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Abstract—A wide variation in muscle strength and asym-
metry exists in people with movement disorders. Functional
electrical stimulation (FES) can be used to induce muscle
contractions to assist and a motor can be used to both assist
and resist a person’s volitional and/or FES-induced pedal-
ing. On a traditional cycle with coupled pedals, people with
neuromuscular asymmetries can primarily use their dominant
(i.e., stronger) side to successfully pedal at a desired cadence,
neglecting the side that would benefit most from rehabilitation.
In this paper, a multi-level switched system is applied to a two-
sided control objective to maintain a desired range of cadence
using FES, an electric motor, and volitional pedaling. The non-
dominant leg tracks the cadence range while the dominant
leg tracks the position (offset by 180 degrees) and cadence of
the first leg. Assistive, uncontrolled, and resistive modes are
developed based on cadence and position for the non-dominant
and dominant legs, respectively. Lyapunov-based methods for
switched systems are used to prove global exponential tracking
to the desired cadence range for the combined FES-motor
control system.

I. INTRODUCTION

Various neuromuscular conditions that result in movement
disorders are known to limit a person’s lower limb function,
and oftentimes affect one side of the body more than the
other, resulting in hemiparesis. FES-cycling has been shown
to be a successful rehabilitation tool for improving many
rehabilitation outcome measures [1]–[5]. However, people
with hemiparesis can mask their asymmetry when pedaling
with mechanically coupled pedals on a traditional single-
crank cycle. The work in [6] concluded that future efforts
in cycling for stroke rehabilitation should promote equal
contribution from the dominant and non-dominant legs.
While FES-cycling on a single crank has been shown to
improve coordination between contralateral legs post-stroke
[7], a split-crank cycle is proposed in this paper to enforce
symmetrical contribution in people with movement disor-
ders resulting in asymmetric function. Previous rehabilitation
studies have used a split-crank cycle [8]–[11]; however, only
[11] used closed-loop control. Furthermore, none of the
aforementioned studies used FES to control the muscles. The
work in [12] focuses on balancing torques generated from
each leg on a single-crank FES-cycle, such that the dominant
leg is tasked with only producing as much force as that
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acheivable by the non-dominant leg, rather than maximizing
overall torque, which could result in heavy reliance on the
stronger, dominant leg. While the control objective in this
paper is to track a desired cadence rather than force, there is
similar motivation to balance contribution. Here the dominant
(i.e., more capable) side will only be tasked with pedaling as
fast as the non-dominant side, even if the non-dominant side
does not meet the cadence goal. However, the subsequently
developed protocol remains applicable to people with no
asymmetry.

Among different populations that participate in physical
therapy, there is a large variation of strength and abilities,
providing motivation for an exercise protocol that accommo-
dates each user by assisting when they do not meet minimum
performance metrics and resisting when the person exceeds a
desired target range. Moreover, most people with movement
disorders have some level of muscle control, and should be
encouraged to contribute volitionally. Motivated to develop
globally effective rehabilitation tools, [13] established a
novel closed-loop state dependent switched system strategy
that automatically transitions between assistive, uncontrolled,
and resistive modes according to cadence bounds, and also
encouraged volitional pedaling. To benefit a broad range of
strength, ability, and hemiparesis, in this paper, a similar
strategy for volitional contribution during FES-cycling is
implemented on a split-crank cycle. As such, the non-
dominant side will be resisted by the electric motor when
pedaling above the desired cadence region and assisted via
a combination of FES and the electric motor when below.
Similarly, the dominant leg will be appropriately assisted or
resisted when its position is outside a desired range centered
at 180 degrees out of phase from the non-dominant leg.

Figure 1 depicts two levels of arbitrary and state-dependent
switching that occurs between and within the three modes
as the continuous state-dynamics evolve. Switching amongst
the three modes is considered the high-level switching and
is based on cadence on the non-dominant side and based on
position on the dominant side. Low-level position-dependent
switching within the assistive mode of each side will oc-
cur between the quadriceps, gluteal, and hamstring muscle
groups, and the electric motor. As in [14], each muscle group
is only activated when it is efficient to produce positive
torque (i.e., FES regions) and the electric motor is activated
elsewhere (i.e., motor regions). Motivated by [15], a comfort
threshold is set on the stimulation input and a motor is
activated only when the FES threshold is reached, so that
full control authority can be maintained. Similarly, in the



Figure 1. Diagram illustrating the combined switched system.

current work, arbitrary switching will activate the motor
when the FES threshold is reached in the FES regions of the
assistive mode, in addition to the cadence-based switching
that activates the motor in the resistive mode and the motor
regions of the assistive mode.

