Quaternary Science Reviews 204 (2019) 58—77

journal homepage: www.elsevier.com/locate/quascirev

Contents lists available at ScienceDirect = QUATERNARY

SCIENCE REVIEWS

Quaternary Science Reviews

Statistical modeling of rates and trends in Holocene relative sea level N

Erica L. Ashe > <", Niamh Cahill ¢, Carling Hay €, Nicole S. Khan , Andrew Kemp &,

Check for
updates

Simon E. Engelhart ", Benjamin P. Horton "/, Andrew C. Parnell ¢¥, Robert E. Kopp ¢

2 Department of Statistics and Biostatistics, Rutgers University, New Brunswick, NJ, United States

b Department of Earth & Planetary Sciences, Rutgers University, New Brunswick, NJ, United States

¢ Institute of Earth, Ocean & Atmospheric Sciences, Rutgers University, New Brunswick, NJ, United States
d School of Mathematics and Statistics, Maynooth University, Kildare, Ireland

€ Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, United States
f Asian School of the Environment, Nanyang Technological University, Singapore

& Department of Earth and Ocean Sciences, Tufts University, Medford, MA, United States

" Department of Geosciences, University of Rhode Island, Kingston, RI, United States

i Earth Observatory of Singapore, Nanyang Technological University, Singapore

I Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
X Hamilton Institute, Insight Centre for Data Analytics, Maynooth University, Kildare, Ireland

ARTICLE INFO

Article history:

Received 8 March 2018

Received in revised form

18 October 2018

Accepted 23 October 2018
Available online 5 December 2018

Keywords:

Hierarchical statistical modeling
Sea level

RSL

ABSTRACT

Characterizing the spatio-temporal variability of relative sea level (RSL) and estimating local, regional,
and global RSL trends requires statistical analysis of RSL data. Formal statistical treatments, needed to
account for the spatially and temporally sparse distribution of data and for geochronological and ele-
vational uncertainties, have advanced considerably over the last decade. Time-series models have
adopted more flexible and physically-informed specifications with more rigorous quantification of un-
certainties. Spatio-temporal models have evolved from simple regional averaging to frameworks that
more richly represent the correlation structure of RSL across space and time. More complex statistical
approaches enable rigorous quantification of spatial and temporal variability, the combination of
geographically disparate data, and the separation of the RSL field into various components associated
with different driving processes. We review the range of statistical modeling and analysis choices used in
the literature, reformulating them for ease of comparison in a common hierarchical statistical frame-
work. The hierarchical framework separates each model into different levels, clearly partitioning mea-
surement and inferential uncertainty from process variability. Placing models in a hierarchical
framework enables us to highlight both the similarities and differences among modeling and analysis
choices. We illustrate the implications of some modeling and analysis choices currently used in the
literature by comparing the results of their application to common datasets within a hierarchical
framework. In light of the complex patterns of spatial and temporal variability exhibited by RSL, we
recommend non-parametric approaches for modeling temporal and spatio-temporal RSL.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Woodworth, 1999). Modern, quality-controlled measurements
from Northern Hemisphere sites are available beginning in the

The instrumental record of change in relative sea level (RSL, the
difference between sea-surface height and land-surface height) is
short, with the oldest tide-gauge record (Amsterdam, The
Netherlands) dating to the 18th century (e.g., Van Veen, 1945;
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early-to-mid 19th century, and globally from the mid 20th century
onward. However, the geographic distribution of observations re-
mains skewed to the Northern Hemisphere (PSMSL, 2017; Holgate
et al., 2013; Pugh, 1987). RSL proxies are therefore required to infer
RSL changes and the contribution of processes that operate over
longer timescales (Bloom, 1964; Shennan, 1989; Tornqvist et al.,
2008; Dutton et al., 2015). Whereas instrumental records are
(near-)continuous with relatively small vertical uncertainty and
negligible (minute-to-hour resolution) temporal uncertainties, RSL
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proxy data exhibit sample-specific vertical (inferential and mea-
surement) and temporal uncertainties (e.g., Tornqvist et al., 2015;
Woodroffe et al., 2015; Hibbert et al., 2016). Like the distribution of
tide-gauge measurements, the distribution of RSL proxy data is
sparse in time and space.

Quantifying the rates and spatial patterns of RSL change, on
timescales ranging from decades to millennia, therefore involves
piecing together sparse and noisy instrumental and/or proxy
data (e.g., Kopp et al., 2009, 2016; Hay et al., 2015; Piecuch et al.,
2017). Statistical models allow RSL records to be filtered for
quality assurance (Diisterhus et al., 2016b) as well as fused in a
consistent manner that allows rigorous quantification of multiple
sources of uncertainty. Statistical models are needed to answer
fundamental questions in sea-level research, such as quantifying
rates of RSL change (e.g., Cahill et al., 2015a; Khan et al., 2015),
assessing spatial variability of the extent and magnitude of high
stands (e.g., Kopp et al., 2009; Khan et al., 2017; Vacchi et al.,
2018), identifying the global-mean sea-level (GMSL) signal (e.g.,
Church and White, 2004; Jevrejeva et al., 2006; Kopp et al., 2009;
Hay et al., 2015; Kopp et al., 2016), and improving estimates to
constrain dominant physical processes, including ice-sheet
behavior and glacio-isostatic adjustment (GIA; Engelhart et al.,
2011; Mitrovica et al., 2011), based on their distinct spatial and
temporal patterns (e.g., Milne et al., 2005; Dangendorf et al,,
2017; Kopp et al., 2015a; Hay et al., 2015). Although statistical
methods have for decades played a major role in reconstructing
other paleoclimate variables (e.g., temperature; Visser and
Molenaar, 1988; Fritts, 1991; Smith et al., 1996; Mann et al,,
1998), their application to instrumental (e.g., Church and
White, 2004; Jevrejeva et al., 2006; Hay et al, 2013; Kopp,
2013) and paleo (e.g., Parnell, 2005; Kopp et al., 2009; Cahill
et al., 2016; Khan et al., 2015) RSL data is more recent.

Hierarchical statistical models, described in detail in Section 2,
distinguish between a process level (representing, for example, the
physics of RSL change) and a data level (representing, for example,
the noisy recording of RSL by instruments or proxies) and cleanly
distinguish between variability and uncertainties introduced at
these different levels (Cressie and Wikle, 2015; Tingley et al., 2012).
They are flexible, capable of accommodating missing data, and
enable probabilistic inference about RSL over time and space.
Viewing statistical models in a hierarchical framework, however,
does not require a hierarchical computational implementation; the
hierarchical perspective provides a valuable tool for dissecting and
comparing models (Tingley and Huybers, 2010), regardless of
implementation. Though only some authors have used hierarchical
RSL models explicitly (e.g. Kopp et al., 2016; Khan et al., 2017),
almost all statistical models of RSL can be reformulated hierar-
chically. Using a hierarchical framework to present modeling choices
(i.e., how to characterize the relationships among variables') and
analysis choices (i.e., how to implement a model structure) in a
consistent manner, we present an integrated perspective on the
choices made in analyzing temporal and spatio-temporal RSL
datasets. Although this paper primarily concentrates on proxy data
from the Holocene, the models are applicable to other timescales
(e.g., Kopp et al, 2009). The appropriate modeling and analysis
choices depend on the research questions asked, the type of data
used, and the spatio-temporal scale (e.g., local to global, years to
millennia) under consideration.

In the remainder of this paper, we first introduce hierarchical
models and their application to RSL data (Section 2). We then
describe different models representing the data-generating pro-
cess (Section 3.1) by which RSL is linked to proxy records. At the

T Italicized terms are defined in the glossary, Section 3.

process level, we describe time-series models (Section 3.2) for
representing RSL at a single site and spatio-temporal models
(Section 3.3) for representing the temporal evolution of sea level
across a regional or global domain. We then discuss different
analysis techniques and their advantages and disadvantages
(Section 4). To illustrate more concretely the similarities and dif-
ferences between these approaches, we build case studies by
applying models to common datasets including tide-gauges
measurements (TGs), near-continuous RSL reconstructions
(continuous cores), and sea-level index points (SLIPs) from locations
along the Atlantic coast of the United States (Section 5). Finally, we
make recommendations to help identify which methods to use to
obtain temporal and spatio-temporal estimates of RSL and/or
GMSL and rates of change based on the data being analyzed and
the objective of the study (Section 6).

2. Hierarchical statistical modeling

In statistical nomenclature, uncertainty signifies an interval
around which the true value is likely to fall, whereas statistical
error is the (unknown) difference between the predicted value
and the true value. Residuals, which can be analyzed to test as-
sumptions about modeled errors, are the difference between an
observed and a predicted value (Section 4). The prior distribution
of a Bayesian model represents the knowledge about a given
phenomenon before new data is observed, whereas the posterior
distribution is the conditional probability that is assigned after
the relevant new evidence (the observed data) is taken into
account.

Hierarchical statistical models, which are frequently but not
always implemented in a Bayesian framework, partition the mul-
tiple random effects that lead to individual observations into levels,
thus clarifying the assumptions in a statistical analysis. They
separate the underlying phenomenon of interest, such as sea level,
and its variability, characterized at what is called the process level,
from the noisy mechanism by which this underlying process is
observed, characterized at the data level). Bayesian hierarchical
models are based on conditional probabilities: observed data are
regarded as conditional on a latent (unobserved) process, which is
conditioned on unknown parameters and the assumptions in the
model structure. Inverting the conditional probabilities allows
probabilistic estimation of a time series or field, which can vary as a
function of time and/or space. Each level of a hierarchical statistical
model quantifies uncertainties separately; this can require more
careful consideration of sources of uncertainties than approaches
that pool the uncertainties from different levels together. Almost
any statistical model can be reinterpreted as a hierarchical model;
doing so increases transparency by explicitly making the distinc-
tion between modeling assumptions and analysis methods (or
inference choices), as well as the difference between process vari-
ability and observation noise.

