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Abstract—In this paper, we present a novel terrain classifica-
tion framework for large-scale remote sensing images. A well-
performing multi-scale superpixel tessellation based segmentation
approach is employed to generate homogeneous and irregularly
shaped regions, and a transfer learning technique is sequentially
deployed to derive representative deep features by utilizing suc-
cessful pre-trained convolutional neural network (CNN) models.
This design is aimed to overcome the big problem of lacking
available ground-truth data and to increase the generalization
power of the multi-pixel descriptor. In the subsequent classification
step, we train a fast and robust support vector machine (SVM) to
assign the pixel-level labels. Its maximum-margin property can be
easily combined with a graph Laplacian propagation approach.
Moreover, we analyze the advantages of applying a feature
selection technique to the deep CNN features which are extracted
by transfer learning. In the experiments, we evaluate the whole
framework based on different geographical types. Compared with
other region-based classification methods, the results show that
our framework can obtain state-of-the-art performance w.r.t. both
classification accuracy and computational efficiency.

Keywords—remote sensing, superpixel segmentation, convolu-
tional neural network, transfer learning, feature selection, semi-
supervised learning

I. INTRODUCTION

Efficient and accurate labeling of very high resolution (VHR)
imagery is an important application in machine learning and
data science. There are several factors making this problem
interesting and challenging. First, the samples to be classified
are attached to a grid. This requires the spatial aspect of the data
to be directly addressed. Second, there is no straightforward
demarcation of training and testing samples. In this application,
the expert labels a few locations in the image as belonging to
one of the classes but it is not straightforward to determine
whether the expert intended to label a single pixel or a
homogeneous region. In addition, the entire image is available
during training allowing us to operate with a semi-supervised
learning mindset. Third, the very high resolution nature of the
images forces us to consider more efficient labeling schemes:
for example, we contend that the labeling of superpixels (i.e.
homogeneous and irregularly shaped regions) is more efficient.
Finally, we need to take into account previous efforts at training
on similar imagery. Consequently, transfer learning must be
integrated with superpixellization.

Previous efforts at high resolution image labeling have in the
main not comprehensively addressed all of these issues at the
same time. We are not aware of any previous effort that (i) uses
a state of the art method for superpixel segmentation in order
to improve efficiency in labeling, (ii) deploys deep learning
filters (in transfer learning mode) to obtain better discriminative
features, (iii) performs semi-supervised learning using support
vector machines thereby leveraging a few labeled exemplars to
efficiently label a very high resolution image.

In summary, we present a very efficient semi-supervised
image labeling algorithm which integrates state of the art
segmentation and deep learning (in transfer learning mode).
In contrast to other methods, we label superpixels instead of
pixels and demonstrate that this approach is superior in terms of
accuracy than competing methods. Further, we clearly show the
importance of having a state of the art superpixel segmentation
method by facilitating comparisons with lesser superpixel es-
timation approaches. Transfer learning is deployed using non-
overlapping patches to obtain better and more discriminative
features for classification. Previous approaches do not reach
the size and scale of the problems addressed here: very high
resolution imagery requires a rethink of many fundamental
issues so that scalability is obtained. We hope to convince the
reader that the integrated superpixel segmentation and transfer
learning driven classifier presented here is the way forward in
very high resolution imagery applications.

II. RELATED WORK

Many existing remote sensing classification frameworks are
built upon effective visual descriptors. Traditional low-level
features like the color histogram , histogram of oriented gra-
dients (HOG), scale-invariant feature transform (SIFT) play
an important role in detecting and distinguishing the objects.
Middle-level descriptors such as bag of visual words (BoVW)
and semantic-spatial matching (SSM) [1] show their promis-
ing performance in scene categorization. Taking advantage of
different properties, a reasonable combination of these features
with appropriate weights can achieve very good results in many
real-world applications [2], [3], [4], [5], [6].

Nevertheless, we should note that the inter-pixel relation-
ships are not fully exploited in these earlier studies. Rather
than manually or heuristically extracting the effective fea-
tures, researchers have designed a variety of deep learning
architectures to automatically learn the representative features
from the images. Maggiori et al. [7] proposed an end-to-end
framework for densely labeling large-scale satellite data. A
two-step training approach is accomplished by initializing the
CNN with a large amount of raw data and then refining the
resulting networks with a small portion of the labeled image.
Chen et al. [8] presented a regularized deep feature extraction
framework for hyperspectral images. Their architectures based
on a 3-D CNN can extract the spectral, spatial and spectral-
spatial features and thus effectively improve the classification
accuracies with the help of virtual training samples. Indeed,
they have attempted different methods to alleviate the problem
of lacking rich label information; however, these methods still
cannot avoid the potential problem of overfitting when training
the deep networks without more available labeled data. To this
end, [9] was the first to use the pre-trained CNN models (from
the everyday object recognition database) for aerial and remote



Fig. 1. An example of the VHR satellite image captured from Rio, Brazil.

sensing classification. The strong generalization power of the
deep features allow them to obtain the best results on their
datasets, and the results are even better when fusing the deep
feature with other descriptors.

