1600x900 or 1280x720 resolu-

tion, and the other that skips every 2 or 5 frames, resulting in

30/(2+1)=10 FPS or 30/(5+1)= 6 FPS. This example then dis-

plays degraded images. In practice, operators for further pro-

cessing, such as encoding and transmission, can be chained.

3.2 Automatic Profiling

After developers use maybe operators to specify potential

degradation operations, AWStream automatically builds an

accurate profile. The profile captures the relationship between

Symbol Description

n number of degradation operations

ki the i-th degradation knob

c = [k1, k2, ...kn ] one specific configuration

C the set of all configurations

B(c) bandwidth requirement for c

A(c) accuracy measure for c

P Pareto-optimal set

ci , ci+1, cmax current/next/maximal configuration at runtime

R network delivery rate (estimated bandwidth)

QE, QC messages when Queue is empty or congested

RC message when Receiver detects congestion

ACProbe message when AC requests probing

SProbeDone message when Socket finishes probing

Table 2. Notations used in this paper.

application accuracy and bandwidth consumption under dif-

ferent combinations of data degradation operations. We de-

scribe the formalism, followed by techniques that efficiently

perform offline and online profiling.

Profiling formalism. Suppose a stream processing appli-

cation has n maybe operators. Each operator introduces a

knob ki . The combination of all knobs forms a configuration

c = [k1,k2, ...kn]. The set of all possible configurations C is

the space that the profiling explores. For each configuration

c, there are two mappings that are of particular interest: a

mapping from c to its bandwidth consumption B(c) and its

accuracy measure A(c). Table 2 summarizes these symbols.

The profiling looks for Pareto-optimal configurations; that

is, for any configuration c in the Pareto-optimal set P, there

is no alternative configuration c
0 that requires less bandwidth

and offers a higher accuracy. Formally, P is defined as follows:

P = {c 2 C : {c 0 2 C : B(c 0) < B(c),A(c 0) > A(c)} = ∅} (1)

We show examples of knobs, configurations, and accuracy

functions when we present applications in §4 and visualize

the profile of sample applications in Figure 8.

Offline Profiling. We first use an offline process to build

a bootstrap profile (or default profile). Because AWStream

allows arbitrary functions as the degradation functions, it does
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We denote the current configuration as ci and the next ci+1.

AC receives messages from other modules: QE when Queue

is empty; QC when queued items exceed a threshold; and RC

when Receiver detects congestion. AC can query Socket

for delivery rate R (arrow not shown) or request it to probe

(ACProbe) for a target bandwidth, often B(ci+1). If there is no

congestion during the probing and R > B(ci+1), Socket sends

back SProbeDone. Below, we describe each state and transitions.

• Startup: rapid growth. AWStream starts with c1 and grows

the rate (ci ) ci+1) upon each QE. The growth stops at cmax

(to Steady) or if it receives QC/RC (to Degrade).

• Degrade: reacting to congestion. Congestion is detected

in two ways: (1) when Queue grows and exceeds a thresh-

old, AC receives QC; (2) when Receiver detects latency

spikes, AC receives RC. During congestion, AC runs the

adapt() procedure by updating Maybe with the maximum-

allowed c that satisfies B(c) < αR, where α 2 (0, 1) and

R is Socket’s current delivery rate. A smaller α allows

a quicker draining of the queue. After the congestion is

resolved (QE received), AWStream changes to Steady.

• Steady: low latency delivery. AWStream achieves low la-

tency by spending most of the time in Steady. It changes

to Degrade when congestion occurs. If c < cmax and it

receives QE, AC starts Probe to check for more available

bandwidth.

• Probe: more bandwidth for a higher accuracy. Advanc-

ing ci directly may cause congestion if B(ci+1) & B(ci ).

To allow a smooth increase, AC requests Socket to probe

by sending additional traffic controlled by probe_gain

(in inc_pace(), similar to BBR [18]). Raw data is used

for probing if available, otherwise we inject dummy traffic.

AWStream stops probing under two conditions: (1) upon

SProbeDone, it advances ci ; (2) upon QC or RC, it returns to

Steady. The explicit Probe phase stabilizes feedback loop

and prevents oscillation.

