

Petrocarbon evolution: Ramped pyrolysis/oxidation and isotopic studies of contaminated oil sediments from the Deepwater Horizon oil spill in the Gulf of Mexico

Kelsey L. Rogers¹, Samantha H. Bosman, Mary Lardie-Gaylord, Ann McNichol, Brad E. Rosenheim, Joseph P. M. Montoya, Jeffrey P. Chanton

Published: February 28, 2019 • <https://doi.org/10.1371/journal.pone.0212433>

Abstract

Hydrocarbons released during the Deepwater Horizon (DWH) oil spill weathered due to exposure to the environment. During weathering, the hydrocarbons' reactivity and lability was altered, but it remained identifiable. We tracked the retention of the distinctive isotope signatures (^{14}C and ^{13}C) of petroleum. Relative to the initial composition of the oil residue deposited in Gulf sediments based on 2010–2011 data, the overall coverage and quantity of the isotope signatures on the seafloor has been attenuated. To analyze recovery of oil contaminated deep-sea sediments in the Gulf of Mexico, we tracked the carbon isotopic composition (^{13}C and ^{14}C , radiocarbon) of bulk sedimentary organic matter over time. Using ramped pyrolysis/oxidation, we determined the thermochemical stability of sediment organic matter over time series. There were clear differences between crude oil (which decomposed at a lower temperature) and natural hydrocarbon seep sediment (decomposing at a higher temperature; $\Delta^{14}\text{C} = -912\text{‰}$) and natural hydrocarbon seep sediment (decomposing at a higher temperature; $\Delta^{14}\text{C} = -189\text{‰}$), in both the stability (ability to withstand ramped temperature) and the carbon isotope signatures. We observed recovery toward our control site bulk $\Delta^{14}\text{C}$ composition within ~4 years, whereas sites in closer proximity had longer recovery times. The thermographs also revealed the composition of contaminated sediment, with shifts towards higher temperature CO_2 evolution over time and loss of higher temperature CO_2 peaks at a more distant site.

Citation: Rogers KL, Bosman SH, Lardie-Gaylord M, McNichol A, Rosenheim BE, Montoya J, et al. (2019) Petrocarbon evolution: Ramped pyrolysis/oxidation and isotopic studies of contaminated oil sediments from the Deepwater Horizon oil spill in the Gulf of Mexico. PLoS ONE 14(2): e0212433. <https://doi.org/10.1371/journal.pone.0212433>

Editor: Lee W. Cooper, University of Maryland Center for Environmental Science, UNITED STATES

Received: July 26, 2018; **Accepted:** February 2, 2019; **Published:** February 28, 2019

Copyright: © 2019 Rogers et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at <https://data.gulfresearchinitiative.org>, [10.7266/N7KH0KWJ](https://doi.org/10.7266/N7KH0KWJ) and [10.7266/N7Q52](https://doi.org/10.7266/N7Q52)

Funding: This research was made possible by grants from The Gulf of Mexico Research Initiative

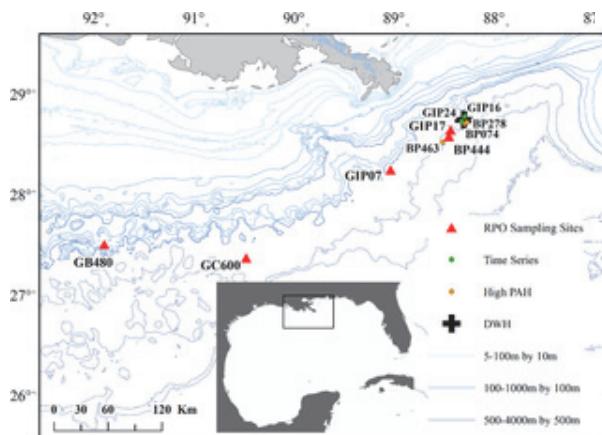
Ecosystem Impacts of Oil & Gas Inputs to the Gulf (ECOGIG), The Center for the Integrated Gulf Ecosystem (C-Image), and Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico Resuspension, Redistribution and Deposition of DWH Recalcitrant Material (Re-Direct) project # 521. Funding was also provided by the National Ocean Sciences Accelerator Mass Spectrometry Graduate Student Internship Program (NSF OCE-1239667). The funders had no role in study design, analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

The results of a number of field studies indicate unambiguously that oil residues from the Deepwater Horizon (DWH) oil spill were deposited on the seafloor [1–7]. Of the total oil released, an estimated 0.5–14.4% was deposited on the seafloor [1]. Zier vogel [8] argued that these estimates were low because they failed to consider the formation and spread of the surface oil slicks, which could have resulted in a greater extent of seafloor deposition. The oil residue was limited to the surface sediment as defined by radiocarbon [3], hopane [1,4], and other biomarkers.

The severity of impacts on benthic communities depends on the nature of the petroleum-derived residues deposited on the seafloor. It has been suggested that biodegradation and dissolution of oil in the water column may have moderated these impacts [5,7,9]. We used ramped pyrolysis oxidation (RPO) to assess the biodegradation of oil residues present on the seafloor due to the blowout. With RPO we examined 5 sites in all, 3 contaminated as a function of depth, a control uncontaminated site and a natural seep site. Several studies have examined uncontaminated sediments and have shown a reduction in the overall extent of contamination and degradation over time [10]. Stout et al. [4] and Adhikari et al. [10] showed reduced coverage of elevated levels of hopane and other biomarkers (PAHs) in the years following the blowout. Studies by Stout and Payne [5] and Bagby et al. [9] have shown a reduction in multiple hydrocarbons in the sediment, showing that biodegradation continued on the seafloor as a function of time and depth. In contrast to focusing on specific petroleum compounds, studies by Pendergraft and Rosenheim [12] employed ramped pyrolysis/oxidation paired with carbon isotopic analysis to study the fate of oil residues in the sediment. We applied their approach to the deep-sea floor.


RPO is an approach to determine the thermochemical stability of organic matter [13]. When paired with carbon isotopic analysis, the source of the carbon can be inferred as a function of thermal stability. The thermochemical stability of a compound is determined by the amount of energy required to break the bonds, with higher stability requiring higher energy. In general, bonds break at lower temperatures. The thermal stability of a compound is thus related to its fate in the environment as a substrate in microbially mediated reactions [14]. Fresh crude oil is quite labile, oxidizing at relatively low temperatures. In the years following the DWH event, the oil released into the environment was oxygenated [16], consumed by a variety of organisms, burned, or altered in many ways [15,17–19]. We define this altered and unaltered petrocarbon [3]. Since portions of this material are no longer amenable to gas chromatographic analysis, the best method to identify it is isotopically, specifically with radiocarbon [20–22].

Pendergraft et al. [11] linked PAHs, an independent oil tracer, to changes in thermographs (temperature products as measured with an infrared gas analyzer) produced from oil contaminated marsh sediments. Sediments with elevated PAH content produced different CO₂ thermographs with C isotope signatures indicating oil degradation. Pendergraft and Rosenheim [12] studied the evolution of organic carbon over time in oil contaminated sediments using RPO. The thermographs shifted from lower to higher thermochemical stability and correspondingly increasing enrichment in both $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ over time, indicating a transformation of the oil as it degraded. Other studies show the ability of RPO to detect oil contamination through both the thermographs and the CO₂ fractions.

The purpose of this study is to analyze the evolution of the carbon isotopic composition of bulk organic matter and the change in thermochemical composition of sediments at 5 deep-water sites in the northern Gulf of Mexico. The impact of the DWH oil spill was indicated by radiocarbon depletion in the bulk organic matter in the surface sediments. With RPO we examined 5 sites: 3 contaminated sites, two in time series and one as a function of depth. BP444 is a deep-seep site. We hypothesized that: 1) over time, the bulk isotopic composition of the surface layer would return to baseline values, 2) the oil-residue deposited in the sediment following the DWH oil spill would be distinct from fresh Macondo oil and 3) that over time and depth the oil residue would evolve towards greater radiocarbon depletion. Carbon isotope signatures of the RPO splits were used to infer the origin of the organic material.

Materials and methods

Ethics statement: No permissions were required as all sites were in unprotected areas. This field work did not involve protected species. Oil spill affected sediment was collected in time series from 4 sites (GIP07, GIP16, GIP17, GIP24) between 2010–2017 and analyzed for bulk radiocarbon. In 2015, we also sampled 4 sites that had contaminated sediments by Mason et al. [23]. We revisited one of these sites, BP444, again in 2017. Sediment from 5 sites (GIP07, GIP16, GIP17, GIP24, BP444) and 1 non-hydrocarbon influenced control (GC600) were analyzed using RPO, including 2 of the time series sites (GIP07 and GIP17), 1 high PAH (BP278) and 1 non-hydrocarbon influenced control (GC600) site were analyzed using ramped pyrolysis (RPO) (Fig 1). Sediment samples were frozen upon collection, returned to the lab, thawed, treated in 10% HgCl₂ for 24 h, freeze-dried and ground.