On the other hand, all of these above-mentioned methods
adopt the pixel-based strategy. This means that they either
treat the whole image or the patches centered at each pixel
as the input to their frameworks, so the actual computation
cost can be very expensive especially if the test image size
in the latter case becomes significantly large. Accordingly,
the development of a region-based classification approach is
necessary. A Gaussian Multiple Instance Learning (GMIL)
approach [10] was proposed to capture complex spatial patterns,
where groups of contiguous pixels were modeled by a Gaussian
distribution. But, the appropriate block size has to be deter-
mined by multiple experiments and this can be a bottleneck for
global-scale application. Instead of arbitrarily partitioning the
image into blocks, Zhang et al. [11] created a superpixel-based
graphical model to obtain the contextual information and spatial
dependence. A watershed algorithm was employed to generate
the superpixel. However, this can cause oversegmentation due
to the noise and even lead to the loss of salient object contours.
The final classification result may be badly affected by the lack
of a state of the art superpixel segmentation approach.

To overcome these problems, we integrate the approaches of
superpixel-based segmentation and the generation of deep fea-
tures by transfer learning into our framework. It fully considers
the computational efficiency and meanwhile achieves state-of-
the-art classification performance. We provide the details in the
following sections.

III. LARGE-SCALE LABELING FRAMEWORK

In this paper, we aim to label all the pixels in large-
scale VHR images with a very small fraction of ground-truth
data. Typically, the candidate categories include various human
settlement and natural objects like buildings, wasteland, trees,
etc. (and please see an example in Fig. 1). To fulfill such
requirements, we propose an efficient CNN-based classification
framework and describe the the main steps in the following
subsections.

A. Superpixel Tessellation

The Ultrametric Contour Map (UCM) [12] is a popular
method to produce a hierarchy of tessellations at different
scales. In our framework, we only use the fine-scale tessellation
to generate the superpixels of a suitable size. It is also feasible

Fig. 2. Illustration of the rectangular patches created for deep superpixel feature
extraction. The cyan windows around yellow crosses (i.e. expert labeled points)
represent the patches that are used to train the classifier. The yellow windows
around cyan stars (i.e. centers of the superpixels) represent the patches that are
used to receive the superpixel-level label.

to move the tessellation to a coarser level if we seek to derive
deep features from multiple scales.

Basically, there are six major steps in UCM superpixel
estimation: (i) extracting scale-space features from brightness,
texture and wavelength channels, (ii) constructing a weighted
graph where the edge links pixels within a certain distance, (iii)
computing the top K eigenvectors from the weighted graph,
(iv) obtaining the complementary spectral information from the
eigenvectors, (v) combining the local and spectral information
linearly, and (vi) applying an oriented watershed transform
(OWT) [12] to extract global closed contours.

Note that this UCM approach (denoted as OWT-UCM in
Section IV) combines local and global contour information by
obtaining cues from both the original image and the eigenvector
images. This perceptual grouping strategy is mainly responsible
for obtaining a good superpixel segmentation. We can see the
resulting tessellation of Fig. 1 in Fig. 3, where the areas of
significant (or less) variation are captured by smaller (or larger)
superpixels.

B. Deep Superpixel Feature Extraction

After superpixel segmentation is in place, we describe each
superpixel with multi-pixel features. In recent years, following
the explosive development of deep learning architectures, we
have seen state-of-the-art performance in computer vision tasks
[13], [14]. Deep convolutional neural networks (CNN) can learn
the most distinguishing features from pixel granularity and find
a good way to classify these high-level features.

As demonstrated in [9], deep CNN features from everyday
objects can be generalized to the remote sensing domain.
Considering the fact that only a small number of the pixels
can be labeled by the experts when taking into account the
large-scale underlying image data, it is impractical to build our
own remote-sensing model. But fortunately, it is still suitable
for us to obtain the deep representative features by a transfer
learning method, by removing the last fully-connected layers
of a pre-trained CNN model and then treating the remaining
network as a fixed feature extractor as in [9], [15].