In this paper, a switched controller is developed for the
FES and the motor on both sides of the cycle. A separate
analysis is presented for each side of the cycle-rider system.
Since arbitrary switching between stable subsystems can
result in overall system instability [16], a Lyapunov-based
analysis for switched systems involving a common Lyapunov
function candidate with a set valued generalized derivative is
used to prove global exponential stability of the controllers
operating in the assistive and resistive modes. The trajectories
in the uncontrolled mode are bounded above and below by
the controlled subsystems.II. MODEL

Switched dynamics are considered separately for both
sides of the cycle-rider system as1

τel (t) , τcl (q̇l, q̈l, t) + τrl (ql, q̇l, q̈l, t) , (1)

∀l ∈ S , {1, 2}, which indicates the non-dominant (l = 1)
and dominant (l = 2) side, respectively. The measureable
crank angle is denoted by ql : R≥0 → Q, where Q ⊆ R
is the set of all possible crank angles. The torques applied
about the crank axis by the cycle and the rider are denoted
by τcl : R2 × R≥0 → R and τrl : Q × R2 × R≥0 → R,
respectively. The torque applied about the crank axis by the
electric motor is denoted by τel : R≥0 → R and can be
expressed as

τel (t) , Beluel (t) , (2)

∀l ∈ S, where the motor control constant, Bel ∈ R>0, relates
the motor’s input current to output torque, and uel : R≥0 →
R is the subsequently designed motor control current input.
The cycle and rider torques, τcl and τrl , are defined as

τcl (ql, q̇l, q̈l, t) , Jcl (ql) q̈l + bcl q̇l + dcl (t) , (3)

1For notational brevity, all explicit dependence on time, t, within the
terms q(t), q̇(t), q̈(t) is suppressed.

τrl (ql, q̇l, q̈l, t) , τpl (ql, q̇l, q̈l) (4)
−τMl

(ql, q̇l, t) + drl(t),

∀l ∈ S, respectively, where Jcl : Q → R, bcl ∈ R>0, and
dcl : R≥0 → R, denote inertial effects, viscous damping ef-
fects, and disturbances applied by the cycle, respectively. The
sum of torques produced by muscle, by both FES and voli-
tional contribution, is denoted by τMl

: Q×R×R≥0 → R and
the disturbances from the rider (e.g., spasticity or changes in
load) are denoted by drl : R≥0 → R. Passive torques applied
by the rider’s legs are denoted by τpl : Q×R2 → R and can
be further expanded as

τpl (ql, q̇l, q̈l) , Mpl (ql) q̈l + Vl (ql, q̇l) q̇l (5)
+Gl (ql) + Pl (ql, q̇l) ,

∀l ∈ S, where Mpl : Q → R>0, Vl : Q×R→ R, Gl : Q →
R, and Pl : Q × R → R denote the inertial, centripetal-
Coriolis, gravitational, and passive viscoelastic tissue forces,
respectively. The cumulative torque applied by the muscles
can be separated into volitional contribution and the sum
of each muscle’s individual torque production due to FES-
induced contractions, written as

τMl
(ql, q̇l, t) ,

∑
m∈M

Bm (ql, q̇l)uml
(t) + τvoll (t) , (6)

∀l ∈ S, ∀m ∈M, where uml
: R≥0 → R is the subsequently

designed FES control input (i.e., stimulation intensity), and
the subscript m ∈M = {Q, G, H} indicates the quadriceps
femoris (Q), gluteal (G), and hamstring (H) muscle groups,
respectively. The rider’s volitional torque is denoted by τvoll :
R≥0 → R. The uncertain muscle control effectiveness is
denoted by Bm : Q× R→ R>0, as in [14], [17].