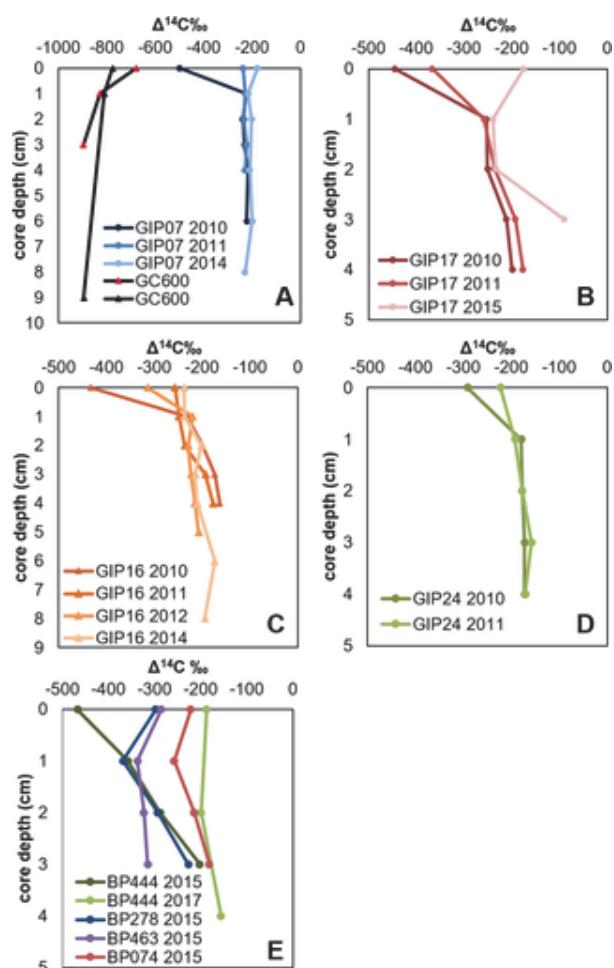
Fig 1.

Sites of sediment collection for time series (green), high PAH (yellow), and RPO analysis (red). <https://doi.org/10.1371/journal.pone.0212433.g001>

		Latitude	Longitude	RPO and Bulk	Bulk only
GIP07	Time Series	28.2307	-90.1207	2010, 2011, 2014	2016, 2017
GIP16	Time Series	28.7226	-90.0596	—	2010-2012, 2016
GIP17	Time Series	28.6379	-90.3168	2010, 2011, 2015	2016, 2017
GIP24	Time Series	28.7798	-90.3612	—	2010, 2011
BP278	High PAH	28.6995	-90.3812	—	2013
BP276	High PAH	28.7150	-90.3590	—	2013
BP444	High PAH	28.5175	-90.5377	2015	2017
BP463	High PAH	28.5140	-90.6005	—	2013
BP074	High PAH	28.5445	-90.5629	2014	—
GC600	Seep	27.3645	-90.5629	2014	—
GB480	Control	27.4977	-90.9797	2015	—

<https://doi.org/10.1371/journal.pone.0212433.t001>

Table 1. Sites examined in this study, measurements performed, location and date.


<https://doi.org/10.1371/journal.pone.0212433.t001>

The Ramped Pyrolysis/Oxidation System (RPO) at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) was used to serially oxidize sediments in a controlled environment following the instructions of Rosenheim et al. [13]. All quartz glassware used in this study was pre-combusted at 850°C for 1 h. The sediment, between ~80–110 mg, depending on the C content, was loaded into a pre-combusted quartz wool, and inserted into the combustion oven, sealed away from atmosphere. The sample was then placed in a small quartz cup and loaded into the quartz tube. A total gas flow of 35 mL/min of helium with 8% CO₂ was used. The temperature was consistently ramped up to 800–1000°C (5°C /min). Prior to being cooled, evolved CO₂ was measured with a Sable Systems CA-10a CO₂ Analyzer, which was then used to calculate the $\delta^{13}\text{C}$ value. The signal was integrated by cryogenically trapping using N₂(l) over selected temperature intervals based on the evolution profile, by routing the flowing gases to different traps. Ultimately, the samples were extracted, purified using alternating slurries of isopropanol cooled to liquid-solid phase transition with manometrically using a capacitive diaphragm pressure gauge, and then sealed into a borosilica tube. The samples were reduced to graphite using the hydrogen reduction method [24]. Roughly 10% of CO₂ was lost in the process to be analyzed for $\delta^{13}\text{C}$. The graphite was analyzed for $\Delta^{14}\text{C}$ on the USAMS instrument [25–26]. Hemingway et al. [27] estimated the contamination blank for a typical RPO analysis on a blank sample with $\delta^{13}\text{C} = -29.1 \pm 0.1\text{‰}$ and potentially $\Delta^{14}\text{C} = -449 \pm 41\text{‰}$. The blank carbon correction for $\delta^{13}\text{C}$ ranged from +0.15‰ to +0.15‰ and Fm ranged from -0.002 to +0.002 ($\Delta^{14}\text{C} \sim 3\text{--}4\text{‰}$) [27]. Due to the small size of the differences in endmembers in this experiment, the data herein were not corrected. Bulk $\Delta^{14}\text{C}$ analysis was performed at NOSAMS or the University of Georgia Center for Applied Isotope Studies (UGA) using conventional ¹⁴C dating and graphitization approaches [24,28].

Results and discussion

Time series of bulk ¹⁴C values

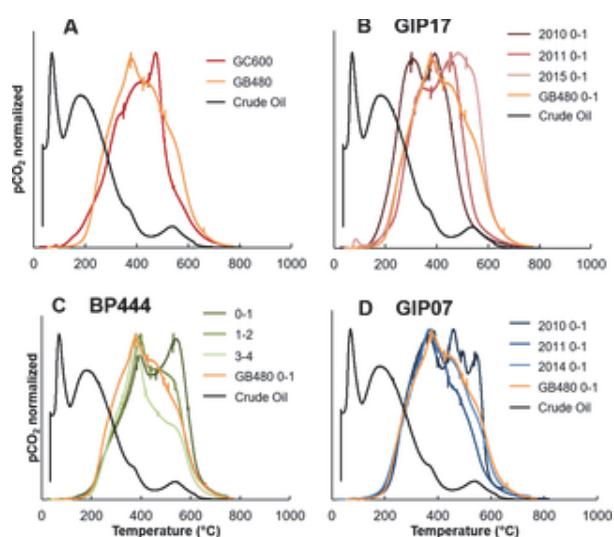

As discerned by increasing isotopic enrichment, we observed recovery of bulk radiocarbon and collected in time series from 4 sites (Fig 2A–2D). In general, all the spill affected sites showed a rapid initial increase in $\Delta^{14}\text{C}$ signature over the first 2 years post-spill (2010–2012), and over time returned towards background values which are estimated to be $\Delta^{14}\text{C} = -20\text{‰}$. The oil-spill affected sites present in a fundamentally different manner from seep sites (Fig 2A). Oil seep sites show a uniform $\Delta^{14}\text{C}$ depleted fossil carbon signature through all depths. In addition to the stratified nature of the oil seep sites, we also observed evidence of Macondo hydrocarbons in the particulate phase in the deep-water hydrocarbon plume southwest of the Macondo wellhead [29]. In 2015, the surface sediment $\Delta^{14}\text{C}$ signatures of the oil-spill affected sites ranged from -187.1 to -467.5‰ (Fig 2E) indicating that not all sites in the northern Gulf of Mexico had fully recovered. Interestingly, at two of the sites, the sediment below the surface layer from 1–2 cm was just as enriched as the surface with $\Delta^{14}\text{C}$ signatures ranging from -257.5 to -369.1‰ (Fig 2E). Below that depth, $\Delta^{14}\text{C}$ signatures at the same site were back to baseline values. We further explored the isotopic evolution using RPO to analyze the potential evolution of the sedimented petrocarbon from the time series.

