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Abstract—A wide variation in muscle strength and asym-
metry exists in people with movement disorders. Functional
electrical stimulation (FES) can be used to induce muscle
contractions to assist and a motor can be used to both assist
and resist a person’s volitional and/or FES-induced pedal-
ing. On a traditional cycle with coupled pedals, people with
neuromuscular asymmetries can primarily use their dominant
(i.e., stronger) side to successfully pedal at a desired cadence,
neglecting the side that would benefit most from rehabilitation.
In this paper, a multi-level switched system is applied to a two-
sided control objective to maintain a desired range of cadence
using FES, an electric motor, and volitional pedaling. The non-
dominant leg tracks the cadence range while the dominant
leg tracks the position (offset by 180 degrees) and cadence of
the first leg. Assistive, uncontrolled, and resistive modes are
developed based on cadence and position for the non-dominant
and dominant legs, respectively. Lyapunov-based methods for
switched systems are used to prove global exponential tracking
to the desired cadence range for the combined FES-motor
control system.

I. INTRODUCTION

Various neuromuscular conditions that result in movement
disorders are known to limit a person’s lower limb function,
and oftentimes affect one side of the body more than the
other, resulting in hemiparesis. FES-cycling has been shown
to be a successful rehabilitation tool for improving many
rehabilitation outcome measures [1]-[5]. However, people
with hemiparesis can mask their asymmetry when pedaling
with mechanically coupled pedals on a traditional single-
crank cycle. The work in [6] concluded that future efforts
in cycling for stroke rehabilitation should promote equal
contribution from the dominant and non-dominant legs.
While FES-cycling on a single crank has been shown to
improve coordination between contralateral legs post-stroke
[7], a split-crank cycle is proposed in this paper to enforce
symmetrical contribution in people with movement disor-
ders resulting in asymmetric function. Previous rehabilitation
studies have used a split-crank cycle [8]-[11]; however, only
[11] used closed-loop control. Furthermore, none of the
aforementioned studies used FES to control the muscles. The
work in [12] focuses on balancing torques generated from
each leg on a single-crank FES-cycle, such that the dominant
leg is tasked with only producing as much force as that
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acheivable by the non-dominant leg, rather than maximizing
overall torque, which could result in heavy reliance on the
stronger, dominant leg. While the control objective in this
paper is to track a desired cadence rather than force, there is
similar motivation to balance contribution. Here the dominant
(i.e., more capable) side will only be tasked with pedaling as
fast as the non-dominant side, even if the non-dominant side
does not meet the cadence goal. However, the subsequently
developed protocol remains applicable to people with no
asymmetry.

Among different populations that participate in physical
therapy, there is a large variation of strength and abilities,
providing motivation for an exercise protocol that accommo-
dates each user by assisting when they do not meet minimum
performance metrics and resisting when the person exceeds a
desired target range. Moreover, most people with movement
disorders have some level of muscle control, and should be
encouraged to contribute volitionally. Motivated to develop
globally effective rehabilitation tools, [13] established a
novel closed-loop state dependent switched system strategy
that automatically transitions between assistive, uncontrolled,
and resistive modes according to cadence bounds, and also
encouraged volitional pedaling. To benefit a broad range of
strength, ability, and hemiparesis, in this paper, a similar
strategy for volitional contribution during FES-cycling is
implemented on a split-crank cycle. As such, the non-
dominant side will be resisted by the electric motor when
pedaling above the desired cadence region and assisted via
a combination of FES and the electric motor when below.
Similarly, the dominant leg will be appropriately assisted or
resisted when its position is outside a desired range centered
at 180 degrees out of phase from the non-dominant leg.

Figure 1 depicts two levels of arbitrary and state-dependent
switching that occurs between and within the three modes
as the continuous state-dynamics evolve. Switching amongst
the three modes is considered the high-level switching and
is based on cadence on the non-dominant side and based on
position on the dominant side. Low-level position-dependent
switching within the assistive mode of each side will oc-
cur between the quadriceps, gluteal, and hamstring muscle
groups, and the electric motor. As in [14], each muscle group
is only activated when it is efficient to produce positive
torque (i.e., FES regions) and the electric motor is activated
elsewhere (i.e., motor regions). Motivated by [15], a comfort
threshold is set on the stimulation input and a motor is
activated only when the FES threshold is reached, so that
full control authority can be maintained. Similarly, in the
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Figure 1. Diagram illustrating the combined switched system.

current work, arbitrary switching will activate the motor
when the FES threshold is reached in the FES regions of the
assistive mode, in addition to the cadence-based switching
that activates the motor in the resistive mode and the motor
regions of the assistive mode.