The primary goal in statistical analysis of RSL data is to estimate
latent RSL (i.e., the noise-free time series or spatio-temporal field)
and its uncertainty from observed, noisy data. At least three levels
are defined in most RSL model hierarchies. The data level charac-
terizes the relationship between RSL and the observed RSL data
(instrumental and/or proxy) and incorporates measurement,
inferential (e.g., from the conversion of a proxy's elevation to a
distribution of RSL), and dating uncertainties. The process level
models ‘true’ (i.e., noise-free) RSL and, in some cases, decomposes
RSL into the underlying processes that comprise it. The parameter
level captures key attributes of the data and process levels through
unobserved parameters (e.g., characteristic temporal and spatial
scales of variability). Hierarchical models estimate the posterior
probability distribution of the noise-free RSL time series or field
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(and its uncertainty), which enables probabilistic inference about
RSL over time and space (see Cressie and Wikle, 2015, for further
details on hierarchical models). We interpret published sea-level
analyses within a hierarchical framework in order to compare
modeling assumptions as well as analysis methods from these
implementations.

Conditional probability distributions are the basic mechanism
for modeling uncertainty in hierarchical models. The conditional
probability distribution of A, given B, is denoted p(A|B). Bayesian
statistics uses Bayes' theorem (Laplace, 1812) to invert the condi-
tional probability of the observed data, y, and calculate the condi-
tional probability of unknown parameter(s) or process(es), , given
the data, y:

p(y|0)p(0)
py)

The likelihood function, p(y|f) (also known as a sampling or data
distribution), is the probability of observing the data as described
by the parameter(s) or process(es) of the fitted model. The prior
distribution, p(f), expresses a priori beliefs about the unknown
parameter(s) or process(es), before data have been observed, and
p(y) is the marginal likelihood of the data, defined as the probability
of observing y averaged across all possible processes or parameters.
The conditional, posterior distribution, p(f|y), is the resulting pro-
cess or parameter distribution, given the observations. The pa-
rameters used to construct the prior distribution, known as
hyperparameters, can be fixed, estimated, or have (hyper)prior dis-
tributions themselves. For the remainder of this paper, we will
ignore the marginal likelihood, which is irrelevant provided the
observations are static, and use the alternative form of Bayes’ the-
orem that states the posterior is proportional to the likelihood
times the prior:

p(dly) = (1)

p(0ly)<p(y|0)p(0). (2)

In a simple hierarchical statistical model of RSL, the data model,
pWIf, 04), expresses the distribution of the RSL data, y, given the
latent (unobserved) sea-level process, f, and the parameters of that

distribution, ;. Below the data level, the RSL process model, p(f|0s),
incorporates scientific knowledge and uncertainty into the esti-
mation of the true RSL process through its conditional parameters,
fs. On the bottom level, the parameter model, p(0,, 0s), specifies
the prior distribution of all unknown parameters and
hyperparameters.

p(f, 05, 04ly) =pWIf.0q) - p(flfs) - p(0q,05) (3)
—_— — ~——

posterior data model process model parameter model

Modeling choices refer to the relationships defined within a
model and the assumptions made in constructing these relation-
ships (e.g., a linear relationship between time and RSL), whereas
analysis choices describe decisions about how to implement a
specific model structure (e.g., using least-squares analysis, Aitken,
1934; likelihood maximization, Wilks, 1938; or fully Bayesian
analysis with Monte Carlo sampling, Hastings, 1970).

Models are always simplified, imperfect versions of reality. It is
therefore important to recognize that a model's estimate of the
truth (e.g., the latent process, f) is conditional upon the assump-
tions of the model and the accuracy of the analysis approach.
Because a perfect model of the world is also a uselessly intractable
one (Borges, 1954), statistical estimates are useful, but imperfect,
approximations. Consideration of alternative sets of structural
modeling assumptions is an important part of characterizing the
robustness of an estimate.

The hierarchical statistical framework accommodates a broad
range of complexity in modeling and analysis choices, and most
methods of statistical analysis used in sea-level science can be
reframed as hierarchical models. For example, the structure of
trends in RSL through time can be defined prior to analysis by
explicitly assuming linear, polynomial, piecewise-linear, or other
forms of the relationship between time and RSL at the process level.
Non-parametric approaches, such as spline regression (e.g.,
Gharineiat and Deng, 2015) or models with Gaussian process priors
(GP; Rasmussen and Williams, 2006; e.g., Kopp et al., 2009; Cahill
et al., 2015a), can also be used to determine trends, without a
predetermined functional form at the process level. A probabilistic

Table 1
Techniques table.
Technique Analysis Methods Modeling Choices Data Time Period [llustrative Publications
Simple Linear Least squares Temporally linear TGs, CCs, <3ky Shennan et al. (2002)
Regression SLIPs Engelhart et al. (2009)
EIV Change- Errors-in-variable, Bayesian Change-point model CCs, TGs, Common Era, Late Kemp et al. (2013), Brain et al. (2015)
point analysis SLIPs Holocene
EIV IGP Errors-in-variable, Bayesian Covariance functions, Proxy- TGs, CCs,  Common Era, Holocene  Gehrels and Woodworth (2013), Cahill et al.
analysis systems model, Integrated GP SLIPs (20154, 2015b)
Regional Least squares, Ad hoc, Virtual Physical models TGs, Instrumental Douglas (1991), Jevrejeva et al. (2009),
Averaging  station Altimetry Dangendorf et al. (2017)
data
EOF Regression Least squares EOFs TGs, Instrumental Church and White (2006)
Altimetry
data
Probabilistic Particle filter Physical models SLIPs LIG Diisterhus et al. (2016)
Ensembles
Kalman Multi-model KS Spatio-temporal, Covariance TGs Instrumental Hay et al. (2013, 2015, 2017)
Smoother functions, Physical models
Gaussian Bayesian Analysis, Empirical Spatio-temporal, Covariance TGs, CCs, Instrumental, Holocene, Parnell (2005), Kopp (2013), Kopp et al.
processes Bayesian analysis functions Physical models SLIPs LIG, Common Era (2015), Khan et al. (2015, 2017)

Table includes common techniques, analysis methods, modeling choices, the type of data typically used, relevant time periods to which this approach has been applied, and
some examples in publications. Sections 3.2 and 3.3 provide details on the modeling choices, and section 4 discusses specific analysis choices. TGs - tide gauges; CCs -
continuous core records; SLIPs - sea-level index points; EIV - errors-in-variables; IGP - integrated Gaussian process; EOFs - empirical orthogonal functions.
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ensemble approach (e.g., Diisterhus et al., 2016a,b), where each
ensemble member is assigned an equal prior probability, is another
option for modeling the process level. Table 1 presents pairs of
modeling and analysis choices from past analyses, recast within a
hierarchical framework, highlighting the time periods and data that
have been analyzed in the literature using these models.

3. Modeling choices
3.1. Modeling the data level

RSL proxy data differ from instrumental data in their sources of
uncertainty, which are modeled at the data level. Whereas instru-
mental data have negligible temporal uncertainty, proxy data have
inherent temporal uncertainties (e.g., from radiometric dating;
Polach, 1976; Stuiver and Polach, 1977; Reimer et al., 2013). In the
broadest sense, there are two types of Holocene RSL proxy data.
Discrete SLIPs constrain the position of RSL in time and space
(geographic and vertical) and can be treated independently of one
another at the data level in most circumstances (e.g., Shennan et al.,
2002; Engelhart and Horton, 2012; Engelhart et al., 2015). In
contrast, continuous cores are produced by analyzing a sequence of
ordered samples from a single sediment core. These records
constrain RSL change through time at a single geographic location
(Gehrels et al., 2002; Varekamp et al., 1992), but the data points are
not independent because a common age-depth model (e.g., Wright
et al.,, 2017) is generally used to estimate sample age. A particular
challenge when working with RSL proxy data is realistically char-
acterizing the geochronological uncertainties that arise from the
process of radiocarbon calibration (Reimer et al., 2013), which re-
sults in probability distributions for calendar ages that are often
multi-modal and discontinuous. However, many models assume
(explicitly or implicitly) normal uncertainties for calibrated radio-
carbon ages for simplicity (although this is an oversimplification of
reality). Some age-depth models (e.g., Parnell et al., 2008, 2015;
Wright et al., 2017) handle these difficulties and return predicted
age distributions with approximately normal uncertainties.

The data level of a hierarchical statistical model represents the
relationship between uncertain observations and RSL. The specific
type of data and associated uncertainty determine the form of this
relationship and hence the form of the data-level model. For
example, regression models often assume that the independent
variable, time, t, has been measured exactly, and only account for
uncertainty in time's functional relationship with RSL, f. This link
between the observed data and the sea-level process can be rep-
resented as

Yi =f(t;) + &, (4)

where y; is proxy or instrumental observation i and f(t;) is true RSL
(under the assumptions of the model) at the time that y; was
observed. Many models assume measurement uncertainties are
independent and normally distributed, such that & ~.77(0, 01.2),
where ¢; is the assumed standard deviation of measurement and
inferential uncertainty for observation i (e.g., Hijma et al., 2015). This
assumption, however, typically ignores some biases (e.g., mis-
calibration) and assumes an ideal measurement is taken, which is
rarely achieved in reality. In analyses that do not incorporate
measurement and inferential uncertainty specific to each obser-
vation, ¢ are typically assumed to be independent and identically
distributed (iid) with Gaussian uncertainty and to pool data un-
certainty with process variability not represented in the structure
of f(t). The data level of a spatio-temporal model is equivalent to
that of a time-series model, where true sea-level, f(x;, t;), is
dependent on both geographic location, x;, and time, ;.

