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ABSTRACT

Aim Knowledge of species geographical distributions is critical for many
ecological and evolutionary questions and underpins effective conservation
decision-making, yet it is usually limited in spatial resolution or reliability. Over
large spatial extents, range predictions are typically derived from expert knowledge
or, increasingly, species distribution models based on individual occurrence
records. Expert maps are useful at coarse resolution, where they are suitable for
delineating unoccupied regions. In contrast, point records typically provide finer-
scale occurrence information that can be characterized for its environmental
association, but usually suffers from observer biases and does not representatively
or fully address the geographical or environmental range occupied by a species.

Innovation We develop a new modelling methodology to combine the
complementary informative attributes of both data types to improve fine-scale,
large-extent predictions. We use expert delineations to constrain predictions of
a species distribution model parameterized with incidental point occurrence
records. We introduce a maximum entropy approach for combining the two
data types and generalize it to Poisson point process models. We illustrate
critical decision making during model construction using two detailed case
studies and illustrate features more generally with applications to species with
vastly different range and data attributes. Our methods are illustrated in the
Supporting Information and with a new R package, bossMaps, that integrates
with existing generalized linear modelling and Maxent software.

Main conclusions Our modelling strategy flexibly accommodates expert
maps with different levels of bias and precision. The approach can also be
useful with other coarse sources of spatially explicit information, including
habitat associations, elevational bands or vegetation types. The flexible nature
of this methodological innovation can support improved characterization of
species distributions for a variety of applications and is being implemented as a
standard element underpinning integrative species distribution predictions in
the Map of Life (https://mol.org/).

Keywords
Ecological niche model, maximum entropy, Poisson point process, species
distribution model.

INTRODUCTION

regarding the spatial variation of different biodiversity attrib-

Knowledge about species’ ranges allows biologists to address utes and community composition. Similarly, global change
ecological and evolutionary problems across large spatial scientists, decision-makers and managers require information
extents, including understanding fundamental processes on species distribution if they are to anticipate patterns and
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consequences of species range changes due to global change
(Dawson et al, 2011) or to develop conservation and land
management plans. Finally, species distributions underpin
several of the targets of the Convention on Biological Diver-
sity to improve the state of biodiversity by 2020 (https://
www.cbd.int/sp/targets/), and are considered an essential bio-
diversity variable that should be carefully quantified and
monitored (Pereira et al., 2013). Despite these manifold
needs, our understanding of the geographical distributions of
most species remains relatively limited, and even for well-
studied taxa it remains orders of magnitude coarser than the
available environmental data (Jetz et al, 2012a). When geore-
ferenced occurrence data are available they often contain con-
siderable bias in sampling effort (Whittaker et al, 2005;
Menke et al., 2009; Boakes et al., 2010; Meyer et al., 2015).
Species distribution models (SDMs) are valuable for inferring
suitable habitat at unsampled locations, but bias in occur-
rence records can limit their reliability. For thousands of spe-
cies, expert range maps have been developed, but they
remain too coarse and uneven in their reliable spatial resolu-
tion to support most of the requirements of spatial biodiver-
sity science (Hurlbert & Jetz, 2007; Jetz et al., 2008). This has
hitherto prevented the development of more reliable, spatially
detailed and broadly useful estimates of species true geo-
graphical distributions and has imposed strong limits on
many spatial biodiversity applications. This ‘Wallacean short-
fall, or paucity of range information, represents a particularly
strong limitation in conservation and spatial planning, where
both spatial detail and sufficiently representative sets of spe-
cies are often key (Lomolino, 2004; Whittaker et al, 2005;
Jetz et al., 2012a). In this study, we develop and demonstrate
innovations that will allow a significant step toward address-
ing this gap.

Different data types

We follow up on previous calls for the combination of differ-
ent sources of biogeographical information, which may allow
one to balance their respective strengths and weaknesses and
enable the development of improved range predictions (Jetz
et al., 2012a; Domisch et al., 2016). Point-level presences are
by far the most commonly used data source, as these are
readily available in a number of open-access online reposito-
ries. Progress has already been made in integrating presence
data with other data sources: Fithian et al. (2014) and Dora-
zio (2014) take related approaches to combine presences with
presence/absence data for many species to overcome issues of
sampling bias; Pagel et al. (2014) use presences to bridge
gaps in abundance data; and Pagel & Schurr (2012) use pre-
sences with demographic data to predict spatial population
dynamics. Here, we focus on integrating point-level presences
with expert drawn occurrence polygons (‘expert maps’) to
improve distribution models. Our approach can also be
extended to expert knowledge on species habitat, elevation or
bioclimatic preferences commonly available in field guides or
taxon-specific monographs.

For many species, rough maps drawn by single experts or
expert groups provide helpful guidelines on species ranges.
Such maps may be based on different sorts of published or
unpublished occurrence data combined with the experts’
own assumptions about environmental and geographical dis-
tribution limits. Experts then typically use administrative or
rough physiographic or environmental contours to demarcate
boundaries. Although valuable across large spatial extents
and coarse spatial resolutions (Hurlbert & Jetz, 2007), expert
maps have a number of weaknesses. Often hand-drawn or
over-generous in extent, they tend to be contiguous ‘blobs’
that predict false presence at much smaller resolution due to
ecologically relevant landscape variation (Hurlbert & White,
2005). This results in a limited spatial accuracy, estimated to
only be in the 100-200 km range for many (even well-stud-
ied) species (Hurlbert & White, 2005; Hurlbert & Jetz, 2007),
that is non-random and varies geographically and ecologi-
cally (Jetz et al., 2008). In other words, the species may be
absent for large regions inside the expert range maps and
present well outside it. For rare or cryptic species, range
maps might additionally miss new, disjunct parts of the dis-
tribution that have not yet been detected, which is particu-
larly critical. Because they are usually updated with new
information only at long and irregular intervals (5-20 year
time-scale) expert maps are also prone to quickly become
out of date, especially in an age of rapidly growing citizen
science data and the new identification of cryptic species/
evolutionarily significant units using molecular tools. Finally,
due to their very nature, representing a construct of many
sources and data types, expert maps also often lack transpar-
ency and are not readily reproducible. However, while boun-
daries may be inaccurately placed, expert maps are usually,
overall, an excellent resource for delimiting the broad areas
(e.g. >200 km from the boundary) outside which a species is
not expected to occur.

