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Image Stacks as Parametric Surfaces:
Application to Image Registration

Birmingham Guan

Abstract— We introduce a framework in which a stack of
images is considered to be a 2-D parametric surface embedded
in a higher dimensional space. This is a simple yet powerful idea,
known in the literature but not exploited to its fullest. We discuss
the properties of image stacks as parametric surfaces, apply this
framework to image registration by presenting the image stack
surface relative area (ISSRA) registration measure. We show the
power of ISSRA as an effective objective function for image regis-
tration. Essentially, it shows good performance across a variety of
different categories of registration problems: pairwise, groupwise,
affine, and non-rigid. Mutual information (MI)—a classical and
effective approach for registration—is widely considered to be
a good choice for multimodal and pairwise registration while
being difficult to extend to the groupwise setting. We discuss the
deficiency of MI in the groupwise case from a theoretical point
of view, present its connection to ISSRA in the pairwise case,
and then show the ready extensibility of ISSRA to the groupwise
setting. Experiments and comparisons are performed on different
categories of image registration to showcase ISSRA’s wide range
of applicability to registration problems in practice.

Index Terms— Image stacks, parametric surfaces, relative area,
area element, image registration, mutual information, congealing.

I. INTRODUCTION

MAGE registration is a classical yet difficult problem

in computer vision and medical imaging. Numerous
approaches have been introduced over the past 40 years with
different problem settings explored. Registration taxonomies
carve up the problem space using many different crite-
ria [36]: pairwise or groupwise, monomodal or multimodal,
affine or non-rigid, feature-based or intensity-based, etc. Most
approaches have been designed to solve one specific category,
and few methods work well across different settings.

Mutual information (MI) [32], [58], [60] is one of the
most popular approaches mainly designed for pairwise multi-
modal registration. It is well-known that extending MI to the
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groupwise setting is non-trivial. Previous work in [6], [49],
and [67] have all stated that estimating higher dimensional
densities or joint histograms is “difficult,” or “computationally
impractical.” Hence, in the groupwise setting, it is common
to see MI approaches convert groupwise registration into a
set of pairwise problems [5], [6], [24]. In fact, the reason
for this “deficiency” of MI is straightforward. As we show
in Section III, the higher dimensional sample space of multi-
ple images has zero Lebesgue measure, which leads to the
higher dimensional joint density not being defined. Hence,
the extension of MI to the groupwise case by estimating
higher dimensional differential entropies is incorrect. Based
on this observation, we present a new and novel approach: the
image stack surface relative area (ISSRA) registration measure
based on modeling image stacks as parametric surfaces (ISPS).
As we show in Section IV, this new objective function works
well for a variety of categories of registration problems—in-
cluding both the pairwise and groupwise setting.

Intuitively, the image stack as a parametric surface (ISPS)
model regards a set of images defined on the same image
domain as a 2D surface embedded in a higher dimensional
Euclidean space. Hence the area of the surface (and related
measures) may indicate the similarity between the images.
Since human beings are not able to easily visualize higher
dimensional spaces, we begin with a simpler problem: the
similarity of a pair of 1D signals. (As we show in Section III,
even for a pair of images—2D “signals”—the surface is
embedded in R*. But, for a pair of 1D signals, the image of the
mapping becomes a curve embedded in R3. The embedding
can therefore be visualized.)

Consider two signals s1, s2 (1D functions) mapping time to
signal values:

si: DCRT - RCR,
withs; : t — x;
fori = 1,2, where t € D is time, and x; € R are signal
values. (This can also be written as x; = s;(¢).) This “stack”
of signals {s1, s2} can be considered as a mapping s from the
time domain to 3D:
s: DCRY— R C R,

withs : 1 — (¢, s1(2), 52(2)).

For each time sample t € D, we have a point (z, s1(¢), s2())

in R3. When we seek to visualize this set of points, we
obtain a 3D scatter plot, as shown in Fig. 1. Alternatively,
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Fig. 1. A pair of white noise signals, whose samples sit on a 1D curve.

Upper left: The two signals s1(¢), s2(7); Upper mid: The 3D scatter plot
of the signal pair: for a set of time samples T = {f, ..., t;}, each point in
the plot represents a point (¢;, s1(;), s2(#;)) € R3; Upper right: As the time
samples become more dense and eventually fill the domain D, the scatter
plot becomes a 1D parametric curve embedded in 3D space; Lower mid:
The scatter plot of the alternative mapping: 7 + (s1(¢), s2(¢)): each point
in the plot represent a point (sq(z), s2(¢)); Lower right: Similarly, as the
time samples fill the domain, the scatter plot becomes a 1D parametric curve
embedded in 2D space.

discarding the first dimension (the time values), we have
another mapping:

§: DCRt - R?,
with§ : t — (s1(2), s2(2))

which results in a 2D scatter plot (see Fig. 1). Typically, these
scatter plots are regarded as sets of samples from 2D or 3D
joint distributions, and are used to estimate joint densities and
even differential entropies or MI. However, note that sq, 52
are functions of 7, which is a 1D variable. Assuming that
s1, s are differentiable almost everywhere, no matter how
densely we sample in the time domain, these samples will
never fill the 2D or 3D space (see Fig. 1). In fact, since the
above mappings ¢t — (t, x1,x2) or t — (x, x2) are actually
parametric curves, the sampled points will finally become the
mapped curves embedded in 2D or 3D space. And hence,
it is incorrect to estimate their joint densities, since the set
containing all samples has zero measure.

Fortunately, since the samples lie on a curve, although joint
densities cannot be estimated (since they don’t exist), there
are other available geometric quantities. The arc length is
one reasonable choice. Assuming that s; and s, are close
(as in the sine waves case above), the curve looks very
smooth (see Fig. 2). When s; and s, are totally different
(as in the different white noise case), the “joint curve” looks
very entangled (see Fig. 1). The arc length is higher in the
latter than in the former. This observation implies that the
arc length of the joint curve may serve as a measure of
similarity between signals. The principle can be extended to
2D images. In Section III, we explore these principles more
rigorously through a theoretical perspective, and show that
higher dimensional joint densities cannot be estimated from
image intensities. Here, the surface area of ISPS, i.e. the “arc
length” for two-dimensional signals, can serve as a measure
of image similarity.
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Fig. 2. A pair of sine waves: s1(t) = sin(¢/x), s2(¢t) = sin(z/z — 0.1).
Upper left: The two signals s1(7), s2(#); Upper mid: The 3D scatter plot;
Upper right: the parametric curve embedded in 3D space; Lower mid: The
2D scatter plot of the alternative mapping (disposing the dimension of time);
Lower right: the 1D parametric curve embedded in 2D space. Compared to
Fig. 1, this pair of more similar signals has a joint curve with less parametric
arc length than the two white noise signals.

