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ABSTRACT

Aim Knowledge of species geographical distributions is critical for many

ecological and evolutionary questions and underpins effective conservation

decision-making, yet it is usually limited in spatial resolution or reliability. Over

large spatial extents, range predictions are typically derived from expert knowledge

or, increasingly, species distribution models based on individual occurrence

records. Expert maps are useful at coarse resolution, where they are suitable for

delineating unoccupied regions. In contrast, point records typically provide finer-

scale occurrence information that can be characterized for its environmental

association, but usually suffers from observer biases and does not representatively

or fully address the geographical or environmental range occupied by a species.

Innovation We develop a new modelling methodology to combine the

complementary informative attributes of both data types to improve fine-scale,

large-extent predictions. We use expert delineations to constrain predictions of

a species distribution model parameterized with incidental point occurrence

records. We introduce a maximum entropy approach for combining the two

data types and generalize it to Poisson point process models. We illustrate

critical decision making during model construction using two detailed case

studies and illustrate features more generally with applications to species with

vastly different range and data attributes. Our methods are illustrated in the

Supporting Information and with a new R package, bossMaps, that integrates

with existing generalized linear modelling and Maxent software.

Main conclusions Our modelling strategy flexibly accommodates expert

maps with different levels of bias and precision. The approach can also be

useful with other coarse sources of spatially explicit information, including

habitat associations, elevational bands or vegetation types. The flexible nature

of this methodological innovation can support improved characterization of

species distributions for a variety of applications and is being implemented as a

standard element underpinning integrative species distribution predictions in

the Map of Life (https://mol.org/).

Keywords

Ecological niche model, maximum entropy, Poisson point process, species

distribution model.

INTRODUCTION

Knowledge about species’ ranges allows biologists to address

ecological and evolutionary problems across large spatial

extents, including understanding fundamental processes

regarding the spatial variation of different biodiversity attrib-

utes and community composition. Similarly, global change

scientists, decision-makers and managers require information

on species distribution if they are to anticipate patterns and
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consequences of species range changes due to global change

(Dawson et al., 2011) or to develop conservation and land

management plans. Finally, species distributions underpin

several of the targets of the Convention on Biological Diver-

sity to improve the state of biodiversity by 2020 (https://

www.cbd.int/sp/targets/), and are considered an essential bio-

diversity variable that should be carefully quantified and

monitored (Pereira et al., 2013). Despite these manifold

needs, our understanding of the geographical distributions of

most species remains relatively limited, and even for well-

studied taxa it remains orders of magnitude coarser than the

available environmental data (Jetz et al., 2012a). When geore-

ferenced occurrence data are available they often contain con-

siderable bias in sampling effort (Whittaker et al., 2005;

Menke et al., 2009; Boakes et al., 2010; Meyer et al., 2015).

Species distribution models (SDMs) are valuable for inferring

suitable habitat at unsampled locations, but bias in occur-

rence records can limit their reliability. For thousands of spe-

cies, expert range maps have been developed, but they

remain too coarse and uneven in their reliable spatial resolu-

tion to support most of the requirements of spatial biodiver-

sity science (Hurlbert & Jetz, 2007; Jetz et al., 2008). This has

hitherto prevented the development of more reliable, spatially

detailed and broadly useful estimates of species true geo-

graphical distributions and has imposed strong limits on

many spatial biodiversity applications. This ‘Wallacean short-

fall’, or paucity of range information, represents a particularly

strong limitation in conservation and spatial planning, where

both spatial detail and sufficiently representative sets of spe-

cies are often key (Lomolino, 2004; Whittaker et al., 2005;

Jetz et al., 2012a). In this study, we develop and demonstrate

innovations that will allow a significant step toward address-

ing this gap.

Different data types

We follow up on previous calls for the combination of differ-

ent sources of biogeographical information, which may allow

one to balance their respective strengths and weaknesses and

enable the development of improved range predictions (Jetz

et al., 2012a; Domisch et al., 2016). Point-level presences are

by far the most commonly used data source, as these are

readily available in a number of open-access online reposito-

ries. Progress has already been made in integrating presence

data with other data sources: Fithian et al. (2014) and Dora-

zio (2014) take related approaches to combine presences with

presence/absence data for many species to overcome issues of

sampling bias; Pagel et al. (2014) use presences to bridge

gaps in abundance data; and Pagel & Schurr (2012) use pre-

sences with demographic data to predict spatial population

dynamics. Here, we focus on integrating point-level presences

with expert drawn occurrence polygons (‘expert maps’) to

improve distribution models. Our approach can also be

extended to expert knowledge on species habitat, elevation or

bioclimatic preferences commonly available in field guides or

taxon-specific monographs.