Fig 2. Bulk radiocarbon signatures of time series and high PAH sediment from DWH affected sites and natural sites.
 A) GIP07 and replicate cores from mega seep site GC600, B) GIP17, C) GIP16, D) GIP24, E) Site BP444 revisited in 2017. Bulk $\Delta^{14}\text{C}$ values of sediments returned back to baseline values, while the high PAH sites in E indicate that not all sites had returned to baseline values. <https://doi.org/10.1371/journal.pone.0212433.g002>

Changes in patterns of thermal stability

Our second hypothesis was that the oil-residue deposited in the sediment following the oil spill was more thermally stable than fresh Macondo oil. The contaminated sites that were run for RPO, GIP17, BP444 and GIP07, all exhibited peaks at higher temperatures than the fresh oil (Fig 3). The evolved CO_2 thermographs from the seep, GC600, and non-oiled (control), were different from the crude oil thermograph, which exhibited two large low-temperature peaks and tapered off at higher temperatures (Fig 3A). The thermograph for the seep, GC600, had two peaks, building to a peak at $\sim 460^\circ\text{C}$, before rapidly falling off (Fig 3A). The petrocarbon present in GC600 was more thermally stable relative to the Macondo crude oil based on these thermographs. In contrast, sediment from the control site, GB480, exhibited a single prominent peak at $\sim 370^\circ\text{C}$ with two small shoulders at higher temperatures (Fig 3A). CO_2 thermographs from presumably uncontaminated sites and uncontaminated sites followed this same pattern yielding a prominent peak at $\sim 370^\circ\text{C}$ at site BP444 and sediments from GIP07 in 2014 which had returned to background-like values (Fig 2). We assign this to the presence of sedimentary organic carbon.

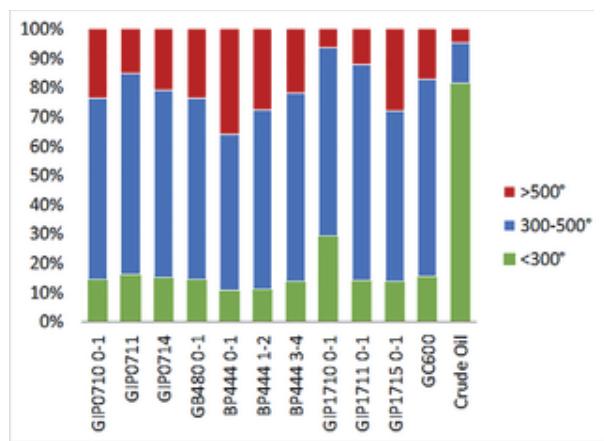


Fig 3. CO₂ evolution thermographs.

A) Crude Oil, Seep site GC600 and Control site GB480, B) GIP17, crude oil and control site, site, D) GIP07, crude oil and control site. Vertical “tic” marks designate temperature boundary
<https://doi.org/10.1371/journal.pone.0212433.g003>

Our third hypothesis was that there would be a change in CO₂ evolution from lower temperature thermographs as the petrocarbon became increasingly degraded over time. We found evidence the three contaminated sites, GIP17 (Fig 3B) and GIP07 (Fig 3D), and BP444 (Fig 3C). The contaminated site closest to the well head, had a lower temperature peak straddling 300°C, and similar to the control site. GIP17 profiles from 2011 and 2015 also exhibited the peak at ~370°C higher temperatures over time to 450°C in 2011 and then 480°C in 2015 (Fig 3B). The peaks at the peak evolving at 460°C at the seep site, GC600 (Fig 3A), indicating extremely weathered pe from GIP07 2010, unlike the GIP17 curve, initially exhibited three peaks at higher temperatures >500°C (Fig 3D). CO₂ thermographs from subsequent years at site GIP07 (2011, 2014) are similar prominent peak at 370°C, and the loss of the extra mid-high temperature peaks observed in 2010 material evolving at around 500°C would presumably be relatively un-biodegradable, we suggest resuspended.

The depth profile collected in 2015 from site BP444 was similar to GIP07 and GB480, with all depth profiles (Fig 3C). BP444 2015 0-1cm had a secondary peak at high temperature ~530°C, which decreased with depth within the core. Considering all the data in Fig 3, we generally observed a peak at 370°C, the core evolved at temperatures below 370°C, or above it, depending upon its “maturity” or evolution to 2015. Changes in the magnitude and temperature of evolution of the peaks indicate changes in the thermal maturity of the seafloor petrocarbon as it matured from evolving at 300°C, (Fig 3B, GIP17) to over 450–500°C, Pendergraft and Rosenheim [12] observed as we did, that fresh oil evolved CO₂ at temperature that over time, as the oil weathered in the nearshore sediments that they studied, it shifted towards higher temperatures. Consistent with this interpretation, we observed that at GIP17, over time, and with depth, CO₂ shifted towards higher temperatures. At GIP07, we believe our sampling effort temporally resolved the temperature evolving petrocarbon, and that our initial sample contained more weathered petrocarbon in 2015. Note the similarity of the samples GIP07, 0–1 in 2010, and GIP17, 0–1 in 2015 (Table 1) are consistent with this interpretation.

Fig 4. Percent CO₂ evolved from low (300°C), medium (300–500°C) and high (>500°C) temperature.
<https://doi.org/10.1371/journal.pone.0212433.g004>

	Bulk Measured		Bulk Averaged		Difference	
	$\delta^{13}\text{C}$	$\Delta^{14}\text{C}$	$\delta^{13}\text{C}$	$\Delta^{14}\text{C}$	$\delta^{13}\text{C}$	$\Delta^{14}\text{C}$
GIP07 2010 0-1	-22.8	-581.5	-26.5	-487.5	3.7	-54.0
GIP07 2011 0-1	-21.7	-237.9	-23.4	-247.5	1.7	10.2
GIP07 2014 0-1	-22.2	-177.8	-25.4	-242.2	3.2	64.8
GB480 2013 0-1	-22.2	-132.8	-22.8	-189.4	0.7	57.0
BP444 2013 0-1	-22.3	-467.5	-22.8	-422.4	0.7	-45.1
BP444 2013 1-2	-21.8	-396.1	-22.4	-363.4	0.6	3.3
BP444 2013 3-4	-21.3	-260.1	-11.9	-207.0	0.9	4.9
GIP17 2010 0-1	-23.3	-845.2	-25.2	-891.6	2.1	46.8
GIP17 2011 0-1	-23.8	-768.5	-25.7	-796.1	-0.1	27.6
GIP17 2014 0-1	-23.2	-237.9	-23.2	-264.3	0.0	27.0
GC600 2014 0-1	-29.0	-915.7	-29.4	-912.6	0.6	-3.1

<https://doi.org/10.1371/journal.pone.0212433.t002>

Table 2. Comparison of bulk measured isotopic values vs RPO weighted average bulk values.

A paired t-test indicated no difference for $\Delta^{14}\text{C}$ values, $p = 0.259$, $t = 1.103$, while bulk measured significantly enriched relative to the RPO weighted average ($p = 0.002$, $t = 4.158$).

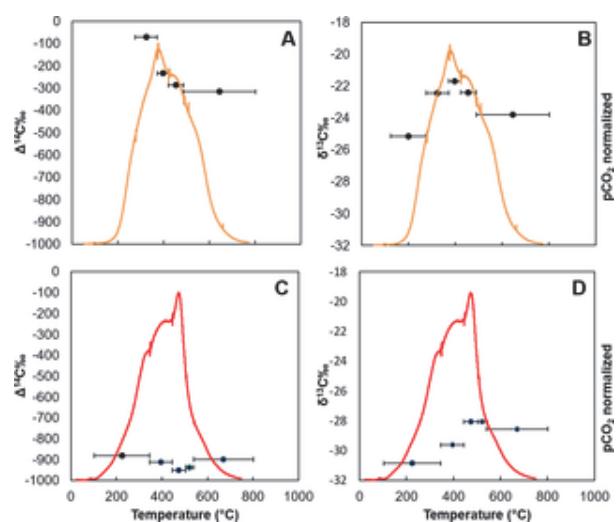
<https://doi.org/10.1371/journal.pone.0212433.t002>

The percent oxidized by the temperature intervals low: <300°C, medium: 300–500°C and high: shifts in the thermochemical stability of the carbon in the sediments through time [12]. These carbon CO_2 data continuously collected during RPO prior to purification on the vacuum line. The major shift occurred below 300°C, whereas all of the sediment, both oil-contaminated and unaffected, was oxidized below 300°C, with only 10–16% oxidized at lower temperatures (Fig 4). Sediment from GIP17 supports this hypothesis, with 2010 having the most C oxidized <300°C, 29%, decreasing over time to 14% in 2015. The oxidized at >500°C increased over time from 6% in 2010 to 28% in 2015. The down core profile percentages for C oxidized <300°C, ranging from 11–14%, while at high temperatures (>500°C) oxidized down core from 36% at 0-1cm to 28% at 1-2cm and 22% from 3-4cm. The majority of C oxidized at temperatures (300–500°C) throughout all sampling years at all sites, summarized in Table 3.

	<300°C	300–500°C	>500°C
Crude oil	82%	14%	5%
GC600 2014 0-1	16%	67%	17%
GB480 2015 0-1	15%	62%	23%
GIP17 2010 0-1	29%	64%	6%
GIP17 2011 0-1	14%	74%	12%
GIP17 2015 0-1	14%	58%	28%
GIP07 2010 0-1	14%	62%	24%
GIP07 2011 0-1	16%	69%	15%
GIP07 2014 0-1	15%	64%	21%
BP444 2015 0-1	11%	53%	36%
BP444 2015 1-2	11%	61%	28%
BP444 2015 3-4	14%	65%	22%

<https://doi.org/10.1371/journal.pone.0212433.t003>

Table 3. Percent of CO₂ evolved at low, medium, and high temperatures.