We preliminarily designed ISSA (image stack surface area)
in our previous work [17], and applied it to affine monomodal
registration. However, ISSA has its disadvantage, and is hard
to be applied to non-rigid and multimodal registration. After
re-examining [38] and analyzing the properties of the under-
lying model ISPS, we were able to design a better regis-
tration measure—ISSRA—in this work. We also discovered
the strong connection of ISPS to the model of MI, which
supports ISSRA being a good registration objective function,
and indicates further potential in ISPS.

This paper is organized as follows: Section II gives a
brief introduction to previous approaches in each category of
registration, and specifies the scope of this paper. Section III
sets up the definitions, works out important properties of ISPS
and ISSRA, and discusses the connection between ISSRA and
MI. Section IV showcases empirical results for several image
registration categories, comparing ISSRA with MI and/or
congealing (CG). Section V concludes with a discussion and
speculates on the potential of the ISPS model.

II. PREVIOUS WORK

Over the past few decades, an enormous amount of work
has contributed to image registration and from a variety of
perspectives, including novel metrics for difficult settings, new
deformation models, optimization strategies, feature selection,
etc. Since this paper focuses on a new intensity-based metric,
recent developments focusing on other aspects of registration
are not discussed in detail. This includes feature-based reg-
istration [43], [64], new deformation models [48], and deep
learning approaches. With the resurgence of interest in deep
learning at the present time in the worlds of computer vision
and image processing, many researchers have begun applying
deep neural networks (DNN) to image registration. For exam-
ple, the works in [21] and [61] learn new features using DNN's
for feature-based registration. Also, the approaches in [14]
and [62] employ DNNs to learn deformation fields. However,
since these approaches are not related to (and are in fact com-
plementary to) metrics for intensity-based registration, they are
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not the focus of this paper. (More discussion on DNN-based
approaches is available in the Supplemental Material.)

A. Pairwise Registration

Prior to mutual information [32], [58], [60], most intensity-
based approaches used the sum of squared differences (SSD)
of intensities (or the correlation coefficient) as the registration
measure. The main drawback here is the assumption that the
intensities of registered images are the same (except for noise)
which is inappropriate in the multimodal setting. MI computed
the joint entropy of two images thereby circumventing the SSD
measure. This was novel and powerful for both monomodal
and multimodal problems and had good noise performance.
MI is considered to be an intensity-based image registration
approach since the focus was on a new registration measure
and not feature extraction.

After MI was put forth for registration, many articles
followed. These extended MI in various ways, applied MI to
different related problems, or discussed the nature of MI [54].
The work in [51] introduced a normalized version (NMI)
(which turned out to be related to an information metric [66]),
while [8] extended it to a modified entropy by introducing
densities related to overlap regions in order to improve overlap
invariance. Different density estimators were attempted in
[38], [39],and [65]. Validation and evaluation in the med-
ical imaging domain became quite important [34]. There
are also approaches using entropies other than the Shannon
entropy [30]. For example, the Jensen-Shannon divergence was
used in [30], the Renyi entropy in [20] and the cumulative
residual entropy based on the cumulative joint distribution
functions in [41]. Although introduced two decades ago, MI
and its variants are still the state of the art in the pairwise, mul-
timodal setting. Recent software suites [27] still employ MI as
their principal registration measure for pairwise, multimodal
registration.

In addition to MI, other approaches using region-based
methods to perform registration and segmentation [63]
and Kullback-Leibler distances requiring human anno-
tation [10], [18] have followed. Approaches going beyond
the basic paradigm of information-theoretic intensity-based
image registration include the use of intensity gradients for
multimodal registration [19], inner products of densities as
the similarity metric [12], [13] and the introduction of neural
networks (multi-layer perceptrons and not the current deep
learning stacks) into the realm of image registration [31], [45].

B. Groupwise Registration

Congealing (CG) is another well-known registration
approach [29], [35], mainly designed for groupwise image
registration. CG attempts to minimize the sums of entropies
of pixel stacks of a set of images. The authors originally used
CG on binary images (MNIST) and claimed that CG did not
work well on gray-scale images and was inappropriate in the
multimodality setting. Furthermore, due to the limitation of
using stack entropies, it only works well when the number of
images is large. The work in [22] extended CG to natural
images by applying it to feature-based registration: SIFT
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features of each image and at every pixel location are divided
into different clusters with the cluster number used to compute
the stack entropy. A following paper [21] extends this idea
using deep neural networks to learn the features instead of
simply adopting SIFT features. This allowed CG to move in
the direction of feature-based image registration belying its
intensity-based origins.

However, there exist other works claiming that CG can be
directly used on grayscale intensities [4], [S0], [68]. The work
in [4] claims that CG can be applied in the intensity-based,
non-rigid groupwise setting where the number of images are
still small. They use the so-called “Congealing” objective
function (henceforth referred to as BGW-CG)—essentially,
the aggregation of differences between Gaussian kernels on
image intensities—clearly not a good choice for multimodal
problems.

There are other groupwise approaches besides CG. The
approach in [6] tried to apply NMI to groupwise registration.
However, because of the complexity of computing high-
dimensional histograms for joint density estimation (of a set
of images), they resorted to the summation of pairwise joint
densities between each image and a reference image as the
objective function. In contrast, high-dimensional entropies are
efficiently computed for groupwise registration in [67] but the
clear improvement over using pairwise entropies has not been
subsequently validated [59]. In fact, other than Congealing,
most other techniques convert the groupwise problem into
an aggregation of pairwise problems [5], [6], [24] with the
simplest approach being the SSD between each pair of inten-
sity images [55], [56]. Recently, more papers on groupwise
registration have appeared. However, most of these still use
the summation of squares of differences (or distances) between
images as the metric [2], [33], [52], [59], or use the summation
of variants of MI [37].

C. Non-Rigid Registration

One of the earliest works on non-rigid registration adopted
B-splines as the deformation model [53]. Subsequent work
focused on improving quality and speed [42], [44]. In addition
to B-splines, thin-plate splines and other radial basis functions
are also popular deformation models [15], [40], [43]. Spatial
frequency basis functions [3] and Fourier series [9], etc.
have seen application. The work in [16] introduced novel
regularization terms that preserve global and local topological
structures.

Most older work [3], [23], [43] continued to use SSD (or
related) as the similarity metric. MI and Congealing have also
been used for pairwise [1], [28] and groupwise [4] non-rigid
registration respectively.

D. Other Related Work

We are not the only researchers treating a stack of images
as a parametric surface. The essential idea has been introduced
long ago but mostly forgotten [25], [26], [47]. However,
this previous work is mainly focused on image denoising
and enhancement and not image registration. As far as we
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Fig. 3.  An example of a pseudo-ISPS indicating the intuition behind ISPS:
A stack of three images defined on the (u,v) plane is mapped to R3 by the
mapping (x, xp, x3) = (/1 (u,v), I(u,v), I3(u, v)). The mapped graph is a
2D surface, but not a differentiable manifold. It contains self-intersections
due to the non-bijectivity of the pseudo-ISPS. The image of an ISPS is
differentiable, but is embedded in a higher dimensional space, which is
difficult to visualize.

know, there does not exist any previous work discussing the
relationship between the parametric surface model and MI.