The distinction between measurement uncertainty and infer-
ential uncertainty (the relationship between RSL and a proxy's
position) can be explicit:

YVi=f(t) +e+mn (5)

where ¢; is the unobserved measurement error for observation i,
and 7; is the indicative meaning (vertical relationship of a proxy to
contemporary tide levels) uncertainty for the specific sample (p = 0
for direct instrumental observations of RSL), which may depend on
time due to changes in tidal range. Hierarchical models for RSL
proxies can be even more explicit in the representation of 7;;
whereas this is often specified in a database based upon an inter-
pretation (which can introduce subjectivity and additional as-
sumptions) conducted separately, it can be related directly and
probabilistically to raw data, such as microfossil species abun-
dances, in an additional level of the model (e.g., extending the
approach used by Parnell et al., 2015 for paleoclimate data).

Temporal uncertainties in proxy data are separated from process
noise at the data level:

where ¢; is the central point estimate of the calibrated age for
radiocarbon dating, t; is the true age (under the assumptions of the
model), which is unknown and unobserved, and ¢; is unobserved
temporal error, which is often incorporated as normal uncertainty
within the analysis. These uncertainties can be incorporated in
several different ways (see Section 4.6).

3.2. Process level: modeling the temporal sea-level process

RSL time-series models have a long history, beginning with
hand-drawn curves (e.g., Lighty et al., 1982; Zong, 2004; Smith
et al.,, 2011; Abdul et al., 2016) and evolving to include different
forms of statistical regression (e.g., temporally linear, Shennan
et al.,, 2002; change-point, Kemp et al., 2015b; GP, Kopp et al,,
2009; EOF, Church and White, 2004). Some of these explicitly
separate data uncertainty from process variability; others incor-
porate both data uncertainty and non-linear or high-frequency
process variability into the error term, . Recasting these models
in a hierarchical framework allows the separation of uncertainties
of different types, providing a common basis for comparing
modeling choices.

3.2.1. Temporally linear models

The simplest approach to estimating RSL and an average rate of
RSL change is fitting a temporally linear model to observed data. As
just two examples, Shennan and Horton (2002) and Engelhart et al.
(2009) applied simple linear regression to discrete SLIPs and tide-
gauge measurements to estimate the rate of RSL change during
the past few thousand years, over which period the observations
were qualitatively judged to be well approximated by a linear trend.
In both instances, the authors performed linear regression on the
midpoints of the SLIPs and did not account for inferential and
measurement uncertainty (temporal and vertical). The process-
level relationship is represented by

ft) =mt +6, (7)

where f(t) is the modeled true RSL, m is the constant rate of change
in RSL, and (@ is the intercept. The slope, m, and y-intercept
parameter, 3, can be estimated using many analysis methods, but
are most typically analyzed using least-squares regression.
Temporally linear models are familiar to most researchers and
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easy to use, and therefore provide a convenient way to find a first-
order estimate (a rough approximation) of rates over time periods
when they are expected to be roughly constant. However, tempo-
rally linear models can provide biased estimates of the slope pa-
rameters, due to their sensitivity to the temporal distribution of
data. For example, intervals with a high concentration of data exert
an undue influence on rate estimates. In addition, the linearity
assumption is rigid; temporally linear models lack the ability to
model any evolution in rates of RSL change. Temporally linear
regression also assumes stationarity of errors (errors do not change
over time or among observations). Temporally linear models are
appropriate for modeling a first-order estimate, but are generally
inappropriate for more in-depth analyses.

3.2.2. Change-point models

Change-point models represent a single time series as separate,
continuous, temporally linear sections and are generally employed
to estimate the timing of changes in trend. For example, Kemp et al.
(2015a) estimated when modern rates of RSL change began in
Connecticut using change-point models. Long et al. (2014) used a
change-point model to analyze whether there was an acceleration
in RSL change in the UK over the past 300 years. At the process
level, with m change points,

ar + Bt = 1), when t <y,
Q1 +13j(t_7j—1>7 when "/j_]<t<’)’j (8)
am + Bm-1(t = Ym), whenyp, <t

f(H=

where v, is the change point and «; is the expected value of RSL at
the change point (with a continuity constraint, such that o, =
&1+ Bk—1(Yk — Yk-1)) and §; is the rate of RSL change for each of
the m + 1 segments. The parameters of change-point models can be
estimated using a range of analysis approaches, including non-
linear least squares and empirical Bayes (Section 4.3), but in the
paleo sea-level modeling literature, these models generally follow
Cahill et al. (2015b) in employing a change-point process model
using a Bayesian Hierarchical Model (BHM; Section 4.4) within an
errors-in-variable (EIV) framework (Section 4.6).

Change-point models attempt to address a primary goal in sea-
level research, identifying accelerations in RSL and GMSL change
(e.g., Church and White, 2006; Jevrejeva et al., 2008; Kopp, 2013),
and they improve upon simple linear models by allowing for
varying rates of RSL change and are relatively simple to implement.
However, the linear constraints on each section are still fairly rigid
and often do not represent the true physical behavior of RSL. When
there is a clear pattern of phase changes in the data and variability
around the trends is white noise (signal having serially uncorrelated
random variation), change-point models may be appropriate for
estimating the timing of these phase changes; however, they
cannot estimate the magnitude of accelerations because they as-
sume acceleration is instantaneous. Additionally, the white noise
assumption, which can be tested with analyses of residuals, is
frequently violated. If the model accounts for every change point in
the regression lines, the assumption of iid errors can be met.
Alternative, less parametric approaches, such as Kalman Smoother
(KS) or GP models, are more flexible in representing RSL time series
when the data exhibit fluctuations that cannot be adequately
captured by a small number of change points; as such, they can help
to answer questions about accelerations in a manner that recog-
nizes that accelerations may occur gradually rather than abruptly.
For a more complete overview of change-point models, see Ducré-
Robitaille et al. (2003).

3.2.3. Gaussian process models

A Gaussian process (GP) is a generalization of the Gaussian
(normal) probability distribution in continuous time (and space)
(Rasmussen and Williams, 2006). To our knowledge, GP modeling
was introduced into sea-level analysis by Parnell (2005) and into
the paleo-sea-level literature by the Last Interglacial analysis of
Kopp et al. (2009). In a GP, the relationship among any arbitrary set
of points (e.g., in time, or in space and time) is a multivariate
normal distribution defined by a mean vector and a covariance
matrix. A temporal GP is fully defined by its mean function, u(t),
and covariance function, K(t,t'), where t is an input variable, which
here represents time (but can be extended without loss of gener-
ality to higher dimensions, for example to include geographic
location in spatial sea-level modeling; see Section 3.3). When RSL,
f(t), is a GP this is expressed as

f(t) ~ 27(ut), K(t,1)). 9)

The covariance function, K(t,t’), defines prior expectations
about the variance of the process about its mean and the correla-
tion between points in time (and space), and thus about the way in
which information is shared between time points.

In a GP model, the sea-level function, f(t), is non-parametric
(i.e., its form is not predetermined). Accordingly, GP time-series
models have much more flexibility than temporally linear or
change-point models. The shape of the curve is driven by the
covariance matrix, which is estimated conditional upon the data, as
opposed to a predetermined functional form. A key assumption of a
GP model is that values among any set of given points assume a
normal distribution.

A variant type of GP model is an Integrated Gaussian Process
(IGP) model, which places a GP prior on the rate process rather than
the sea-level process (see Holsclaw et al., 2013 for more details and
justification). The IGP approach was introduced into the RSL liter-
ature by Cahill et al. (2015a), following the methodology of
Holsclaw et al. (2013), who presented a new method of obtaining
the derivative process by viewing this procedure as an inverse
problem. At the process level, IGP regression models the RSL rate
process, f’(t), as a GP. The underlying RSL process, f(t), is the in-
tegral of the rate process plus a constant intercept, «:

f(t) ~ Z22(u(t),K(t, 1)), (10)
t

£t :a+Jf/(u)du7 (11)
0

where t is time. For example, Cahill et al. (2015a) estimated the
continuous and dynamic evolution of RSL change in North Carolina
from sediment cores using IGP models.

Assuming a stationary covariance for the rates of RSL change
produces a non-stationary covariance for RSL. The Bayesian
approach allows regularization (introducing additional information
in order to prevent over-fitting or solving an ill-fit problem), which
reduces issues with identifiability (the theoretical possibility of
learning the true values of a model's underlying parameters after
obtaining an infinite number of observations from it). One limita-
tion of the IGP is that the sea-level function needs to be twice
differentiable; unlike a GP model of levels, this does not allow
abrupt changes of rate, but instead requires that any change of rate
happens through a gradual acceleration. For example, any RSL trend
that is well-represented by a change-point model, which assumes
instantaneous acceleration, cannot be represented well by an IGP
model. Another drawback of the IGP is that it is not immediately
clear how to extend it to define a derivative process in multiple
dimensions (e.g., Holsclaw et al., 2013), such as for applying it to
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spatial datasets, although some insights could be gleaned from
spatial first-difference methods, commonly applied in the econo-
metrics literature (e.g., Juodis, 2018).

In both GP and IGP models, the covariance functions can take a
range of functional forms (Section S1). The form and parameters of
the covariance function — called hyperparameters, because they set
assumptions that inform the non-parametric representation of f(t)
— define how abruptly modeled RSL may change with temporal (or
spatio-temporal) distance. Scale hyperparameters express prior
beliefs about the amplitude of variability over time. Range (or
characteristic length scale) hyperparameters set the distance over
which the correlation between two sites or times decays toward
zero (e.g., Rasmussen and Williams, 2006). Smoothness hyper-
parameters determine the speed of decay in the correlation in time
or space (e.g., the degree of differentiability). For fixed hyper-
parameters, GP posterior distributions are analytically tractable
(i.e., no approximation or sampling is necessary) when data un-
certainty is represented as normally distributed; statistically
speaking, this reflects the fact that the normal distribution is self-
conjugate. Covariance functions for GP priors can be constructed
by summing different terms with different characteristic scales of
variability; however, linking these different terms with distinct
physical processes requires incorporating process knowledge
through deterministic physical models.