<https://doi.org/10.1371/journal.pone.0212433.t003>

Relative to Pendergraft et al. [11] and Pendergraft and Rosenheim [12], our thermographs were temperatures, even in 2010, compared to their initial oiled marsh samples, which exhibited CO₂ similar to crude oil. We suggest that degradation of the hydrocarbons en route prior to depositing these differences. Almost half of the hydrocarbons released from the broken well head rose to the surface before sinking, potentially during a Marine Oil Snow Sedimentation and Flocculent Accumulation event. Hydrocarbon droplets (<100 μm) suspended in the water, formed a deep-sea plume that travelled 100 km from the wellhead. Both pools of hydrocarbons were exposed to extensive and rapid degradation while in the oxic water plume, due to dissolution, temperature, and pressure changes [36]. Through microbial processes, hydrocarbons in the water plume formed aggregates or flocculants, which caused them to sink to the seafloor [1,9,3]. The water column than it was following deposition on the seafloor [5,9]. Bagby et al. [9] modeled and found that the size of the oil compound and aggregated particle affected the speed of degradation; the larger the particle and compound, the slower the degradation rate. This longer degradation time for the deep-water samples accounts for the differences we observe between the control sites and the marsh sediment from Pendergraft and Rosenheim [12].

The difference in the degradation period could account for the differences in the thermographs for samples deposited at GIP07 (~90km from the wellhead), travelled further and therefore degraded more than samples deposited at GIP17 (~17km from the wellhead). This extended degradation period was reflected in the temperature differences between the initial sampling years. The thermographs from GIP17 in 2015 (1–2) from 2015 had more CO₂ evolved at higher temperatures, suggesting they had similar degradation rates.

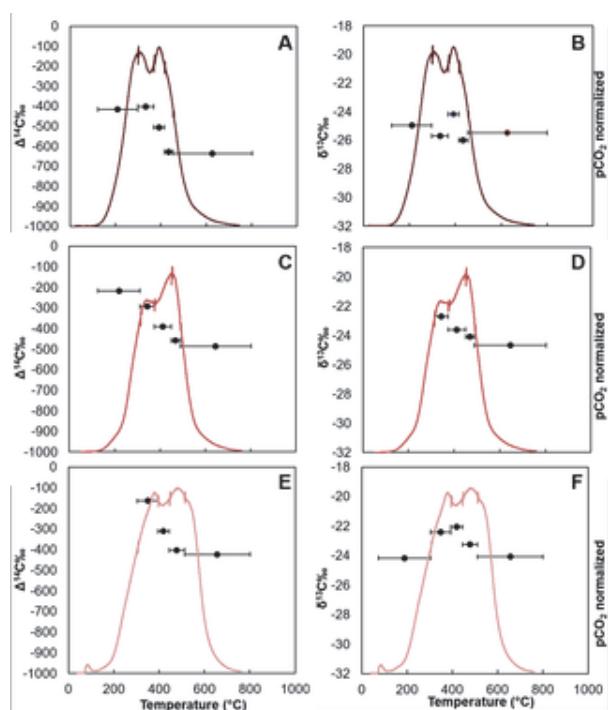
Trends in the Δ¹⁴C composition of evolved CO₂

We observed marked differences between the control (GB480) and seep site (GC600) due to the nature (GB480) of petrocarbon (Fig 5). Relative to the seep site, the control site had higher Δ¹⁴C values for CO₂ from lower temperatures. Evolved CO₂ fractions had decreasing Δ¹⁴C values as temperature increased. The first fraction was Δ¹⁴C = -316.1‰ (Fig 5A, Tables 2 and 4). The seep site had consistently low values for Δ¹⁴C ranging between -881.1 to -950.5‰ over all temperature fractions (Fig 5C). The δ¹³C values for the first fraction, δ¹³C = -25.1‰, then increased at the ~370°C peak, δ¹³C = -21.7‰, before decreasing again at the final peak (Fig 5B). The seep sediments followed a similar pattern, with the lowest being the first fraction, increasing again for the final fraction, however, the δ¹³C values of the CO₂ evolved from the seep site across all fractions, < -28‰ over all temperatures (Fig 5D).

Fig 5. CO₂ thermograph and isotopic composition of evolved CO₂.

Temperature interval of CO₂ fractions indicated by horizontal bars. A) Control site GB480: Δ¹⁴C; B) Seep site GC600 Δ¹⁴C; C) Seep site GC600 δ¹³C; D) Seep site GC600 δ¹³C.

<https://doi.org/10.1371/journal.pone.0212433.g005>


Accession #	Sample ID	Collection Year	$\Delta^{13}\text{C}$	$\Delta^{14}\text{C}$	CO_2 (pmol)	Start T (°C)	Stop T (°C)
GIP0710-B-1							
OS-13265	GIP0710-B-1 F1	2010	-23.8	-181.8	55.9	125.0	356.8
OS-13266	GIP0710-B-1 F2	2010	-22.0	-313.5	23.7	356.8	396.5
OS-13267	GIP0710-B-1 F3	2010	-23.5	-442.8	26.9	396.3	436.7
OS-13268	GIP0710-B-1 F4	2010	-23.7	-633.0	28.0	436.7	484.5
OS-13269	GIP0710-B-1 F5	2010	-26.1	-461.6	26.0	484.5	534.8
OS-13270	GIP0710-B-1 F6	2010	-26.0	-706.5	28.0	534.8	801.9
Bulk weighted average							
OS-13096	GIP0710-B-1 F1	2011	-24.4	-112.6	26.1	125.0	305.5
OS-13096	GIP0710-B-1 F2	2011	-22.5	-204.0	35.6	305.5	394.8
OS-13097	GIP0710-B-1 F3	2011	-22.0	-299.6	23.7	384.8	436.5
OS-13098	GIP0710-B-1 F4	2011	-23.6	-282.6	16.9	436.5	482.8
OS-13099	GIP0710-B-1 F5	2011	-25.3	-348.9	26.3	482.8	801.6
Bulk weighted average							
OS-13098	GIP0710-B-1 F1	2014	-25.3	-85.2	14.0	125.0	273.6
OS-13098	GIP0710-B-1 F2	2014	-23.6	-104.8	24.6	273.6	336.2
OS-13098	GIP0710-B-1 F3	2014	-22.2	-208.6	31.2	336.2	391.5
OS-13098	GIP0710-B-1 F4	2014	-23.0	-282.0	94.6	391.5	480.5
OS-13094	GIP0710-B-1 F5	2014	-24.0	-352.1	44.3	480.5	801.9
Bulk weighted average							
OS-13099	GB40-B-1 F1	2013	-25.1	-176.9	12.1	125.0	276.8
OS-13091	GB40-B-1 F2	2013	-22.6	-71.6	36.7	276.8	373.0
OS-13090	GB40-B-1 F3	2013	-21.7	-213.9	23.4	373.0	422.0
OS-13093	GB40-B-1 F4	2013	-22.6	-287.2	28.3	422.0	488.7
OS-13094	GB40-B-1 F5	2013	-23.8	-316.1	38.9	488.7	802.6
BP441-B-1							
OS-13090	BP441-B-1 F1	2015	-25.1	-176.9	12.1	125.0	276.8
OS-13091	BP441-B-1 F2	2015	-22.6	-71.6	36.7	276.8	373.0
OS-13092	BP441-B-1 F3	2015	-21.7	-213.9	23.4	373.0	422.0
OS-13074	BP441-B-1 F4	2015	-22.6	-287.2	28.3	422.0	488.7
OS-13074	BP441-B-1 F5	2015	-23.8	-316.1	38.9	488.7	802.6
Bulk weighted average							
OS-13071	BP441-B-1 F1	2015	-22.7	-215.5	26.7	140.0	381.3
OS-13072	BP441-B-1 F2	2015	-21.7	-379.8	22.5	381.3	458.6
OS-13073	BP441-B-1 F3	2015	-23.2	-482.1	26.1	458.6	526.6
OS-13074	BP441-B-1 F4	2015	-23.7	-409.3	18.5	526.6	586.2
OS-13074	BP441-B-1 F5	2015	-22.8	-624.5	8.1	586.2	760.6
BP441-B-2							
OS-13021	BP441-B-2 F1	2015	-25.5	-265.8	15.4	125.0	325.9
OS-13032	BP441-B-2 F2	2015	-21.9	-292.5	23.1	325.9	396.4
OS-13023	BP441-B-2 F3	2015	-21.6	-399.1	14.7	396.4	437.0
OS-13024	BP441-B-2 F4	2015	-22.4	-408.8	30.9	437.0	534.9
OS-13025	BP441-B-2 F5	2015	-23.1	-464.1	18.5	534.9	801.6
Bulk weighted average							
OS-13016	BP441-B-3 F1	2015	-23.5	-86.7	21.9	125.0	321.0
OS-13017	BP441-B-3 F2	2015	-21.6	-179.2	25.3	321.0	378.8
OS-13018	BP441-B-3 F3	2015	-20.7	-217.9	18.2	378.8	413.5
OS-13019	BP441-B-3 F4	2015	-21.2	-199.9	17.7	413.5	463.6
OS-13020	BP441-B-3 F5	2015	-22.5	-267.0	38.8	463.6	801.6
Bulk weighted average							
OS-13075	GP17-B-1 F1	2010	-25.0	-415.6	42.0	125.0	297.6
OS-13076	GP17-B-1 F2	2010	-25.0	-402.0	42.1	297.6	388.7
OS-13077	GP17-B-1 F3	2010	-24.2	-504.7	29.3	388.7	413.2
OS-13078	GP17-B-1 F4	2010	-26.0	-428.1	26.8	413.2	453.7
OS-13279	GP17-B-1 F5	2010	-25.5	-431.6	26.5	453.7	801.0
Bulk weighted average							
OS-13128	GP1711-B-1 F1	2011	-24.7	-361.8	146.8	125.0	312.8
OS-13129	GP1711-B-1 F2	2011	-22.7	-293.1	36.3	312.8	374.6
OS-13133	GP1711-B-1 F3	2011	-23.6	-390.3	49.7	374.6	450.6
OS-13134	GP1711-B-1 F4	2011	-24.1	-458.0	27.0	450.6	489.5
OS-13135	GP1711-B-1 F5	2011	-24.7	-485.6	26.4	489.5	802.6
GP1711-B-1							
OS-13136	GP1711-B-1 F1	2015	-24.2	-111.1	22.9	75.0	394.5
OS-13137	GP1711-B-1 F2	2015	-22.6	-164.0	36.1	394.5	394.5
OS-13138	GP1711-B-1 F3	2015	-22.1	-311.5	24.9	394.5	444.6
OS-13139	GP1711-B-1 F4	2015	-23.5	-402.9	33.7	444.6	511.6
OS-13140	GP1711-B-1 F5	2015	-24.1	-423.2	40.8	511.6	801.6
GC600-B-1							
OS-13141	GC600-B-1 F1	2014	-29.4	-912.6	174.0	125.0	394.5
OS-13144	GC600-B-1 F2	2014	-30.9	-881.1	47.0	185.0	346.5
OS-13144	GC600-B-1 F3	2014	-29.6	-911.6	58.7	346.5	444.2
OS-13156	GC600-B-1 F4	2014	-28.1	-905.5	98.3	444.2	585.9
OS-13152	GC600-B-1 F5	2014	-28.1	-936.9	12.5	585.9	590.6
OS-13145	GC600-B-1 F5	2014	-28.6	-898.4	17.5	590.6	802.2