III. REGULARIZED AREA OF IMAGE STACK
PARAMETRIC SURFACES

A. An Image Stack as a Parametric Surface

Let Q € R? be the domain of an image /. I can then
be represented as a mapping I : Q — 7 € R, where 7 is
the set of image intensities. For example, typically, Q is set
to [—1,1] x [—1,1] and Z is set to [0, 1]. It is natural to
consider an image / as a differentiable function from Q to
7. In this way, the graph of the image / can be considered
as a two dimensional surface embedded in R?: to represent
it parametrically, we have S : Q — R3 so that S(u,v) =
(x(u,v), y(u,v), z(u,v)) where x(u,v) = u, y(u,v) = v,
and z(u,v) = I(u,v). The above model of an image is a
standard device in image processing and analysis.

Similar to the works in [29] and [47], it is also natural to
generalize the above basic image model to an image stack:
consider a set of images of the same size {I1, I»,..., In}.
The images can be defined on the same domain Q, and we
can stack them so that at each pixel location (u, v) € Q, we get
a vector (I)(u,v), L(u,v), ..., Iy(u,v)) € RV. Adding the
dimensions of x(u,v) = u and y(u,v) = v, we can model
this image stack as a mapping S : Q — RV*2_ Representing
it as a parametric surface, we have

S, v) = (x1(u, ), x2(u, ), x3(u,v), ..., xy12,0))
where
x1(u,0) =u
x2(u,v) =0
x3(u,v) = I1(u,v)
x4(u,v) = I (u,v)

(1)

xny2(u,0) = In(u, ).

Eq. (1) corresponds to an image stack parametric sur-
face (ISPS) of a set of images {/1, I», ..., In}.
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Fig. 3 provides geometric intuition. Please note that even for
a pair of images, ISPS maps them into R*, which cannot be
easily visualized. We think the pseudo-ISPS (as seen in Fig. 3)
is a good choice for presenting the basic intuition. A pseudo-
ISPS is superficially similar to an ISPS, except that the first
two dimensions x{(u,v) = u and x(u,v) = v are dropped,
With this simplification in place, we are able to show the
mapping of three images in R3. To avoid confusion, we
emphasize that a pseudo-ISPS is not a bijection, and cannot
lead to the definition of ISSA (and subsequently ISSRA).

The motivation for introducing ISPS was laid out in the
Introduction. Since ISPS leverages the notion of the image
stack as a 2D surface embedded in a higher dimensional
Euclidean space, its surface properties can be of use in image
registration. Specifically, the underlying intuition is that the
surface can be expected to be more smooth when the images
are registered and rougher otherwise. Properties like surface
area and curvature can therefore be computed and utilized as
image similarity measures.

Without loss of generality, we extend S from Q to R?
by extending each I; smoothly (by interpolation) to R?. We
set Ij(u,0) = 0 for (u,v) € R2\(Q U Q,), for each i €
{1,..., N}, where Q¢ is a set outside Q where I;’s values
are interpolated so that I; is smooth on R?. By defining
this extension, we are able to rigorously prove the following
proposition and corollary (with all proofs relegated to the
Supplemental Material).

Proposition 1: Assuming that I; (i =
smooth, S is a diffeomorphism.

Corollary 1: S(R?) is a 2-dimensional submanifold of
RN+2.

1,2,...,N) is

Note that since we are only interested in S(€), in the
following we only discuss the subset

S=S5(Q)

instead of the whole submanifold S(R?) and use the word
“manifold” to represent it, since this does not cause any
confusion.

B. Image Stack Surface Area

Assuming that each image [; for i = 1,2,... N is smooth,
S is a 2D smooth manifold with the atlas {(S, ¢)} containing
the single global chart (S, ¢). Since the embedding of S
in RV*2 is available by the mapping S, i.e. for each point
p = S(u,v) € S, its coordinate in R¥*? is available as
(u,v, I (u,v),...,In(u,v)), ¢ is naturally determined as a
trivial bijection between p’s local coordinate (x!,x?) and
(u,v) € R2.

We can introduce the Riemannian metric tensor g =
2 gijdx’ ® dx’/ where

0 0
g = (57), (55),)

for p € §,i,j = 1,2, so as to define S as a Riemannian
manifold. And by the bijection of local coordinates (x', x%)
and (u,v), we can easily represent g as a 2 x 2 matrix as
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Fig. 4. Area computation of a 2D Riemannian manifold: Given the
Riemannian metric tensor, the area element (AE) at each point p of a 2D
Rlemanman manifold S can be computed with respect to the local coordinates
(1, xz) In the case of ISPS, the bijection of ol x ) and (u, v) is available.
Thus, ISSA can be computed with respect to (u, v)
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which can be directly computed from the image intensities.

With the definition of the Riemannian metric in place,
the area of S can be computed (please see Fig. 4). We define
the image stack surface area (ISSA) as

ISSA(1y,...Iy) = / V8w,vyldudo
Q

where /|g(u,v)|dudo is called the area element (AE) at point
(4, v). And numerically, ISSA can be computed as

N .
> (] +z(—>z z%)z vl )
u,v =1 (u,l))

with the cross term (CT)
N N
61 0l; 01; 01; 01,
CT = f —
zz( ;,Z—: ou v ou ov

i=1 j=I
” . ol;
holds iff oL 2 —

Proposition 2: CT > 0, and the “= u v

%%foreach i,j=1,...,N.

Since CT is non-negative, we have proven that g, ,) >
0, and henceforth we get rid of the absolute value symbol.
Assuming the gradient components of both images are non-
zero, CT = 0 implies that the gradient orientations of every

pair of images are parallel (or anti-parallel).

C. Image Stack Surface Relative Area

We now introduce a regularized version of ISSA, wherein
the surface areas of the individual images are included to
“calibrate” the overall surface area. Later, we show that this
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regularized version leads to improved registration accuracy and
has a closer relationship to MI than ISSA. For the purposes of
regularization, we define the “stronger” version of ISSA, i.e.
ISSRA, by including the individual image surface areas:

ISSRA(11, ..., In) :/ NM
Q «/ﬁHi=1 y MAE,; (u, v)

where MAE;, indicates the modified area element of the ith
image, and is defined as

dudv (4)

R L ACRLCLAY
MAE’_\/N+(au)+(ao) 5)
For convenience, the integrand is referred to as the RAE
(relative area element).