High-level switching occurs between assistive, uncon-
trolled, and resistive modes according to subsequently de-
signed switching signals. On the non-dominant side, the
high-level switching laws are based on velocity, such that

σa1 ,

{
1 if q̇1 ≤ q̇d1

0 if q̇1 > q̇d1

, σr1 ,

{
1 if q̇1 ≥ q̇d̄1

0 if q̇1 < q̇d̄1

,

(7)
where the switching signals σa1 : R → {0, 1} and σr1 :
R → {0, 1} determine when the non-dominant side is in
the assistive and resistive modes, respectively, and q̇d1 :
R>0 → R and q̇d1 : R>0 → R are the selectable minimum
and maximum desired cadence values that bound the non-
dominant side’s uncontrolled mode. High-level switching
between the three modes on the dominant side is based on
position, such that

σa2 ,

{
1 if q2 ≤ qd2

0 if q2 > qd2

, σr2 ,

{
1 if q2 ≥ qd̄2

0 if q2 < qd̄2

,

(8)
where the switching signals σa2 : Q → {0, 1} and σr2 :
Q → {0, 1} determine when the dominant side is in the
assistive and resistive modes, respectively, and qd2 : R>0 →
R and qd2 : R>0 → R are the selectable minimum and



maximum desired position values that bound the dominant
side’s uncontrolled mode, and are designed to be centered
around q1 − π to maintain a 180 degree offset. For both the
non-dominant and dominant sides, the subsystem is in the
uncontrolled mode when σal = σrl = 0, ∀l ∈ S. Within
the assistive mode for both the non-dominant and dominant
subsystems, low-level switching amongst the muscle groups
and motor is based on definitions for the subsequent FES
regions for each muscle group Qm ⊂ Q, ∀m ∈ M, as in
[13]. The stimulation intensity applied to each muscle group,
uml

: Q× R>0 → R, is defined as2

uml
, σalσml

kml
usl , (9)

∀l ∈ S, ∀m ∈ M, where σal was defined in (7) and (8), the
subsequently designed FES control input is denoted by usl :
R>0 → R, and kml

∈ R>0 is a selectable constant control
gain. The low-level switching signal σml

(ql) ∈ {0, 1} is
designed for each muscle group such that σml

(ql) = 1 when
ql ∈ Qm and σml

(ql) = 0 when ql (t) /∈ Qm, ∀l ∈ S,
∀m ∈ M. The overall FES region, QFES , is the union of
individual muscle regions on the particular side, defined as
QFES , ∪

m∈M
{Qm} , ∀m ∈M.

The applied motor current in (2) is denoted by uel : Q×
R× R>0 → R and defined as

uel , (σrl + σalσel)url , (10)

∀l ∈ S, where url : R>0 → R denotes the subsequently
designed motor control input, and σel : Q × R → {0, 1} is
an auxiliary low-level switching signal for activation of the
electric motor within the assistive mode, defined as

σel ,


1 if ql /∈ QFES
1 if ql ∈ QFES , uml

= βml

0 ql ∈ QFES , uml
6= βml

, (11)

∀l ∈ S, ∀m ∈ M, where βml
∈ R>0 is the stimulation

comfort threshold and the motor is activated in FES regions
when the stimulation input reaches βml

. Thus, the switching
laws autonomously activate subsets of muscle groups and the
motor based on position, velocity, and stimulation level.

Substituting (2)-(6), (9), and (10) into (1) yields

BMl
usl +BEl

url + τvoll = Mlq̈l + bcl q̇l + dcl (12)
+Vlq̇l +Gl + Pl + drl ,

∀l ∈ S, where Ml : Q → R is defined as the summation
Ml , Jcl + Mpl . The combined switched FES control
effectiveness BMl

: Q × R→ R is defined as

BMl
,

∑
m∈M

Bmσalσml
kml

, (13)

and BEl
: Q × R → R is the switched motor control

effectiveness, defined as

BEl
, Be (σrl + σalσel) . (14)

2For notational brevity, all functional dependencies are hereafter sup-
pressed unless required for clarity of exposition.