<https://doi.org/10.1371/journal.pone.0212433.t004>

Table 4. Summary of ramped pyrolysis/oxidation (RPO) results.

<https://doi.org/10.1371/journal.pone.0212433.t004>

We expected the $\Delta^{14}\text{C}$ value of the evolved CO_2 at the time series sites (Fig 6) to initially exhibit petrocarbon contamination and to increase as petrocarbon degraded or was mobilized from the. However, at these sites, typically the first fraction that evolved at the lowest temperatures was the fraction was the most depleted, similar to the control, in terms of $\Delta^{14}\text{C}$ (Fig 6 and Table 4). Only trends: GIP17 2010, and GC600, where all temperature fractions were highly depleted in radiocarbon evolved CO_2 fractions of sediment from GIP17 became increasingly enriched over time from 206A, 6C and 6E; Tables 2 and 4).

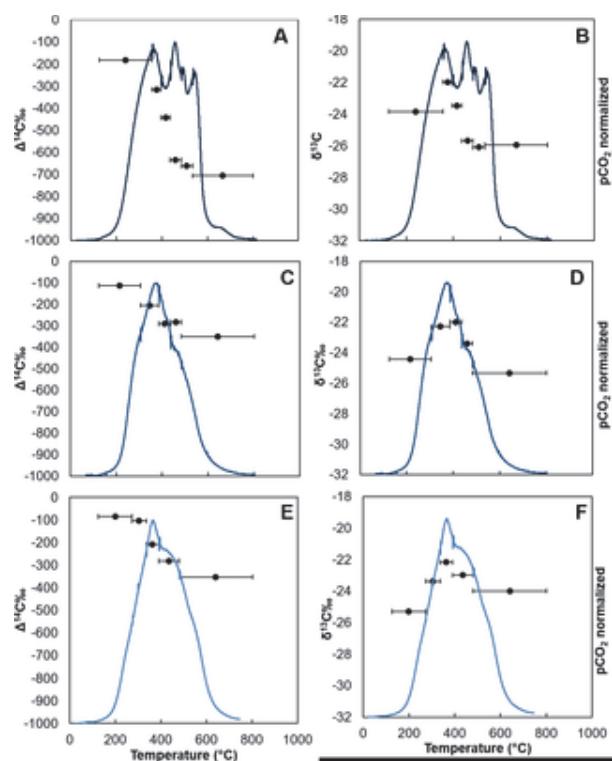


Fig 6. CO₂ thermograph and isotopic composition of evolved CO₂ for site GIP 17.

Temperature interval of CO₂ fractions indicated by horizontal bars. A) GIP17 2010 Δ¹⁴C, B) Δ¹⁴C, D) GIP17 2011 δ¹³C, E) GIP17 2015 Δ¹⁴C, F) GIP17 2015 δ¹³C.

<https://doi.org/10.1371/journal.pone.0212433.g006>

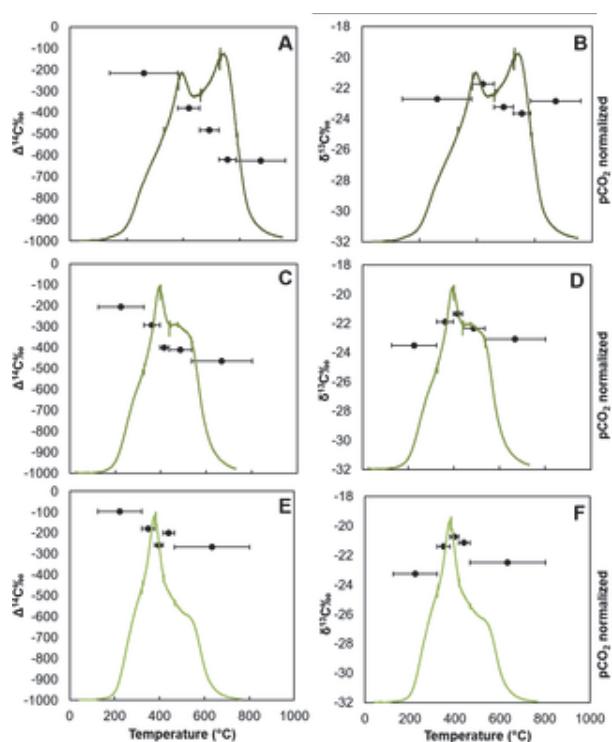
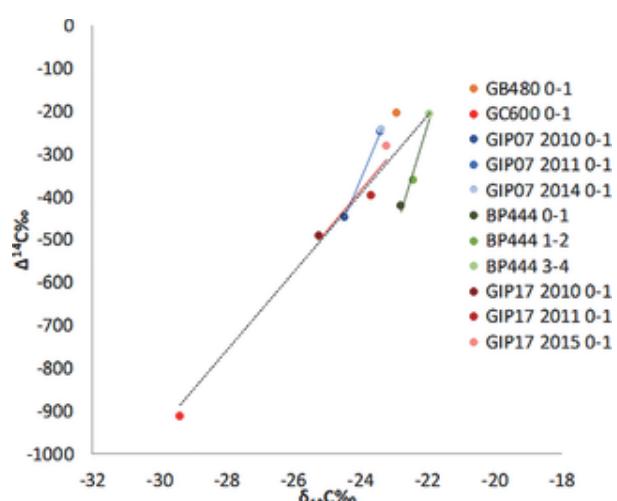

The evolved CO₂ from GIP07 also exhibited the trend of decreasing Δ¹⁴C signatures as temperature increased (Table 4). At site BP444 (Fig 8), segment 0-1cm and 1-2cm had similar Δ¹⁴C values at lower temperatures, around -205.8‰, but at higher temperatures, the 0-1cm segment was lower than at 1-2cm, with Δ¹⁴C = -208.5‰. Further down core at site BP444, the evolved CO₂ fractions from sediment collected from 3-4cm depth showed the trend of decreasing Δ¹⁴C with increasing temperature. The first two segments from 0-1 and 1-2cm, with the initial and final fractions Δ¹⁴C = -96.7 and -97.5‰, respectively. Samples, GB480 and GIP17 2015 0-1 cm (Table 4) exhibited initial CO₂ evolution with high Δ¹⁴C values, indicating the deposition of bomb radiocarbon that had been sequestered in the terrestrial environment, either in the sediments.