For many species, rough maps drawn by single experts or

expert groups provide helpful guidelines on species ranges.

Such maps may be based on different sorts of published or

unpublished occurrence data combined with the experts’

own assumptions about environmental and geographical dis-

tribution limits. Experts then typically use administrative or

rough physiographic or environmental contours to demarcate

boundaries. Although valuable across large spatial extents

and coarse spatial resolutions (Hurlbert & Jetz, 2007), expert

maps have a number of weaknesses. Often hand-drawn or

over-generous in extent, they tend to be contiguous ‘blobs’

that predict false presence at much smaller resolution due to

ecologically relevant landscape variation (Hurlbert & White,

2005). This results in a limited spatial accuracy, estimated to

only be in the 100–200 km range for many (even well-stud-

ied) species (Hurlbert & White, 2005; Hurlbert & Jetz, 2007),

that is non-random and varies geographically and ecologi-

cally (Jetz et al., 2008). In other words, the species may be

absent for large regions inside the expert range maps and

present well outside it. For rare or cryptic species, range

maps might additionally miss new, disjunct parts of the dis-

tribution that have not yet been detected, which is particu-

larly critical. Because they are usually updated with new

information only at long and irregular intervals (5–20 year

time-scale) expert maps are also prone to quickly become

out of date, especially in an age of rapidly growing citizen

science data and the new identification of cryptic species/

evolutionarily significant units using molecular tools. Finally,

due to their very nature, representing a construct of many

sources and data types, expert maps also often lack transpar-

ency and are not readily reproducible. However, while boun-

daries may be inaccurately placed, expert maps are usually,

overall, an excellent resource for delimiting the broad areas

(e.g. >200 km from the boundary) outside which a species is

not expected to occur.

In contrast, higher-resolution ‘point’ observations of

occurrence are a more thoroughly specified type of data

based on explicit observations in space and time. These data

have grown considerably over the last decade, with a particu-

lar increase in so-called ‘point occurrence’ (PO) data (also

called ‘presence-only’ data, as opposed to ‘presence–absence’

data that typically arise from a designed survey). PO data

have low rates of false presence (only arising from errors in

identification) compared with expert maps but many more

implicit ‘false negatives’. Occurrence data have been used, in

conjunction with environmental covariates, to build species

geographical distribution or environmental niche models

(SDMs) that predict species ranges (Guisan & Zimmermann,

2000; Guisan & Thuiller, 2005; Anderson, 2012). But such

range predictions are in turn limited by the usually highly

non-representative nature of point data (Phillips et al., 2009)

and the limited ability of existing methods to address this.

One particular concern is their level of overprediction into

regions that may be environmentally suitable but out of

reach or which lack the appropriate biotic conditions

(Sober�on, 2007).
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Complementary data

With data types such as expert maps offering information

about broad geographical range limits and others, such as

occurrence points, providing a finer-scale sample to estimate

potential environmental associations, opportunities for

model-based integration exist. A way to improve our under-

standing and predictions of species ranges lies in combining

such complementary data sources. By identifying observed

occurrence–environment relationships, SDMs can quantita-

tively predict environmentally similar locations based on a

specific sample and at spatial resolutions limited only by the

associated environmental data (typically much finer than

expert maps) (Elith & Leathwick, 2009). Expert maps typi-

cally only provide categorical predictions, while SDMs are

able to address continuous variation in habitat suitability.

Conversely, the more representative and complete distribu-

tion information ingrained in expert maps may help over-

come the environmental bias inherent in many PO data sets

– typically due to unstructured surveys or variability in

detection – which leads to misleading range predictions

(Hortal et al., 2008). This bias is impossible to detect from

presence data alone; absences are needed but are more diffi-

cult to obtain systematically (Merow et al., 2016). Expert

maps can address this limitation of PO data to some extent;

they characterize absences across large extents and are much

less likely to exhibit spatial biases due to the cumulative

nature of expert experience informing it and the naturally

coarser analysis grain applied. Finally, historical contingen-

cies, dispersal limits and biotic factors that all ultimately con-

strain the spatial realization of the realized niche are not

readily captured by SDM-based niche characterizations from

PO data alone, and yet are critical for determining range

boundaries (Sober�on & Nakamura, 2009). In contrast, expert

maps can reflect the outcomes of, for example, competition,

local extirpation or dispersal limitation to improve predic-

tions of realized distributions.