In contrast, higher-resolution ‘point’ observations of
occurrence are a more thoroughly specified type of data
based on explicit observations in space and time. These data
have grown considerably over the last decade, with a particu-
lar increase in so-called ‘point occurrence’ (PO) data (also
called ‘presence-only’ data, as opposed to ‘presence—absence’
data that typically arise from a designed survey). PO data
have low rates of false presence (only arising from errors in
identification) compared with expert maps but many more
implicit ‘false negatives. Occurrence data have been used, in
conjunction with environmental covariates, to build species
geographical distribution or environmental niche models
(SDMs) that predict species ranges (Guisan & Zimmermann,
2000; Guisan & Thuiller, 2005; Anderson, 2012). But such
range predictions are in turn limited by the usually highly
non-representative nature of point data (Phillips et al., 2009)
and the limited ability of existing methods to address this.
One particular concern is their level of overprediction into
regions that may be environmentally suitable but out of
reach or which lack the appropriate biotic conditions
(Soberén, 2007).
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Complementary data

With data types such as expert maps offering information
about broad geographical range limits and others, such as
occurrence points, providing a finer-scale sample to estimate
potential environmental associations, opportunities for
model-based integration exist. A way to improve our under-
standing and predictions of species ranges lies in combining
such complementary data sources. By identifying observed
occurrence—environment relationships, SDMs can quantita-
tively predict environmentally similar locations based on a
specific sample and at spatial resolutions limited only by the
associated environmental data (typically much finer than
expert maps) (Elith & Leathwick, 2009). Expert maps typi-
cally only provide categorical predictions, while SDMs are
able to address continuous variation in habitat suitability.

Conversely, the more representative and complete distribu-
tion information ingrained in expert maps may help over-
come the environmental bias inherent in many PO data sets
— typically due to unstructured surveys or variability in
detection — which leads to misleading range predictions
(Hortal et al., 2008). This bias is impossible to detect from
presence data alone; absences are needed but are more diffi-
cult to obtain systematically (Merow et al, 2016). Expert
maps can address this limitation of PO data to some extent;
they characterize absences across large extents and are much
less likely to exhibit spatial biases due to the cumulative
nature of expert experience informing it and the naturally
coarser analysis grain applied. Finally, historical contingen-
cies, dispersal limits and biotic factors that all ultimately con-
strain the spatial realization of the realized niche are not
readily captured by SDM-based niche characterizations from
PO data alone, and yet are critical for determining range
boundaries (Sober6n & Nakamura, 2009). In contrast, expert
maps can reflect the outcomes of, for example, competition,
local extirpation or dispersal limitation to improve predic-
tions of realized distributions.

Data integration

In this study, we use the concept of spatial offsets in regres-
sion models to perform the model-based integration of
expert map-like species distribution information with that
based on presence-only records. Building on Merow et al.
(2016), we develop and test a framework for including
expert-based range limits as spatial offsets in Poisson point
process models (PPPMs) and Maxent-based SDMs. Specifi-
cally, we address how well PO data can ‘update’ knowledge
contained in expert maps, via the following questions:
1. Can expert maps help to reduce biased extrapolation in
occurrence models?
2. Can point occurrence data reduce false presences predicted
inside expert polygons?
3. By combining data types, can we reduce prediction uncer-
tainty, particularly for small sample sizes?

In ‘Model;, we discuss technical aspects of incorporating
expert maps into PPPMs/Maxent. In ‘Handling potential

Expert maps & point process models

data biases), we illustrate how predictions are affected by dif-
ferent types of model specification or bias. In ‘Generalizing
to other species, we explore applications to other species
with a variety of expert map and presence data attributes.
Our methods are illustrated in the Supporting Information
with a new R package (R Core Team, 2015), bossMaps, that
integrates with existing generalized linear modelling and
Maxent software. We conclude with a discussion of the
strengths and weaknesses of our approach and a prospectus
on the applications where it will be most valuable.

Macroecology, biogeography, conservation science, global
change projections and spatial decision-making all require
reliable species occurrence information. We expect that the
proposed integration of expert maps with point occurrence
data will enable a wider and more rigorous use of species
distribution information in biodiversity science by both ele-
vating the quality of range products overall and extending
the number of species with sufficient information to be
included in spatial analyses. Integration of the sorts of
approaches introduced here in spatial biodiversity informatics
infrastructure such as Map of Life (https://mol.org/) holds
the promise of continued updating and improvement of spe-
cies range information as field records and expert knowledge
about range limits advance.

METHODS
Model

We provide a joint implementation of our approach to inte-
grating expert maps with PO data for Maxent and PPPMs
(cf. Warton & Shepherd, 2010; Chakraborty et al, 2011;
Aarts et al., 2012; Fithian & Hastie, 2013; Renner & Warton,
2013; Warton et al., 2014; Renner et al., 2015). These model-
ling approaches are related; the motivation for using expert
maps in PO models comes from minimizing relative entropy
(as performed in the popular Maxent software package; Phil-
lips et al., 2006; Merow et al., 2016); however, exploiting an
equivalence with inhomogeneous PPPMs simplifies model
building and fitting (Merow et al., 2016). Maxent and PPPMs
are asymptotically equivalent as the resolution of pixel size
decreases, but Maxent imposes a specific way of handling a
number of modelling decisions based on tools that are com-
mon in machine learning (details in Fithian & Hastie, 2013;
Renner & Warton, 2013; Renner et al, 2015). Fundamental
modelling assumptions are common to both approaches: the
presence locations are independent of one another, the inten-
sity of presence records varies spatially and the intensity
varies loglinearly with environmental predictors (Renner
et al., 2015). To estimate this intensity, both model the ratio
of the density of environmental conditions at m presence
locations against those at n background locations, irrespective
of whether the background locations were sampled (Merow
et al., 2013). This ratio(s) is used to predict the relative
occurrence rate (ROR) in cells across a landscape (Merow
et al., 2013). Tt is useful to interpret ROR as a multinomial
distribution in geographical space, where the probabilities
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describe which cells are most likely to contain a presence
(Merow et al., 2013). ROR sums to unity across all cells in
the landscape, so cells with low ROR may still have a high
absolute probability of presence but a lower relative probabil-
ity than other cells in the landscape. This ROR is the so-
called raw output of the Maxent software.

Let P*(x;) describing the ROR in each cell x; that we aim
to predict based on a vector z(x;) of environmental covariates
there. Predictions then take the following form (Merow
et al., 2013)

In(P*(x))=In(Q(x;)) +z(x;)A—1In(C) (1)

where A is a vector of fitted coefficients, Q(x;) represents a
prior expectation of the ROR in cell x; (referred to as a prior
in the entropy literature or an offset in the regression litera-
ture and hereafter) and C is a constant that ensures normal-
ization of the ROR across the landscape. In our application,
Q(x;) describes the expert map (see below; other possible
applications are given in Merow et al., 2016). The interpreta-
tion of the offset is also a multinomial distribution in geo-
graphical space (the same as the prediction P*(x;)) and must
be specified in terms of a ROR and its values must sum to
unity. Because this model is multiplicative (exponentiate
both sides of equation 1), a low value of the offset (outside
the expert map) probably implies a low value in the pre-
dicted distribution unless the environment is extremely
favourable (z(x;)4 is large). One can think of the term z(x;)4
as updating the expert map; the PPPM reallocates probability
in the offset to cells that better reflect the species’ distribu-
tion. The coefficients of the model (4) thus describe the
environmental covariates that differentiate the expert map
from the occurrence data, i.e. the environmental bias in the
expert map.