Fig 7. CO₂ thermograph and isotopic composition of evolved CO₂ for site GIP07.

Temperature interval of CO₂ fractions indicated by horizontal bars. A) GIP07 2010 Δ¹⁴C, B) Δ¹⁴C, D) GIP07 2011 δ¹³C, E) GIP07 2014 Δ¹⁴C, F) GIP07 2014 δ¹³C.

<https://doi.org/10.1371/journal.pone.0212433.g007>

Fig 8. CO₂ thermograph and isotopic composition of evolved CO₂ for high PAH site BP444.


Temperature interval of CO₂ fractions indicated by horizontal bars. A) 0-1cm $\Delta^{14}\text{C}$, B) 0-1cm $\delta^{13}\text{C}$, E) 3-4cm $\Delta^{14}\text{C}$, and F) 3-4cm $\delta^{13}\text{C}$.

<https://doi.org/10.1371/journal.pone.0212433.g008>

Both the level of contamination and the distance from the source played a role in the recovery rate of the sediments. As mentioned previously, higher contamination may slow overall degradation rates, potentially causing the sediments to sink faster from the water column [9]. Valentine et al. [1] found consistently high levels of hopanes in sediments near the wellhead. Similarly, Adhikari et al. [10] found elevated levels of PAHs < 35km from the well head, but the levels in the sediment beyond this distance returned to background levels. Because the bulk of the oil degraded prior to sedimentation, the further the oil travelled, the more it degraded [4]. This supports our interpretation between the thermographs of GIP07 and GIP17. GIP07, ~90km from the well head, has three distinct temperature peaks in 2010 than GIP17, which is closer to the well head, ~16.9km away. This is also reflected in the first fractions of evolved CO₂ from GIP07 and GIP17.

Trends in the $\delta^{13}\text{C}$ composition of evolved CO₂

The trends in the $\delta^{13}\text{C}$ values were more variable than the trends seen in the $\Delta^{14}\text{C}$ signatures. The sediments followed the general trend of increasing from the lower $\delta^{13}\text{C}$ value of the first fraction to higher temperatures. The peak seen at ~370°C in the control and several other samples was of intermediate fractions (e.g., -21.7 to -22.5; Figs 5B, 6B, 6D, 6F, 7D, 7F, 8B, 8D and 8F), suggesting its origin from a dominant input term for sedimenting particles [38]. Overall, the bulk mean calculated from all the fractions from GIP17 and GIP07 were the most depleted in $\delta^{13}\text{C}$, becoming more enriched in the following fractions. Sediments from BP444 had the highest $\delta^{13}\text{C}$ values, varying by ~1.1‰ throughout the core, which is higher than all the other sediment. The stable carbon and radiocarbon isotope signatures for all the samples are summarized in Table 4.

Fig 9. Plot of RPO averaged $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ from each site.

Darker shades are more contaminated, shifting towards lighter shades of the recovered time ($y = 92.295x + 1824.9$, $r = 0.9187$, $n = 11$, $p < 0.0001$), time series sediments: Red) GIP17 ($y = 257.42x + 5431.4$, $r = 0.9843$, $n = 3$, $p = 0.0157$).

<https://doi.org/10.1371/journal.pone.0212433.g009>

Several studies have explored the potential of anoxic biodegradation of oil causing enrichment in Wilkes et al. [39] incubated alkylbenzene utilizing sulfate-reducing bacteria in oil amendments and compounds at the beginning and ending of the experiment. Wilkes et al. [39] found that as more heavier the remaining compound reservoir became. Griebler et al. [40] found similar results to a contaminated site, with specific compounds showing carbon isotope enrichment of the remaining compounds. Sun et al. [41] found similar increases of the $\delta^{13}\text{C}$ of low molecular weight n-alkanes during biodegradation, but found no fractionation in high molecular weight compounds even during heating to the bulk $\delta^{13}\text{C}$ signatures of the oil, no matter the level of degradation. Whereas in closed systems, the fractionation of $\delta^{13}\text{C}$ during biodegradation of oil, in combination with the n carbon, could account for the increase we observe in the $\delta^{13}\text{C}$ of the evolved CO_2 of sedimentary oil released from the oil spill. The petrocarbon deposited in the GOM was further degraded than studied. Degradation of organic matter also causes increases in $\delta^{13}\text{C}$ values in terrestrial soil systems results from several studies of well-drained tropical soils where primarily C-3 vegetation derived degraded down core. The degradation down core caused $\delta^{13}\text{C}$ signatures of the remaining organic [43–45].

Sediment source composition and variation

We calculated the weighted average for $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ per sample, combining the mass-weighted CO_2 fractions; which were not significantly different from the measured bulk signatures for $\Delta^{14}\text{C}$, we employed a two-endmember mixing model using the $\Delta^{14}\text{C}$ results to calculate the percent of modern and petrocarbon sources (Table 5). For modern surface sediments we used a value of $\Delta^{14}\text{C} = \sim-200\pm29\text{‰}$ [3], and for petrocarbon sources a value of -1000‰ .

$$\%_{\text{Modern}} = (\lvert \Delta^{14}\text{C}_{\text{petrocarbon}} \rvert + \Delta^{14}\text{C}_{\text{Bulk RPO}}) / (\lvert \Delta^{14}\text{C}_{\text{petrocarbon}} \rvert - \Delta^{14}\text{C}_{\text{background}})$$

The results of a two-endmember mixing model followed the trends of the isotopes, with the proportion of petrocarbon decreasing over time as the isotope signatures increased. Our seep and control site spectra show a similar trend with the percent C from modern sources ranging from 11%, at GC600, to 101% at GE01, from GB480, to 89% at GC600. GB480 is slightly more enriched than our estimated background, causing it to have over 100% modern sources and below 0% petrocarbon (e.g. 101% and -1%). GIP07 contain 36 and 31%, petrocarbon in 2010 and decreased to 8% and 5% by 2015 and 2016, respectively. The model data are summarized in Table 5. To test for sensitivity, we varied the radiocarbon background for three sediments from a range of signatures including: background (BP444 2015 3-4cm), mid-range (BP444 2015 1-2), radiocarbon depleted (GC600). The sediment closest to background had the most potential variation, ranging from 2–3%, and finally there was no difference in the highly depleted sediment (Table 6).

	$\delta^{13}\text{C}$	$\Delta^{14}\text{C}$	Percent Modern	Percent Petrocarbon
GB480 2015 0-1	-22.9	-189.4	101	-1
GIP17 2010 0-1	-25.2	-491.6	64	36
GIP17 2011 0-1	-23.7	-365.5	79	21
GIP17 2015 0-1	-23.2	-264.3	92	8
GIP07 2010 0-1	-24.5	-447.5	69	31
GIP07 2011 0-1	-23.4	-247.5	94	6
GIP07 2014 0-1	-23.4	-242.2	95	5
BP444 2015 0-1	-22.8	-422.4	72	28
BP444 2015 1-2	-22.4	-361.4	80	20
BP444 2015 3-4	-21.9	-207.0	99	1
GC600 2014 0-1	-29.4	-912.6	11	89

<https://doi.org/10.1371/journal.pone.0212433.t005>

Table 5. Estimated percent petrocarbon from RPO analyzed sediments using a ^{14}C mass balance with 2 end members and background at -200‰ .

<https://doi.org/10.1371/journal.pone.0212433.t005>

	$\Delta^{14}\text{C}$ ‰	Estimated		Adjusted Background					
		Modern	Petro-carbon	Modern	-229‰ Petro-carbon	Modern	-309‰ Petro-carbon	Modern	-171‰ Petro-carbon
BP444 3-4	-307.0	99%	1%	96%	-3%	99%	1%	96%	4%
GIP17 2010	-491.6	64%	36%	66%	34%	64%	36%	61%	39%
GC600 2014	-912.6	11%	89%	31%	69%	11%	89%	11%	89%

<https://doi.org/10.1371/journal.pone.0212433.t006>

Table 6. Sensitivity test for 2 end member model estimating percent carbon sources.