Data integration

In this study, we use the concept of spatial offsets in regres-

sion models to perform the model-based integration of

expert map-like species distribution information with that

based on presence-only records. Building on Merow et al.

(2016), we develop and test a framework for including

expert-based range limits as spatial offsets in Poisson point

process models (PPPMs) and Maxent-based SDMs. Specifi-

cally, we address how well PO data can ‘update’ knowledge

contained in expert maps, via the following questions:

1. Can expert maps help to reduce biased extrapolation in

occurrence models?

2. Can point occurrence data reduce false presences predicted

inside expert polygons?

3. By combining data types, can we reduce prediction uncer-

tainty, particularly for small sample sizes?

In ‘Model’, we discuss technical aspects of incorporating

expert maps into PPPMs/Maxent. In ‘Handling potential

data biases’, we illustrate how predictions are affected by dif-

ferent types of model specification or bias. In ‘Generalizing

to other species’, we explore applications to other species

with a variety of expert map and presence data attributes.

Our methods are illustrated in the Supporting Information

with a new R package (R Core Team, 2015), bossMaps, that

integrates with existing generalized linear modelling and

Maxent software. We conclude with a discussion of the

strengths and weaknesses of our approach and a prospectus

on the applications where it will be most valuable.

Macroecology, biogeography, conservation science, global

change projections and spatial decision-making all require

reliable species occurrence information. We expect that the

proposed integration of expert maps with point occurrence

data will enable a wider and more rigorous use of species

distribution information in biodiversity science by both ele-

vating the quality of range products overall and extending

the number of species with sufficient information to be

included in spatial analyses. Integration of the sorts of

approaches introduced here in spatial biodiversity informatics

infrastructure such as Map of Life (https://mol.org/) holds

the promise of continued updating and improvement of spe-

cies range information as field records and expert knowledge

about range limits advance.

METHODS

Model

We provide a joint implementation of our approach to inte-

grating expert maps with PO data for Maxent and PPPMs

(cf. Warton & Shepherd, 2010; Chakraborty et al., 2011;

Aarts et al., 2012; Fithian & Hastie, 2013; Renner & Warton,

2013; Warton et al., 2014; Renner et al., 2015). These model-

ling approaches are related; the motivation for using expert

maps in PO models comes from minimizing relative entropy

(as performed in the popular Maxent software package; Phil-

lips et al., 2006; Merow et al., 2016); however, exploiting an

equivalence with inhomogeneous PPPMs simplifies model

building and fitting (Merow et al., 2016). Maxent and PPPMs

are asymptotically equivalent as the resolution of pixel size

decreases, but Maxent imposes a specific way of handling a

number of modelling decisions based on tools that are com-

mon in machine learning (details in Fithian & Hastie, 2013;

Renner & Warton, 2013; Renner et al., 2015). Fundamental

modelling assumptions are common to both approaches: the

presence locations are independent of one another, the inten-

sity of presence records varies spatially and the intensity

varies loglinearly with environmental predictors (Renner

et al., 2015). To estimate this intensity, both model the ratio

of the density of environmental conditions at m presence

locations against those at n background locations, irrespective

of whether the background locations were sampled (Merow

et al., 2013). This ratio(s) is used to predict the relative

occurrence rate (ROR) in cells across a landscape (Merow

et al., 2013). It is useful to interpret ROR as a multinomial

distribution in geographical space, where the probabilities

Expert maps & point process models
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describe which cells are most likely to contain a presence

(Merow et al., 2013). ROR sums to unity across all cells in

the landscape, so cells with low ROR may still have a high

absolute probability of presence but a lower relative probabil-

ity than other cells in the landscape. This ROR is the so-

called raw output of the Maxent software.