3.4 Resource Allocation & Fairness

In addition to rate adaptation, the profile is also useful for con-

trolling a single application’s bandwidth usage or allocating

resources among competing tasks.

For individual applications, developers can pin-point a con-

figuration for a given bandwidth or accuracy goal. They can

also specify a criterion to limit effective configurations. For

example, AWStream can enforce an upper bound on the band-

width consumption (e.g., do not exceed 1Mbps) or a lower

bound on application accuracy (e.g., do not fall below 75%).

For multiple applications, their profiles allow novel band-

width allocation schemes such as utility fairness. Different

from resource fairness with which applications get an equal

share of bandwidth, utility fairness aims to maximize the

minimal application accuracy. With the profiles, bandwidth

Application Knobs Accuracy Dataset

Augmented

Reality

resolution

frame rate

quantization

F1 score [70]

iPhone video clips

training: office (24 s)

testing: home (246 s)

Pedestrian

Detection

resolution

frame rate

quantization

F1 score

MOT16 [53]

training: MOT16-04

testing: MOT16-03

Log Analysis

(Top-K, K=50)

head (N)

threshold (T)
Kendall’s τ [4]

SEC.gov logs [59]

training: 4 days

testing: 16 days

Table 3. Application details.

allocation is equivalent to finding proper configuration c
t for

application t . We formulate utility fairness as follows:

max
c t

min(At (ct )) s.t.
’

t

B
t (ct ) < R (2)

Solving this optimization is computationally hard. AW-

Stream uses heuristics similar to VideoStorm [96]: it starts

with c
t

1 and improves the application t with the worst accu-

racy; this process iterates until all bandwidth is allocated. In

this paper, we demonstrate resource allocation with two appli-

cations as a proof-of-concept in §5.4 and leave an extensive

study regarding scalability for future.

4 IMPLEMENTATION

While our proposed API is general and not language spe-

cific, we have implemented AWStream prototype in Rust

(~4000 lines of code). AWStream is open source on GitHub.3

Applications use AWStream as a library and configure the

execution mode—profiling, runtime as client, or runtime as

server—with command line arguments.

Using AWStream, we have built three applications: aug-

mented reality (AR) that recognizes nearby objects on mobile

phones, pedestrian detection (PD) for surveillance cameras,

and a distributed log analysis to extract the Top-K mostly ac-

cessed files (TK). Table 3 summarizes the application-specific

parts: knobs, accuracy functions, and datasets.

Augmented Reality. We target at augmented reality appli-

cations running on mobile phones that recognize objects by

offloading the heavy computation elsewhere (e.g., the cloud).

Our implementation uses OpenCV [14] for image-related

operations and YOLO [66, 67], a GPU-enabled pre-trained

neural network, for object recognition. Videos are encoded

with H.264 [69]. Our implementation uses GStreamer [83]

with x264enc plugin (zerolatency and constant quality).

The quantization factor affecting encoding quality becomes a

knob in addition to image resolutions and frame rates.

Object recognition returns a list of bounding boxes with the

object type. Each bounding box is a rectangle with normalized

coordinates on the image. We compare the detection against

3https://github.com/awstream/awstream
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Figure 7. A distributed Top-K application with two degradation

operations: head and threshold. In this example, f2, which is

not in Top-1 for either client, becomes the global Top-1 after the

merge. It would have been purged if the clients use threshold T=3,

demonstrating degradation that reduces data sizes affects fidelity.

the reference result from raw data, and declare it success if

the intersection over union (IOU) is greater than 50% [29]

and the object type matches. We use F1 score [70] as the

accuracy function. In terms of dataset, we collected our own

video clips: the training data is a 24-second long video of an

office environment; the test data is a 246-second long video

of a home environment.

Pedestrian Detection. This application analyzes streams of

videos from installed CCTV cameras and detects pedestrians

inside. We use a similar setup (OpenCV and GStreamer) as

our augmented reality application except for the analytical

function. To detect pedestrians, we use GPU-accelerated his-

togram of oriented gradients (HOG) [24] with the default

linear SVM classifier from OpenCV. Because we do not rec-

ognize individual pedestrians, a successful detection in this

case only requires matching the bounding box. Our evaluation

uses MOT16 dataset [53] for both profiling and runtime.