As we know, each single image [ has its surface area
element AE = \/ 1+ ()2 + (Z)2. By placing the geometric
average of the AE of each single image in the denominator,
the surface area is regularized so that it will not decrease when
each single layer of the images has less area (goes flatter). The
factor of +/N and the modification to AE by replacing 1 by %
are aimed at regularizing the surface area so that the absolute
value will not be affected by the dimension (the number of
images).

Proposition 3: RAE reaches its global minimum at a point
(u,v) when Ii(u,v) = L(u,v) =--- = In(u,v). And

Imu} RAE(u,v) = 1.

From Proposition 3, we know that RAE reaches its global
minimum when all images are identical, and in this case,
ISSRA is the area of the image domain, which is the case when
the surface become a subset of the plane of I} = -+ = Iy
while each dimension shrinks by /N except the first two.
Proposition 3 also shows that ISSRA can serve as a measure
of image similarity (since we can subtract one from it or use
logarithms to get an image similarity measure).

D. Applying ISSRA to Image Registration

In this subsection, we mention some practical issues when
applying ISSRA as an objective function to image registration
and briefly describe the computational details of the optimiza-
tion procedure.

Generally speaking, an image registration problem is an
optimization problem:

Obj(11(T1(u,v)), - .., [n(Tu(u, v)))

min
. 1,...T,
where I, ..., I, are images to be registered while 71, ..., Ty
are transformations applied to each image. Note that in pair-
wise registration where n = 2, I is usually the fixed image
and Ty(x, y) = (x, y) is the identity transformation.

In our approach, the optimization problem becomes
ISSRA(I{(T1(u, v)), ..., INn(Tn(u, 0)))

T,,1>,....,Tn

i.e.the objective function becomes the relative area of the stack
of transformed images. For affine registration, the transforma-
tions are affine transformation matrices, i.e.

_ [ au+co+te
Tu,0) = (bu—i—dv—i—f)
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For non-rigid registration, we adopted the cubic B-spline
model as the transformations, i.e.

3 3

T(u,v) = (u,v) + Z Z By () Bi()P(i+k).(j+1)

k=0 [=0
where i = |u| —1,j=|v] —1,s =u—|ul,t =0 — |v].
By and B are cubic B-spline basis functions, and ¢; ; are the
control points. The B-spline term is called the displacement
vector at (u,v). We also include the regularization terms
alongside with the ISSRA metric for the non-rigid case,
to restrict the deformation to be closer to the identity map
during optimization. The regularization term is

Z /[“)“)%2(a Du)2+(a 2)]dudv

where Du is the displacement vector field over Q, and 1 is
a parameter to adjust the relative values between ISSRA and
the regularization terms for the optimization. We typically use
gradient descent for optimization (and in the affine case this
is augmented by a “quick and dirty” brute force search of
the parameters). To obtain the results in this paper, we use
the popular KNITRO optimization package [7] with numerical
gradients.

As a registration metric, the most noticeable advantage of
ISSRA is its broad suitability: it works for both pairwise
and groupwise cases, and both monomodal and multimodal
settings. In Section IV, we provide different categories of reg-
istration results to show the practical effectiveness of ISSRA.
Unlike MI (see Section III-E.1), ISSRA is well-defined for any
number of images N. Hence, it can be applied to both pairwise
and groupwise registration. For its suitability for multimodal
registration, there are mainly three reasons:

(1) It does not depend on the differences between ele-
mentary function values of intensities. Most metrics have
the form of || f(l1) — f(l2)||>, where f is an elementary
function. Clearly these kinds of metrics directly depend on
the intensities of images and thus do not work well in the
multimodal case. ISSRA does not share such a structure.

(2) Algebraically, ISSRA is closely related to MI (see
Section III-E). In each “monotonic” region, ISSRA and MI
only differ by a logarithm and constants (and a reciprocal since
we minimize ISSRA while maximizing MI). Furthermore,
the MI model can be considered as a “compression” of the
ISPS model where the monotonic regions are possibly mapped
to overlapping regions by taking away the u,» dimensions.
Thus, the density (the “counting” of pixels in each region)
when estimating MI can be considered as the summation of
areas of each monotonic region mapped to the region where
the density is estimated.

(3) Geometrically, ISSRA matches the image level sets.
ISSRA minimizes the aggregation of image derivatives, as well
as the CT [see eq. (3)]. CT can be transformed to

ol;ol; ol;0J; 01 0I;
T = z@u 61)(614 oo ou 61))

ol; ol

= Z——vz VI,
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which contains the aggregation of wedge products of each
pair of image gradients. By minimizing the wedge products
of gradients, the angles between level sets are minimized.
Level set matching contributes to the matching of image
structures, instead of directly matching intensities or gradient
moduli, and hence, is a popular strategy for multimodal
registration [38], [57].

The computational complexity of ISSRA is O (mnN), where
m x n is the size of each image. This is the same as
BGW-CG [4], and is therefore comparable to other group-
wise approaches [6], [24], [37]. It is also worth mentioning
that ISSRA is computed locally. In non-rigid registration,
the numerical gradients of ISSRA with respect to the B-spline
parameters can be estimated locally to accelerate the compu-
tation: the perturbation of a B-spline parameter only affects
its local region, thus, only the perturbation of ISSRA for this
local region is needed, which is not true for global measures
like MI. As the resolution of the B-spline control points
increases, the difference between the practical computation
time of ISSRA and MI will become even more significant.

Practically, as an approach which is based only on image
gradients, Gaussian filters should be applied before gradient
computation. As we know, most image registration problems
lead to the optimization of heavily non-convex objective func-
tions. Therefore, an important consideration of a registration
objective is the shape of the objective with respect to transfor-
mations. In Fig. 5, 6, we show different objective functions
w.r.t. a single rotation parameter with the transformation
applied to one moving image. In this comparison, a variant
of ISSRA is used, defined as

V |g(u,v)|

ISSRAvasiant (11, I2) = dudo
veciat (11, F2) a V212, MAE; (u, v)

where the nth square roots of each MAE in the denominator
are removed. And a gradient matching objective function is
used, defined as

GM(I1, 1) = Z/ (811 612

ol 6[2
+ G2y

It is clear that NMI has the best shape. Although ISSRA
does not look as good as we expected for a wide range of
rotation angles, it is very smooth around the global minimum.
Intuitively, ISSRA has a more concave shape because it
contains square roots in its expression. And we can see that
the variant of ISSRA has a much better function shape, and
is closer to MI. However, although the variant of ISSRA has
the above good properties and heuristically speaking, a better
function shape, we still recommend ISSRA instead of this vari-
ant, for ISSRA has a more solid geometric interpretation, and
better empirical performance. In the case where large affine
transformations need to be applied, we set initial values using a
one-iteration global search covering the whole parameter space
before the application of gradient descent. In our experiments,
after this global search, the initial values of parameters mostly
fall into the interval containing the global minimum, where
ISSRA has a good enough function shape.
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Fig. 5. A comparison of different registration objectives. Each figure shows
an objective function for a pair of images, where a rotation from —z to
7 is applied to the moving image. Upper left: MI; upper mid: reciprocal
of NMI; upper right: ISSRA; lower left: variant of ISSRA; lower mid:
BGW-CG [4]; lower right: gradient matching.
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Fig. 6. A comparison of different registration objectives, where a rotation
from —0.57 /180 to 0.5z /180 is applied to the moving image. Upper left:
MI; upper mid: reciprocal NMI; upper right: ISSRA; lower left: variant of
ISSRA; lower mid: BGW-CG; lower right: gradient matching.