<https://doi.org/10.1371/journal.pone.0212433.t006>

The co-variation of the RPO averaged $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ was consistent with the C isotope depletion of petrocarbon (Fig 9 and Table 2). This co-variation has also been seen for particulate organic matter with estimated recovery rates as defined as increasing isotopic enrichment over time from the linear variation of the averaged RPO values of $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ for the 0–1 cm interval at the GIP17 and GC600 sample number at each site, there was no statistical significance for one of the regressions (GIP17).

used it to estimate what the recovery rates might be. Of the two time series sites, GIP07, ~90km recovery rate at $\Delta^{14}\text{C} = 46\text{‰}$ per year (184.68 in 4 years) than GIP17, ~23km away, with $\Delta^{14}\text{C}$ (Fig 9). BP444 exhibited increasing $\Delta^{14}\text{C}$ values with depth, becoming $\Delta^{14}\text{C} = 257\text{‰}$ less depleted analyzed. The radiocarbon profile from BP444 showed a distinct depleted layer from 0-2cm over from 2-4cm. These noticeable layers indicated that there was little to no mixing or bioturbation from sample collection in 2015.

Adhikari et al. [10] also analyzed DWH affected sediments using RPO and found depleted radic temperature CO_2 fractions. Additionally, they found elevated levels of PAHs near the Macondo wellhead. Adhikari et al. [10] and Bagby et al. [9] found that in highly contaminated areas, their respective signatures persisted for 3–4 years following the blowout. These estimates are similar to our recovery estimates for the wellhead, which was ~4 years. We found that sites closer to the wellhead, with potentially higher sedimentation rates, took 5–6 years to reach background $\Delta^{14}\text{C}$ signatures.

The slower recovery rates at BP444 could be caused by the highly variable sedimentation rates shortly after the blowout. There was increased sedimentation in the Fall of 2010 through early 2011, following the blowout [2], with sedimentation rates ranging between 0.48 to 2.40 g/cm²/year, returning to pre-spill fluxes of 0.05 to 0.16 g/cm²/year later in 2011 [48]. The large spatial heterogeneity could have created areas of higher contamination, which would be indicated by lower radiocarbon values. Sediment closer to the wellhead by ~6km, surface sediment from GIP17 in 2015 was more enriched with $\Delta^{14}\text{C} = -422\text{‰}$ than sediment from BP444 in 2015, which had $\Delta^{14}\text{C} = -422\text{‰}$. Higher contamination levels would have been explained by the lower $\Delta^{14}\text{C}$ signatures and slower recovery at BP444 in 2015 [1,9,49]. The mass loss of contaminated material to the seafloor also reduced the size of the benthic community as well as the decline in these communities, there was a reduction in the amount of bioturbation in the surface sediments [2]. The reduced mixing would also lead to slower $\Delta^{14}\text{C}$ recovery times at site BP444.

An additional consequence of our study is to shed light on the origin of the sedimentary organic matter. Gordon and Goñi [51–53] hypothesized that organic matter characterized as low-lignin, with high $\delta^{13}\text{C}$ values, contributed to organic matter deposited in deep water of the northern GOM. They suggested older organic matter from historic C-4 prairie grasses along the Mississippi River as a potential source of this evidence to support this hypothesis. The $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ values from the CO_2 thermograph of the samples closely resembles the samples from the deeper sediment at BP444, 3–4 cm, and the GIP07 20 cm samples are representative of typical Gulf sediments. They all exhibited decreasing $\delta^{13}\text{C}$ and $\Delta^{14}\text{C}$ with increasing temperature, contrary to what would have been observed if recalcitrant C-4 organic matter was the source. Recalcitrant organic matter would evolve CO_2 with low $\Delta^{14}\text{C}$ and high $\delta^{13}\text{C}$ values at higher temperatures. The final $\delta^{13}\text{C}$ values from these samples were similar to or more depleted than marine organic matter ($\delta^{13}\text{C} \sim -20\text{‰}$) and a C-4 source with a $\delta^{13}\text{C} \sim -14\text{‰}$. The primary source of organic matter to deep water Gulf sediments is likely to be C-4.

Conclusions

Ramped Pyrolysis/Oxidation combined with isotopic analysis of the evolved CO_2 fractions provided information on the thermal stability and degradation of organic matter over time. Hydrocarbons deposited on the seafloor of the deep-water Gulf of Mexico were transformed to compounds of higher thermal stability from hydrocarbon to petrocarbon. The time frame of this evolution appears to depend upon distance the oil traveled prior to deposition.

Acknowledgments

AMS samples were run at the University of Georgia Center for Applied Isotopic Studies, and the Accelerator Mass Spectrometry facility (NOSAMS) at Woods Hole Oceanographic. We thank Al

and Mark Roberts. Samples were collected from the RV *Endeavor*, RV *Pelican* and the RV *Wea* and Ryan Sibert and Andy Montgomery for facilitating sample collection. We also thank the Nat Mass Spectrometry Graduate Student Internship Program. We also thank an anonymous review comments and suggestions.

References

1. Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, et al. Fallout plume of submerged oil following the Deepwater Horizon oil spill. *Environ Sci Technol*. 2014; 111(45), 15906–15911. pmid:25349409
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
2. Brooks GR, Larson R a., Schwing PT, Romero I, Moore C, Reichart GJ, et al. Sedimentation pulse in the NE Gulf of Mexico following the Deepwater Horizon oil blowout. *PLoS One*. 2015;10(7):1–24. pmid:26172639
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
3. Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, et al. Using natural abundance radiocarbon to track oil degradation in the deep-sea seafloor following the Deepwater Horizon oil spill. *Environ Sci Technol*, 2015; 49(2), 847–854. pmid:25494527
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
4. Stout SA, Rouhani S, Liu B, Oehrig J, Ricker RW, Baker G, et al. Assessing the footprint and volume of oil deposited on the seafloor following the Deepwater Horizon oil spill. *Mar Pollut Bull* 2016; pmid:27677393
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
5. Stout SA, Payne JR. Macondo oil in deep-sea sediments: Part 1: sub-sea weathering of oil deposited on the seafloor following the Deepwater Horizon oil spill. *Environ Sci Technol*. 2016;111(1–2):365–80. pmid:27488960
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
6. Romero IC, Toro-Farmer G, Diercks AR, Schwing P, Muller-Karger F, Murawski S, et al. Large-scale deposition of oil on the seafloor following a deep-water oil spill. *Environ Pollut*. 2017; 228:179–89. pmid:28535489
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
7. Brakstad OG, Lewis A, Beegle-Krause CJ. A critical review of marine snow in the context of oil spills and oil seepage following the Deepwater Horizon oil spill. *Mar Pollut Bull*, 2018; 135, 346–356. pmid:30301046
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
8. Passow U, Zier vogel K. Marine Snow Sedimented Oil Released During the Deepwater Horizon Spill. *Oceanogr*. 2016; 33(3):10–11. pmid:27994146
[View Article](#) • [Google Scholar](#)
9. Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL. Persistence and biodegradation of oil at the ocean surface. *Proc Natl Acad Sci*. 2016; 201610110. pmid:27994146
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
10. Adhikari PL, Maiti K, Overton EB, Rosenheim BE, Marx BD. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in Mexico sediments. *Environ Pollut*. 2016; 212:413–23. pmid:26895564
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)

11. Pendergraft MA, Dincer Z, Sericano JL, Wade TL, Kolasinski J, Rosenheim BE. Linking ramped pyrolysis isot analysis. *Environ Res Lett*. 2013; 8(November):44038–10.
[View Article](#) • [Google Scholar](#)
12. Pendergraft MA, Rosenheim BE. Varying relative degradation rates of oil in different forms and environments Technol. 2014; 48(18):10966–74. pmid:25105342
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
13. Rosenheim BE, Day MB, Domack E, Schrum H, Benthien A, Hayes JM. Antarctic sediment chronology by prc Methodology and data treatment. *Geochemistry, Geophys Geosystems*. 2008; 9(4):1–16.
[View Article](#) • [Google Scholar](#)
14. Plante AF, Fernández JM, Haddix ML, Steinweg JM, Conant RT. Biological, chemical and thermal indices of s soils. *Soil Biol Biochem*. 2011; 43(5):1051–8.
[View Article](#) • [Google Scholar](#)
15. Aeppli C, Carmichael C a., Nelson RK, Lemkau KL, Graham WM, Redmond MC, et al. Oil weathering after th formation of oxygenated residues. *Environ Sci Technol*. 2012; 46(16):8799–807. pmid:22809266
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
16. Ruddy BM, Huettel M, Kostka JE, Lobodin VV, Bythell BJ, McKenna A, et al. Targeted petroleomics: Analytica products from Pensacola Beach. *Energy & Fuels* 2014; 28(6): 4043–4050.
[View Article](#) • [Google Scholar](#)
17. Redmond MC and Valentine DL. Natural gas and temperature structured a microbial community response to t Acad. Sci. 2012, 109, 20292–20297. pmid:21969552
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
18. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, et al. Succession of hydrocarbon Deepwater Horizon oil spill in the gulf of Mexico. *Environ. Sci. Technol.* 2013; 47, 10860–10867. pmid:239371
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
19. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, et al. Metagenome, metatranscriptome response to Deepwater Horizon oil spill. *ISME J* 2012; 6, 1715–1727, pmid:22717885
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
20. White HK, Reddy CM, Eglinton TI. Isotopic constraints on the fate of petroleum residues sequestered in salt n 2005; 39(15), 2545–2551.
[View Article](#) • [Google Scholar](#)
21. White HK; Reddy CM; Eglinton TI. Radiocarbon-based assessment of fossil fuel derived contaminant associa 2008, 42(15), 5428–5434. pmid:18754456
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)