Note that, before processing the pixel-level information with
the CNN feature extractor, we need to select the most appro-
priate input patches for the superpixels. The patches should
preserve the necessary side information such as color, texture,
and shape of objects as much as possible, so they can fully
represent the superpixels belonging to the same category. To



this end, we obtain such patches by cropping the center of
the superpixels as shown in Fig. 2. The patch size is chosen
based on the average size of the obtained superpixels, so we
can learn the common structure from the neighborhoods if the
superpixel is too small (e.g. slum or urban), and discard the
visually repeating areas if the superpixel is too large (e.g. forest
and sea).

After obtaining the final output vectors from the extractor,
we can use them as the deep CNN features of the superpixels
for the subsequent classification step. Other global features can
also be concatenated with the output vectors in order to increase
the discriminating power.

C. Superpixel Label Prediction

In order to maximize the usage of limited ground-truth
points (or pixels), we extract the features by cropping the
patches centered at the training points (see bounding boxes
around cyan stars in Fig. 2). This is quite different from the
work of Sethi er al. [5] since they train the classifier with
the features obtained from the superpixels which the training
points fall in—several training points belonging to the same
superpixel may be repeatedly used and thus some distinguishing
information (not relying on the segmentation) is probably lost.

We assign the label to each superpixel based on the proba-
bility scores produced by our classifier. Then these superpixel-
wise labels are percolated down through the segmentation
hierarchy, which means all the pixels contained in a superpixel
are assigned to the same label. In this way, we can avoid directly
labeling the VHR images so as to improve the computational
efficiency.

Additionally, as we mentioned earlier, in this machine learn-
ing set up, the test data is present with the training samples in
the form of the entire image, so it is always available at the
same time when we train the classifier. We can therefore use
a semi-supervised learning approach by either adding a graph
Laplacian smoothing regularizer to the objective function [2],
or simply applying a Laplacian propagation method [16] at the
back-end of the classifier.

IV. EXPERIMENTS
A. Experimental Settings

We conduct extensive experiments on VHR satellite imagery
to evaluate the classification accuracy and computational effi-
ciency of our framework. They are collected from different
resources, such as several big cities or the nearby suburbs in
Brazil and USA, having large or larger scale with four kinds
of geographic settings as shown in Table I. All of these images
have the same resolution of 1 meter and they contain millions
of pixels which can represent 1 to 4 square kilometers of actual
area.

Additionally, apart from the major categories such as slum
(or residential regions), urban (or downtown) and forest, these
images also contain a set of diverse regions such as trees and
forests, lawn and grass fields, water bodies, sandy areas along
the shores, efc. Thus we create several new categories for each
image so as to make them be classified comprehensively in our
framework. Note that each pixel is labeled with one or more
categories in order to eliminate the ambiguity of mixed regions
or boundary areas.

In order to evaluate the OWT-UCM segmentation method
in our framework, we compare it to two other superpixel
algorithms which can also generate homogeneous and compact

TABLE I: The basic information of our VHR imagery, includ-
ing the image names, image sizes in terms of height and width,
and the number of expert-labeled pixels provided as the ground-
truth.

fmage Number of Pixels
Total Size | Expert-Labels
Rio-1,2,3,4,5 | 741 x 1491 | 30,50, 40, 40,40
Madison 1807 x 2062 40
Milwaukee 2184 x 2600 30
Detroit 1648 x 2305 40

segments—Simple Linear Iterative Clustering (SLIC) [17] and
Linear Spectral Clustering (LSC) [18]. These two algorithms
have been proven to be very effective in the computer vision
community as well as in the remote sensing area [19]. In Fig. 3,
we show the segmentation results by drawing the contours of
each superpixel segment on Fig. 1. As we can see, LSC and
SLIC segmentation methods are trying to make the superpixels
uniform with similar size and shape. However, although the
global image information has been considered in LSC, the
boundaries still seem to be unsmooth or locally incoherent
when compared with the actual ground-truth. In sharp contrast,
the superpixels generated from OWT-UCM form much more
reasonable and accurate boundaries. This is highly beneficial
to the subsequent step of superpixel classification.

Then, we adopt MatConvNet [20] to extract the deep CNN
feature for each superpixel as described in Section III-B. It
allows us to conveniently borrow the powerful pre-trained CNN
models of large benchmark datasets such as ImageNet Large
Scale Visual Recognition Competition (ILSVRC) [21], where
many everyday items have the similar visual patterns as our
remote-sensing objects but with much more variation (as shown
in Fig. 4). In our experiments, we use the well-known AlexNet
[13] and VGG-16 [14] architectures in order to implement
transfer learning and measure their generalization power on our
VHR images. The output feature is a long vector with 4,096
dimensions.