Distributed Top-K. This application aggregates machine

logs from geo-distributed servers to find out the Top-K most

accessed files, similar to many Top-K queries [10].

Figure 7 illustrates our processing pipeline with two degra-

dation operations. First each source node summarizes the

log using Window operator to reduce the data size, a pre-

processing step. As many real-world access patterns follow a

long tail distribution, there can be a large-but-irrelevant tail

that contributes little to the final Top-K. Each source node

then filters the tail: (1) head(N) takes the top N entries; (2)

threshold(T) filters small entries whose count is smaller than

T. These two operations affect the final result and the exact

impact depends on data distribution. We implement these two

operators by using AWStream’s maybe abstraction.

To measure the accuracy, we need to compare the correla-

tion between two ranked list. Kendall’s τ [4] is a correlation

measure of the concordance between two ranked list. The

output ranges from −1 to 1, representing no agreement to

complete agreement. To integrate with AWStream, we con-

vert Kendall’s τ to [0, 1] with a linear transformation. For our

evaluation, we set K as 50 and use Apache log files that record

and store user access statistics for the SEC.gov website. The

logs are split into four groups, simulating four geo-distributed

nodes monitoring web accesses. To match the load of popular

web servers, we compress one hour’s logs into one second.

5 EVALUATION

In this section, we show the evaluations of AWStream, sum-

marizing the results as follows.

§5.1 AWStream generates Pareto-optimal profiles across

multiple dimensions with precision (Figure 8).

§5.2 Our parallel and sampling techniques speeds up offline

and online profiling (Figure 9, Figure 10).

§5.3 At runtime, AWStream achieves sub-second latency

and nominal accuracy drop for all applications (Fig-

ure 11, Figure 12) and across various network condi-

tions (Figure 13).

§5.4 AWStream profiles allow different resource allocations:

resource fairness and utility fairness (Figure 14).

5.1 Application Profiles

We run offline profiling using the training dataset described

in Table 3 and show the learned profiles in Figure 8. In each

figure, the cross dots represent the bandwidth demand and

application accuracy for one configuration. We highlight the

Pareto-optimal boundary P with blue dashed lines. To under-

stand each dimension’s impact on the degradation, we high-

light configurations from tuning only one dimension. From

these profiles, we make the following observations:

Large bandwidth variation. For all three applications, The

bandwidth requirements of all three applications have two to

three orders of magnitude of difference (note the x-axis is in

log scale). For AR and PD, the most expensive configuration

transmits videos at 1920x1080, 30 FPS and 0 quantization;

it consumes 230Mbps. In contrast to the large bandwidth

variation, there is a smaller variation in accuracy. In PD, for

example, even after the bandwidth reduces to 1Mbps (less

than 1% of the maximum), the accuracy is still above 75%.

The large variation allows AWStream to operate at a high ac-

curacy configuration even under severe network deterioration.

Distinct effects by each dimension. Comparing dashed lines

in each profile, we see that the Pareto-optimal configurations

are only achievable when multiple knobs are in effect. Tuning

only one dimension often leads to sub-optimal performance.

Within a single profile, the difference between tuning individ-

ual dimensions is evident. For PD, tuning resolution (the red

line) leads to a quicker accuracy drop than tuning frame rate

(the yellow line). Comparing AR and PD, the same dimension

has different impact. Tuning resolution is less harmful in AR

than PD; while tuning frame rate hurts AR more than PD. This

echoes our initial observation in §2.3 that application-specific

optimizations do not generalize.
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(b) Online (continuous)
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(c) Partial data
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(d) Partial configurations

Figure 10. The horizontal reference line is the target bandwidth

(11Mbps). (1) Online profiling is necessary to handle model drift

((a) vs. (b-d)). (2) Sampling techniques—partial data (c) and partial

configurations (d)—can correct model drift with less profiling over-

head (see Table 4), compared to continuous (b). We omit accuracy

predictions since in all schemes AWStream finds configurations that

achieve similarly high accuracy (~90%).

Online scheme Overhead Improvements

Continuous 52X Baseline

Partial data 17X 3⇥

Partial configurations 6X 8.7⇥

Table 4. Compared to the continuous profiling baseline (52X over-

head), our sampling techniques speed up by 3⇥ or 8.7⇥.

overhead reduces to 6X because we run full profiling less

often (only two full profiling). It is an 8.7⇥ gain.