E. ISSRA Versus MI

1) MI Is Inappropriate in the Groupwise Setting: Consider
a pair of images [y, I> defined on the same domain Q C R2,
As in the ISPS model above, we have a mapping S’ : Q —
7 C R? that gives us a pair of pixel values (11 (i, v), I (u, v))
at each pixel location (u, v) € Q. Considering this pair of pixel
values as sampled from a joint density py, 1, (i1, i2)—that is,
the density of the random vector (I, [)—we can estimate
the density by computing the 2D histogram or through Parzen
windows. And then we are able to compute the joint entropy

H(l, L) = —/ pr.n (i1, i2)1og pry 1 (i1, i2)dirdi.
A
Similarly, we can estimate the densities of random variable

I (written as py, (i1)) and I (written as pyp,(i2)), and their
entropies

H(L) = —/ pr (i1)diy
7
and
H(h) = —/ p1,(i2)dis,
e

where 7 = 7| x 7. And the mutual information of /; and I
is defined as

MI(1y, ) = H(I) + H(I2) — H(I}, I).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

In the notation above, Z denotes the 2D sample space of all
(11, I) (modeled as real vectors so that 7 is a compact subset
of R?).

The definitions above do not encounter any difficulty in
the pairwise case. However, things dramatically change when
MI is extended to 3D, because the joint density of three
images does not exist. Consider three images I, I», I3 defined
on Q. At each pixel location (u,v), the pixel vector is
(I1(u,v), I(u,v), I3(u,v)). As shown in [49] and [67], in
order to estimate the joint entropy of (I, I, I3), we use these
pixel vectors as samples to estimate the 3D joint histogram
and density. However, the scatter plot of three continuous and
differentiable images is a 2D surface embedded in R3 which
is very sparse. When we consider the intensity vectors of the
images, we are considering the mapping S’ from the image
domain Q to the sample space Z C R? so that (u,v)
(I1(u,v), L (u,v), I3(u,v)), i.e. the pseudo-ISPS.

Proposition 4: The Lebesgue measure of S'(Q) is zero, i.e.
m(S'(Q)) = 0.

By this proposition, it is clear that all the sample points of
the random vector (I, I», I3) are sitting on a zero-measure
subset of R?, and therefore, the joint differential entropy and
mutual information are not defined. This is the direct reason
why MI is inappropriate and does not work well for more than
two images.

2) The Connection Between Joint Entropy and ISSA: First,
we pay attention to the two different mappings in ISPS and
the mutual information model discussed above for the pairwise
case: S : Q — R* so that (u,v) — (u,v, I (u,v), L(u, v)),
and ' : Q — R? so that (u,v) — (I(u,v), Ir(u,v)). The
only difference between the two models arises from the first
two dimensions. S contains x(u,v) = u and x2(u, ) = v as
the first two parametric equations, which makes it a bijection
and hence gives it good topological properties. In contrast,
S’ is not necessarily a bijection. In fact, the range of S’ can
be considered as the projection from the range of S to R
In this way, intuitively we can imagine that the image of
S’ embedded in R? is the “compression” of the image of S
(the two-dimensional surface embedded in R?). During this
“compression,” if S is monotonic on the whole of Q, i.e. S’
is injective, the projection is also injective; and if S is not
monotonic, each of its monotonic sub-regions are injective,
but these projected regions may intersect.

Now, consider only one “monotonic region.” Given a pair
of images I1, I on Q, suppose that on a subset D C €,
both I1, I are differentiable bijections. Then the mapping
S’ . D — T such that (u,v) — (I1(u,v), I>(u,v)) is also
a differentiable bijection, and therefore 7 is homeomorphic to
D, and also a subspace of a two-dimensional manifold embed-
ded in R? (which is just R?). Hence, under this mapping,
we are also able to define the area of Z:

AZ) = / Vdetg|dudv (©6)
D

where
ol ol ol ol ol ol
P+ 2 +2222
g = ou ou ou 0Ov ou 0Ov
ol ol ol ol (611 )2+(812)2
ou ov ou oOv ov ov
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Note that under this mapping, there are no “1”’s in the diagonal
entries of g. Simplifying Eq. (6), we get

A(T) = / | det J|dudo
D

where J is the Jacobian matrix

ol ol

_ ou ov
T=\|on on
ou ov

From the above expression, we see that the area of the mapped
image Z can be expressed using the derivatives of I and I,
in a similar manner as ISSA. We now approach this fact from
a different perspective. Let (U, V) be a random vector on D
with a uniform distribution:

1
Z)) = TD) . l(u,v),

where A(D) is the area of the domain D. Then I} = I1(U, V)
and I = L(U,V) implies that (I, ) a random vector
under a well-defined random variable transformation. And we

can compute its density as follows: given that the mapping
S'(U,V)=(I;(U,V), L(U,V)) is a bijection,

pu,v(u,

.1, i2) = pu.v(hi(ir, i2), ha(ir, i2))| det J 7

where (i1, hy) is the inverse function of (I, I>). By simplify-
ing this expression, we have py, 1,(i1,12) = W. Then
we can compute the joint entropy as

H(, h) = —/ pi.i (1, 12)log pry (i, i2)d11d 1>
T

1 log | det J |
log(A(D
0g(A( ))+A(D)/I |det /|

Through a routine change of variables in the integral, we have

dldI.

1
H (I, ) = log(A(D)) + A Jp

log | det J|dudo.

Given that A(D) is a constant, we obtain the conclusion
that in each monotonic region, the joint entropy of Ii, I
is proportional to the area of the mapped surface in the
sample space (differing by constants and a logarithm operator).
As claimed in [39], considering the whole mapping of S as
a collection of small pieces of monotonic regions, i.e. the
crossing parallelograms of level sets of /7 and I, the joint
entropy can be seen as the summation of the areas of each of
these parallelograms. And maximizing mutual information is
related to minimizing this area summation.

