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Abstract: R has been adopted as a popular data analysis and mining tool in many domain fields over the past decade. As Big
Data overwhelms those fields, the computational needs and workload of existing R solutions increases significantly. With
recent hardware and software developments, it is possible to enable massive parallelism with existing R solutions with little to
no modification. In this paper, three different approaches are evaluated to speed up R computations with the utilization of the
multiple cores, the Intel Xeon Phi SEI10P Co-processor, and the general purpose graphic processing unit (GPGPU).
Performance engineering and evaluation efforts in this study are based on a popular R benchmark script. The paper presents
preliminary results on running R-benchmark with the above packages and hardware technology combinations.
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1. Introduction

R, open-source version of the language S, is best known as
package that performs statistical analysis and creates plots.
Over the years, R has evolved as a high-level language
environment for performing complex calculation and
simulation in a variety of scientific computing tasks. R has
high-level functions to operate on matrices and perform
numerical analysis as well as advanced data analytics.

Although R has been adopted in many scientific domains
as a high productive analytic tool, R faces the even greater
challenges to scale up the computation with large data set.
Recent hardware and software developments have potential
to enable massive parallelism with existing R solutions with
little to no modification.

The goal of this paper is to evaluate three such approaches
to speed up R computations with the utilization of the latest
hardware technology including multi-core, many core (GPU)
technologies, and Intel Many Integrated Core architecture
(MIC).

2. Background

Significant efforts have been made in developing
accelerator cards that can easily increase the parallel
processing potential in recent years. A general purpose

graphic processing unit (GPGPU) extends parallel functions
and technologies traditionally embedded in graphic
processing units to handle more generic computations.
Computational solutions can utilize the parallel features
provided by GPU through programing interface such as
OPENCL and CUDA. Most recently, the Intel Xeon Phi
SE10P Co-processor (Xeon Phi) integrate 60 processing
cores and 8GB memory in a single card. A critical advantage
of the Xeon Phi co-processor is that, unlike GPU-based
co-processors, the processing cores run the Intel x86
instruction set (with 64-bit extensions), allowing the use of
familiar programming models, software, and tools. In
addition to allowing the host system to offload computing
workload partially to the Xeon Phi, it also can run a
compatible program independently.

To utilize those new hardware enabled parallelism, a
common usage model is to rewrite some basic functions or
processing flow with the corresponding parallel version
supported by the particular hardware. The code
redevelopment requires the user to have extensive knowledge
in both existing R code as well as the parallel mechanism
supported by the additional packages. On the other hand, R
enables linking to other shared mathematics libraries to speed
up many basic computation tasks for linear algebra
computation. One option to utilize the Intel Many Integrated
Core is to use Intel Math Kernel Library (MKL). Lately some
R packages have been developed that use the latest
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multi-core and GPU libraries to give substantial speed-ups to
existing linear algebra functions in R. One such example is
HiPLARMI1 which targets the underlying LAPACK routines
and replaces them with the latest linear algebra libraries that
take advantage of multi-core CPU and GPU hardware.

This paper presents the study’s preliminary results on
running R-benchmark with the above packages and hardware
technology combinations. Section 2 details the experimental
setup. The section 3 presents the initial findings.

3. Evaluation Environment
3.1. R Benchmark

The investigation used the R-25 benchmark script for
testing performance of different approaches2. The testing
script includes fifteen common computational tasks grouped
into three categories: Matrix Calculation, Matrix functions
and Programmation. The fifteen tasks are listed in Table 1:

Table 1. Translation of benchmark number to R-25 benchmark description
for all R-25 plots.

# R25 Benchmark Task Description

1 Creation, transp., deformation of a 2500%2500 matrix (sec)
2 2400%2400 normal distributed random matrix

3 Sorting of 7,000,000 random values

4 2800%2800 cross-product matrix

5 Linear regression over a 3000x3000 matrix

6 FFT over 2,400,000 random values

7 Eigenvalues of a 640x640 random matrix

8 Determinant of a 2500%2500 random matrix

9 Cholesky decomposition of a 30003000 matrix

10 Inverse of a 1600x1600 matrix

11 3,500,000 Fibonacci numbers calculation (vector calc.)
12 Creation of a 3000x3000 Hilbert matrix (matrix calc.)
13 Grand common divisors of 400,000 pairs (recursion)
14 Creation of a 500x500 Toeplitz matrix (loops)