Note that these techniques—parallelization, sampling data,

and sampling configurations—can be combined to further re-

duce the profiling overhead. For example, scheduling 5 GPUs

running 5 configurations continuously to check for model drift

will reduce the overhead to 1X. In practice, the amount of

resources to use depends on the budget and the importance of

the job. AWStream currently requires developers to configure

the application with proper online profiling techniques.

5.3 Runtime Adaptation

In this section, we evaluate the runtime performance by con-

trolling bandwidth across geo-distributed sites and compare

AWStream with baselines including streaming over TCP/UDP,

JetStream, and video streaming. Due to limited space, we dis-

cuss AR in depth and only present the results of PD/TK.

Experiment setup. We conduct our experiments on four geo-

distributed machines from Amazon EC2, spanning four dif-

ferent regions. Three (at N. Virginia, Ohio, Oregon) act as

worker nodes and one (at N. California) acts as the analytics

server. The average RTTs from the workers to the server are

65.2ms, 22.2ms, and 50.3ms.

During the experiment, each worker transmits test data (Ta-

ble 3) for about 10 mins. If the duration of the test data is less

than 10 mins, it loops. Because B(cmax) is prohibitively large

(raw videos consumes 230Mbps), we use a reasonable con-

figuration to limit the maximum rate. In our AR experiment,

cmax is 1600x900 resolution, 30 FPS and 20 quantization; it

consumes about 14Mbps.

Our bandwidth control scheme follows JetStream [65].

During the experiment, we use the Linux tc utility with

HTB [25, 40] to control the clients’ outgoing bandwidth. Each

experiment involves four phases: (i) before t=200s, there is no

shaping; (ii) at t=200s, we limit the bandwidth to 7.5Mbps for

3 minutes; (iii) at t=380s, we further decrease the bandwidth

to 5Mbps; (iv) at t=440s, we remove all traffic shaping. For

UDP, HTB doesn’t emulate the packet loss or out-of-order

delivery; so we use netem and configure the loss probability

according to the delivery rate. Because each pair-wise con-

nection has a different capacity, we impose a background

bandwidth limit—25Mbps—such that all clients can use at

most 25 Mbps of network bandwidth.

We compare AWStream with the following baselines:

• Streaming over TCP/UDP (non-adaptive). For TCP, we re-

use AWStream runtime that runs over TCP but disable the

adaptation. For UDP, we use FFmpeg [12] to stream video:

RTP/UDP [74] for media and RTSP for signaling [75]; as

in typical video conferencing and IP cameras [27, 42].

• Adaptive video streaming. We use HTTP Live Streaming

(HLS) to represent popular adaptive video streaming tech-

niques. Our setup resembles personalized live streaming

systems [93] but uses a smaller chunk for low latency (1

second instead of typical 2-10 seconds).

• JetStream with the manual policy described in §2.3.

• JetStream++, a modified version of JetStream that uses the

profile learned by AWStream.

At runtime, AWStream differs from JetStream in both pol-

icy and adaptation. JetStream++ improves over JetStream by

using our Pareto-optimal profile. AWStream improves the

performance further with two major changes: (i) AWStream

directly measures the delivery rate to select an appropriate

configuration to match available bandwidth while JetStream

employs a latency-based measure of capacity ratio; (ii) AW-

Stream has an explicit probe phase while JetStream changes

its policy immediately after capacity ratio changes.

Results. Figure 11a shows the runtime behavior of AWStream

and all baselines in time series. Figure 11b summarizes the

latency and accuracy with box plots during bandwidth shaping

(between t=200s and t=440s).

The throughput figure (Figure 11a) shows the effect of

traffic shaping. During the shaping, TCP and UDP make full

use of the available bandwidth; in comparison, AWStream,

JetStream, JetStream++, and HLS are conservative because of
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Optimization [37] that can find near-optimal configurations

without exhaustive search.

Bandwidth Estimation and Prediction. Accurately estimat-

ing and predicting available bandwidth in wide area remains

a challenge [39, 98]. AWStream uses network throughput and

behaves cautiously to avoid building up queues: congestion

is detected at both sender/receiver; data rate only increases

after probing. Recent research on adaptive video streaming

explores model predictive control (MPC) [81, 94] and neural

network [51]. We plan to explore these techniques next.