At the final stage of our framework, we train a linear
SVM with a very small fraction of ground-truth points. The
works in [22], [23] have shown that a linear SVM can yield
classification results that outperform the original CNN in many
visual recognition tasks. We report the misclassification errors
of pixels and superpixels in a similar way to [5].

B. Results and Discussion

1) Classification Results: We compare three segmentation
methods: OWT-UCM, LSC and SLIC. Meanwhile, we add a
control group where we divide the whole image into hundreds
or thousands of square grids, each of which containing 7 x 7
pixel regions and which can be equivalently regarded as the
elementary segment. For each segmentation method, we gen-
erate the features using both AlexNet and VGG-16, and we
also add one additional group for OWT-UCM by extracting the
visual descriptors as reported in [5]. In Table II, we report the
misclassification errors corresponding to Fig. 1.

From Table II we see that the best performance is obtained
from the combination of OWT-UCM and VGG-16. On the
one hand, OWT-UCM provides more accurate segmentation
of natural boundaries because the superpixel error is almost
unaffected when we change the ratio thresholds; however, due
to the existing “unpurified” superpixels (shown in Fig. 3) which



Fig. 3. Superpixel maps obtained from OWT-UCM (left), SLIC (middle) and LSC (right) segmentation methods.

Fig. 4. Example ILSVRC images which are highly similar to the objects in
remote-sensing categories. The semantic labels of each column (from left to
right) are business district, divided highway, riparian forest and seashore.

TABLE 1II: Misclassification errors of one image from Rio,
Brazil (Rio-1): The three columns below “superpixel” corre-
spond to different thresholds: 25%, 10%, and 0%. This implies
that a superpixel is counted as correct only if the ratio of
misclassified pixels inside is not more than the threshold.

| Tessellation | Features | Pixel | Superpixel ‘
Heuristic | 16.68 | 24.49 | 24.59 | 24.59
OWT-UCM | AlexNet | 12.01 | 18.89 | 18.99 | 18.99
VGG-16 | 11.62 | 18.96 | 18.96 | 18.96
SLIC AlexNet | 15.55 | 21.12 | 29.44 | 49.44
VGG-16 | 15.64 | 21.35 | 29.21 | 49.66
LSC AlexNet | 14.98 | 18.93 | 25.51 | 52.26
VGG-16 | 15.24 | 19.75 | 25.51 | 51.85
Grids AlexNet | 15.67 - - -
VGG-16 | 14.88 - - -

involve multiple categories but share the same label, the errors
of LSC and SLIC are significantly increased when we require
higher ratio of correctly-classified pixels contained in one
superpixel. Note that no superpixel errors are reported for the
grid-based method because it cannot generate any homogeneous
superpixels.

On the other hand, the features extracted from the CNN
pre-trained models are clearly superior to the traditional low-
level or high-level features selected in a heuristic way. This
can be easily seen when we use OWT-UCM as the segmen-
tation method. Additionally, when we compare the classifi-
cation accuracies of AlexNet and VGG-16, we see that the
classification performance stemming from using VGG-16 as a
feature extractor exceeds almost all of the others produced by
AlexNet. As Yu et al. [24] have explained, VGG-16 can remove
more unrelated background information than AlexNet. We can
obtain useful information from it to make the superpixels more
representative. This is very helpful for the final prediction, and
more importantly, it also indicates that we are always able
to improve our classification accuracies by employing a more

TABLE III: Comparisons of pixel-based misclassification errors
for 8 images from Rio, Madison, Milwaukee, and Detroit, using
a VGG-16 architecture to extract the deep features.

Tmage Tessellation .
OWT-UCM \ SLIC \ LSC \ Grids
Rio-1 11.62 15.64 | 15.24 | 14.88
Rio-2 12.32 1549 | 15.26 | 14.06
Rio-3 13.87 17.41 | 16.88 | 15.22
Rio-4 8.05 13.02 | 10.85 | 12.11
Rio-5 8.35 13.69 | 11.03 | 11.20
Madison 15.33 19.03 | 19.65 | 18.08
Milwaukee 21.21 23.05 | 21.09 | 21.87
Detroit 16.80 20.52 | 19.65 | 18.22

powerful CNN model which is well-trained from a general
large-scale labeled dataset. Our framework can be adapted to
deep CNN architectures, so we do not have to spend huge
efforts on collecting a large amount of training data.