GP and IGP models are appropriate for many applications
because of their flexibility and ability to incorporate physical
knowledge regarding ranges and scales of variability through their
covariance functions (Section S1). However, they do have several
key disadvantages. GP models generally assume that the covariance
function is stationary — e.g., that prior expectations about the
relationship between RSL at 10 ka and 8 ka are the same as those
between 4 ka and 2 ka. This is a rough approximation, although still
more flexible than parametric approaches. IGP models generally
make the same assumption about rates as opposed to levels, which
is a potentially more accurate approximation.

GP models are considerably more difficult to implement than
linear or change-point models, although an increasing number of
tools are available to assist in their implementation. For example,
Kopp (2016) makes documentation and code publicly available for
implementing a spatio-temporal version of a GP model, and Cahill
(2018) provides code to implement an IGP model.

These models exhibit relatively long analysis times (e.g., see
Table 2 for analysis times of illustrative analyses). Statistical
modeling is an iterative process of model development, model
fitting, and model criticism, and slow analysis methods can be a
hindrance to this process. Moreover, for some methods the
computational time can scale rapidly with the number of data
points. The time to invert a covariance matrix for a GP analysis
scales with the cube of the number of data points, and the
computational time of a model that both inverts a covariance ma-
trix and samples temporal uncertainty (e.g., the EIV-IGP) scales
with the number of data points to the fourth power. Although there
are techniques to estimate the covariance matrix in order to make it
more easily invertible, these models are currently not scalable to
large datasets using full covariance matrices.

3.2.4. Summary of time series models

Each modeling choice has advantages and disadvantages.
Temporally linear models are sensitive to the temporal distribution
of data and influential data points. However, when uncertainties in
the data are incorporated into the model, linear regression provides
an easy, fast, and appropriate way to determine first-order rates of
change in processes that are approximately constant. Change-point
models assume that phases of persistent sea-level behavior are
approximated by linear trends, which may not accurately represent

the underlying physics of RSL change and mask (to some degree)
the continuous evolution of RSL through time (Cahill et al., 2015a).
Drawbacks of these simpler approaches motivated Cahill et al.
(2015a) to develop a non-parametric (EIV-IGP) methodology for
estimating rates of RSL change from multiple types of proxy data at
a single site (Sections 5.1 and 5.2) and Kopp et al. (2009) and Kopp
(2013) to develop spatio-temporal GP models (Sections 5.2 and
5.3), which share information from nearby geographical sites to
overcome the limited length of records in certain locations. How-
ever, GP models also have several drawbacks, including their less
intuitive nature, complexity of implementation, longer computa-
tion time, and stationarity assumptions.

3.3. Process level: modeling the spatio-temporal sea-level process

Spatio-temporal models allow information to be shared among
sites based on their proximity or physical relations, and they also
enable estimation of RSL and its rates of change at sites where there
are no data. In addition, spatio-temporal models support the esti-
mation of multi-site metrics, such as change in global-mean sea
level (GMSL), which is defined as the spatial average of RSL or sea-
surface height (SSH) over the ocean (Gornitz et al.,, 1982). Most
spatio-temporal models implemented in the literature are not
explicitly hierarchical, but — as with time-series models — they can
be recast in this way in order to facilitate comparison.

Spatio-temporal RSL models represent a continuum from purely
statistical to purely physical models. At the purely statistical end of
this spectrum, the priors of the process level relating RSLs from
different locations to one another are based solely on their spatial
and temporal proximity, and the bounds on the hyperparameters
(before they are optimized) are typically based on knowledge of the
variability of the processes they attempt to capture. At the purely
physical end of the spectrum, a deterministic model (e.g., a GIA
model) is used to estimate the RSL field; probabilistic ensembles
are just one example. Intermediate formulations incorporate
physical information into the construction of prior distributions.

3.3.1. RSL represented with single or multiple GP priors

The simplest and most fully statistical models place a single GP
prior on RSL, as in equation (9) (with the mean and covariance
functions dependent on both time and geographic location), con-
ditioning on RSL proxy or instrumental data to yield a posterior
distribution of RSL in time and space. The covariance function in
this context may be spatially and temporally separable, in which
case it is represented as the product of a temporal covariance
function and a spatial covariance function. The former describes
prior expectations about scales of change in time, the latter about
scales of change in space. The analysis of a spatio-temporal GP is
amenable to the same approaches as a temporal GP.

A single GP with a parametric covariance function is rarely
implemented in the spatio-temporal RSL modeling literature,
because a single scale of temporal variability and a single scale of
spatial variability is too simple to capture physical behavior. More
physical insight recognizes that RSL should have multiple spatio-
temporal scales of variability, and can therefore be represented as
the sum of multiple terms with GP priors. Kopp (2013) introduced
this approach into the spatio-temporal RSL literature to model tide-
gauge data along the east coast of the United States in order to
determine whether there was an acceleration in local RSL. His
process model employed nine separate terms with GP priors,
combining three spatial scales of variability (global, regional, and
local) with three temporal scales of variability (low, medium, and
high frequency). Lower resolution RSL proxy data frequently
require a simpler process level. For example, several studies (e.g.,
Kopp et al., 2016; Khan et al., 2017) employ models of the form:
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f(x,t) =g(t) + I(x,t) + s(x, 1), (12)

where g(t) represents a global term that is common to all sites and
could include (in a global analysis) the global-mean effects of
thermal expansion and changing land ice volume; I(x,t) is a
regional linear term, which might represent processes like GIA,
ocean/atmosphere dynamics, and the static-equilibrium effects of
land-ice mass changes; and s(x, t) might capture smaller-scale re-
gion (or local) processes, like tectonics or natural sediment
compaction.

Although covariance functions can be used to capture specific
physical processes that influence RSL, they have fundamental lim-
itations. Using covariance functions alone, based on scales of vari-
ability, can fail to represent the processes intended, in contrast to
using physical models. For example, many common covariance
functions will miss spatial teleconnections such as those associated
with sea-level fingerprints or large-scale climate modes, because
they assume that correlation decays with distance. Hay et al. (2015)
used GPs but worked around this by using physical models to es-
timate the covariance, as did Kopp et al. (2009). However, the
assumption that the distribution of physically probable outcomes is
normal is restrictive, so this approach is also imperfect.

3.3.2. Empirical orthogonal functions

Empirical orthogonal function (EOF) regression fits sparse ob-
servations with a set of spatial patterns (EOFs) that characterize the
maximum amount of variation in a relatively dense, complemen-
tary dataset. These spatial patterns are derived through EOF
decomposition (equivalent to principal component analysis [PCA]),
which decomposes the dense dataset into orthogonal patterns. For
example, Church and White (2004), Domingues et al. (2008), and
Ray and Douglas (2011) used EOF decomposition to calculate the
dominant spatial patterns of (high-frequency) variability in GIA-
corrected SSH from altimetry observations, and applied these pat-
terns to fit tide-gauge data and estimate longer-term GMSL change.
Although EOF decomposition incorporates no direct or explicit
knowledge of physical processes, many of the dominant EOFs are
associated with known physical modes of variability (e.g., North
Atlantic Oscillation, Atlantic Multi-decadal Oscillation, Pacific
Decadal Oscillation, El Nino Southern Oscillation). The process level
in EOF regression can be represented as:

f(xt) = g(t) + Z;Uj(x)a;(t) + GIA(X, t — tg) (13)

Here, g(t) is a global ‘mode’ that is constant over space, each U
represents a leading spatial EOF, « is a time series of amplitudes of
the EOFs (also known as a principal component of the associated
EOF), and GIA(x,t — ty) represents the GIA term (implemented
through a correction from a single, selected GIA model). The solu-
tion, including the amplitudes of the leading EOFs, models the
change in RSL from one time step to the next (e.g., monthly aver-
ages for Church and White, 2004, 2011).

An advantage of EOFs is that they learn about correlations from
the observations, which allows for complex patterns with tele-
connections. The assumption that dominant spatial patterns are
constant over time, across frequencies of variability, and over the
changing selection of tide gauges may lead to biases, however,
because of the sensitivity of EOFs to the choice of spatial domain
and time period. Additionally, features of physical modes can be
mixed between EOFs, and there is no guarantee that an EOF pattern
has physical meaning; instead, the patterns can represent noise
(see Calafat et al., 2014 for a detailed critique).

3.3.3. Incorporating physics-based models
More physical knowledge can be incorporated at the process

level by building physics-based models into the covariance struc-
ture or by using a probabilistic ensemble approach. For example,
rather than optimizing hyperparameters of a covariance function
based on the data, Kopp et al. (2009) used physical models of
glacial-isostatic adjustment (GIA) to help define the prior covari-
ance structure of a spatio-temporal GP for an analysis of GMSL and
RSL change during the Last Interglacial. This approach still assumed
a GP prior; more complex priors can be represented through more
direct use of physics-based models or emulators thereof.

Although the analysis methods (Section 4) used in the imple-
mentations differ, the process models of Hay et al. (2015) and
Dangendorf et al. (2017), used to analyze the instrumental record,
are similar variants of:

f(x,t) = g(t) + Z;FP;(X)M;(t) + DSL(x,t) + GIA(x)(t — to)
+ NL(x, t) + w(x, t). (14)

Here, the spatio-temporal RSL field is split into several compo-
nent fields. A globally uniform term, g(t), includes global thermal
expansion and unmodeled sources of change. (It is not, however,
representative of GMSL, as several of the other terms have non-zero
global means). FP; and M; are the static-equilibrium fingerprint and
melt, respectively, for each ice sheet/glacier source regions, indexed
by j. DSL(x,t) is dynamic sea-level change, estimated using infor-
mation from atmospheric/ocean global climate models. GIA(X) is
the local contribution to RSL from GIA, estimated using information
from GIA process models, NL(x,t) is other non-linear signals not
captured by the other, and w(x, t) is process noise.

An advantage to incorporating knowledge of processes through
physical models is that they add potential information in the open
ocean, far from tide gauge sites, whereas purely statistical models
lose power away from the data. They also allow for teleconnections,
rather than assuming informativeness always decreases with dis-
tance. A disadvantage is that they can be more complex to imple-
ment and may be overly rigid and rely on a small number of
interpretations of physical processes. Current implementations also
use discrete inputs and outputs, without comprehensively ac-
counting for uncertainties in the parameters that determine the
process or using a continuous parameter space.