An offset, in this case the expert map, reflects information
about the species’ distribution that is independent of the
occurrence records. In other words, if one asked the expert
where s/he would expect the next occurrence record to be
found, the offset values represent the probability with which
the expert would select each cell, e.g. P(x;|]Y=1) where Y=1
denotes presence. One important ramification of this design
is that the model coefficients do not directly describe the
environmental niche of the species (instead they describe
which environments the expert missed) and thus cannot be
used to make projections into new areas or environments.
This issue is discussed in detail in the Discussion.

Defining the offset

A number of considerations are important when converting
an expert range polygon into a quantitative gridded offset.
Since most expert maps are binary (denoting presence/
absence), the key consideration in defining the offset is
what values to assign to cells inside the range versus outside
it. Because the offset is constrained to sum to unity,
this problem can be framed to ask how much cumulative
probability one should put inside the expert-defined range

(Pin:ZxErangeQX)’ and how much to assign outside. Vary-
ing these probabilities directly affects the relative ‘strength’ of
the expert map in the resulting predictions and can range
from P;, approaching 1 (assuming a very accurate expert
map) to a ‘flat’ offset in which P;, is simply the ratio of the
range area to the modelling domain area (assuming that
occurrences are just as likely inside versus outside the range
map). One way to assign Pj, is based on omission rates, i.e.
the proportion of observed presences outside the expert map,
which we refer to as ‘expert accuracy. If we take R as the
omission rate for an expert map with m cells inside the range
and n cells outside the range, one can assign cells inside the
range a prior value of (1—R)/m and values outside the
expert range as R/n. Note that this definition also allows one
the option to buffer the expert map (discussed below) to
quantify which points fall inside the expert map.

There are a number of options for estimating the expert
accuracy. Ideally, estimating the omission rate would be done
with an independent data set to avoid using the same pres-
ence data to estimate the offset as is used in the PPPM. One
could use the omission rate for a larger taxonomic (‘target’)
group from the same expert map source to estimate the
expert accuracy, on average, across the entire group. An ini-
tial analysis for terrestrial vertebrates suggests that only 82%
of presence records fell within expert maps (J. Otegui, pers.
comm.), while 88% were accurate for 790 freshwater fish in
North America (Domisch ef al., 2016). If it is not possible to
use a target group, one may consider using the same presence
points for estimating both the expert omission rate and the
PPPM. Though not preferable (because the same data are
used for the offset and the PO locations), it is reasonable
because the expert map is based on geographical space while
the PPPM is fitted in environmental space. However, a possi-
ble consequence of using the same presence points to esti-
mate expert accuracy and fit the PPPM is that one can
introduce bias by up/downweighting the role of the offset if
the presence points happen to be biased. For example,
observers may be more likely to report a species outside its
expected distribution because it is unusual or unexpected. Or
observers may only look for a species within its expected
range if their study objective is something other than delin-
eating range boundaries.

The second consideration in defining the offset is the
shape of the transition from ‘inside’ to ‘outside’ the expert
range (Fig. 1). The simplest approach is a step function
which drops abruptly at the expert range boundary. However,
the spatial resolution of expert maps is typically much
coarser (Hurlbert & Jetz, 2007) than the modelling resolution
of a SDM. Thus, in most cases, a smooth decay is more rep-
resentative of the continuously decreasing probability of find-
ing the species at locations further from the expert range. As
a generic option that probably covers the spectrum of flexi-
bility that one might need, we suggest that a five-parameter
generalized logistic curve can be used to describe smoothing
as a function of distance (x) from expert range edge
(Richards, 1959):
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Figure 1 (a) Hlustration of various decay curves across the transect shown in panel (b), showing the effects of varying the rate (r), skew (s)
and P,,. The horizontal axis has an inverse hyperbolic sine transformation and the vertical axis is log-transformed. Letters in labels identify the

points shown in panel (c). (b) A subset of the ‘expert’ range map for the montane woodcreeper (Lepidocolaptes lacrymiger) with colours
indicating the normalized logistic distance—decay (P, = 0.54, r= 0.1, s= 0.2) with the upper and lower values estimated to achieve 54%
probability inside the expert range. The thick black line shows the transect illustrated in panel (a). (c) Illustration of feasible decay parameters
given the range and domain geometry for this species. That is, some parameter combinations (e.g. high P;, and slow decay rate ) are
mutually exclusive. Colours indicate the difference between the desired P,, and the maximum possible P,, given the specified curve (deeper
reds indicate larger diferences). Blue contour lines show the distance buffer (km) needed around the expert range to include the desired P,
Letters indicate the location of the parameters shown as transects in panel (a).
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The five-parameter logistic is appealing because parameters
can be readily interpreted biologically to helps to define use-
ful offsets (Fig. 1). The rate (r) affects the overall decay rate
and allows flexibility ranging from a step function (large val-
ues) to a flat surface (0). The skew (s) adjusts the symmetry
of the decay and ranges from a symmetrical logistic curve to
shifting most of the decay outside the expert range (so the
probability remains high to the boundary and before decay-
ing). Unlike r, which is rather fundamental for characterizing
smoothing, it is reasonable to set s=0 to obtain a simpler
model if there is no reason to doubt the expert accuracy
inside the map boundary. The shift (k) slides the curve in or
out of the expert range to adjust the location but not the
shape of the decay. Such a shift can be useful for incorporat-
ing a prescribed buffer around the expert map, although in
this study we do not adjust this term and effectively consider
a four-parameter logistic function. C is a normalization

constant ensuring that the ROR sums to unity across the
landscape. After specifying the shape of the curve (r, s and
k), the final two parameters, the upper (u) and lower ()
asymptotes, are selected via numerical optimization to
achieve the desired P, (and relative ‘strength’ of the prior)
for a particular expert range map and modelling domain.
These parameters can have considerable effects on predictions
(e.g. Figs 2 & 3) and must be estimated based on inferred
attributes of the expert maps. That is, they are necessary
parameters to adjust to accommodate biologically justified
values of 1, s and k but are not intrinsically of any biological
interest in this application. By using a ‘target group’ of
related species described by the same source of expert maps,
it is possible to fit these parameters; however, we anticipate
that these parameters will often be set a priori based on an
understanding of the expert maps, as in the following exam-
ples. While we recommend the five-parameter logistic for its
flexibility, we note that a the most minimalistic model to
consider would be the three-parameter logistic (setting
s=0, k=0); further options are considered in the Discussion.