7 RELATED WORK

JetStream. JetStream is the first to use degradation to re-

duce latency for wide-area streaming analytics. Compared to

JetStream, AWStream makes five major contributions: (1) a

novel API design to specify degradation in a simple and

composable way; (2) automatic offline profiling to search for

Pareto-optimal configurations; (3) online profiling to address

model drift; (4) an improved runtime system achieving sub-

second latency (comparison in §5.3); (5) support for different

resource allocation policies for multiple applications.

Stream Processing Systems. Early streaming databases [1,

19] have explored the use of dataflow models with special-

ized operators for stream processing. Recent research projects

and open-source systems [6, 17, 45, 86, 95] primarily focus

on fault-tolerance in the context of a single cluster. When

facing back pressure, Storm [86], Spark Streaming [95] and

Heron [45] throttle data ingestion; Apache Flink [17] uses

edge-by-edge back-pressure techniques similar to TCP flow

control; Faucet [47] leaves the flow control logic up to de-

velopers. While our work has a large debt to prior streaming

work, AWStream targets at the wide area and explicitly ex-

plores the trade-off between data fidelity and freshness.

Approximate Analytics. The idea of degrading computation

fidelity for responsiveness is also explored elsewhere, such

as SQL queries [5, 9], real-time processing [30], and video

processing within large clusters [96]. They employ techniques

such as programming language support [72], sampling [32],

sketches [23], and online aggregation [36]. The trade-off be-

tween available resource and application accuracy is a com-

mon theme among all these systems. AWStream targets at

wide-area streaming analytics, an emerging application do-

main especially with the advent of IoT.

WAN-Aware Systems. Geo-distributed systems need to cope

with high latency and limited bandwidth. While some systems

assume the network can prioritize a small amount of critical

data under congestion [20], most systems reduce data sizes

in the first place to avoid congestion (e.g., LBFS [55]). Over

the past two years, we have seen a plethora of geo-distributed

analytical frameworks [43, 64, 89–91] that incorporate hetero-

geneous wide-area bandwidth into query optimization to mini-

mize data movement. While effective in speeding up analytics,

these systems focus on batch tasks such as MapReduce jobs or

SQL queries. Such tasks are often executed infrequently and

without real time constrain. In contrast, AWStream processes

streams continuously in real time.

(Adaptive) Video Streaming. Multimedia streaming proto-

cols (e.g., RTP [74]) aim to be fast instead of reliable. While

they can achieve low latency, their accuracy can be poor un-

der congestion. Recent work has moved towards HTTP-based

protocols and focused on designing adaptation strategy to im-

prove QoE, as in research [51, 81, 94] and industry (HLS [62],

DASH [52, 79]). These adaptation strategies are often pull-

based: client keeps checking the index file for changes. And

clients have to wait for the next chunk (typically 2-10 sec-

onds). In addition, as we have shown in §5.3, their adapta-

tion is a poor match for analytics that rely on image details

(e.g., 6% accuracy for PD). In contrast, AWStream learns an

adaptation strategy for each application (also not limited to

video analytics); and the runtime is optimized for low latency.

QoS. Most QoS work [31, 76, 77] in the 1990s focuses on

network-layer solutions that are not widely deployable. AW-

Stream adopts an end-host application-layer approach ready

today for WAN. For other application-layer approaches [87],

AWStream’s API can incorporate their techniques, such as

encoding the number of layers as a knob to realize the lay-

ered approach in Rejaie et al [68]. Fundamentally, AWStream

does not provide hard QoS guarantees; instead AWStream

maximizes achievable accuracy (application performance)

and minimizes latency (system performance) with respect to

bandwidth constraints: a multidimensional optimization.

8 CONCLUSION

This paper presents AWStream, a stream processing system

for a wide variety of applications by enabling developers to

customize degradation operations with maybe operators. Our

automatic profiling tool generates an accurate profile that

characterizes the trade-off between bandwidth consumption

and application accuracy. The profile allows the runtime to

react with precision. Evaluations with three applications show

that AWStream achieves sub-second latency with nominal

accuracy drop. AWStream enables resilient execution of wide-

area streaming analytics with minimal developer effort.
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