Emulation of complex physical models, including 1-D and 3-D
GIA models and ice-sheet models, with statistical models (e.g.,
Gaussian process emulators; Kennedy et al., 2006; Rougier, 2008)
or simplified physical models (e.g., Urban and Keller, 2010) can
provide a faster, more flexible way of explicitly embedding this
knowledge in a hierarchical framework. Statistical emulation re-
duces the processing time of these physical models, which are
computationally intensive; it produces continuous output, in
contrast to the discrete sea-level curves that are output for each set
of discrete input parameters; and it enables probabilistic conclu-
sions about the input parameters driving the physical models.

4. Analysis choices

Analysis methods used in the sea-level modeling literature
include least-squares analysis (e.g., Church and White, 2004;
Shennan and Horton, 2002; Engelhart et al., 2009), ad hoc ap-
proaches such as ‘virtual station’ averaging (detailed in section 4.2;
e.g.,, Jevrejeva et al, 2006; Dangendorf et al., 2017), empirical
Bayesian analysis (e.g., Kopp et al., 2009; Khan et al., 2017; Meltzner
et al,, 2017), fully Bayesian analysis (e.g., Parnell, 2005; Cahill et al.,
2016), Kalman smoother (KS) algorithms (e.g., Hay et al., 2015), and
direct and approximate methods for incorporating temporal un-
certainty in proxy data into statistical models. Simple process
models can be implemented with almost any analysis choice, while
more complex models may require non-linear least squares or a



E.L. Ashe et al. / Quaternary Science Reviews 204 (2019) 58—77 65

Bayesian approach.
4.1. Least squares

Least-squares analysis optimizes a model by minimizing the
sum of squared deviations between the observed RSL and a RSL
process model function (Legendre, 1805). It can be used with
functions as simple as a line (i.e., simple linear regression, Section
3.2.1) or as complex as in EOF regression (Section 3.3.2). Least-
squares analysis is included with most statistical software (e.g., R,
MATLAB, SAS) and is easy to implement with many modeling
choices. However, ordinary least-squares (OLS; Aitken, 1934)
analysis does not include implementation of a data level, and
therefore typically excludes explicit measurement and inferential
uncertainties. It also assumes errors are independent and identi-
cally distributed.

Slightly more advanced solutions than OLS include weighted
least squares (WLS) and generalized least squares (GLS). WLS ad-
dresses the problem of heteroscedastic (unequal) variances, and GLS
additionally addresses the problem of autocorrelation among var-
iances, both of which are common characteristics of data used in
sea-level analyses. GLS estimators can be more efficient than OLS
estimators (Goldberger, 1962). OLS, WLS, and GLS all require
parametric linear models (though note that a linear model need not
be a linear function of time). Total least squares (Golub, 1973; Golub
et al., 1999) is a generalization of the least-squares approximation
method and incorporates uncertainty in both the independent and
dependent variable, and non-linear least squares uses optimization
algorithms to maximize the fit of more complex models.

4.2. Ad hoc approaches: regional averaging, virtual stations, pre-
processing

We define ‘ad hoc’ approaches as analysis methods constructed
without an underlying statistical theory. Modern estimates of
GMSL change apply various versions of these ad hoc approaches,
including regional averaging, ‘virtual stations,” and pre-processing
to different subsets of tide gauges. The results of these techniques
exhibit various GMSL curves (Fig. 1).

Regional averaging effectively removes the contributions of
some processes, such as those included in the regional and local
terms of purely statistical models. Definitions of the number of
regions and how the averaging is implemented vary by study.
Jevrejeva et al. (2006, 2009, 2016) attempted to address the spatial
heterogeneity of tide gauges separated by geographic regions
through a ‘virtual station’ approach, which iteratively averages
rates between stations to estimate a regional average and then
averages across all regions to find a global average (Fig. 1).
Dangendorf et al. (2017) adopted the general idea of Jevrejeva's
‘virtual station’ technique and weighted each regional estimate by
its approximate area in relation to the entire ocean (Fig. 1).

Regardless of the model, many analyses ‘correct’ for physical
processes prior to analysis (e.g., Cahill et al., 2015a; Tamisiea and
Mitrovica, 2011; Church and White, 2011) by removing sites that
do not meet desired criteria and by subtracting out signals from
physics-based process models prior to analysis (i.e., pre-
processing). For example, within regional averaging implementa-
tions, Douglas (1991, 1997) and Holgate (2007) corrected for the
effects of GIA using single GIA models and screened out tide-gauge
stations deemed to include a sizable tectonic contribution.
Dangendorfetal. (2017) corrected each tide gauge, prior to analysis,
according to the static-equilibrium fingerprints of assumed melt
components, GIA, and vertical land motion, which were each esti-
mated by physical process models. For more details on the ‘virtual
station’ approach, see Section S2.1.
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Fig. 1. Comparison of GMSL curves based on different subsets of tide gauges, process
model choices, and analysis methods, including KS, GP, virtual stations, and EOF
regression (Jevrejeva et al., 2008; Church et al., 2013; Hay et al., 2015).

4.3. Empirical Bayesian analysis

Empirical Bayesian analysis, employing Empirical Hierarchical
Models (EHMs; see Cressie and Wikle, 2015; Gelman et al., 2013 for
background), uses point estimates of the parameters based on the
RSL data (e.g., Kopp et al.,, 2016; Hay et al., 2015). Maximum like-
lihood estimates (MLEs, 0) are optimal point estimates found by
maximizing the likelihood p(y|#) of the model, given fixed data. An
EHM yields a posterior distribution of RSL, conditional on the data
and the optimal parameters p(f|y, 05, 04). Although explicit bounds
are usually set on hyperparameters for MLEs, there is no explicit
prior distribution on the parameters. Instead, the parameter level
describes the optimization or estimation of the data and process
parameters, 0, and 0, respectively.

p(fly.8,84) =p(y|f.84) -p(f[0s) - (15)
—_—— e e
posterior likelihood prior

Almost all published implementations of RSL process models
with spatio-temporal GP priors applied to RSL proxy data use
empirical Bayesian analysis (e.g., Kopp et al., 2015b; Khan et al.,
2017). For instrumental data, Hay et al. (2015, 2017) demon-
strated an EHM with GP priors alongside the KS approach (section
4.5) to estimate GMSL, the spatio-temporal RSL field, and the
components contributing to RSL globally at decadal intervals from
tide gauge records. Meltzner et al. (2017) implemented an empir-
ical GP model using coral microatoll proxy data from the mid-
Holocene in Southeast Asia to estimate rates of RSL change by
incorporating a periodic term to capture the 18.6-year tidal cycle.

GMSL reconstructions fusing proxy and instrumental data are
possible using empirical Bayesian analysis, although they have
rarely been implemented. Kopp et al. (2016) provide the only
example of using both instrumental and proxy data to construct an
empirical GMSL reconstruction over the past 2500 years using
spatio-temporal modeling with empirical Bayesian analysis (Fig. 2).

EHMs generally require fewer computational resources than
fully Bayesian techniques; however, like fully Bayesian approaches,
empirical GP implementations require computation of the inverse
of a full covariance matrix (over all times and space), the compu-
tational demands of which are more strenuous than a state-space
model (a model that is defined by a system of first-order differ-
ence equations of state variables), which estimates a covariance
matrix at each time step. For this reason, EHM analyses (and BHM
analyses) do not scale to large datasets as easily as other
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approaches.
4.4. Fully Bayesian analysis

Another analysis choice, fully Bayesian analysis, gives rise to
Bayesian Hierarchical Models (BHMs, see Cressie and Wikle, 2015;
Gelman et al., 2013 for background). A fully Bayesian analysis re-
quires that all model parameters have prior probability distribu-
tions, allowing parameters to take on a range of probable values.
These prior distributions may incorporate informative prior
knowledge or may be uninformative, vague priors. Priors are
typically sampled using Markov Chain Monte Carlo techniques
(MCMC: algorithms used to approximate random samples from
complex probability distributions, e.g., Gelman et al., 2011); how-
ever, for a limited set of likelihood and conjugate prior distributions,
combined with relatively simple model structures and known
hyperparameters, they can be solved analytically.

The output of a BHM is the posterior distribution, p(f, 0s, 04]y), of
the sea-level process, f, and the parameters, 0s and 0,4, given the
observed data, y. This posterior is proportional to the product of the
likelihood of the model, p(y|f,0,), the prior distribution of the
model, p(f]0s), and the prior of the parameters, p(8,, 0s), where 0,4
and O are the data and sea-level process hyperparameters,
respectively:

p(f,0s,04ly) <p(yIf.04) -p(f05)-p (04, 65) - (16)
—_— —m, Y—
posterior likelihood prior

As with empirical Bayesian analysis, fully Bayesian analysis can
be implemented with virtually any process model (e.g., Parnell
et al., 2015; Cahill et al., 2015b, 2016; Piecuch et al., 2017). In gen-
eral, it is more computationally demanding than an empirical
analysis but provides more thorough estimates of relative un-
certainties (e.g., Piecuch et al., 2017).

4.5. Kalman smoother techniques

The Kalman smoother can combine process-based models of the
drivers of sea-level change with spatially and temporally sparse
observations to estimate a temporal or spatio-temporal model.
Implementation of the KS is based on the Kalman filter (Kalman,
1960), a data assimilation technique that iteratively performs a
least-squares analysis whenever observations are available, but in
the absence of observations relies on model dynamics to compute
the best estimate of the state vector. The Kalman filter method
assumes that the state at time k evolves linearly from the state at

k—1. The approach is similar to a Bayesian updating process,
occurring one time step at a time, and is equivalent to a linear
Gaussian state-space model. (For examples of non-linear, non-
Gaussian state-space models, see Parnell et al., 2015; Cahill et al.,
2016). The KS extends the Kalman filter so that estimates at any
given point in time are informed by observations in its future as
well as in its past. For example, Hay et al. (2013, 2015) used the
Kalman smoother to implement a model similar to that in equation
(14) and thus model GMSL, the field of RSL change, and different
driving processes (see Section S2.2 for more details on this
implementation).