Global Ecology and Biogeography, 26, 243-258, © 2016 John Wiley & Sons Ltd 247



C. Merow et al.

Relative Occurrence Rate p(x|Y=1)

Pin=0.5 r=0

Pin=0.5 r=0.1

-10

Latitude
8

-30

-40 -

o
S
1

Relative Occurrence Rate P(X|Y=1)
) ;
w

1 1 1
500 1000 500

-60

I
-40

Longitude

1
1000

/s 1
-50 -40 -30 -20

Pin=0.9 r=0.01

Pin=0.9 r=0.1

1
-60

I
0 500
Distance from range edge

1 1 |
1000 500 1000

Figure 2 Comparison of various offsets and the resulting predicted relative occurrence rates. Top row: maps of predictions for four
offsets ranging from flat (rate, r=0) to a step function (r=10). Bottom row: offset and predictions along the transect (along the dark
line in (a)). An illustration of the importance of smoothing the expert maps. If a step function is used (a), equal prior probability is
assigned to cells adjacent to the expert boundary and cells many thousands of kilometres away. This assumption is unrealistic because
expert errors or dispersal are most likely closer to the expert boundary. By smoothing expert boundaries, we can remove spurious

predictions far from the known distribution (based on the critical assumption that the expert maps are already reasonably accurate).

Note that the skew parameter s is not varied in this example.

Range and domain geometries impose critical constraints
on reasonable combinations of the parameters in equation 2.
We denote the smoothing parameter combinations that
achieve the desired value of P;, as the feasible set (grey region
in Fig. 1b). That is, certain parameter combinations are not
possible because they have mutually exclusive implications
for the expert offset. Feasible curves can be evaluated by
assessing whether it is possible to achieve the specified accu-
racy inside the expert range (P;,) given a particular decay
curve. Figure 1(b) shows allowable combinations of P, and
decay rate r for Lepidocolaptes lacrymiger in grey. The red
scale indicates deviations from the desired value of P,
obtained when optimizing the values for the lower and upper
asymptotes. The allowable parameter combinations follow
intuition — it is paradoxical to select both a high probability
inside the expert range (P;,) and a very slow decay (r) that
puts significant probability outside the range (i.e. upper left
corner of Fig. 1b). Conceptually, it is unreasonable to expect
that the expert is extremely accurate while at the same time

248

there is high probability outside the range, while numerically
it may not possible to assign a large value to (P;,) and still
distribute the remaining probability over cells outside the
expert map without assigning them values so small that they
result in numerical underflow.

The combination of parameters in the feasible set depends
critically on the modelling domain and spatial resolution.
There exists a critical tradeoff between expert accuracy (P,)
and spatial decay rate (r): the higher the value of P, the
lower the value of r must be to be part of the feasible set.
This derives in part from the normalization constraint that
must be imposed on the offset [the normalization constraint
derives from the limitation of using presence-only data and
predicting ROR (Merow et al., 2013), not from the design of
our approach]. For example, if the domain contains an
extremely large number of cells outside the expert map
(either the domain is very large relative to the expert map or
the spatial resolution is very high), it may be impossible to
assign high expert accuracy (e.g. 95%) without assigning

Global Ecology and Biogeography, 26, 243-258, © 2016 John Wiley & Sons Ltd
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Figure 3 Mapped predictions (left column) and coefficient of
variation (right column) to explore the implications of different levels
of expert accuracy (P,,), rate (r; larger = steeper), and skew (s;

larger = softer edge inside the expert boundary). The top row shows a
model with no offset for comparison. Rows 2—4 show how predictions
change with decay rate r (note s = 0.6 is needed when r= 1 in row 4
to achieve the desired P,; see Fig. 1b). Rows 5 and 6 show how
increasing expert accuracy leads to tighter predictions around the
expert range. Notably, a model with an offset in (b) has better AIC and
AUC than a model without an offset (a); this model has the ’correct’
expert accuracy (Py, = 0.54) based on the 374 presence observations
available. Notably, reducing the bias by including the expert map does
not increase the coefficient of variation, and in some cases, even
reduces it. See Fig. D for examples of further parameter combinations.
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values outside the expert map values so small that they result
in numerical underflow. If the problem derives from a large
domain, it is probably appropriate to reduce its size as it is
rarely important to employ an expert map while simultane-
ously inquiring about locations very far from the expert map
(the assumption of our modelling method is that the expert
map provides useful spatial information). Tips for an appro-
priate choice of the domain are provided in the Discussion.

The combinations of parameters in the feasible set also
depend critically on range geometry. For example, a range
with a large perimeter/area ratio (e.g. L. lacrymiger in Figs 1
& 3), when spatially smoothed with equation 2, will assign a
relatively larger amount of probability immediately outside
the expert map, compared with a range with equal area but
smaller perimeter/area ratio (e.g. roughly circular). Assigning
high expert accuracy to a range with a large perimeter/area
ratio may be impossible if the spatial decay rate is slow,
because a large amount of cumulative probability would
reside immediately outside the expert range, leading to
numerical underflow from cells assigned extremely small val-
ues far from the expert range. Again, this is a sensible result;
one cannot simultaneously suggest that an expert map is
highly accurate but that a significant amount of probability
resides just outside the expert map. One solution is to simply
lower the expected expert accuracy (Pi,; which must, of
course, be justified by data). An alternative is to calculate the
cumulative probability as some fixed distance from the expert
range boundary; that is, P;, =0.95 might be inappropriate
but 95% of the cumulative probability might lie within
100 km of the expert range boundary. By considering loca-
tions within this distance as ‘inside’ the expert range, it is
feasible to assign higher P, than would otherwise be possi-
ble. As a final solution, if data are available for a large num-
ber of species, one could estimate how the decay rate varies
as a function of expert map area, perimeter/area ratio or
area/domain area ratio.

In summary, it is possible to transform a binary expert
range map polygon into a continuous quantitative raster that
accounts for the known spatial ‘fuzziness’ of a typical expert
maps at range boundaries. While some parameters are diffi-
cult to identify with precision, we note that this process is
analogous to ‘prior elucidation’ in Bayesian approaches,
where prior belief is translated into a statistical distribution
(Dey & Liu, 2007).

ASSESSING THE METHOD
Data

We provide an intensive assessment for two example bird
species, the montane woodcreeper (L. lacrymiger, LELA), a
bird occupying Andean montane forest, and the solitary tina-
mou (Tinamus solitarius, TISO), a forest species from low-
land Brazil. These examples illustrate how predictions are
affected by different modelling decisions and attributes of the
data. The LELA data consist of: (1) 374 presence observa-
tions, (2) 5441 non-detections from the eBird database

Global Ecology and Biogeography, 26, 243-258, © 2016 John Wiley & Sons Ltd 249



C. Merow et al.

(Sullivan et al., 2009), and (3) an expert map based on the
International Union for Conservation of Nature (2011) one
as used in Jetz & Fine (2012). Point records included in the
analysis come from the years 1946 to 2014 and the expert
range map is expected to be representative of the c. 1980—
2010 time frame. The LELA data exhibit some helpful
attributes for exploring model construction. Only 54% of
presences fall within the expert range, but many are just
outside. The range geometry presents some challenges, being
relatively small compared with the study domain (the north-
ern portion of South America) and with a high perimeter/
area ratio. The LELA data provide a good example of an
expert map that can be considerably improved with addi-
tional presence data.