The switched system in (12) has the following properties and
assumptions ∀l ∈ S [18]:

Property: 1 cm ≤ Ml ≤ cM , where cm, cM ∈ R>0

are known constants. Property: 2 |Vl| ≤ cV |q̇l|, where
cV ∈ R>0 is a known constant. Property: 3 |Gl| ≤ cG,
where cG ∈ R>0 is a known constant. Property: 4 |Pl| ≤
cP1 + cP2|q̇l|, where cP1, cP2 ∈ R>0 are known constants.
Property: 5 bcl ≤ cb, where cb ∈ R>0 is a known constant.
Property: 6 |drl + dcl | ≤ cd, where cd ∈ R>0 is a known
constant. Property: 7 1

2Ṁl = Vl. Property: 8 Bml
is

lower bounded ∀m ∈ M, and thus, when
∑

m∈M
σml

> 0,

cbm ≤ BMl
≤ cbM , where cbm , cbM ∈ R>0 are known

constants. Property: 9 cbe ≤ Bel , where cbe ∈ R>0 is
a known constant. Assumption: 1 The volitional torque
produced by each leg of the rider is bounded due to human
physical limitations as |τvoll | ≤ cvol, where cvol ∈ R>0 is a
known constant.

III. CONTROL DEVELOPMENT

The following control development for the two sides of
the cycle-rider system is applicable to any combination of
tracking desired ranges of position or cadence for each
subsystem. Without loss of generality, in this paper the
control objective is for the non-dominant subsystem to track
a desired cadence range and for the dominant subsystem to
track a desired position range and single cadence value such
that a phase shift within a desired range of 180 degrees from
the non-dominant leg is maintained.

A. Non-dominant Side

The cadence tracking objective for the non-dominant leg is
quantified by the velocity error e1 : R≥0 → R and auxiliary
error r1 : R≥0 → R, defined as

e1 , q̇d1 − q̇1, (15)

r1 , e1 + (1− σal) ∆d1. (16)

The uncontrolled cadence thresholds, q̇d1 and q̇d1, were
defined previously and can be related as q̇d1 , q̇d1 + ∆d1,
where ∆d1 ∈ R>0 is the range of the uncontrolled mode.
Note that e1 = r1 when σal = 1. Taking the time derivative
of (15), multiplying by M1, and using (12) with l = 1 yields

M1ė1 = −BE1ur1 −BM1us1 − τvol1 − V1r1 + χ1, (17)

where the auxiliary term χ1 : Q × R × R≥0 → R is
defined as χ1 , bc1 q̇1 + dc1 + G1 + P1 + dr1 + V1q̇d1 +
V1 (1− σa1) ∆d1 +M1q̈d1. From Properties 1-6, χ1 can be
bounded as

χ1 ≤ c1 + c2|e1|, (18)

where c1, c2 ∈ R>0 are known constants, and | · | denotes
the absolute value. Based on (17), (18), and the subsequent
stability analysis, the FES control input to the muscle groups
on the non-dominant side is designed as



us1 = satβ1
[k1s + k2sr1] , (19)

where k1s, k2s ∈ R>0 are constant selectable control gains,
satβ1

(·) is defined as satβ1
(κ) , κ for |κ| ≤ β1 and

satβ1
(κ) , sgn(κ)β1 for |κ| > β1, and β1 ∈ R>0 is the

rider-selected comfort threshold for the non-dominant leg.
The switched control input to the motor is designed as

ur1 = k1esgn (r1) + k2er1, (20)

where k1e, k2e ∈ R>0 are constant selectable control gains.
Substituting (19) and (20) into (17) yields

M1ė1 = −BE1 (k1esgn (r1) + k2er1) (21)
−BM1 (satβ1 [k1s + k2sr1])

−τvol1 − V1r1 + χ1.

B. Dominant Side

The position tracking objective for the dominant leg is
quantified by the error e2 : R≥0 → R and auxiliary errors
r2 : R≥0 → R and r3 : R≥0 → R, defined as

e2 , qd2 − q2, (22)

r2 , e2 + (1− σa2) ∆d2, (23)

r3 , ė2 + αe2 (24)

where α ∈ R>0 is a constant selectable control gain. The po-
sition thresholds for the uncontrolled mode, qd2 and qd2, were
defined previously and are now related as qd2 , qd2 + ∆d2,
where ∆d2 ∈ R>0 is the range of desired position values
for the dominant leg, and qd2 , q1 − π − ∆d2