In this paper, a switched controller is developed for the
FES and the motor on both sides of the cycle. A separate
analysis is presented for each side of the cycle-rider system.
Since arbitrary switching between stable subsystems can
result in overall system instability [16], a Lyapunov-based
analysis for switched systems involving a common Lyapunov
function candidate with a set valued generalized derivative is
used to prove global exponential stability of the controllers
operating in the assistive and resistive modes. The trajectories
in the uncontrolled mode are bounded above and below by
the controlled subsystenﬁ.' MODEL

Switched dynamics are considered separately for both
sides of the cycle-rider system as'

Tey (t) £ Tey (ql7 q.la t) + Tr, (QIa (jla ‘jl, t), (1)

Vi € S £ {1, 2}, which indicates the non-dominant (I = 1)
and dominant (I = 2) side, respectively. The measureable
crank angle is denoted by ¢; : R>g — Q, where Q C R
is the set of all possible crank angles. The torques applied
about the crank axis by the cycle and the rider are denoted
bchl IR2XR20—>RaHdTn : QXRQXRZ()—)R,
respectively. The torque applied about the crank axis by the
electric motor is denoted by 7., : R>o — R and can be
expressed as
Te, (t) £

Vi € S, where the motor control constant, B,, € Ry, relates
the motor’s input current to output torque, and u., : R>o —
R is the subsequently designed motor control current input.
The cycle and rider torques, 7., and 7,,, are defined as

JC[ (QZ) Ql + bcl q.l + dcl (t) bl (3)

Beyue, (), )

T (@, G, G, t) =

For notational brevity, all explicit dependence on time, ¢, within the
terms g(t), ¢(t), ¢(¢) is suppressed.

o (@15 1, G1) “4)
_TMZ (qlv le, t) + dTL (t)’

Vi € S, respectively, where J,, : @ — R, b, € Ry, and
de, : R>o — R, denote inertial effects, viscous damping ef-
fects, and disturbances applied by the cycle, respectively. The
sum of torques produced by muscle, by both FES and voli-
tional contribution, is denoted by 754, : OXRxR>¢ — R and
the disturbances from the rider (e.g., spasticity or changes in
load) are denoted by d,, : R>o — IR. Passive torques applied
by the rider’s legs are denoted by 7, : Q x R? — R and can
be further expanded as

To (@s G1s Gy t) =

M, (@)@ +Vila,d)a S
+Gl (CIl) + Pl (le ql) )

vl e S, where My, : Q =+ Rso, VI: OXR =R, G;: Q —
R, and P, : @ x R — R denote the inertial, centripetal-
Coriolis, gravitational, and passive viscoelastic tissue forces,
respectively. The cumulative torque applied by the muscles
can be separated into volitional contribution and the sum
of each muscle’s individual torque production due to FES-
induced contractions, written as

Z B ql7ql Um, ( )+Tvoll (t)7 (6)
meM
vl € S,Vm € M, where u,,, : R>¢g — Ris the subsequently
designed FES control input (i.e., stimulation intensity), and
the subscript m € M = {Q, G, H} indicates the quadriceps
femoris (Q), gluteal (G), and hamstring (H) muscle groups,
respectively. The rider’s volitional torque is denoted by 7, :
R>9 — R. The uncertain muscle control effectiveness is
denoted by B,, : Q@ x R — Ry, as in [14], [17].
High-level switching occurs between assistive, uncon-
trolled, and resistive modes according to subsequently de-
signed switching signals. On the non-dominant side, the
high-level switching laws are based on velocity, such that

1 if < 1 if > a-
Jalé{ol 41 = qd1 o é{ I g1 =24qn

it g >dn |0 i G <da
(7
where the switching signals o,, : R — {0, 1} and o, :
R — {0, 1} determine when the non-dominant side is in
the assistive and resistive modes, respectively, and ¢q1
Rso — R and ¢3; : Ry — R are the selectable minimum
and maximum desired cadence values that bound the non-
dominant side’s uncontrolled mode. High-level switching
between the three modes on the dominant side is based on
position, such that