The KS approach is flexible in terms of process models that can
be represented. Because it is recursive, it is computationally faster
than approaches (such as EHMs or BHMs) that require estimating
all spatio-temporal points simultaneously; the KS scales linearly
with the number of data points (Grewal and Andrews, 2001). It is
therefore especially valuable for estimating GMSL and RSL over the
instrumental period, as it enables analysis of data at a higher
temporal resolution than non-recursive analysis methods with
comparable modeling choices. However, the KS approach fails for
low data density (which can be shown analytically; see Hay et al.,
2017; Gelb et al., 1974), does not readily handle temporal uncer-
tainty (KKalman, 1960; Visser and Molenaar, 1988), and therefore has
not yet been implemented in the literature using proxy data to
estimate trends over longer timescales. Moreover while multiple
methods have been used to incorporate temporal uncertainties
within models with GP priors, including errors-in-variable (EIV)
and noisy-input GP (NIGP) methods (Section 4.6); the KS has not
been applied to RSL data with temporal uncertainties.

4.6. Incorporation of temporal uncertainty

The temporal uncertainty of RSL proxy data has been incorpo-
rated into models in various manners. An EIV framework, which
has been implemented in temporal IGP (e.g., Kemp et al.,, 2013;
Gehrels and Woodworth, 2013; Brain et al., 2015; Cahill et al,,
2015a) and change-point (e.g., Cahill et al., 2015b) models and in
a spatio-temporal GP model (Kopp et al, 2009), incorporates
temporal uncertainty directly through MCMC sampling of the dis-
tributions. Because of its use of MCMC sampling, the EIV framework
is generally employed together with a fully Bayesian analysis
approach.

An alternative approach with less computational demand is to
approximate and recast temporal noise as RSL uncertainty. The
NIGP method of McHutchon and Rasmussen (2011) has been
implemented to do this in temporal and spatio-temporal empirical
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Fig. 2. GMSL estimate with 67% and 90% credible intervals over the last ~2500 years from Kopp et al. (2016) using a model with GP priors, applied to RSL proxy data and

instrumental data in an empirical Bayesian analysis.
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models with GP priors (e.g., Miller et al., 2013; Kopp et al., 2015b;
Khan et al, 2017. The NIGP uses the first-order Taylor-series
approximation — a linear expansion about each input point — to
translate errors in the independent variable, time, into equivalent
errors in the dependent variable, RSL, such that temporal uncer-
tainty is recast as sea-level uncertainty proportional to the squared
gradient of the GP posterior mean.

5. Ilustrative analyses

There are a number of modeling and analysis choices that can be
used to evaluate a given scientific question. To illustrate the advan-
tages and disadvantages of specific implementations in RSL
modeling, we apply several models to common datasets. We focus on
pairs of modeling and analysis choices that commonly occur together
in the literature and organize them from simple to more complex.
First, we demonstrate the differences between several time-series
models — temporally linear models with ordinary least-squares
analysis (e.g., Shennan and Horton, 2002; Engelhart et al., 2009),
change-point and EIV-IGP models with fully Bayesian analyses (e.g.,
Brain et al., 2015; Cahill et al., 2015b; Cahill, 2018), and temporal
models with GP priors with empirical Bayesian analysis (ET-GP) — to
estimate RSL change from continuous cores over the Common Era.
The quasi-linearity of RSL over this period warrants an evaluation of
linear and change-point models. Next, we demonstrate a spatio-
temporal GP model with empirical Bayesian analysis (EST-GP; e.g.,
Khan et al., 2017; Kopp et al., 2016), which characterizes spatial and
temporal variability in RSL change over the Holocene using proxy
data. This is the only technique currently used in the RSL literature
that accommodates both temporal uncertainties and spatial corre-
lations. Therefore, to illustrate the spatio-temporal approach, we
compare the results of the EST-GP model to a site-by-site ET-GP. Last,
we analyze tide-gauge data with a physically-informed KS model
(e.g., Hay et al., 2013) and an EST-GP model (e.g., Hay et al., 2017), as
they are capable of estimating both GMSL and the spatio-temporal
fields of RSL and its rates of change with uncertainties. The type of
data, time period of interest, and relevant scientific question de-
termines which techniques are appropriate. Table 2 outlines the
implementations applied in Sections 5.1, 5.2, and 5.3), and the
detailed descriptions of each model can be found in Section S3.

5.1. Estimating rates of RSL change from continuous cores (Common
Era)

Attempting to answer scientific questions about the timing of

RSL accelerations in relation to climatic drivers requires RSL proxy
data because instrumental records are frequently too short. The
near-continuous records from single cores of salt-marsh sediment
(continuous cores) are well-suited to capturing the onset of modern
rise because they provide a longer record than instrumental data,
and they possess sufficient vertical and temporal resolution to
provide a meaningful estimate of the timing of accelerations in sea-
level rise. The data used in the following analyses include previ-
ously published data from continuous cores collected at two sites in
New Jersey (Leeds Point and Cape May Courthouse; Kemp et al.,
2013, 135 data points) and one site in North Carolina (Sand Point;
Kemp et al., 2011, 109 data points), where the New Jersey sites are
assumed to be independent of the North Carolina site. We applied
the linear, change-point, ET-GP, and EIV-IGP models, described in
Section S3.1, to the data (Section S4).

Fig. 3 shows estimated RSL and rates of RSL change for each
model. The change-point, ET-GP, and EIV-IGP models more
appropriately characterize the uncertainties of the data by incor-
porating temporal and vertical uncertainties. Conversely, the ri-
gidity of the temporally linear model does not accommodate the
underlying process(es) influencing the data. The ET-GP and
Bayesian EIV-IGP models yield similar mean estimates, although
the Bayesian EIV-IGP makes somewhat more precise predictions
with smaller uncertainties (Fig. 3) in this particular application,
which may be due to the choice of covariance functions or their
hyperparameters (see Section S1 for discussion of the details of
covariance functions and their parameters).

Each of the models implemented assumes that the data error
terms are independent and normally distributed, while the
temporally linear model further assumes that the errors are
identically distributed (iid). In order to test these assumptions
(see Sections 3.2 and 4 for a more thorough description of model
assumptions), we present a plot of the residuals as a function of
the predicted RSL values and an autocorrelation function (ACF)
plot, which shows the autocorrelation in residuals as a function of
lag, the number of time steps between predictions (Fig. 4). If all
assumptions are met, the errors should be random, meaning there
is no pattern or correlation in the residuals. The residuals of the
linear regression model display a non-random, temporally-
dependent pattern, indicating that the model does not fit this
dataset well and the temporally linear model is inconsistent with
the temporal evolution in the data. The non-linear models show
less structure in the residuals, as well as smaller residuals than the
linear model. Although the non-linear models show smaller and
less structured residuals that the linear model, it remains valuable

Table 2
Mllustrative analyses table.
Implementation Analysis Approach  Assumptions [llustrative Dataset ~ Run Time
Time series analyses
Temporally linear regression general least-squares Linear signal, Gaussian uncertainties, does not distinguish measurement Continuous core 2s
uncertainty and process nonlinearity
Change-point regression fully Bayesian Segment-wise linear, Gaussian uncertainties, does not distinguish Continuous core 24 min
measurement uncertainty and process nonlinearity
Empirical temporal Gaussian process empirical Bayes Gaussian uncertainties, Stationary covariance of sea level correctly Continuous core 60s

model (ET-GP)
Bayesian error-in-variable integrated fully Bayesian
Gaussian process model (EIV-IGP)

characterizes temporal variability, Once-differentiable sea-level signal
Gaussian uncertainties, Stationary covariance of sea-level rate (can lead Continuous core 6.1h
to non-stationary sea level covariance) correctly characterizes temporal

variability, Twice-differentiable sea-level signal

Spatio-temporal analyses

Empirical spatio-temporal Gaussian empirical Bayes
process model (EST-GP)
Linear state-space model (KS) Kalman smoother

to state

Spatio-temporal covariance correctly characterizes variability

Holocene Tide gauge 1.2 h 26 min

Based on the physics-based models used; linear in prediction from state Tide gauge 4h

Run times of each implementation are reported on a standard laptop computer (2015 MacBook Pro, 2.3 GHz Intel Core i5).
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to check whether they are consistent with the assumptions of
independent errors. An ACF plot can determine whether this
assumption is met or violated. For example, the ACF plot in Fig. 4
demonstrates that the analyses of the North Carolina dataset do
not violate the independence assumption. Conversely, the
change-point, ET-GP, and EIV-IGP analyses of the New Jersey
dataset do, shown by the significant (at 5% significance level; blue
lines in Fig. 4) autocorrelation in residuals. This signifies that the
residuals may contain additional information that is not included
in the model structure.

Some of the differences between the ET-GP and EIV-IGP models
are associated with the conventional choices of covariance func-
tions used. The squared-exponential covariance function, used in
the EIV-IGP, is slightly smoother in this implementation than the
Matérn covariance function (see Section S1) in the ET-GP (Fig. 3).
However, the choice of time length over which the rate of RSL
change is averaged in the ET-GP model affects the smoothness of
(and uncertainty in) the rate curve; a linear transformation on the
predicted RSLs is performed to calculate the rate curve and its
uncertainty. The ET-GP method, as employed, enables more
complexity for various processes through multiple separate
covariance functions, summed together to create the composite RSL
process, but either method could incorporate various covariance
functions.