Being a “compression,” the image of §” may be intersected
with itself, or even collapse to one-dimension (or a point when
both /; and I» are constants). But the “true” area of this
compressed surface can still be computed by segmenting it into
small monotonic regions before compression. For example,
consider a pixel value vector (11, 72) appearing N times in the
mapping §’, i.e. there exist N points (uy,v1),..., (un,vnN)
such that their images are all (z1, 12). During the compression
(removal of the axes u and v), all these N points collapse into
a single point: foreachi =1, ..., N, (u;,v;,11,12) becomes
(11, 12). In this setting, consider a small neighborhood of this
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point: to compute the full area of this surface, we need to sum
the area of the small parallelogram containing (11, 12) N times.
Intuitively, this is why the joint entropy can be computed
through counting the numbers of points falling into each bin.

3) From MI to ISSRA: As we know, minimizing the joint
entropy alone is not an ideal approach for image registration.
Correspondingly, ISSA alone might not be a good enough
objective function as well. MI works better than the joint
entropy because the introduction of the two marginal entropies
does not permit the final result to just focus on flat background
regions. Driven by this intuition, we seek to minimize ISSA
while maximizing the area of each image. Consider the full
expression of MI:

P15 (i, 02)

MI = / P11 (i1, i2) log - -
7 pr (i) pn, (i2)

diydin.  (7)

In the monotonic region D, similar to the above derivation,
we have

i) = [A(D) Cly sy }

and
1

pra(i2) = [A(D),/(%2 =5 }

(For more detailed derivations, please refer to [39]). Substi-
tuting these expressions into Eq. (7), we have

1 LiLy
MI = log
A(D) Jo det J

_ [

dudov + log A(D)

where

7y

and

= JE2r+(C2

From this expression for MI, we see that by introducing
the entropies of each single image, we get the L{L, factor
as the numerator of the integrand, where L; is exactly the
surface area of image I; under the MI setting (without the
first two dimensions for the mapping). By getting rid of the
constants and the logarithm operator, taking the reciprocal of
the integrand, and slightly changing the integrand to act as a
regularization, we obtain ISSRA, the objective function used
in this paper with the individual image areas introduced in a
similar manner to MI.

In conclusion, by showing the above connection of ISSRA
to MI, we reveal the essential relationship between them.
This shows that it makes sense to treat ISSRA as a variant
of MI (by changing the problematic mapping in MI to a
homeomorphism—ISPS), which is well-defined in both the
pairwise and groupwise cases and based on a better mapping
model.
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IV. EXPERIMENTS

We show experimental results across different categories
of registration problems in this section. In pairwise registra-
tion, comparisons are conducted against MI and normalized
MI (NMI). In the groupwise case, comparisons are con-
ducted against BGW-CG by Balci et al. [4], voxel-wise sum
of squared differences (VSSD) [59], and conditional template
entropy (CTE) [37]. All approaches were implemented in
MATLAB® and optimizations were performed using KNI-
TRO [7], in order to ensure fair comparison across all exper-
iments.

As discussed in Sections 1 and 2, MI and its enhanced
version, NMI are the most widely used approaches, which
work especially well for multimodal pairwise registration. The
effectiveness of ISSRA can be seen in the MI comparisons.
Most of the groupwise approaches (including VSSD and CTE)
convert a groupwise problem into summations of pairwise
problems, while CG is a well-known approach that solves
the problem in a ‘“groupwise” manner. This explains our
choice of CG in the groupwise case. However, since the
original CG method [22] uses SIFT features instead of image
pixels, we opted instead for a purely intensity-based version
of CG to ensure a fair comparison. BGW-CG is a Parzen
window version of CG which strictly speaking makes it similar
to other groupwise approaches that use sums of pairwise
objective functions. We decided to stick with it due to its CG
provenance.

In the case of VSSD, it is claimed [59] that it is derived from
Markov-CG where images are assumed to be independent. The
work in [59] proposed accumulated pairwise estimates (APE)
metrics and showed the relationship between VSSD and APE.
Since BGW-CG is already an APE metric, we decided to
have comparisons with VSSD, since it is related to BGW-CG.
CTE is a new metric for multimodal, groupwise, non-rigid
registration, but it is still in the form of summations of pairwise
metrics. It introduces a template image computed through
principal component analysis (PCA).

In affine registration, the reported errors are the Ly norms of
the differences between the ground-truth and obtained affine
transformation parameters. In non-rigid registration, we pro-
vide the full, length and angle errors. The errors are computed
from the differences between displacement vectors of the
ground-truth and obtained results. The full errors correspond
to L, norms of the error displacement vectors whereas the
length and angle errors correspond to the length and angle
differences respectively. While the full error reflects the quality
of the registration, the length and angle errors are usually also
reported in the non-rigid registration literature.

A. Pairwise Registration With Affine Transformations

We performed both monomodal and multimodal experi-
ments in the pairwise affine case. Each experiment contains
10 groups of images, across which the affine parameters
and the noise parameters (Gaussian noise standard deviation)
vary. Each group contains 10 moving images, with pair-
wise registration executed on each with respect to a fixed
image. The fixed image in the monomodal experiments is a
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Fig. 7. The error bar plot of monomodal pairwise registration with affine
transformations. The errors are shown for ten groups of images. As the group
number increases, both the affine transformations and the noise become larger.
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Fig. 8. The error bar plot of multimodal pairwise registration with affine
transformations. The errors are shown for ten groups of images. As the group
number increases, both the affine transformations and the noise become larger.

randomly chosen human face image with the moving images
generated from it using random affines and noise. As the
group number increases, the parameters are sampled from
Gaussian distributions with increasing standard deviation, so
that the transformation and noise increases. The original image
in the multimodal experiments is a randomly chosen MRI
image slice from BrainWeb! [11]. We have its PD, T1 and
T2 images available. In the affine multimodal experiments,
the moving images are generated from T1 with the fixed image
for registration being PD. The error bar plots of the results are
shown in Fig. 7 and Fig. 8. Fig. 11a and Fig. 11b shows some
registration examples and comparison with MIL.

From the results shown in the figures, we see that in
each category, ISSRA performed better than MI on average
with ISSRA having more outliers when the difficulty of
registration is very high. Empirically, when the error is over
0.1, the obtained image usually has large differences from
the fixed image, which indicates a failed registration. From
the error values of both MI and ISSRA, we observe that
for all groups, both metrics worked well on average. This
supports our contention that ISSRA is a competitive approach
in pairwise affine registration. In most cases, we do not have
to perform the global grid search for the initial values of the
affine parameters.

B. Pairwise Registration With Non-Rigid Transformations

We performed both monomodal and multimodal experi-
ments in the pairwise non-rigid registration case. Each exper-
iment contains 5 groups, each of which contains 5 moving

1 (http://brainweb.bic.mni.mcgill.ca/)
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Right: angle error bar plot. The errors are shown for five groups of experiments. As the group number increases, the non-rigid transformations become
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The error bar plot of multimodal pairwise registration with non-rigid transformations. Left: full error bar plot; Mid: length error bar plot;

Right: angle error bar plot. The errors are shown for five groups of experiments. As the group number increases, the non-rigid transformations become larger.