Tp, (qla qlv ql) £

TM, ql7 CIl7

a ) 1 if g2 <qa a ) 1 if g 2qp
Uag = . - ) UTz = .
0 if g2 > qqgo 0 if g2 <qp
(®)
where the switching signals o4, : @ — {0, 1} and o, :
@ — {0, 1} determine when the dominant side is in the
assistive and resistive modes, respectively, and gq42 : Ry —
R and ¢, : Ryo — R are the selectable minimum and



maximum desired position values that bound the dominant
side’s uncontrolled mode, and are designed to be centered
around ¢; — 7 to maintain a 180 degree offset. For both the
non-dominant and dominant sides, the subsystem is in the
uncontrolled mode when o,, = 0, = 0, VI € S. Within
the assistive mode for both the non-dominant and dominant
subsystems, low-level switching amongst the muscle groups
and motor is based on definitions for the subsequent FES
regions for each muscle group Q,, C Q, Vm € M, as in
[13]. The stimulation intensity applied to each muscle group,
Um, : Q X Rsg — R, is defined as?

A
uml = Uazaml kmlusl 9 (9)

Vi e S, Vm € M, where o,, was defined in (7) and (8), the
subsequently designed FES control input is denoted by u, :
Rso — R, and k,,,, € R is a selectable constant control
gain. The low-level switching signal o, (¢;) € {0, 1} is
designed for each muscle group such that o, (¢;) = 1 when
@ € Qm and o, (1) = 0 when ¢ (t) ¢ Qnm, VI € S,
Vm € M. The overall FES region, Qrpgg, is the union of
individual muscle regions on the particular side, defined as
Qrps £ =y {Qm}, ¥Ym e M.

The applied motor current in (2) is denoted by u,, : @ %
R x Rs9 — R and defined as

(10)

N
Ue, = (UH + 0 Uel) Uy,

vl € S, where u,, : Ryy — R denotes the subsequently
designed motor control input, and o, : Q@ x R — {0, 1} is
an auxiliary low-level switching signal for activation of the
electric motor within the assistive mode, defined as

1 if a1 ¢ QrEes
oo, =4 1 if g € Qrps, thm, = By >
0 q € OFES, Um; 7 Bm,
Vi € S, Vm € M, where ,,, € Ry is the stimulation
comfort threshold and the motor is activated in FES regions
when the stimulation input reaches [3,,,. Thus, the switching
laws autonomously activate subsets of muscle groups and the
motor based on position, velocity, and stimulation level.
Substituting (2)-(6), (9), and (10) into (1) yields
Mgy + be,qi +de,  (12)
+Vig + Gi + P + dyy,

(1)

Banus, + Beur, + Tool, =

VI € S, where M; : Q — R is defined as the summation

M, & J., + M,,. The combined switched FES control
effectiveness By, : @ x R — R is defined as
B]\/Il = Z Bmaalamzkmla (13)
meM

and Bg, : Q@ x R — R is the switched motor control
effectiveness, defined as

[I>

Bg, B (07, + 04,0¢,) - (14)

2For notational brevity, all functional dependencies are hereafter sup-
pressed unless required for clarity of exposition.

The switched system in (12) has the following properties and
assumptions VI € S [18]:

Property: 1 ¢, < M; < cp, Where ¢, cpr € Ryg
are known constants. Property: 2 |V;| < cy g, where
cy € Rsg is a known constant. Property: 3 |G;| < cg,
where ¢ € R.g is a known constant. Property: 4 |P;| <
cp1 + cp2|q|, where cp1, cpa € Rsq are known constants.
Property: 5 b., < ¢, where ¢, € Ry is a known constant.
Property: 6 |d,, + d.,| < ¢4, where ¢4 € Rs is a known
constant. Property: 7 %Mz = V. Property: 8 B,,, is
lower bounded ¥Ym € M, and thus, when > o, > 0,

meM
¢, < Bum, < ¢y, Where ¢, , cp,, € Rso are known

constants. Property: 9 ¢,, < B.,, where ¢;, € Ry is
a known constant. Assumption: 1 The volitional torque
produced by each leg of the rider is bounded due to human
physical limitations as |Tyo, | < Cypor, Where cyor € R is a
known constant.

III. CONTROL DEVELOPMENT

The following control development for the two sides of
the cycle-rider system is applicable to any combination of
tracking desired ranges of position or cadence for each
subsystem. Without loss of generality, in this paper the
control objective is for the non-dominant subsystem to track
a desired cadence range and for the dominant subsystem to
track a desired position range and single cadence value such
that a phase shift within a desired range of 180 degrees from
the non-dominant leg is maintained.