The TISO data consist of: (1) 171 presence observations
from GBIF (http://gbif.org/) and eBird (Sullivan et al, 2009)
accessed through the Map Of Life (https://mol.org) and (2)
an expert map from Jetz et al. (2012b). The TISO data
exhibit some helpful attributes for exploring model construc-
tion. Unlike LELA, 92.4% of presences fall within the expert
range and the range geometry exhibits a much lower perime-
ter/area ratio (Fig. 2).

The distribution models were built using 1 km mean
annual temperature (MAT; Hijmans et al, 2005) and three
satellite-derived cloud-related metrics associated with precipi-
tation (Wilson & Jetz, 2016), mean January and July cloud
frequency (CLDJAN and CLDJUL) and cloud seasonality
(CLDSEAS).

Model construction

For all tests, we used generalized linear models (glm() in R;
R Core Team, 2015) and/or the Maxent software package
(Phillips et al., 2006) with settings chosen to fit equivalent
models [see the appendices in Renner et al. (2015) for
options]. Supporting Information Appendix B illustrates our
code. We allowed only linear, quadratic and product features/
predictor transformations. When fitting models in the Max-
ent software package, we turned off regularization, removed
duplicate presences in the same cell and turned off clamping
during model projections. When fitting models with glm()
we used downweighted Poisson regression as recommended
by Renner et al. (2015). All other settings were left at default
values. Continuous predictions were assessed with both the
presence/absence data and presence/background data using
the area under the curve (AUC) and the point biserial corre-
lation. The point biserial correlation showed no qualitative
differences from the AUC, so we do not report it. We chose
to evaluate against both absence and background data
because the absences are inferred from checklist locations
very near presence locations and seem more likely to repre-
sent non-detections than true absences. Binary predictions
were assessed using the true positive rate (TPR; % presences
correct), true negative rate (TNR; % absences correct) and
correct classification rate (CCR; % presences and absences
correctly classified as such). Notably the number of absences

(5441) dominates the presences (374) in the calculation of
the CCR for LELA. For all tests, we built models both with-
out and with expert offsets with different expert omission
rates to examine the effects of different levels of expert accu-
racy. We also evaluated the predictive performance (based on
AUC) of the offset alone to disentangle how improvements
derive from the offset versus the presence points.

The effect of offsets

To illustrate how predictions depend on decisions made
about the offset, we explored variation in predictions for the
different choices of parameters for TISO (Fig. 2) and LELA
(Fig. 3). We compared predictions that exclude the expert
map with those that incorporate an expert map with differ-
ent levels of expert accuracy, using all presence data. The
TISO models (Fig. 2) focus on varying only P, and r and
illustrate an important point about the spatial smoothing
enforced by the expert map. Naturally, higher values of P;,
lead to tighter predictions around the expert range. One
might expect that since the expert map only directly contains
binary information, an abrupt transition in the offset is
appropriate; however, Fig. 2 illustrates the importance of the
spatial smoothing that we introduced in equation 2. When
an offset is not used, inaccurate predictions for TISO’s real-
ized distribution far from the expert map are apparent (Fig.
2a). When an offset is used with an abrupt transition (Fig. 2,
last three columns) predictions outside the expert map have
relatively lower probabilities; however, many suitable areas
are still predicted far from the expert map. This pattern
occurs because cells immediately outside the expert map (e.g.
50 km) are assigned the same prior probability as cells 500
or 1000 km from the expert map because the spatial smooth-
ing occurs so abruptly. A more realistic prior expectation is
that the probability of observing a presence should continue
to decrease with distance from the expert map edge; Fig. 2
(second column) illustrates this smoother spatial decay and it
impact on concentrating more probability near the expert
map.

For LELA, the presence data suggest that the expert accu-

racy is 54%; however, to explore the effect of different hypo-
thetical expert accuracy on predictions, we also considered
cases where the expert accuracy was assumed to be 70% and
87%. Figure 3 shows predictions for the range of spatial
smoothing curves shown in Fig. 1, while Fig. A3 shows a
range of other parameter combinations. A number of gener-
alities across the TISO and LELA explorations are apparent:
1. In general, predictions without offsets (Fig. 3, top row)
are clearly more diffuse than predictions with offsets. Intui-
tively, as more confidence is given to the expert map by
increasing P;,, predictions become more tightly constrained
around the expert map.
2. Rate and skew smoothing parameters primarily affected
predictions in the immediate vicinity of the expert map (Figs
3, A3), whereas varying P;, has a much stronger effect across
the domain.
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3. When accuracy of the expert map is relatively poor (e.g.
LELA; only 54% presences correctly predicted by the expert
map) PPPMs with offsets with P;, = 0.54 perform best based
on the Akaike information criterion (AIC) and AUC (Fig. 3).
4. Including presence data identifies a number of ‘holes’ in
the expert map where habitat is less suitable for this species.
5. A considerable amount of variation in ROR exists inside
the expert map.

6. The coefficient of variation is similar in models with and
without offsets. Hence reducing bias by including the expert
map does not reduce precision. In the case of the large
region of low probability in the Amazon for LELA, the abso-
lute value of the prediction standard error is considerably
reduced, but since the mean prediction there is also reduced,
the coefficient of variation changes minimally. Reducing pre-
diction uncertainty in relatively unsuitable areas is particu-
larly useful for SDM applications.

7. In all cases, the offset alone (i.e. the smoothed expert
map) generally predicted far too many absences within the
boundaries of the expert map and consequently had much
lower AUC (compare Figs 3 & A4). Consequently AUC eval-
uated against either absences or background points was
reduced by c¢. 0.1 compared with models that used presence
points. Notably, we do not expect the expert maps to be par-
ticularly accurate on their own because their inaccuracies are
not due to imprecise boundaries (improved by our smooth-
ing) but rather due to the prediction of false presences.

Handling potential data biases

In order to assess the usefulness of combining expert maps
with presence data, we explored scenarios in which different
types of bias might exist in either data set. We considered a
variety of scenarios by subsampling the full data to explore
whether including an offset in PPPMs makes predictions
more robust in the face of problematic data. In particular, we
wanted to ensure that it was possible to balance the informa-
tion content of both presences and expert maps such that
neither would inappropriately dominate the other if they
exhibit considerable bias. We explored extreme cases of
biased presences, biased expert maps and the dependence of
predictions on presence sample size.

Biased presences

Background. Presence data sets may exhibit considerable
bias in records or sampling when they are not the result of
systematic surveys (Phillips et al., 2009). Biased samples are
particularly problematic for rare or poorly studied species
where available records may miss a large geographical and
environmental portion of the actual distribution. In such
cases, an expert map including these range parts would natu-
rally be useful information for many applications — yet it
would preclude benefitting from the information that the
small presence point sample may also provide in identifying
nearby suitable habitat. Hence, we sought to determine
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whether bias in presences could persist in PPPM predictions
if expert maps were used as offsets.