15 Escoufier’s method on a 45x45 matrix (mixed)

16 Total time for all 15 tests (not averaged)

17 Overall mean (sum of means of all tests)

3.2. Compute Environment — Stampede Supercomputing
Cluster

The evaluation work used the Stampede cluster at Texas
Advanced computing Center as the high performance
computing environment for performance testing. Stampede
supports several latest hardware technologies for improved
computational performance including using Xeon Phi
accelerators and/or NVIDIA Kepler 20 GPUs for large matrix
calculations. In this test, each compute node has two Intel
Xeon E5-2680 processors each of which has eight computing
cores running @2.7GHz. There is 32GB DDR3 memory in
each node for the host CPUs. The Xeon Phi SE10P
Coprocessor installed on each compute node has 61 cores
with 8GB GDDRS5 dedicated memory connected by an x16
PCle bus. The NVIDIA K20 GPUs on each node have 5GB
of on-board GDDRS. All compute nodes are running CentOS
6.3. For this study the stock R 3.01 package is used. The
package is compiled with the Intel compilers (v.13) and built
with Math Kernel Library (MKLv.11).

4. Acceleration Strategies

The performed experiment focused on the benefit of R
programs using the latest multi-core, GPGPU, and Intel
Co-processor technologies:

4.1. Exploiting Xeon Phi Co-Coprocessor with MKL

To utilize Xeon Phi co-processor, one option is to use Intel
Math Kernel Library (MKL) [1]. MKL which includes a
wealth of routines to accelerate application performance and
reduce development time such as highly vectorized and
threaded linear algebra, fast fourier transforms (FFT), vector
math and statistics functions. It has been reported that the
compiling R with MKL can provide three times
improvements out of box [2].

R programs
running on host

“..do work and
deliver results
as directed ..”

intel)
Sandy Bricge € X1 6
: PCle

Figure 1. Adopting offload model on Stampede cluster at XSEDE: an R

program running on the host can “offload” work by directing the MIC to

execute a specified block of code. The host also directs the exchange of data
between host and MIC.

# enable mkl mic offloading
export MKL_MIC_ENABLE=0

# from 0.0 to 1.0 the work division
export MKL_HOST_WORKDIVISION=0.3
export MKL_MIC_WORKDIVISION=0.7

Make the offload report big to be visible:
xport OFFLOAD_REPORT=2

D ==

# now set the number of threads on host
export OMP_NUM_THREADS=16
export MKL_NUM_THREADS=16

# now set the number of threads on the MIC
export MIC_OMP_NUM_THREADS=240
export MIC_MKL_NUM_THREADS=240

Figure 2. Configuring environment variables to enable automatic offloading
to Intel Xeon Phi Coprocessor. In this sample script, 70% of computation is
offloading to Phi, while only 30% is done on host.

The evaluation further exploited an offload model to
automatically offload MKL operations to Intel
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Co-processor. As illustrated in Figure 1, while MKL can
automatically manages the computing details, further
performance improvement can be obtained by distributing
the work across the compute host and the
many-integrate-core (MIC).

On Stampede offloading to Xeon Phi can be enabled by
setting environment variables as opposed to making
modifications to existing R programs (see e.g., Figure 2 for a
sample script to enable 70% offloading to Phi.)

4.2. Exploiting Multi-Core and GPU Technologies with
HiPLAR

General purpose graphic processing units (GPGPU) extend
parallel functions and technologies traditionally embedded in
graphic processing units to handle more generic
computations. The Matrix package currently uses the BLAS
and LAPACK linear algebra libraries to perform its
operations. These are the de-facto libraries for performing
linear algebra operations, however, they are only designed to
run on single core CPUs and are not designed for modern
CPU architectures and accelerators.

HiPLAR’s over-arching goal is to provide easy access to
the latest computational architectures using the latest linear
algebra libraries and to do so in an easy and user friendly
manner. With the installed suite of R packages the user can
achieve large speed-ups with little understanding of the
complexities of multi-core and GPU computing.

Another important feature of HiPLAR is its auto-tuning
capability: for users that have multi-core CPUs and an
NVIDIA GPU, an auto-tuning feature is provided that
calculates the optimal configuration for the problem and the
hardware. Currently, HiPLAR provides two packages to
target linear algebra functions in the standard R release and
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Matrix packages.

Using the PLASMA library for multi-core CPUs and the
MAGMA library for NVIDIA GPUs users can see large
speed-up in R codes that use linear algebra routines from
simple matrix multiplication to Cholesky and LU
decomposition. Figure 3 shows an example where a minimal
change (one liner) is applied to the R program to leverage
substantial speed-ups by HiPLAR.

library (Matrix);

n <- 8192;

X <- Hilbert(n);

A <- nearPD(X);

system.time (B <- chol (A$mat));
# user system elapsed

# 97.990 0.356 98.591
library (HiPLARM)

system.time (B <- chol (A$mat));
# user system elapsed

# 1.012 0.316 T 337

Figure 3. A brief example to highlight the benefits of using HiPLARM.