A. Non-dominant Side

The cadence tracking objective for the non-dominant leg is
quantified by the velocity error e; : R>9 — R and auxiliary
error 71 : R>o — R, defined as

e1 = qa1 — qi, 5)

el +(1 _O'al)Adl- (16)

A
n =

The uncontrolled cadence thresholds, ¢q1 and Gg1> Were
defined previously and can be related as ¢g; £ da1 + Aar,
where Ay; € Ry is the range of the uncontrolled mode.
Note that e; = r; when o,, = 1. Taking the time derivative
of (15), multiplying by M7, and using (12) with [ = 1 yields

Mlél = *BElurl - BMlusl — Tvol; — V17’1 + X1, (17)

where the auxiliary term x; : Q@ X R X Ry — R is
defined as x1 £ be, 1 + de, + G1 + Py + dpy + Vidar +
Vi (1 —04,) Ag1 + MiGa1. From Properties 1-6, x1 can be
bounded as

x1 < 1+ ealesl, (18)

where ¢1, co € Ry are known constants, and | - | denotes
the absolute value. Based on (17), (18), and the subsequent
stability analysis, the FES control input to the muscle groups
on the non-dominant side is designed as



Us, = Satg, [kls + k25T1] s (19)

where ki, kos € R are constant selectable control gains,
satg, (-) is defined as satg (k) = & for|k| < B and
satg, (k) = sgn(k)B; for|k| > Bi, and B1 € Rsg is the
rider-selected comfort threshold for the non-dominant leg.
The switched control input to the motor is designed as

Up, = klesgn (T'l) + errla (20)

where k1., ko € R<( are constant selectable control gains.
Substituting (19) and (20) into (17) yields

Miéw = —Bg, (kiesgn(r1) + koer1)
— B, (satg, [k1s + kasr1])
—Twol; — V171 + X1-

ey

B. Dominant Side

The position tracking objective for the dominant leg is
quantified by the error e; : R>¢o — R and auxiliary errors
r9 : Ry = R and r3 : Ry — R, defined as

e2 £ Qi — qo, (22)
re £ e+ (1 — 042) Ao, (23)
r3 £ és + aes 24)

where o € R+ is a constant selectable control gain. The po-
sition thresholds for the uncontrolled mode, 42 and ¢,, were
defined previously and are now related as ¢, £ qd2 + Ago,
where Aga € Ry is the range of desired position values
for the dominant leg, and g4 L q—7m— AZ‘” so that ggo
and ¢, are centered around ¢; — 7. Note that ez = ry when
04, = 1. Taking the time derivative of (24), multiplying by
Mo, and using (12) with [ = 2 and (22) yields

Mors = —Bp,Ur, — B, s, — Tyol, — VT3 —r2+ X2, (25)

where the auxiliary term x2 : @ XR XxR>¢ — R is defined
as X2 = beyGo + dey + Go + Py + dyy + Vadao + Vaaes +
Msdas + Maars — Maa?es + ro. From Properties 1-6, o
can be bounded as

Xo < e+ ea|z]| + e |12 (26)

where z 2 [ryrs)”, ||+ is the Euclidean norm, and
c3, ¢4, c5 € Ry are known constants. Based on (25), (26),
and the subsequent stability analysis, the FES control input
to the muscle groups on the dominant side is designed as

satg, [/CgsTg + 27

(Rae + s 121 + b 1211 sen (1) ]

where ks, k4s, kss, kes € Rsg are constant selectable
control gains and By € Ry is the rider-selected comfort
threshold for the dominant leg. The switched control input
to the motor on the dominant side is designed as

Ugy ==

ttey = kaers + (Kue + ke 2] + ke [12]7) sen (7). (28)

where kse, Kie, kse, kge € Rs( are constant selectable
control gains. Substituting (27) and (28) into (25) yields

Msrs = —BEQSat52 [k;),s?"g-i- (29)

(e + ke 121+ e |11 sen (rs) |
7BM2 |:]<3357‘3 +

(s + s 121 + b 1211 sen (rs)

—Tuoly, — Vars — 12 + Xa.

IV. STABILITY ANALYSIS

The stability analysis is divided into non-dominant (Sec-
tion IV, A) and dominant (Section IV, B) subsystems. To fa-
cilitate the analysis of switching signals, switching times are
denoted by {tf%l} ,ie{a,r,pt,ne{0,1,2,..},VI€S,
representing the times when each side’s subsystem switches
into the assistive (¢ = a), resistive (¢ = r), or uncontrolled
(¢ = p) modes.