In addition to making different assumptions, these four imple-
mentations produce distinct results about the probability and
timing of accelerations in RSL. A temporally linear model will never
predict an acceleration in RSL because of its inherent assumption of
a constant rate of RSL change, whereas a change-point model is
designed to detect slight changes in rate, but assumes instanta-
neous acceleration. The ET-GPR and EIV-IGP, conversely, produce
continuous posterior distributions on rates of RSL change over time.
Any inflection points in the rate curves (Fig. 3b,d) can be inter-
preted as changes in trend, but their significance must be evalu-
ated. For example, the ET-GP model estimates a significant (at 5%
significance level) difference in the rate of RSL change in New Jersey
between 1270 and 1795. Inflections can also be observed in the rate

curve for the New Jersey record around ~170 and 570 CE, indicating
changes in rate, but the differences are not significant. Alterna-
tively, taking the derivative of the rate curve, for either the ET-GP or
EIV-IGP model, would produce a probabilistic estimate of acceler-
ation (or deceleration) over time. Hence, the non-parametric nature
of the ET-GP and EIV-IGP leads to more flexible inference about the
evolution of RSL.

5.2. Characterizing spatial and temporal variability in RSL change
from proxy data (Holocene to present)

Attempting to answer scientific questions about the regional-
scale patterns of RSL associated with different driving physical
processes requires combining information from various sources
and locations in a spatio-temporal model. We apply the EST-GP to
proxy data to illustrate the only model in the literature that ac-
commodates both temporal uncertainties and spatial correlations.

We compiled data from previously published studies (Engelhart
and Horton, 2012; Kemp et al., 2013, 2014; 20154, 2017a; 2017a; b;
Khan et al., 2017) along the Atlantic coast of the United States and
the circum-Caribbean (latitudes 24.95—44.68°N, longitudes
6738 — 81.73°W) from 11 ka to present (Supplemental S4). We
employ 450 SLIPs spanning from 8 ka to present from Engelhart and
Horton (2012), 66 SLIPs from 11 ka to present from Khan et al.
(2017), and 498 continuous core data points and 28 SLIPs from 3
ka to present from Kemp et al. (2013, 2014, 20154, 2017a, 2017a,b).

We applied the EST-GP model to the whole spatio-temporal
dataset, and also applied the ET-GP model on a site-by-site basis.
The models implemented are described in Section S3.2. Other
modeling and analysis choices reviewed within this manuscript
(e.g., KS or EOF) have not been implemented in the literature with
proxy data, and therefore are not included in this illustrative
analysis.

Whereas the ET-GP model only predicts RSL and rates of RSL
change at sites with data (because the model is temporal only
and runs independently for each site), the EST-GP model can
make predictions at any point in space and time. Fig. 5a shows
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the temporal evolution of RSL estimated by the EST-GP along the
Atlantic coast of the U.S. and the geographic distribution of the
data used in the model over time. Fig. 5b and ¢ show the tem-
poral evolution of the rate of RSL change and uncertainties
(standard deviation of the posterior RSL estimate), respectively.
Fig. 5d shows the locations of the sites used in the comparison
between the spatio-temporal and temporal-only models (North
Carolina; Fig. 5e) and the site used for model validation (Inner
Delaware; Fig. 5f). Data from the Inner Delaware validation site
were not incorporated into the analysis. Although the EST-GP
prediction at Inner Delaware is based solely on correlations in
RSL with other sites, the predictions fall very close to the omitted
data (shown by red boxes in Fig. 5f). At this site, only 2 out of 28
data points (7%) fall outside of the 95% credible interval model
prediction of RSL. Generally, both ET-GP and EST-GP models are
excessively conservative, covering more than 95% of the data that
are used as input to the models within their 95% credible
intervals.

One notable difference between the ET-GP and the EST-GP is
the spatial correlation within the EST-GP model. The form of the
RSL curve in North Carolina (Fig. 5e) is influenced by this cor-
relation. Whereas the ET-GP model produces higher RSL at 11 ka
than 10 ka, the EST-GP uses information from the correlation

with other sites to predict increasing RSL throughout the Holo-
cene. The EST-GP also maintains fairly constant uncertainties
throughout the period of interest, whereas the ET-GP has less
precision when data are sparse, due to the assumption of inde-
pendence between sites. However, at times and locations farther
away from the data, the uncertainty increases in the EST-GP
model, as well (Fig. 5c). Predicted uncertainty in RSL is greater
at sites that are far from data (e.g., Merritt Island, FL; Fig. 5g) and
in the early-to mid-Holocene (e.g., Fig. 5¢), whereas uncertainties
decrease by up to ~80% at times and locations with precise data
(e.g., Outer Delaware; Fig. 5g).

In these specific implementations, another notable difference
is the process level model of the EST-GP, which has three distinct
terms capturing common, regional, and local signals; the regional
term for each site incorporates information primarily from other
sites within about 700—750 km, based on the optimized length
scale parameter for that term, while the local term incorporates
information primarily from only 10—12 km distance. These terms
can be separated and analyzed (Fig. 6), resulting in maps of the
spatio-temporal signal for each term (Fig. 6a) and plots of each
term for specific sites. The common signal (which is uniform over
the entire domain) absorbs a majority of the signal (Fig. 6b),
whereas the regional and local signals explain the variation
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between sites. The higher RSL heights along the southern coast in
the early- and mid-Holocene (12ka to 4ka) are evident in the
maps (Fig. 5) and in the regional curve for South Carolina
(Fig. 6b), which is shown to demonstrate distinctive patterns in
regional signals in comparison to Eastern Maine and New Jersey.
The Eastern Maine site has a lower regional signal, and slight
differences in these sites are represented in the local signal
(Fig. 6b). The regional term picks up differences among sites
associated with GIA, a dominant regional process; however, the
common signal absorbs a significant portion of the GIA signal,
because of the similarity over the sites in the study area.
Including a physical model at the process level may provide more
insight into the relative contributions of other physical processes
acting over different spatial scales.

5.3. Estimating spatio-temporal RSL and GMSL from instrumental
data (1900 to present)

Attempting to answer scientific questions about GMSL change in
the recent past requires instrumental records. During the instru-
mental period, data include satellite altimetry measurements and
tide gauges. These data are inherently different from proxy data, as
they have negligible temporal uncertainty and smaller vertical

uncertainties, and thus allow different methods. Estimating GMSL
through time and interpolating the spatio-temporal field of RSL
change from instrumental records in the past are challenges well-
suited to KS and GP model techniques. Both techniques are
implemented here using multiple tide-gauge records obtained
from the Permanent Service for Mean Sea Level (PSMSL, 2017;
Holgate et al., 2013), with results shown at two sites: Atlantic City,
New Jersey, (39.4°N, 74.4°W) and Wilmington, North Carolina
(34.2°N, 78.0°W) (Fig. 7). The models implemented are described in
Section S3.3.

Both techniques can compute posterior estimates of GMSL
(Fig. 7) as well as reconstruct the spatio-temporal sea-level
field, conditioned on observed data, but their implementations
are very different. The KS approach (Section 4.5; described in
more detail in Supplemental S2.2) steps through a forward
filtering pass and a backward smoother pass for each time step,
enabling computation of the covariance for a smaller subset of
points and thus faster solution times (~ 45 seconds for a single
KS run at the tide-gauge sites only, and ~ 4 hours for the entire
multi-model (see Supplemental S2.2 for details of this model)
implementation globally). Conversely, the EST-GP conditions on
all observations concurrently. In Hay et al. (2015), both KS and
GP implementations use output from physical process models.
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However, in the current implementation, the EST-GP model has
no physical-model input and is purely statistical, based solely
on the data. See Hay et al. (2015) for a more complete treatment
of these two analysis approaches.

We compare estimated RSL and uncertainty for the models at
two sites in Fig. 7a and the estimated rates of change in RSL and
their uncertainties (standard deviations) in Fig. 7b. The spatial field
computed by Hay et al. (2017) is less refined because of their
modeling choice to compute the global field on a standard 5° grid. A
higher-resolution field can be computed with the KS; however, this
will be accompanied by longer model run time. Embedded in the KS
spatial maps are dynamic sea level fields from several global
climate models. When less data are available, for example earlier in
time when the tide gauges are sparser, the KS predicts a much
rougher sea-level time series for each location, despite the fact that

there are tide gauges at these particular sites, whereas the EST-GP
has larger uncertainties when there are no tide gauges as input at a
specific site (Fig. 7a).

Because of the differences in implementation of the KS and
EST-GP, there are some drawbacks and advantages to each. The
inversion of the full covariance matrix (over all space and time
points for data and predictions), which is required for the EST-
GP, makes the resolution of annual tide-gauge data difficult to
handle when attempting to model these data on a global scale.
As a solution, lower-resolution (e.g., decadal) averages can be
used as input (Hay et al.,, 2015). Conversely, the KS becomes
unstable during the backward smoothing pass when persistent
data gaps are present in the records. The KS therefore requires a
subset of tide gauges which ensures observation availability
over time.
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The KS model has also been tested on various subsets of tide
gauges (Church and White, 2011; Holgate, 2007; Ray and Douglas,
2011), which can slightly influence the results (Fig. 7d, Hay et al,,
2017). However, the results with a single analysis technique are
more similar than when the data and analyses are both different.
When the research question relates to estimating GMSL, fully
Bayesian methods may be too computationally intensive for the
datasets; however, ad hoc (Section 4.2) choices may lead to
different conclusions than the KS or GP techniques, especially when
analyzing different sets of instrumental data.

6. Discussion and conclusions

Hierarchical statistical modeling frameworks are conceptual
tools that provide a transparent approach for separating modeling
choices at the data and process level from analysis choices.
Appropriate modeling and analysis choices in sea-level research
depend on the type of data and the scientific question(s) being
addressed. We suggest that non-parametric approaches are
generally best suited for analyzing RSL and rates of RSL change.

One goal in sea-level research is identifying changes in rates of
RSL and GMSL change (e.g., Church and White, 2006; Jevrejeva
et al., 2008; Kopp, 2013). We recommend temporal GP and IGP
models, using fully Bayesian or empirical Bayesian analyses when
the dataset includes instrumental or proxy data from a single site.
These types of models enable probabilistic inference about accel-
erations and rates of change, and within a specific study, one can
test hypotheses about the timing and magnitude of changes in
rates.