5. Performance Tuning

Based on the previous observation of significant
performance improvement of benchmark version of R
computation using MKL and offload model, the study tests
R25 benchmark script by choosing work-sharing at the 30%
host (16 threads) 70% coprocessor (240 threads) sweet spot
(see e.g., [3]).

The evaluation effort tested R25 with multi-core and GPU
acceleration using HiPLAR package.

® MIC speedups
W multi-core speedup

1 gpu speedups

||.__..._.I

10 11 12 13 14 15 16 17

Figure 4. Basic vectorized and matrixed operations can obtain significant speed-ups by using offload model with MKL and MIC, multi-core, and GPU

technologies.
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Figure 4 indicates the obtained speed-ups from the three
strategies proposed and evaluated in this study. Significant
speed-ups are consistently achieved over various matrices
size and matrix based functions. At an R level, the user will
notice no difference between using Matrix and using the
three acceleration strategies. These methods/packages strive
to retain the optimization within the Matrix package in R. So
the user will notice no difference between using the offload
model, the functions of HiPLAR packages or indeed, results.
This feature enables programmers easily access to the latest
computational architectures though the linked linear algebra
libraries.

6. Use Case: Accelerating Mathematical
Knot Simulations with R

The creation of mathematical 3D curves and knots

(a)
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(closed 3D curves) can often be facilitated with a 2D
drawing interface. One often constructs an initial
configuration for an object while neglecting most issues of
geometric placement.

For example, when knot diagrams are drawn, only bare
projections are needed with relative depth ordering indicated
at crossings while precise 3D depth information is
unimportant (¢.g., Figure 5 (a)).

The next task that comes naturally is to topologically
refine these initial embeddings, not only to make the
geometry look more pleasant, but also to remove crossings
into the minimal number. One way to refine the initial
embedding is to embed the initial graph into 3-dimensional
space and replace the vertices with electrostatically charged
masses and replace each edge with a spring to form a
mechanical system.

DDEDEDE

Figure 5. Tipical screen images of the self-deformation. The simple closed curve (a knot 5') relaxes, with the proposed force laws and collision avoidance

mechanism. During the relaxation, the knotted string preserves the its topological structure.

The vertices are placed in some initial layout and let go so
that the spring systems and electrical forces on the masses
move the system to a minimal energy state. Two basic forces
are used, an attractive mechanical force applied between
adjacent masses on the same spring and a repulsive electrical
force applied between all other pairs of masses:

1. attractive mechanical force — the mechanical force is a
generalization of Hooke’s law, allowing for an arbitrary
power of the distance r between masses, Fm = lIr1+b,
where H is a constant;

2. repulsive electrical force the electrical force also
allows for a general power of the distance, Fe
=Kr—(2+a), where r again is the distance between the
two masses, and K is a constant. The electrical force 1s
applied to all pairs of masses excluding those
consisting of adjacent masses on the same link.

In most of the preliminary results [4], [5], [6] shown in this

work, the parameters used* = 1 and * = 2.

For this force-directed algorithm to be applicable to the
principal test case of mathematical curves positioned in R3, it
is imperative that any proposed evolution should respect
topological constrains: it does not involve cutting the curve
or passing the curve through itself. Parallel to the force laws
previously specified, the self-intersection problem is solved
in the proposed approach by requiring that the position of
each mass be updated one at a time, and collision avoidance

is strictly performed to determine if one is heading towards
one of the following two potential collisions:

1. point-segment collision a vertex of a 3D curve is
going towards a link of the curve and the distance is
less than a predefined threshold distance

2. segment-segment collision a link of a 3D curve is
going towards another link and their distance is less
than a predefined threshold distance

6.1. Accelerating the Force-Driven Knot Simulation

A good portion of the algorithms is concerned with Linear
Algebra Computation (LAC), and heavily vectorized
operations performed over and over in a large number of
iterations. One promising direction for accelerating the
computation is to utilize the latest hardware advance and
exploit hardware-enabled massive parallelism to accelerate
the LAC in the force-driven knot algorithms.

The compute-intensive part of the knot simulation
algorithm is for distance calculation. Both point-segment
collision and segment-segment collision avoidance are
heavily relying on distance calculation between points and
line segments in 3-dimensional space. The core algorithms
are implemented and optimized with vectorized and
matrixized R code and exploit GPGPU to accelerate the core
computational components. We have recently completed a
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preliminary study on accelerating R computation with
hardware enabled parallelism [3], and obtained promising
results by adopting this technology in several
domain-specific scientific investigations [7], [8], [9].
Meanwhile, many geometry studies require the examination
of phenomena under different conditions, e.g., with different
relaxation models, or with different intervening forces. Such
tasks and simulations can be executed in a pleasing parallel
way, which can be accelerated by parallel computing on
multi-core and multimode data infrastructure (see e.g., initial
results in [10], [7], [11].)