22. Reddy CM, Pearson A, Xu L, McNichol A, Benner BA, Wise SA, et al. Radiocarbon as a tool to apportion the and black carbon in environmental samples. *Environ. Sci. Technol.* 2002; 36, 1774–1782. pmid:11998834
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)

23. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, et al. Metagenomics reveals sediments in the Deepwater Horizon oil spill. *ISME J.* 2014; 8(7), 1464–1475. pmid:24451203
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)

24. Pearson A, McNichol AP, Schneider RJ, von Reden KF, Zheng Y. Microscale AMS ^{14}C measurement at NOSAMS. *Methods Phys Res.* 2015; 361, 211–216
[View Article](#) • [Google Scholar](#)

25. von Reden KF, Donoghue JC, Elder KL, Gagnon AR, Gerlach DS, Griffin VS, et al. Plans for expanded ^{14}C analysis: a progress report. *Nucl Instruments Methods Phys Res.* 2004; 223–224, 50–54
[View Article](#) • [Google Scholar](#)

26. Longworth BE, von Reden KF, Long P, Roberts ML. A high output, large acceptance injector for the NOSAMS AMS. *Methods Phys Res.* 2015; 361, 211–216
[View Article](#) • [Google Scholar](#)

27. Hemingway JD, Galy VV, Gagnon AR, Grant KE, Rosengard SZ, Soulet G, et al. Assessing the blank carbon kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. *Radiocarbon*, 2017; 59(1), 1–12.
[View Article](#) • [Google Scholar](#)

28. Choi Y, Wang Y. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. *Global Biogeochem Cycles*, 2013; 27(4), 1–12.
[View Article](#) • [Google Scholar](#)

29. Fernández-Carrera A, Rogers KL, Weber SC, Chanton JP, Montoya JP. Deep Water Horizon oil and methane seepage in the Gulf of Mexico. *Limnol. Oceanogr.* 2016, 61, S387–S400.
[View Article](#) • [Google Scholar](#)

30. Atlas RM, and Hazen TC. Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. *Environ. Pollut.* 2010; 158(1), 1–12. pmid:21699212
[View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)

31. Diercks AR, Highsmith RC, Asper VL, Joung DJ, Zhou Z, Gou L, et al. Characterization of subsurface polycyclic aromatic hydrocarbons at the Deep Water Horizon site. *Geophys Res Lett.* 2010; 37(L20602)
[View Article](#) • [Google Scholar](#)

32. Zhou Z, Guo L, Shiller AM, Lohrenz SE, Asper VL, Osburn CL. Characterization of oil components from the Deep Water Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques. *Mar Chem.* 2013; 148(0), 10–21
[View Article](#) • [Google Scholar](#)

33. Passow U, Ziervogel K, Asper V, Diercks A. Marine snow formation in the aftermath of the Deepwater Horizon oil spill. *Mar Chem.* 2013; 148(0), 22–31
[View Article](#) • [Google Scholar](#)

Lett, 2012; 7(3), 1–11.
[View Article](#) • [Google Scholar](#)

34. Passow U. Formation of rapidly-sinking, oil-associated marine snow. *Deep Res Part II Top Stud Oceanogr*, 2012; 100: 1–11. [View Article](#) • [Google Scholar](#)
35. Valentine DL, Kessler JD., d MC, Mendes SD, Heintz MB, Farwell C, et al. Propane respiration jump-starts microbial activity in oil-contaminated marine snow. *Marine Pollution Bulletin* (New York, N.Y.), 2010; 330(6001), 208–11. pmid:20847236 [View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
36. Reddy CM, Arey S, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, et al. Composition and fate of gas and oil from the Deepwater Horizon oil spill. *Proc Natl Acad Sci*, 2012; 109(50): 20229–20234. pmid:21768331 [View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
37. Diercks AR, Dike C, Asper VL, DiMarco SF, Chanton JP, Passow U. Resuspension scales in the northern Gulf of Mexico. *Marine Pollution Bulletin*, 2013; 66(1–2): 1–10. [View Article](#) • [Google Scholar](#)
38. Chanton JP, Giering SL, Bosman S, Rogers K, Sweet J, Asper V, et al. Isotope Composition of Sinking Particles in the Gulf of Mexico, 2010–2015. *Elementa: Science of the Anthropocene*, 2018; 6, 43. [View Article](#) • [Google Scholar](#)
39. Wilkes H, Boreham C, Harms G, Zengler K, Rabus R. Anaerobic degradation and carbon isotopic fractionation by *Desulfovibrio* and *Desulfobacter* reducing bacteria. *Org Geochem*, 2000; 31(1), 101–115. [View Article](#) • [Google Scholar](#)
40. Griebler C, Safinowski M, Vieth A, Richnow HH, and Meckenstock RU. Combined Application of Stable Carbon and Nitrogen Isotope Determination for Assessing In Situ Degradation of Aromatic Hydrocarbons in a Tar Oil-Contaminated Aquifer. pmid:14750740 [View Article](#) • [PubMed/NCBI](#) • [Google Scholar](#)
41. Sun Y, Chen Z, Xu S, Cai P. Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying the biodegradation of a group of progressively biodegraded oils. *Org Geochem*, 2005; 36(2), 225–238. [View Article](#) • [Google Scholar](#)
42. Wynn JG. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: Implications for paleosols. *Palaeogeogr, Palaeoclimatol, Palaeoecol*, 2007; 251(3–4), 437–448. [View Article](#) • [Google Scholar](#)
43. Krull ES, Bestland EA, Gates WP, Soil organic matter decomposition and turnover in a tropical Ultisol: Evidence from ¹³C and ¹⁵N stable isotope studies. *Radiocarbon*, 2002; 44, 93–112. [View Article](#) • [Google Scholar](#)
44. Krull ES, Skjemstad JO, Burrows WH, Bray SG, Wynn JG, Bol R, et al. Recent vegetation changes in central Australia inferred from ¹³C and ¹⁴C analyses of soil organic matter. *Geoderma*, 2005; 126(3–4), 241–259. [View Article](#) • [Google Scholar](#)

[View Article](#) • [Google Scholar](#)

45. Wynn JD, Harden JW, Fries TL. Stable carbon isotope depth profiles and soil organic carbon dynamics in the 2006;131, 89–109.
[View Article](#) • [Google Scholar](#)

46. Chanton JP, Cherrier J, Wilson RM, Sarkodee-Adoo J, Bosman S, Mickle A. Radiocarbon evidence that carboc the planktonic food web of the Gulf of Mexico. *Environ Res Lett*, 2012; 7
[View Article](#) • [Google Scholar](#)

47. Cherrier J, Sarkodee-Adoo J, Guilderson TP, Chanton JP. Fossil Carbon in Particulate Organic Matter in the C Horizon Event. *Environ Sci Technol Lett*, 2014; 1(1), 108–112.
[View Article](#) • [Google Scholar](#)

48. Daly KL, Passow U, Chanton J, Hollander D. Assessing the impacts of oil-associated marine snow formation Deepwater Horizon oil spill. *Anthropocene*, 2016; 13, 18–33.
[View Article](#) • [Google Scholar](#)

49. Montagna PA, Baguley JG, Cooksey C, Hartwell I, Hyde LJ, Hyland JL, et al. Deep-Sea Benthic Footprint of the 2013; 8(8).
[View Article](#) • [Google Scholar](#)

50. Baguley JG, Montagna PA, Cooksey C, Hyland JL, Bang HW, Morrison C, et al. Community response of deep the Deepwater Horizon blowout and oil spill. *Mar Ecol Prog Ser*, 2015; 528, 127–140.
[View Article](#) • [Google Scholar](#)

51. Goñi MA, Ruttenberg KC, Eglinton TI. Source and contribution of terrigenous organic carbon to surface sediments 389(6648), 275–278.
[View Article](#) • [Google Scholar](#)

52. Goñi MA, Ruttenberg KC, Eglinton TI. A reassessment of the sources and importance of land-derived organic Mexico. *Geochim Cosmochim Acta*, 1998; 62(18), 3055–3075.
[View Article](#) • [Google Scholar](#)

53. Gordon ES, and Goñi MA. Controls on the distribution and accumulation of terrigenous organic matter in sediments river margin. *Mar Chem*, 2004; 92(1–4), 331–352.
[View Article](#) • [Google Scholar](#)