A. Stability of the Non-Dominant Subsystem

Let V71 : R — R be a continuously differentiable, positive
definite, common Lyapunov function candidate defined as

1
Vi = §M17“f7 (30)
which satisfies the following inequalities:
m CMm
5 < Vi < 77“%’ (31)

where ¢,,, and cjps are introduced in Property 1. Theorems 1
and 2 apply, provided some gain conditions are satisfied.

Theorem 1. Throughout the assistive mode, when ¢ < qa1,
the closed-loop error system in (21) results in exponential
convergence of the cadence on the non-dominant side to qq1,
provided some gain conditions are satisfied.

Proof: When ¢1 < qq15 e1 = 11 2 0, 04, = 1, and
or, = 0 (i.e., the non-dominant side subsystem is controlled
in the assistive mode by either FES, the motor, or both). It
can be demonstrated that, due to By, and Bp, discontin-
uously varying over time, the time derivative of (30) exists

almost everywhere (a.e.) within ¢ € [t% |, ¢, ), Vn, and

Vi1 ‘€ Viy [19]. After substituting (13), (14), and (21), the
derivative of (30) can be solved using Filippov’s differential
inclusion [20], and then upper bounded using Properties 7
and 8, Assumption 1, and (18) as

Z a.e.
Vii < —(A—cpq—c1)m1 — (B—c2)ri, (32)

which is negative definite in all cases since r; > 0, provided
some gain conditions are satisfied. The values of A € Ry



and B € Ry depend on the switching signals, and are
defined as

o k1e ifoe, =1, 1 € QrEs
A .
A= Cbmkls if Oe; = 0, q1 € QFES ’
cp ke +ep,,P1 ifoe, =1, 1 €QrEs
o ke ifog =1
cp, kos if o, =0

Furthermore, since V1 € Vi1, (31) can be used to upper
bound (32) as

Vi1 < —Aa1Via, (33)

te [t ot 1) Vn, where A, is a positive constant.
Solving the inequality in (33), using (31), and performing
some algebraic manipulation yields exponential convergence
of 1 and e to zero. Since exponential convergence is guar-
anteed for all combinations of o., and o,,, while ,, =1,
V51 is a common Lyapunov function for switching during
the assistive mode of the non-dominant side. ]

Theorem 2. When ¢1 > ¢, the closed-loop error system in
(21) is exponentially stable, provided some gain conditions
are satisfied.

Proof: When ¢1 > ¢35 00, = 0, 0y, = 1, and
e1 + Ag1 =71 <0 (i.e., the non-dominant side subsystem
is in the resistive mode and controlled by the motor). Due
to the signum function in (21), the time derivative of (30)
exists a.e. within t € [tz’ 1 tfl+1, 1) . Vn, and V4 < Vii.
After substituting (16) and (21), the derivative can be upper
bounded using Properties 7 and 9, Assumption 1, and (18)
as

a.e.

Vi < —(cpkie — oot — 1 — calgy) |71 (34)

— (b ke — c2) 11,

Vt e [t 1, th 4 1), Vn, which is negative definite provided
sufﬁcwnt galn conditions are satisfied. Furthermore, since

VL1 E VLl, (34) can be upper bounded as

Vi < —AVii, (35)

vt e [t s that, 1), Vn, where A\, was defined previously.
Solving (35) rewriting using (31), and performing algebraic
manipulation yields exponential convergence. ]

Remark 1. Since the non-dominant side is in the uncontrolled
mode when —Agy; < e; < 0, the error is always bounded
in the uncontrolled mode. As described in Theorems 1 and
2, |r1] (which, by (16), is equivalent to e; in the assistive
mode) decays at an exponential rate in both the assistive
and resistive modes to zero. By extension, |e;| also decays
exponentially in the assistive and resistive modes, to values
of 0 and Ay, respectively. When the subsystem of the
non-dominant side enters the resistive mode, the cadence

will instantly exponentially decay towards ¢;; back into the
uncontrolled mode, and when entering the assistive mode,
the FES and motor controllers on the non-dominant side
will ensure the cadence exponentially increases towards ¢4
back into the uncontrolled mode. For this particular control
objective, where there is a desired cadence range, rather than
a single value for the desired trajectory, error convergence to
a range (i.e., [0, Ag1]) is desirable, rather than exponential
error convergence to zero.