6.2. Extracting the Key Moments

Extracting key moments is a simple yet effective form of
summarizing a long mathematical evolution or comparing
among multiple evolutions. In most applications of
topological refinement, the interests do not include each step

in the path followed by the object model. Rather, those key
moments and the final conformation are of greater
importance for investigation and presentation. The
fascinating question here is whether there is a way to extract
the key moments of the deformations in high dimensions by
identifying the sequence of “frames” where each item differs
by one critical topological change.

In the case scenario, the critical changes can be computed
in the knot presentations (e.g., see work in [4], [12]) by
identifying the minimal number of crossing points among all
possible 2D projections. If the number of crossing points
changes, the evolution is considered at the new critical
moment. In this way, w associated key moments can be
identified and provide a much clearer visualization and
navigation interfaces for users to perceptualize the entire
evolution process (see e.g., Figure 6).
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Figure 6. MathSimWeb: a web-based interface to define mathematical knots’ initial embedding, and generate knot images for the entire evolution.

6.3. MathSimWeb: Putting Simulation and Visualization
Together

The next focus is effective integration of algorithms and
techniques so far, to enable and enrich users’ mathematical
experience with knot geometry and topology. Figure 6 shows

a visual analysis system, called MathSimWeb, developed for
exploring geometric data. This work to fully connect guided
geometric relaxation (with a multi-view interface) and
hardwareenabled accelerated computing (offloading math
operations to GPGPU) for exploring new geometry.
MathSimWeb leverages R Shiny’s architecture deployed
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on a local lab cluster environment at UofL, and it will consist
of two main parts:

1. a back-end module that exploits massively parallel
solutions for geometry computation and ingests
visualization archive (vectors) into a data store;

2. a front-end module that allows investigative geometric
analysis at run time

I. a central visualization panel that displays the
geometry and its real-time evolution, and
mathematical movies that can depict geometry’s
evolution with identified key moments.

II. a dashboard for users to upload knot embedding
and configure parameters for the simulations

General purpose graphic processing units (GPGPU) extend
parallel functions and technologies traditionally embedded in
graphic processing units to handle more generic
computations. The Matrix package currently uses the BLAS
and LAPACK linear algebra libraries to perform its
operations. These are the de-facto libraries for performing
linear algebra operations, however, they are only designed to
run on single core CPUs and are not designed for modern
CPU architectures and accelerators.

To accelerate the large number of iterations in the
mathematical simulations, the library of High Performance
Linear Algebra in R (HIPLAR) is used. HiPLAR’s
over-arching goal is to provide easy access to the latest
computational architectures using the latest linear algebra
libraries and to do so in an easy and user friendly manner.
With the installed suite of R packages the user can achieve
large speed-ups with little understanding of the complexities
of multi-core and GPU computing. Another important feature
of HiPLAR is its auto-tuning capability: users that have
multi-core  CPUs and an NVIDIA GPU can use an
auto-tuning feature that calculates the optimal configuration
for the problem and the hardware. Currently, HiPLAR
provides two packages to target linear algebra functions in
the standard R release and Matrix packages. Using the
PLASMA library for multi-core CPUs and the MAGMA
library for NVIDIA GPUs users can see large speed-up in R
codes that use linear algebra routines from simple matrix
multiplication to Cholesky and LU decomposition.

Figure 7 shows an example where a minimal change (one
liner) is applied to the math simulation R program to leverage
substantial speed-ups by HiPLAR.

library(Matrix) ;

n <- 5000;

system.time (KnotSim(n));
# user system elapsed
# 107.90 0.356 108.59
library (HiPLARM)
system.time (KnotSim(n)) ;
user system elapsed
21.012 0.316 22.34

RIS 15

Figure 7. A brief example to highlight the benefits of using HiPLARM in
accelerating mathematical simulations.

7. Conclusion

The ultimate goal is to facilitate the manipulation and
understanding of geometric structures. We now possess
interactive graphics tools, computational algorithms, and
increased computing powers that can extremely simplify and
accelerate the process of making analogues diagrams,
generating dynamic illustrations, and rendering perceptual
clues, even for abstract mathematical entities and phenomena
that occur in three- and high-dimensional space. By exploiting
such tools, we feel that we can make a novel contribution to
building intuition about classes of geometric and topological
problems even beyond the third dimension.

Future directions of this work include extending the range
of objects for which we can support to include more complex
knots, links, and Riemann surfaces, and the use of
divide-and-conquer strategies [13, 14] to accelerate
large-scale mathematical simulations.
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