TABLE I
ERROR TABLE FOR GROUPWISE MONOMODAL REGISTRATION WITH AFFINE TRANSFORMATIONS AND NOISE

Group 10 ‘

Mean / Std (X 1073) ‘ Group 1 ‘ Group 2 ‘ Group 3 ‘ Group 4 ‘ Group 5 ‘ Group 6 ‘ Group 7 ‘ Group 8 ‘ Group 9 ‘
ISSRA 3.2/0.74 1.1/0.54 3.8/0.57 1.7/1.4 6.8/1.3 3.4/1.7 14.2/1.5 31.7/90.9 10.1/3.4 6.2/3.2
CG 43125 5.1/38 4.8/3.8 11.3/5.4 16.4/6.9 11.2/5.9 12.2/3.9 43.9/25.3 14.5/8.3 16.1/9.0
VSSD 3.6/2.8 5.3/5.2 8.3/3.5 11.3/6.4 21.6/4.8 6.8/2.8 396.5/169.3 101.0/63.4 212.6/95.1 366.4/109.7
CTE 7.3/4.1 21.9/36.2 16.9/5.2 48.1/57.2 101.8/63.3 72.8/74.8 52.5/20.6 115.9/66.7 219.7/132.5 233.1/154.6
TABLE I

ERROR TABLE FOR GROUPWISE MULTIMODAL REGISTRATION WITH AFFINE TRANSFORMATIONS AND NOISE

Group 5 ‘ Group 6 ‘ Group 7 ‘ Group 8 ‘ Group 9 ‘ Group 10 ‘

Mean / Std (X 1073) ‘ Group 1 ‘ Group 2 ‘ Group 3 ‘ Group 4 ‘
ISSRA 8.8/0.60 12.8/5.5 14.2/0.49 10.8/3.5 9.0/7.7 22.0/0.33 6.7/2.5 12.0/3.3 43.9/14.2 36.7/2.5
CG 17.5/0.97 718.9/14.5 24.1/4.2 29.0/1.5 607.3/493.5 706.4/193.6 19.4/2.4 41.4/5.6 30.0/3.3 772.2/57.1
VSSD 33.9/6.2 14.4/2.5 16.5/5.1 386.2/202.1 20.0/1.1 626.8/444.0 610.9/20.5 191.2/34.4 311.7/6.3 353.4/203.6
CTE 20.2/0.58 18.7/0.17 19.4/4.4 20.8/4.6 26.5/0.86 53.4/42.9 60.2/20.1 27.4/15.9 23.5/6.8 60.1/17.8

images. All moving images were generated from an origi-
nal MRI slice randomly chosen from BrainWeb with ran-
dom thin-plate spline-based non-rigid transformations applied.
As the group number increases, the transformation becomes
larger. The error bar plots are shown in Fig. 9 and
Fig. 10.

Empirically, a full displacement field error less than 3.0 indi-
cates a successful registration. From the results, we observe
that in the monomodal case, both NMI and ISSRA worked
well for all groups. In the multimodal case, both worked well
for the first four groups with Group 5 containing very difficult
inputs. In either case, ISSRA performed better for almost all

groups on average and with a smaller error standard deviations.
The length error bar plots and angle error bar plots show that
ISSRA tends to have lower length errors but higher angle
errors than NMI. Though angle errors only indicate how image
pixels are moved during transformation, and do not affect the
registration quality much because of interpolation (if the length
errors are less), it might be further improved by carefully
choosing better regularization, which will be considered as
a potential future work.

In general, the experimental results support our contention
that ISSRA is competitive with NMI even in pairwise multi-
modal registration with non-rigid transformations for which
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Fig. 11. Registration Examples. For pairwise examples, the first row shows the fixed images, moving images, ISSRA results and MI results; the second row
shows the corresponding difference images with the fixed images. For groupwise examples, we provide the average images of the group before registration and
the registration results of each approach (ISSRA, CG, VSSD, and CTE). (a) Anecdotal example of pairwise monomodal registration with affine transformation:
In this case, the difference images show that ISSRA outperforms MI. (b) Anecdotal pairwise multimodal registration with affine transformations: In this heavy
noise case, ISSRA outperformed MI. (c) Anecdotal example of pairwise monomodal registration with non-rigid transformations: Chosen to showcase a result
where ISSRA has nearly no error, while MI failed in a small region with small displacement errors present. (d) Anecdotal example of pairwise multimodal
registration with non-rigid transformations: ISSRA has better overall alignment while displacement errors are present in small regions. MI has better local
alignment with worse overall error. (e) Anecdotal example of groupwise monomodal registration with affine transformations: The original images were not
aligned, so the average image is very blurred. ISSRA performs best, CTE is close to ISSRA, but we can observe blurred, local regions. CG is worse than
both and VSSD does not work well, especially for the upper half. (f) Anecdotal example of groupwise multimodal registration with affine transformation: The
original images are a T1, T2 and PD. ISSRA shows a good alignment. The CG and CTE results are worse (this is an example where CG happened to fall into
the correct local minimum). VSSD does not work. (g) Anecdotal example of groupwise monomodal registration with non-rigid transformation: The images
before registration lead to a blurred average image. In this example, for each approach, one image was not aligned very well, though it is harder to see the
differences from the average image. In the Supplemental Material, we provide the piecewise registration results, where obvious differences can be observed.
(h) Anecdotal example of groupwise multimodal registration with non-rigid transformation: The original images before registration contain two T1 and two
PD images, where the average image is blurred. The ISSRA result shows best overall alignment, but its local regions are not perfect. CTE has better local
alignment, but the locations are heavily distorted compared to ISSRA. CG and VSSD do not work in this case.
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TABLE III

ERROR TABLE FOR GROUPWISE MONOMODAL REGISTRATION
WITH NON-RIGID TRANSFORMATIONS

Mean / Std ‘ Group 1 ‘ Group 2 ‘ Group 3 ‘ Group 4 ‘ Group 5 ‘

ISSRA - full errors 0.95/0.05 1.16/0.25 1.23/0.32 1.43/0.57 2.21/1.18

CG - full errors 1.02/0.17 1.69/0.56 2.11/0.63 1.88/0.52 2.55/1.18

VSSD - full errors 1.28/0.10 1.73/0.43 2.01/0.71 1.95/0.56 2.45/1.31

CTE - full errors 0.97/0.11 1.37/0.19 1.81/0.64 1.80/0.56 2.51/1.39

NMI was specifically designed. In Fig. 11c and Fig. 11d,
we show anecdotal comparisons between ISSRA and NMI.