Identifying the physical processes that explain patterns of
spatial variability in RSL is a further objective of the sea-level
community. Spatio-temporal approaches are required to
address this problem. To date, spatio-temporal models of proxy
data have generally used covariance functions that represent
different scales of variability but do not tie these scales of vari-
ability to specific physical processes. Such models are useful for
addressing this objective, but require post-inference comparison
to physics-based models to interpret their results in terms of
physical drivers. An alternative approach, yet to be demonstrated
with proxy data, is to employ models with GP priors that
incorporate different processes through physics-based models
(as in Hay et al., 2015). This approach could be powerful for
certain processes (e.g., GIA or the elastic spatial fingerprints of
ice-sheet mass changes) but in other cases (e.g., dynamic sea
level change over multiple millennia) adequate physics-based
models are lacking, so purely statistical process-level terms will
remain necessary. For constraining global sea-level change dur-
ing the instrumental period, state-space analysis approaches,
such as the KS, can manage large data sets more efficiently than
empirical or Bayesian approaches that require simultaneously
estimating all space-time points.

Improving estimates of GIA is a related goal to explaining
spatial variability because it is the dominant driver of spatial
variability in RSL change over mid-to-late Holocene timescales
(Peltier et al., 2015). Traditionally, this is done through an itera-
tive, manual process, where data from specific sites are
compared to different versions of physical GIA models. However,
alternative approaches include using a suite or probabilistic
ensemble of GIA models (e.g., Hay et al., 2015; Diisterhus et al.,
2016a,b) or using a single GIA model as a mean prior estimate
and fitting the mismatch with a Gaussian process (e.g., Kopp
et al., 2016; Vacchi et al., 2018). Both approaches can permit
further constraints on the role of spatially-variable GIA, while
appropriately characterizing uncertainties, although the former
approach requires that the truth be represented in the

probabilistic ensemble or suite of models.

An important area of development for statistical sea-level
models is more comprehensive and accurate use of data. Most
proxies do not conform to normal distributions, so techniques for
incorporating non-Gaussian likelihoods, such as integrating
proxy systems models into spatio-temporal models, have the
potential to make use of proxies that have been too approxi-
mately interpreted. A general approach has been developed by
Parnell et al. (2015), which readily applies to RSL. Although they
are usually carried out prior to process modeling, integrating
proxy systems models into full statistical models (e.g., Cahill
et al., 2016) is a key goal for the next generation of palaeo-RSL
models. Data compilation efforts (e.g., Diisterhus et al., 2016a,b)
aim to standardize and synthesize RSL data, which will enhance
the comparability and accessibility of information to improve
both physical models and statistical reconstructions. The accu-
racy and consistency of all statistical models will be enhanced
when databases are standardized.

A key methodological challenge is scaling spatio-temporal
hierarchical modeling approaches for paleo-sea level data to
large, yet still temporally noisy, datasets. Unlike Gaussian process
models, whose computational complexity grows in proportion
with the cube of the number of data points, the computational
complexity of a Kalman smoother grows linearly. For example,
conducting the EST-GP analysis on 5000 proxy data points with
temporal uncertainty (on a standard laptop) would lead to a
computational time for a single model iteration of about 35 days;
the fully Bayesian EIV-IGP analysis on the same dataset and same
computational platform would - without improvements in
computational efficiency - take about 1,300 years. Adapting the
Kalman smoother for temporally noisy data may provide an
approach to overcoming these scaling problems and thus allow
the simultaneous analysis of much larger proxy datasets. Recent
work in the machine-learning literature exploring the translation
between Gaussian process models and linear-Gaussian state
space models (e.g., Hartikainen and Sarkka, 2010) may prove
useful here. There are also several approximation and estimation
techniques in the GP and machine-learning literature that have
not yet been applied in a sea-level context, such as variational
inference (Blei et al., 2017), which could speed up analyses and
improve resolution with large datasets.

Model validation and criticism are additional areas in statis-
tical sea-level research that can be greatly improved with stan-
dardization of both data compilation and the tools used to
evaluate models. Statistical methods should be validated using
cross-validation techniques, bootstrapping, or simulations to
precisely determine whether a model achieves what it is
designed to. Having a standard set of tools to evaluate the
replicability and interrogation of structural assumptions is a clear
area for growth in the sea-level community to improve the
reproducibility of statistical analysis.
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Definitions of relevant terms.
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Term

Meaning

ad hoc

analysis choices

Bayesian Hierarchical Model (BHM)

conditional probability

conjugate prior

continuous core

covariance function

data level

Empirical Hierarchical Model (EHM)

errors-in-variable (EIV)

errors-in-variables integrated Gaussian

process (EIV-IGP)

empirical orthogonal function (EOF)

error

empirical spatio-temporal Gaussian
process (EST-GP)

empirical temporal Gaussian process (ET-
GP)

Gaussian process (GP)

hyperparameter
hyperprior
inferential uncertainty

Kalman Smoother (KS)

latent

likelihood

marginal distribution

Markov Chain Monte Carlo (MCMC)

modeling choices

noisy-input Gaussian process (NIGP)

noise
noisy data

non-parametric

analysis methods constructed without an underlying statistical theory

decisions in how to implement a specific model structure (e.g., least-squares, likelihood maximization, empirical Bayesian
analysis, fully Bayesian analysis (MCMC), Kalman Smoother, ad hoc, EIV, NIGP)

uses fully Bayesian analysis, which approximates complicated distributions through sampling, usually using MCMC sampling

the distribution of a random quantity, given a particular value of another (unknown) random quantity; expresses uncertainty in
hierarchical models

prior distribution that comes from the same family of distributions as the likelihood distribution, so as to enable an analytically-
tractable solution for the posterior

near-continuous records from a single core of salt-marsh sediment or a single coral head

function defining prior beliefs about the relationship between one or more variables in a Gaussian process, as a measure of how
much they change together

hierarchical level that characterizes the relationship between the phenomenon to be modeled and the observed data
(instrumental and/or proxy) and incorporates measurement, inferential, and dating uncertainty

uses empirical Bayesian analysis, which estimates parameters with point estimates, usually by maximizing their likelihoods, as
opposed to a BHM, which samples the prior distributions on parameters

framework that accounts for the measurement uncertainty in the independent variables by assuming that uncertainties in both
variables are independent of one another

model implemented on time series data, modeling the rate of RSL change, deriving the RSL curve from the rate curve;
incorporates uncertainty in the independent (time) variable and the dependent variable through EIV framework

regression technique used to find the dominant spatial patterns in a dataset; when analyzing sea level, used to find the dominant
patterns in sea surface height (SSH) from satellite altimetry measurements and apply to tide gauges in order to estimate GMSL
change

the difference between a measurement and the true value, for a particular data point; one can model the error as a random draw
from an uncertainty distribution

model with Gaussian process priors, which incorporates spatial and temporal covariance functions to produce the fields of RSL
and rate of RSL change as maps; solved using an empirical methodology that maximizes the likelihood of the model conditional
upon the parameters of the prior

model using Gaussian process priors, which is independent in space (no spatial component) and solved using an empirical
methodology that maximizes the likelihood of the model conditional upon the parameters of the prior

a generalization of the multi-variate Gaussian distribution to continuous time (and space), which is fully defined by its mean
function and covariance function; GP regression provides an analytically-tractable solution when adopting the assumption of
normality for all distributions

parameter of a prior distribution
prior distribution on a hyperparameter
the quantified dispersion that arises from the data-generation process from true RSL to the creation of a RSL proxy

iterative method that comprises a forward filtering pass and a backward smoother pass; used in a multi-model implementation
to compute posterior estimates of GMSL and spatio-temporal RSL fields, conditioning prior estimates from physical models of
several processes on observations

unobserved or hidden (e.g., the true values of RSL)

the probability of observing the data as described by the fitted model; also known as the sampling or data distribution; a
conditional distribution that is a function of unknown parameters for observed data and incorporates the form of uncertainty in
the data (e.g., measurement and/or inferential)

unconditional probability distribution of a random quantity, found by integrating over all values of the conditional distribution
in Bayesian analyses

techniques used to generate random variables, perform complicated calculations, and simulate complicated distributions
through sampling in Bayesian hierarchical models (common algorithms include Gibbs sampling, Metropolis-Hastings,
Metropolis within Gibbs, importance sampling)

decisions that define the relationships in a model, usually at the process level; in sea-level analysis, the relationship between
time, space and RSL (e.g., linear, polynomial, change-point, GP (integrated), incorporation of physical models)

a method for incorporating uncertainty in the independent variable within a Gaussian process model; using a Taylor expansion
about each input point to recast input noise as output noise proportional to the squared gradient of the GP posterior mean
(McHutchon and Rasmussen, 2011); in sea-level analysis, geochronological uncertainty is recast as proportional uncertainty in
RSL

error; statistical noise refers to unexplained variation or randomness
error-prone data that have been corrupted by known or unknown processes

not involving any assumptions as to the functional form
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Table 3 (continued )

Term Meaning

posterior distribution

the probability distribution of an unknown quantity, conditional on observed data; in sea-level analysis, estimates (for example)

the true RSL time series or field of RSL with uncertainties, given proxy or instrumental data

prior distribution

the information about an uncertain parameter or process that is combined with the probability distribution of new data to yield

the posterior distribution; can be subjective, based on a priori beliefs, or uninformative, which minimizes the impact on

inference
process level
residuals
sea-level index point (SLIP)
uncertainty

white noise

hierarchical level at which the phenomenon of interest is modeled and in some cases, decomposed; includes process variability
the difference between an observed and a modeled or predicted value

discrete proxy data that constrain RSL at a single point in time and space

parameter characterizing the range of values within which a measured value can be said to lie with a specified probability

serially uncorrelated random variation (zero mean and finite variance)

Appendix A. Supplementary information

Code for select models herein can be found at https://doi.org/
10.5281/zenodo0.1643438. Supplementary information to this
article can be found online at https://doi.org/10.1016/j.quascirev.
2018.10.032.
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