B. Stability of the Dominant Side

Let Vi : R?2 — R be a continuously differentiable, pos-
itive definite, common Lyapunov function candidate defined
as

1 1
Vie £ Sr3 + - Myr3, (36)
2 2
which satisfies the following inequalities:
min (¢, 1 max (cus,
min (o D o < vy < 200D e )

where c,,, and cjs are introduced in Property 1. Theorems 3
and 4 apply, provided some gain conditions are satisfied.

Theorem 3. When qo < qq2, the closed-loop error system in
(29) results in exponential convergence of the position and
cadence on the dominant side to qq2 and ¢y, provided some
gain conditions are satisfied.

Proof: When qy < qgo; 04, = 1, 0, = 0, and 1o =
e > 0 (i.e., the dominant side subsystem is controlled in the
assistive mode by FES and/or the motor). Similar to the proof
of Theorem 1, it can be demonstrated that, due to Bj, and

Bpg, discontinuously varying over time, the time derivative of
a.e.

(36) exists a.e. within 7 € [t .2 tﬁ+1_’2) ,Vn, and Viy €
Vi, and after substituting (29), the derivative of (36) can be
upper bounded using Properties 7 and 8, Assumption 1, and
(26) as

~ a.c. . 9

Vie < —min (cp, kse, b, k3s) 7’% —ars, (38)

vt e [ta & ot +1’2) , Vn, provided some gain conditions are

. a.e. ~
satisfied. Furthermore, since Vo € V9, (37) can be used

to upper bound (38) as

Via < —Aa2Vio, (39)

vt e [ "2 th 5), Vn, where A2 is a positive constant.
The inequahty in (39) can be solved, rewritten using (37),
and performing some algebraic manipulation yields expo-
nential convergence. Since exponential convergence holds
for all combinations of 0., and o0,,, while 0,, = 1, Vi
is a common Lyapunov function for switching during the
assistive mode of the dominant side. ]

Theorem 4. When g2 > ¢, the closed-loop error system in
(29) is exponentially stable, provided some gain conditions
are satisfied.



Proof: When g2 < ¢g5: 12 < 0, e2 <0, and 0, = 1
(i.e., the cycle-rider system is in the motor-resistance control
mode). It can be demonstrated that, due to Bp, discontinu-
ously varying over time, the time derivative of (36) exists
a.e. within ¢t € [tz,% ti+172>, Vn, and VLQ a.Ee' VLQ.
After substituting (23) and (29), the derivative can be upper
bounded using Properties 7 and 9, Assumption 1, (26), and
noting that ro < 0, as

a.e.

Vie < —cp kserd —ar, (40)

which is negative definite provided gain conditions are sat-

isfied. Furthermore, since VLg aée ' f/Lg, (40) can be upper
bounded as

Via < —AaVia, 41

where Ao is a positive constant, and (41) can be solved
and rewritten using (37), and then performing algebraic ma-
nipulation yields exponential convergence. Since ||z|| — 0,
{’I’ 2, 7“3} — 0. |

Remark 2. Since ro exponentially decays to zero in both
the assistive and resistive modes, by (23), es exponentially
decays to 0 in the assistive mode and to Ay in the resistive
mode. As designed, the position of the dominant leg go
exponentially approaches a bound [gas, ¢g,] surrounding
a 180 degree offset from the actual position of the non-
dominant leg ¢;, and the cadence of the dominant leg
exponentially approaches the cadence of the non-dominant
leg.

V. CONCLUSION

The combined motor and FES control system developed
in this paper is designed to enable a volitionally contributing
rider of a split-crank cycle to maintain a cadence within
a desired range, as well as a phase shift within a de-
sired region centered around 180 degrees. A Lyapunov-like
analysis proved stability of the controllers for the cycle-
rider system, despite unknown disturbances and arbitrary
switching, showing exponential convergence to the desired
cadence range (i.e.,e; € [0, Ag1]) on the non-dominant side
and position range (i.e., e2 € [0, Agz]) on the dominant side.

With assistive, uncontrolled, and resistive modes, the de-
veloped control system has the potential to advance motor-
ized FES-cycling as a rehabilitation exercise for people with
movement disorders. The split crank of the cycle in this paper
presents a way of addressing the asymmetries associated
with some movement disorders. A wide range of volitional
abilities could be accomodated, such that any rider could
pedal within desired cadence and position ranges. FES and
a motor on each side assists those with minimal leg strength
or at the onset of fatigue, and motor resistance is provided
to someone who can easily pedal above the desired ranges.
The authors plan to perform experiments on the split-crank
cycle, including on individuals with neurological conditions
that result in lower body asymmetric function.
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