C. Groupwise Registration With Affine Transformations

In the case of groupwise affine registration, we have two
sets of experiments: monomodal with 10 images in each group
with noise; multimodal with 3 images in each group with
noise. Each experiment contains 10 groups. For each group, all
moving images are registered together with the fixed images
of each group. The original image is a randomly chosen MRI
slice. Moving images were generated from the original images
with randomly sampled affine parameters and noise. As the
group number increases, the parameters have larger standard
deviation, which implies larger transformations and noise. For
the multimodal experiments, we used T1 as the fixed image,
while PD and T2 images are used to generate moving images:
we registered the PD and T2 images to the T1 image, regarding
them as a group. The errors were computed in the same
manner as in the pairwise affine case: we compute the errors of
the parameters of each resulting image with the fixed image.
Errors are shown in Tables I. and II.

From the results of the monomodal experiments, we see
that both ISSRA and CG work well for most images as most
of their errors are below 0.1. ISSRA is almost always better
than CG, except for one obviously failed case in Group 7.
In contrast, for VSSD and CTE, it is clear that when the
transformation becomes larger, both methods failed starting
from Group 7 and Group 5 respectively. This is due to the
fact that both of these metrics are computed with respect
to template images. For affine registration with very large
transformations, it is easy to fall into local minima with the
template images computed as a blank image. ISSRA and
BGW-CG (which is an APE metric according to [59]) do
not suffer from this deficiency. Fig. 11e shows a comparison
example.

In the multimodal case, as expected, CG and VSSD do not
always work, due to the nature of their objective functions.
They sometimes work due to happenstance for several groups
when the optimization approach found good local minima
from randomly chosen initial conditions. ISSRA and CTE
work well, and for most groups ISSRA is better. Fig. 11f shows
a comparison example.

D. Groupwise Registration With Non-Rigid Transformations

In the groupwise non-rigid case, we also provide both
monomodal and multimodal experimental results. Each exper-
iment contains 5 groups with each group of moving images
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TABLE IV

ERROR TABLE FOR GROUPWISE MULTIMODAL REGISTRATION
WITH NON-RIGID TRANSFORMATIONS

Mean / Std ‘ Group 1 ‘ Group 2 ‘ Group 3 ‘ Group 4 ‘ Group 5 ‘

ISSRA - full errors 1.59/0.26 1.86/0.38 2.45/0.58 2.15/0.24 2.93/0.47
CG - full errors 9.12/1.18 11.39/1.42 10.75/1.54 7.02/1.44 6.83/0.46
VSSD - full errors 12.41/1.71 10.64/1.24 10.81/1.03 9.94/1.63 6.52/0.48
CTE - full errors 1.86/0.24 2.49/0.41 3.43/0.53 2.95/0.62 4.46/1.22

registered simultaneously. The original image is an MRI slice,
and thin-plate spline transformations were applied to generate
all the moving images. As in the previous cases, the transfor-
mations become larger as the group number increases. In the
monomodal case, each group has 6 T1 images while in the
multimodal case, each group contains 3 T1 images and 2 PD
images. The full errors are shown in Tables III and IV. (The
length errors and angle errors are shown in the Supplemental
Material.)

From the results, we observe that in the monomodal case,
all these metrics worked well. ISSRA is significantly better for
all groups. In the multimodal case, and similar to the affine
experiments above, CG and VSSD do not work. ISSRA and
CTE worked well in most groups (CTE did not work well for
Group 5), and ISSRA results are significantly better. Fig. 11g
and Fig. 11h show comparison examples.

E. Computational Efficiency of ISSRA

In each category of registration, we provide the average
iteration time and average registration time for a pair / group of
registrations for each metric. All comparisons were done with
MATLAB® on a machine with an AMD FX®-8350 eight-core
processor, 32 GB memory, and a 64-bit Ubuntu 14.04 operat-
ing system (please see Table V). In each entry, the numbers
indicate the iteration / registration time. The time of each
iteration reflects the practical computational time of each
metric. The time shown for the registration reflects the time
needed for convergence. For different experimental settings,
the convergence time varied. Note that in the groupwise case,
since monomodal and multimodal experiments have different
group size (multimodal experiments have lesser number of
images in each group), the computational time is shown for
each experiment.

We observe that in the pairwise cases, ISSRA has better
iteration time and registration time. This highlights the fact
that estimating densities is slower than computing ISSRA.
And ISSRA converges faster than MI. In the groupwise case,
ISSRA is the slowest for both iteration time and registration
time. This is because its computation is the most complex
among the compared metrics, although the theoretical time
complexity is the same. (Please note that other metrics have
more failed cases where they converged earlier to local min-
ima, especially CG and VSSD for multimodal cases.) These
results indicate that more work needs to be done to improve
the overall optimization algorithms in terms of speed while
maintaining accuracy.
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TABLE V
COMPUTATIONAL TIME
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Groupwise Affine Groupwise Non-rigid
Iter (sec) / Registration (h) Pairwise Affine Pairwise Non-rigid
Monomodal Multimodal Monomodal Multimodal
ISSRA 0.27/0.0055 10.5/0.43 12.1/0.31 0.61/0.047 160.2/8.6 128.6/3.8
MI / NMI 1.05/0.029 34.9/1.0
CcG 7.6/0.16 0.31/0.016 26.5/1.4 19.7/0.77
VSSD 4.6/0.12 0.31/0.019 232113 17.6/0.73
CTE 6.4/0.09 0.49/0.025 63.0/0.9 52.9/0.56

V. CONCLUSION

We highlight the three core contributions of this paper:

1. Higher dimensional mutual information based on the joint
density function is not available, since the sample space of
intensity vectors of multiple images (greater than 2 in 2D)
has zero Lebesgue measure;

2. ISPS, a simple and powerful image model for a stack
of images, is a fundamental approach, overcoming this core
limitation;

3. ISSRA can be seen as the “mutual information” under
the ISPS model, and it works for both pairwise and groupwise,
monomodal and multimodal image registration.

These conclusions not only assert that ISSRA is a good
registration approach, but also imply the power and versatil-
ity of ISPS. Although this paper mainly focused on image
registration, the connection between MI and ISSRA implies
the potential of ISPS in other application realms where MI
plays an important role, like independent component analysis.
Additionally, ISPS is so simple that we can apply it to cases
where we have vectors defined on a 2D domain, like image
features, color images, or even in image segmentation prob-
lems. Although the theory behind ISPS and ISSRA requires us
to work with surfaces embedded in higher dimensional spaces,
the resulting area computations are very simple and efficient.
While this paper mainly focuses on the novel application of
ISSRA to registration, future work will focus on improving
ISSRA optimization, including decreasing the angle errors
by better regularization. We also plan to integrate ISSRA
with registration software suites such as SimpleElastix [27]
to further improve the accuracy and speed of ISSRA. ISSRA
can also be readily combined with deep learning and other
regression schemes to register mapped images (derived from
the original intensity images). Finally, we believe there are
a variety of other applications of ISPS, suitable for future
exploration.
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