Methods. We simulated extreme bias by omitting from model
fitting presences from large portions of the range to explore
whether including expert offsets could improve predictions in
portions of the range where the species is not detected. We con-
sidered four cases and removed all presences from (1) the south-
ern portion of the range (< 5° S), (2) northern portion of the
range (> 5° N), (3) middle portions of the range (< 5° S
and < 5° N), and (4) northern and southern portion of the range
(< 5°S or>5°N) from the fitting data. PPPMs were built with-
out offsets and with offsets built with P;,=0.54,0.70,0.87 (the
same as those shown in Fig. 3) to explore how variation in
expected expert accuracy affects predictions (even though we
know that the expert accuracy is much lower in this simulation,
we expect that one would elect not to use expert maps with only
30% accuracy). AIC and AUC (calculated with either non-
detection or background data) were used to compare predictions.

Results. Representative results from omitting presences from
the southern portion of the range are shown in Fig. 4; quali-
tatively similar patterns are seen in other scenarios in Fig. 5.
If the expert map is poor (i.e. where only 54% of presences
are assumed inside) predictions are more diffuse as in earlier
examples. In all cases, predictions were improved based on
AIC and AUC when the expert map was given less weight
(lower Py,). In all cases predictions with P, =0.54 were
superior to models without offsets based on AIC and AUC.
Hence, it is apparent that even when presences are com-
pletely absent from large portions of the range, the influence
of the expert map is sufficient (under a range of offsets) to
improve prediction in portions of the range where presences
are lacking.

Erroneous expert map

Background. In some understudied systems, expert range
maps may also have significant flaws. While we expect that
using biased expert maps will have a significant negative
impact on predictions, we sought to determine whether
PPPMs could still at least correctly highlight areas outside a
biased expert map. If models can correctly identify suitable
areas outside the expert map, then we would have confidence
in both detecting expert map errors and in using offsets in
spite of such errors (e.g. with large biodiversity databases,
where manual checking of each model is prohibitive).

Methods. To explore the influence of expert map bias, we
simulated bias in the LELA expert map by sequentially omit-
ting different portions of the range from model fitting and
examining predictions in the omitted portion of the range.
More generally, these tests help us to explore how presence
points beyond expert boundaries influence predictions. We
tested four scenarios: (1) removing the large southern por-
tion of the range; (2) including only the southern portion of
the range (i.e. omitting the four northern-most polygons);
(3) omitting the large central polygon (leaving only the large
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Figure 4 Predictions based on different potential data limitations. Row 1: we simulated bias in the presences by sequentially
omitting portions of the presence data from model fitting. Panels (a)—(c) show an example where the southern-most presences
(triangles) are omitted from fitting (using only the circles). Suitable habitat was predicted in the south, driven by the expert map
offset (see other examples in Fig. A5). Row 2: we simulated bias in the LELA expert map by sequentially omitting portions of the
range from model fitting. Panels (d) and (e) show an example where the southern-most portion of the expert range (transparent
grey) was omitted from fitting (outlined in black). In spite of expert map bias, suitable habitat was still detected outside the expert
map (see other examples in Fig. A6). Row 3: performance comparison of models with and without expert offsets as a function of
presence sample size. While diminishing returns were apparent with increasing sample size, it was rare that the expert map did not
improve AUC.
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southern polygons and the three small northern ones); (4)
and omitting the three small northern-most polygons. For
each case, we compared predictions for different levels of
expert accuracy P;,; that is, we sought to determine how the
ability to predict the true distribution depended upon how
much confidence was placed on the expert accuracy. We

compared three different offsets for each case, each using the
same rate (r=0.5) and skew (s=0.2) parameters, and using
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P, = 0.7 (relatively high confidence for a poor expert map),
Py, = 0.54 (the expert accuracy for the full data set, for refer-
ence), and the observed value of P, for the portion of the
biased expert map used for fitting (0.20-0.34).

Results. In general, it is apparent that even when a large
portion of the expert map is omitted from model fitting, the
presence points are capable of driving the prediction. We
note that this will depend on the number and bias of
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presence points and the weight assigned to the offset (via
P,,). Figure 4(d—f) illustrates this pattern for the case where
the southern-most expert polygon was omitted from fitting,
while Fig. A6 shows the remaining scenarios. In all cases
tested, the AIC and AUC were best for models that used the
lowest Py, corresponding to the case where the expert map
has a smaller influence on predictions. All else being equal
(e.g. other smoothing parameters) it is thus preferable to
assign a low accuracy to the expert map when it may be
biased. However, in spite of the expert bias, the portions of
the range which were ‘missed” by the expert were still high-
lighted as relatively more suitable habitat in all cases (i.e. yel-
low or red in Figs 4 & A6). This observation illustrates that
models with offsets can be informative even with imperfect
expert maps, so long as undue confidence is not assigned to
the expert accuracy.

Sample size

Background. We expected that including an expert map off-
set would be most helpful when few presence samples were
available. Poorly sampled species might be expected to have
both poor expert maps and presence samples with consider-
able bias, hence this is perhaps the most critical scenario for
combining data types. We hypothesize that if a large number
of presence points are available, the expert map may not add
much information unless the presences are spatially biased.

Methods. We randomly subsampled the LELA presence data
to obtain 50 replicates of 4, 8, 16, 32, 64 and 128 presences.
We built models without offsets and using the expert offsets
with P;,=0.54 and 0.87 used in Fig. 3(b) and (e), respec-
tively. We evaluated all models with AIC and AUC (evaluated
with all presence data and either non-detections or back-
ground points).

Results. Results were similar across all evaluation measures
(Fig. A7), so we focus on the difference in AUC evaluated
against non-detection points between models with and with-
out expert offsets (Fig. 4g). Two general patterns are sugges-
tive in Fig. 4(g). Across all sample sizes, models with offsets
generally have higher performance than models without
(AAUC > 0) Second, the improvement in AUC for models
with offsets depends on the number of presences, with
greater improvement observed for smaller sample sizes. Simi-
lar patterns are observed for AIC, point biserial correlation
and AUC based on presence—background data (Fig. A7).
Note that the number of presence points required before the
AUC asymptotes (around 16 presences here) will vary con-
siderably across species depending on range attributes, sam-
pling biases, etc.