2 so that qd2

and qd2 are centered around q1−π. Note that e2 = r2 when
σa2 = 1. Taking the time derivative of (24), multiplying by
M2, and using (12) with l = 2 and (22) yields

M2ṙ3 = −BE2ur2−BM2us2−τvol2−V2r3−r2 +χ2, (25)

where the auxiliary term χ2 : Q ×R×R≥0 → R is defined
as χ2 , bc2 q̇2 + dc2 + G2 + P2 + dr2 + V2q̇d2 + V2αe2 +
M2q̈d2 + M2αr3 −M2α

2e2 + r2. From Properties 1-6, χ2

can be bounded as
χ2 ≤ c3 + c4 ‖z‖+ c5 ‖z‖2 , (26)

where z , [r2 r3]
T , ‖ · ‖ is the Euclidean norm, and

c3, c4, c5 ∈ R>0 are known constants. Based on (25), (26),
and the subsequent stability analysis, the FES control input
to the muscle groups on the dominant side is designed as

us2 = satβ2

[
k3sr3 + (27)(

k4s + k5s ‖z‖+ k6s ‖z‖2
)

sgn (r3)
]
,

where k3s, k4s, k5s, k6s ∈ R>0 are constant selectable
control gains and β2 ∈ R>0 is the rider-selected comfort
threshold for the dominant leg. The switched control input
to the motor on the dominant side is designed as

ue2 = k3er3 +
(
k4e + k5e ‖z‖+ k6e ‖z‖2

)
sgn (r3) , (28)

where k3e, k4e, k5e, k6e ∈ R>0 are constant selectable
control gains. Substituting (27) and (28) into (25) yields

M2ṙ3 = −BE2satβ2

[
k3sr3 + (29)(

k4e + k5e ‖z‖+ k6e ‖z‖2
)

sgn (r3)
]

−BM2

[
k3sr3 +(

k4s + k5s ‖z‖+ k6s ‖z‖2
)

sgn (r3)
]

−τvol2 − V2r3 − r2 + χ2.

IV. STABILITY ANALYSIS

The stability analysis is divided into non-dominant (Sec-
tion IV, A) and dominant (Section IV, B) subsystems. To fa-
cilitate the analysis of switching signals, switching times are
denoted by

{
tin, l

}
, i ∈ {a, r, p} , n ∈ {0, 1, 2, ...} , ∀l ∈ S,

representing the times when each side’s subsystem switches
into the assistive (i = a), resistive (i = r), or uncontrolled
(i = p) modes.

A. Stability of the Non-Dominant Subsystem

Let VL1 : R → R be a continuously differentiable, positive
definite, common Lyapunov function candidate defined as

VL1 ,
1

2
M1r

2
1, (30)

which satisfies the following inequalities:

cm
2
r2
1 ≤ VL1 ≤

cM
2
r2
1, (31)

where cm and cM are introduced in Property 1. Theorems 1
and 2 apply, provided some gain conditions are satisfied.

Theorem 1. Throughout the assistive mode, when q̇1 ≤ q̇d1,
the closed-loop error system in (21) results in exponential
convergence of the cadence on the non-dominant side to q̇d1,
provided some gain conditions are satisfied.

Proof: When q̇1 ≤ q̇d1; e1 = r1 ≥ 0, σa1 = 1, and
σr1 = 0 (i.e., the non-dominant side subsystem is controlled
in the assistive mode by either FES, the motor, or both). It
can be demonstrated that, due to BM1

and BE1
discontin-

uously varying over time, the time derivative of (30) exists
almost everywhere (a.e.) within t ∈

[
tan, 1, t

p
n+1, 1

)
, ∀n, and

V̇L1

a.e.
∈ ˙̃VL1 [19]. After substituting (13), (14), and (21), the

derivative of (30) can be solved using Filippov’s differential
inclusion [20], and then upper bounded using Properties 7
and 8, Assumption 1, and (18) as

˙̃VL1

a.e.
≤ − (A− cvol − c1) r1 − (B − c2) r2

1, (32)

which is negative definite in all cases since r1 ≥ 0, provided
some gain conditions are satisfied. The values of A ∈ R>0



and B ∈ R>0 depend on the switching signals, and are
defined as

A ,


cbek1e if σe1 = 1, q1 /∈ QFES
cbmk1s if σe1 = 0, q1 ∈ QFES

cbek1e + cbmβ1 if σe1 = 1, q1 ∈ QFES
,

B ,

{
cbek2e if σe1 = 1

cbmk2s if σe1 = 0
.