Fig. 5 and 6 show the ground-truth maps and classification
results of some representative VHR images. We use VGG-16
as the deep CNN feature extractor because it can yield better
classification performance for different segmentation methods.
The misclassification errors of all the VHR images are reported
in Table III. Similar to the quantitative results in Table II,
OWT-UCM with VGG-16 achieves the best (or second-best)
performance in all of the cases. Even though the accuracies of
the grid-based method are sometimes competitive to ours, the
classification map produced by OWT-UCM still looks better,
because it is visually closer to the natural boundaries while the
grid-based one suffers from a jagged shape due to the finer
square-cell partitioning structure.

Note that we run each image on a single machine with
a NVIDIA GTX 1050 Ti GPU. For the segmentation-based
methods like OWT-UCM, SLIC and LSC, it takes less than
7 minutes to extract the deep CNN features and generate the
classification results for all the images. However, for the grid-
based method, we have to spend around 40 minutes on the
largest image of Madison. This expensive computational cost
is a result of its higher density of segments (i.e. square grids).
It demonstrates that our framework is competitive in terms of
both classification accuracy and computational speed in large-
scale applications.

2) Deep CNN Feature Analysis: We carry out an analysis of
attributes for the deep CNN features extracted by the VGG-16
model. Our intention is to reduce the computational complexity
of the SVM classifier and the effects of overfitting when the
number of available training samples is very limited. Therefore,
we adopt the generalized Fisher score [25] to rank the attributes
based on the relevance in descending order and then retain the



Fig. 5. Example results for the images from Brazil. The left, middle, and right column, respectively, correspond to the actual image, ground-truth maps, and
SVM classification results. Different colors such as red, white, green, yellow, and blue are used to identify the slum, urban regions, trees, beach sand, and sea.

Fig. 6. Example results for the larger images from USA. The left, middle, and right column, respectively, correspond to the actual image, ground-truth maps,
and SVM classification results. Different colors such as red, white, green, yellow, efc. are used to identify the residential areas, commercial areas (or downtown),

forest (or large trees), grass (or lawn) and main roads (or highway).

most relevant ones to keep the discriminating properties of the
original features.

We show the changes of pixel-based errors by increasing
the number of top-ranking attributes in Fig. 7. The error
dramatically decreases at the beginning and then slightly fluc-
tuates near the baseline. This means that a small subset of
the attributes is enough for a very good approximation of the
original features. To further explore this finding, we evaluate
the classification accuracies on the remaining images and report
the quantitative results in Table IV. According to Table III, a
comparable performance can be achieved by only using a few
top attributes (e.g. top-16) from each category, which shows

the great advantage of applying a simple feature selection
technique after completing transfer learning. Therefore, we can
significantly reduce the burden of our classifier by feeding it
much shorter features. It does not have much impact on the
classification accuracies and sometimes can even be helpful if
the irrelevant overfitting noise features are removed.

V. CONCLUSION

We have developed an efficient machine learning algorithm
to accurately label large-scale VHR imagery. It integrates a
locally homogeneous state of the art superpixel segmenta-
tion algorithm (OWT-UCM) with transfer learning-based deep
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Fig. 7. Pixel-based errors computed by selecting different numbers of top-
ranking attributes to construct the short CNN features. The blue line (denoted
as baseline) shows the error of using the original deep CNN features.

TABLE 1IV: Comparison of the pixel-based misclassification
errors produced by using different numbers of top-ranking
attributes from each category.

Tmage Number of Top-Ranking Attributes

2 | 4 | 8 [ 16 | 32
Rio-1 14.29 | 14.50 | 14.73 | 12.55 | 12.76
Rio-2 22.36 | 20.15 | 16.09 | 16.08 | 13.64
Rio-3 24.15 | 1991 | 15.33 | 15.25 | 14.86
Rio-4 15.77 | 19.20 | 10.79 | 8.83 | 8.78
Rio-5 14.60 | 10.58 | 10.27 | 10.68 | 10.79
Madison | 24.96 | 17.88 | 17.12 | 14.76 | 14.91
Milwaukee | 36.98 | 29.54 | 25.62 | 23.44 | 23.50
Detroit 28.12 | 24.11 | 22.77 | 19.88 | 19.34

learning techniques to achieve excellent overall classification
performance. Only a very small amount of expert labeled data is
provided to our framework for training the SVM model, and the
hierarchical structure of the superpixel-to-pixel labeling makes
it a very efficient and accurate approach to assign the pixel-
level labels. We derive representative deep features by utilizing
popular CNN models trained from complicated recognition
tasks. A feature selection method is empirically shown to play
an important role in significantly reducing the complexity of
supervised or semi-supervised classification without sacrificing
performance. We demonstrate its effectiveness by measuring
and comparing the misclassification errors on remote sensing
satellite images. Our future work will focus on extending
our framework to more applications including spatio-temporal
datasets.
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