GENERALIZING TO OTHER SPECIES

Background

To better explore the generality of using PPPMs with expert
maps we also built models for a set of additional species. For
this initial, non-exhaustive exploration, our selection aimed

to represent a variety of species groups, regions, unique range
geometries and levels of expert accuracy, each posing differ-
ent challenges for accurate predictions. We sought to deter-
mine generally whether including an expert map can
typically improve predictions over models that ignore them.
Furthermore, we wanted to ensure that parameters describing
a range of common patterns of expert accuracy fell within
feasible parameter space (cf. Fig. 1c) and that the feasible
space was not so small as to preclude useful comparison
among models with different spatial smoothing parameters.
Finally, we sought to explore whether such potential
improvements were readily obtained or required thorough
exploration of feasible parameter space. Our goal was to
determine if any idiosyncrasies might emerge related to these
questions when using expert maps with the following species.
1. Beamys hindei (lesser pouched rat) is a rodent with a
small, disjunct range with moderate expert accuracy (59%;
n=37), wherein many presences are just outside the expert
map (http://species.mol.org/species/map/Beamys_hindei).

2. Litoria freycineti (wallum rocket frog) is an amphibian
species endemic to Australia with a long narrow range with
high expert accuracy (93%; n=318) (http://species.mol.org/
species/map/Litoria_freycineti).

3. Podocarpus brasiliensis is a conifer species from the ancient
radiation of podocarps with a small range that is disjunct
range across parts of Brazil and Venezuela a large region with
apparently high expert accuracy (93%; n=15) (http://spe-
cies.mol.org/species/map/Podocarpus_brasiliensis).

4. Reithrodontomys sumichrasti (Sumichrast’s harvest mouse)
is a rodent with a relatively large but disjunct distribution
that is well characterized by the expert map (93% expert
accuracy; n=>551) and a large number of presences (http://
species.mol.org/species/map/Reithrodontomys_sumichrasti).

5. Protea repens is relatively widespread overstorey shrub in
the South African mediterranean shrublands with a large
range within the shrubland biome. Both the expert map
(90% accuracy; n=3998) and the extensive occurrence data
set are expected to accurately describe the distribution.

Methods

For each species, we built expert map offsets by varying P;,
at the observed expert accuracy and values slightly above or
below (*+0.06-0.08 as appropriate for allowable parameter
combinations for each species, cf. Fig. 1c). We also varied
values of r to explore different feasible spatial decay parame-
ters of 0.1, 1 and 10. Values for the skew, s, were kept at 0.2
for all models. Our goal was to explore whether improve-
ments over models that ignore expert maps were readily
obtained rather than to find the best performing model in
the feasible set. Note that the full modelling domain and set
of models compared is shown for each species in Supporting
Information Appendix D.2, while Fig. 5 shows cropped ver-
sions to highlight differences between traditional models that
omit the expert map and the best-fitting model (based on
AIC) using an expert map.
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Results

In general, models including expert maps almost always per-
formed better than those without (Fig. 5), with smoother spa-
tial decay typically leading to better AIC values (Supporting
Information Appendix D.2). Importantly, while the offset has a
considerable influence on predictions, it does not simply domi-
nate them; unsuitable regions inside the expert map are readily
identified by the covariates in all examples and suitable areas
outside the expert range are often identified (Fig. 5). Without
exhaustively exploring the feasible set of smoothing parameters
(cf. Fig. 1c), we readily obtained models with a range of spatial
smoothing scenarios that were improvements over models
without expert maps. This is encouraging; it may be difficult
to precisely estimate expert accuracy for many species, but a
comparison of models in Supporting Information Appendix
D.2 illustrates that even an approximate estimate typically leads
to improvements compared with ignoring expert maps.
Increasing P;, limited the allowable combinations of smoothing
parameters, similar to that observed in Fig. lc (Supporting
Information Appendix E); however, this primarily limited the
feasible decay rates (r) when P, was high (>0.90). If the expert
map is fairly accurate, it does not seem problematic to avoid
strong smoothing to the edges of the expert map (as the impli-
cation of using the expert map is that we do not expect pre-
sences very far from its boundaries).

Including the expert map was generally useful for excluding
large patches of habitat that were otherwise predicted as poten-
tially suitable based on environmental conditions, but where
no presences have been observed (Fig. 5, right column). Con-
versely, the maps shown in Fig. 5 are not particularly good at
predicting presences further from the expert boundaries (many
occur in grey regions of the maps). This reveals a fundamental
tradeoff between reducing false absences and false presences
simultaneously, and each may be important in studies with dif-
ferent objectives. Notably, Supporting Information Appendix
D.2 shows many examples where smoother offsets better pre-
dict points far from expert boundaries; while these models do
not have the best AIC values among the models we explored,
they were typically still better than models that ignore expert
maps. Hence, this framework is flexible enough to accommo-
date a range of smoothing assumptions to minimize Type I or
1T errors compared with models that ignore expert maps.

DISCUSSION
Overview

Expert maps and presence-only (PO) data have complemen-
tary strengths and weaknesses that make it valuable to com-
bine them in PPPMs and Maxent models. Typically, expert
maps have relatively coarse spatial resolution, blurring local
habitat variation, and are most informative about where a
species is unlikely to be found (Jetz et al, 2012a). In con-
trast, PO data can help to identify variation in occurrence
patterns at high spatial resolution but are less useful in iden-
tifying areas where the species does not occur, due to an
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inability to distinguish absences from non-detection/non-
searched areas. Expert maps are typically very good at defin-
ing absences beyond range boundaries, which complements
PO data. By combining expert maps and PO data, we have
shown that: (1) expert maps can improve occurrence predic-
tions when PO data are sparse or biased; (2) presence data
can refine expert maps and identify the ‘holes’ of unsuitable
habitat within the range; (3) presence data can identify varia-
tion in occurrence patterns in otherwise binary expert maps;
(4) improvements from including expert maps are apparent
for a range of assumptions about how to characterize the
expert map. Hence, combining expert maps with presence
data takes advantage of the strengths of different data types
to improve predictions of species distributions in a statisti-
cally straightforward framework using intuitive, biologically
motivated specification of offsets.

Of course, the use of expert maps comes with some cav-
eats that users must recognize. For example, expert maps
typically have areas of unsuitable habitat within the range
boundaries. These are assigned the same relative probability
as suitable areas in the offset, so bias in expert maps carries
forward to all subsequent predictions if these patterns are
not overcome by sufficient presence data (e.g. Fig. 5b shows
considerable variation within the expert map, driven by pre-
sences, whereas Fig. 5f does not). Another challenge with
using expert maps is determining the appropriate a priori
accuracy (P;,) to assign to an expert map. This accuracy can
be fitted directly from data from a target group of similar
species to evaluate the expert’s typical accuracy (see ‘Outlook
and extensions’ below); however, the solution for studying a
handful of species is less straightforward. If large presence
samples are available, expert accuracy can again be estimated
from data, with the caveat that any bias in the presence sam-
ple will be translated to the expert map.