Furthermore, since V̇L1

a.e.
∈ ˙̃VL1, (31) can be used to upper

bound (32) as
V̇L1 ≤ −λa1VL1, (33)

t ∈
[
tan, 1, t

p
n+1, 1

)
, ∀n, where λa1 is a positive constant.

Solving the inequality in (33), using (31), and performing
some algebraic manipulation yields exponential convergence
of r1 and e1 to zero. Since exponential convergence is guar-
anteed for all combinations of σe1 and σm1 while σa1 = 1,
VL1 is a common Lyapunov function for switching during
the assistive mode of the non-dominant side.

Theorem 2. When q̇1 ≥ q̇d1, the closed-loop error system in
(21) is exponentially stable, provided some gain conditions
are satisfied.

Proof: When q̇1 ≥ q̇d1; σa1 = 0, σr1 = 1, and
e1 + ∆d1 = r1 ≤ 0 (i.e., the non-dominant side subsystem
is in the resistive mode and controlled by the motor). Due
to the signum function in (21), the time derivative of (30)
exists a.e. within t ∈

[
trn, 1, t

p
n+1, 1

)
, ∀n, and V̇L1

a.e.
∈ ˙̃VL1.

After substituting (16) and (21), the derivative can be upper
bounded using Properties 7 and 9, Assumption 1, and (18)
as

˙̃VL1

a.e.
≤ − (cbek1e − cvol − c1 − c2∆d1) |r1| (34)
− (cbek2e − c2) r2

1,

∀t ∈
[
trn, 1, t

p
n+1, 1

)
, ∀n, which is negative definite provided

sufficient gain conditions are satisfied. Furthermore, since
V̇L1

a.e.
∈ ˙̃VL1, (34) can be upper bounded as

V̇L1 ≤ −λr1VL1, (35)

∀t ∈
[
trn, 1, t

p
n+1, 1

)
, ∀n, where λr1 was defined previously.

Solving (35), rewriting using (31), and performing algebraic
manipulation yields exponential convergence.
Remark 1. Since the non-dominant side is in the uncontrolled
mode when −∆d1 < e1 < 0, the error is always bounded
in the uncontrolled mode. As described in Theorems 1 and
2, |r1| (which, by (16), is equivalent to e1 in the assistive
mode) decays at an exponential rate in both the assistive
and resistive modes to zero. By extension, |e1| also decays
exponentially in the assistive and resistive modes, to values
of 0 and ∆d1, respectively. When the subsystem of the
non-dominant side enters the resistive mode, the cadence

will instantly exponentially decay towards q̇d1 back into the
uncontrolled mode, and when entering the assistive mode,
the FES and motor controllers on the non-dominant side
will ensure the cadence exponentially increases towards q̇d
back into the uncontrolled mode. For this particular control
objective, where there is a desired cadence range, rather than
a single value for the desired trajectory, error convergence to
a range (i.e., [0, ∆d1]) is desirable, rather than exponential
error convergence to zero.

B. Stability of the Dominant Side

Let VL2 : R2 → R be a continuously differentiable, pos-
itive definite, common Lyapunov function candidate defined
as

VL2 ,
1

2
r2
2 +

1

2
M2r

2
3, (36)

which satisfies the following inequalities:

min (cm, 1)

2
‖z‖2 ≤ VL2 ≤

max (cM , 1)

2
‖z‖2 , (37)

where cm and cM are introduced in Property 1. Theorems 3
and 4 apply, provided some gain conditions are satisfied.

Theorem 3. When q2 ≤ qd2, the closed-loop error system in
(29) results in exponential convergence of the position and
cadence on the dominant side to qd2 and q̇1, provided some
gain conditions are satisfied.