The predictions provided by our methods should be interpreted
as a way to update expert maps. That is, they represent a realized
distribution, describing locations that are likely to be currently
occupied. While the spatial smoothing imposed by the expert map
is valuable for predicting a realized distribution, it is not appropri-
ate for predicting a potential distribution. Spatial smoothing con-
strains predictions to be ‘nearby’ the expert map boundary, hence
limiting the ability to predict disjunct portions of suitable habitat
far from expert boundaries. Consequently, the coefficients of the
fitted model do not describe the species’ environmental niche (as
is commonly inferred in occurrence models) but rather how the
species’ niche differs from the expert map. This disconnect
between geographical distribution and environmental niche means
that this modelling framework incorporating expert maps is not
suitable for transfer to other locations or times (Merow et al,
2016). Thus the motivation for applying this method is in the
refinement of existing expert range maps using point observations.

R package

We have developed an R package (R Core Team, 2015),
bossMaps, to facilitate building offsets from expert maps.
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The package features tools to explore the shapes of different
assumptions about spatial decay (e.g. Fig. 1b) and under-
stand the feasible set of smoothing parameters for a given
range geometry (e.g. Fig. 1c¢) and functions to compute the
offset for a given suite of parameters (e.g. Fig. la). A tutorial
illustrating the full workflow from downloading data to com-
paring models is provided in Supporting Information Appen-
dix D. bossMaps can be used with any suitable model-fitting
software (glm(), Maxent, other options in the appendix of
Renner et al., 2015) and includes efficient code to expedite a
number of potentially slow computations. All models dis-
cussed here were fitted with glm(), choosing appropriate
weights to reflect a PPPM as recommended in the appendix
of Renner et al. (2015). Finally, a number of functions are
included to process model output. Model-fitting tips are
included in the package documentation, as well as Support-
ing Information Appendix C, including choosing a domain,
exploring the feasible set of smoothing parameters and trou-
bleshooting fitting smoothing parameters for different data
scenarios.

Outlook and extensions

A useful option for developing offsets, which alleviates many
of the challenges discussed above related to choosing parame-
ters for the offset, is to estimate those parameters based
entirely on data. When expert maps come from a common
source, one can use the presence data from a large number
of species to fit the relative likelihood of finding suitable hab-
itat as a function of distance from the expert range. We
expect that there would a general pattern to this relationship
that could then be used to estimate a decay curve (described
by rate, skew and shift parameters) that could then be used
for all the species in that group (or perhaps account for vari-
ation in these parameters based on taxonomic or functional
subgroups if appropriate). Statistically fitting smoothing
functions also provides the opportunity for formal model
comparison of different smoothing functions, e.g. three- or
four-parameter logistic functions, a Gompertz function or
any other sigmoid functions. Exploring other curve shapes
that best capture the decay in expert accuracy may be useful,
but as the smoothing model is unlikely to be of any intrinsic
interest in most studies, we do not view model complexity as
a major problem. Hence, we recommend that the flexibility
offered by the 5-parameter logistic, with the clear interpreta-
tion of 1, 5, and k (note that set k=0 in this study), appears
sufficiently general and suitable to match the amount of
information one might expect to extract from a typically
coarse resolution expert map.

Extending this framework to use a complete Bayesian for-
mulation would also offer some advantages. In particular,
one could incorporate uncertainty in the offset into predic-
tions. Offset uncertainty could be useful to characterize (1)
uncertainty in the accuracy of the expert map, which
increases in importance for smaller sample sizes, and (2)
uncertainty in an appropriate smoothing rate, which is

important when expert accuracy may vary by species. To
incorporate uncertainty in the offset, one must simply sam-
ple from the distribution of values for the offset in each cell,
though this may be computationally demanding because it
requires estimating a large number of offsets. It is advisable
to sample values for all cells simultaneously to ensure that
the offset is normalized.

Biased sampling can result from variable search effort,
detection probability or both and is particularly worrisome
when the sample size is relatively small. The incorporation of
expert maps using the approach outlined in this paper is
most useful in this situation. Accounting for sampling bias is
conceptually straightforward and common in Poisson regres-
sion to account for variation in exposure; for example, twice
as many presences are expected in environments that have
received twice as much sampling effort. This effectively con-
verts a model of intensity (counts) to a model for the rate
per unit sampling effort. The model can then project the
expected intensity for a given (constant) sampling effort.
Merow et al. (2016) provide worked examples of how sam-
pling bias can be incorporated with other offsets.

While we have focused on expert maps as important sour-
ces of spatial information, other similarly coarse spatial mod-
els could also be wused. For example, known habitat
limitations (e.g. elevation, vegetation, ecoregion or land
cover) could serve a similar role to expert maps. This infor-
mation is commonly available in field guides or other species
descriptions based on expert knowledge. For example, a spe-
cies known to occur primarily in forests is probably best
interpreted to only rarely be found outside forests (but more
common in locations near forests). A spatially smoothed
map of forest cover may reasonably describe this distribution
in ways that a sparse presence sample cannot. To be fair, we
note that objectively choosing the spatial smoothing parame-
ters in such cases may be challenging. Of course, it is prefera-
ble to include such information more directly as model
covariates if sufficient presence data are available to fit the
associated coefficients. When presence samples are sparse,
however, it may be advisable to incorporate expert informa-
tion on such habitat characteristics via the offset, so that the
presence data can rather inform climatic (or edaphic, etc.)
relationships. Furthermore, combining multiple sources of
spatial information in a model simultaneously is as simple as
multiplying the offsets together and normalizing the result
(details in Merow et al., 2016).

Conclusions

Combining expert maps and point occurrence data in models
that predict species distributions offers a number of advan-
tages over models that rely on just one data type. Point
occurrences, annotated with environmental characteristics,
can identify unsuitable locations within the expert-delineated
range, and compared with expert maps provide significantly
enhanced spatial detail. In turn, the inclusion of expert maps
can significantly improve predictions of species distributions
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based on occurrence points due to their ability to help over-
come (1) small or (2) biased presence samples and (3) their
ability to account for spatial factors (historical distribution
constraints, dispersal limits, biotic factors) not readily
described by available covariates. Our approach to using
expert maps offers the flexibility to reflect different assump-
tions (accuracy, smoothing) about expert maps, which can
often improve range predictions even when the assumptions
are imperfect. Future extension of the method is likely to
enable an extension to other types of species distribution
data (sensu Jetz et al., 2012a), such as expert habitat or eleva-
tion restrictions, in a similar statistical framework. While the
magnitude of improvements in range prediction will vary
and advances gained will often be incremental, the presented
approach lends itself ideally to an iterative process where
both expert knowledge and occurrence data are updated peri-
odically or even continuously. For example, we envision a
scaled-up implementation of the method in the spatial biodi-
versity infrastructure Map of Life with the potential for
ongoing updates to expert-defined limits informed by new
data advances and iteratively advanced integrated estimates
of distribution. This combination of integrative modelling
approaches combining data types, ongoing data flows and
infrastructure bringing together data and expert curation
charts the path toward a more general and continued
advance toward the best-possible knowledge of species distri-
bution for research and application.
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