Proof: When q2 ≤ qd2; σa2 = 1, σr2 = 0, and r2 =
e2 ≥ 0 (i.e., the dominant side subsystem is controlled in the
assistive mode by FES and/or the motor). Similar to the proof
of Theorem 1, it can be demonstrated that, due to BM2 and
BE2

discontinuously varying over time, the time derivative of
(36) exists a.e. within t ∈

[
tan, 2, t

p
n+1, 2

)
, ∀n, and V̇L2

a.e.
∈

˙̃VL2, and after substituting (29), the derivative of (36) can be
upper bounded using Properties 7 and 8, Assumption 1, and
(26) as

˙̃VL2

a.e.
≤ −min (cbek3e, cbmk3s) r

2
3 − αr2

2, (38)

∀t ∈
[
tan, 2, t

p
n+1, 2

)
, ∀n, provided some gain conditions are

satisfied. Furthermore, since V̇L2

a.e.
∈ ˙̃VL2, (37) can be used

to upper bound (38) as

V̇L2 ≤ −λa2VL2, (39)

∀t ∈
[
tan, 2, t

p
n+1, 2

)
, ∀n, where λa2 is a positive constant.

The inequality in (39) can be solved, rewritten using (37),
and performing some algebraic manipulation yields expo-
nential convergence. Since exponential convergence holds
for all combinations of σe2 and σm2 while σa2 = 1, VL2

is a common Lyapunov function for switching during the
assistive mode of the dominant side.

Theorem 4. When q2 ≥ qd2, the closed-loop error system in
(29) is exponentially stable, provided some gain conditions
are satisfied.



Proof: When q2 ≤ qd2; r2 ≤ 0, e2 ≤ 0, and σr2 = 1
(i.e., the cycle-rider system is in the motor-resistance control
mode). It can be demonstrated that, due to BE2

discontinu-
ously varying over time, the time derivative of (36) exists
a.e. within t ∈

[
trn, 2, t

p
n+1, 2

)
, ∀n, and V̇L2

a.e.
∈ ˙̃VL2.

After substituting (23) and (29), the derivative can be upper
bounded using Properties 7 and 9, Assumption 1, (26), and
noting that r2 ≤ 0, as

˙̃VL2

a.e.
≤ −cbek3er

2
3 − αr2

2, (40)

which is negative definite provided gain conditions are sat-
isfied. Furthermore, since V̇L2

a.e.
∈ ˙̃VL2, (40) can be upper

bounded as

V̇L2 ≤ −λr2VL2, (41)

where λr2 is a positive constant, and (41) can be solved
and rewritten using (37), and then performing algebraic ma-
nipulation yields exponential convergence. Since ‖z‖ → 0,
{r2, r3} → 0.

Remark 2. Since r2 exponentially decays to zero in both
the assistive and resistive modes, by (23), e2 exponentially
decays to 0 in the assistive mode and to ∆d2 in the resistive
mode. As designed, the position of the dominant leg q2

exponentially approaches a bound
[
qd2, qd̄2

]
surrounding

a 180 degree offset from the actual position of the non-
dominant leg q1, and the cadence of the dominant leg
exponentially approaches the cadence of the non-dominant
leg.

V. CONCLUSION

The combined motor and FES control system developed
in this paper is designed to enable a volitionally contributing
rider of a split-crank cycle to maintain a cadence within
a desired range, as well as a phase shift within a de-
sired region centered around 180 degrees. A Lyapunov-like
analysis proved stability of the controllers for the cycle-
rider system, despite unknown disturbances and arbitrary
switching, showing exponential convergence to the desired
cadence range (i.e., e1 ∈ [0, ∆d1]) on the non-dominant side
and position range (i.e., e2 ∈ [0, ∆d2]) on the dominant side.

With assistive, uncontrolled, and resistive modes, the de-
veloped control system has the potential to advance motor-
ized FES-cycling as a rehabilitation exercise for people with
movement disorders. The split crank of the cycle in this paper
presents a way of addressing the asymmetries associated
with some movement disorders. A wide range of volitional
abilities could be accomodated, such that any rider could
pedal within desired cadence and position ranges. FES and
a motor on each side assists those with minimal leg strength
or at the onset of fatigue, and motor resistance is provided
to someone who can easily pedal above the desired ranges.
The authors plan to perform experiments on the split-crank
cycle, including on individuals with neurological conditions
that result in lower body asymmetric function.
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