Let P�ðxiÞ describing the ROR in each cell xi that we aim

to predict based on a vector zðxiÞ of environmental covariates

there. Predictions then take the following form (Merow

et al., 2013)

lnðP�ðxiÞÞ5lnðQðxiÞÞ1zðxiÞk2lnðCÞ (1)

where k is a vector of fitted coefficients, QðxiÞ represents a

prior expectation of the ROR in cell xi (referred to as a prior

in the entropy literature or an offset in the regression litera-

ture and hereafter) and C is a constant that ensures normal-

ization of the ROR across the landscape. In our application,

QðxiÞ describes the expert map (see below; other possible

applications are given in Merow et al., 2016). The interpreta-

tion of the offset is also a multinomial distribution in geo-

graphical space (the same as the prediction P�ðxiÞ) and must

be specified in terms of a ROR and its values must sum to

unity. Because this model is multiplicative (exponentiate

both sides of equation 1), a low value of the offset (outside

the expert map) probably implies a low value in the pre-

dicted distribution unless the environment is extremely

favourable (zðxiÞk is large). One can think of the term zðxiÞk
as updating the expert map; the PPPM reallocates probability

in the offset to cells that better reflect the species’ distribu-

tion. The coefficients of the model (k) thus describe the

environmental covariates that differentiate the expert map

from the occurrence data, i.e. the environmental bias in the

expert map.

An offset, in this case the expert map, reflects information

about the species’ distribution that is independent of the

occurrence records. In other words, if one asked the expert

where s/he would expect the next occurrence record to be

found, the offset values represent the probability with which

the expert would select each cell, e.g. Pðxi jY 51Þ where Y 5 1

denotes presence. One important ramification of this design

is that the model coefficients do not directly describe the

environmental niche of the species (instead they describe

which environments the expert missed) and thus cannot be

used to make projections into new areas or environments.

This issue is discussed in detail in the Discussion.

Defining the offset

A number of considerations are important when converting

an expert range polygon into a quantitative gridded offset.

Since most expert maps are binary (denoting presence/

absence), the key consideration in defining the offset is

what values to assign to cells inside the range versus outside

it. Because the offset is constrained to sum to unity,

this problem can be framed to ask how much cumulative

probability one should put inside the expert-defined range

(Pin5
X

x2range
Qx), and how much to assign outside. Vary-

ing these probabilities directly affects the relative ‘strength’ of

the expert map in the resulting predictions and can range

from Pin approaching 1 (assuming a very accurate expert

map) to a ‘flat’ offset in which Pin is simply the ratio of the

range area to the modelling domain area (assuming that

occurrences are just as likely inside versus outside the range

map). One way to assign Pin is based on omission rates, i.e.

the proportion of observed presences outside the expert map,

which we refer to as ‘expert accuracy’. If we take R as the

omission rate for an expert map with m cells inside the range

and n cells outside the range, one can assign cells inside the

range a prior value of ð12RÞ=m and values outside the

expert range as R/n. Note that this definition also allows one

the option to buffer the expert map (discussed below) to

quantify which points fall inside the expert map.

There are a number of options for estimating the expert

accuracy. Ideally, estimating the omission rate would be done

with an independent data set to avoid using the same pres-

ence data to estimate the offset as is used in the PPPM. One

could use the omission rate for a larger taxonomic (‘target’)

group from the same expert map source to estimate the

expert accuracy, on average, across the entire group. An ini-

tial analysis for terrestrial vertebrates suggests that only 82%

of presence records fell within expert maps (J. Otegui, pers.

comm.), while 88% were accurate for 790 freshwater fish in

North America (Domisch et al., 2016). If it is not possible to

use a target group, one may consider using the same presence

points for estimating both the expert omission rate and the

PPPM. Though not preferable (because the same data are

used for the offset and the PO locations), it is reasonable

because the expert map is based on geographical space while

the PPPM is fitted in environmental space. However, a possi-

ble consequence of using the same presence points to esti-

mate expert accuracy and fit the PPPM is that one can

introduce bias by up/downweighting the role of the offset if

the presence points happen to be biased. For example,

observers may be more likely to report a species outside its

expected distribution because it is unusual or unexpected. Or

observers may only look for a species within its expected

range if their study objective is something other than delin-

eating range boundaries.

The second consideration in defining the offset is the

shape of the transition from ‘inside’ to ‘outside’ the expert

range (Fig. 1). The simplest approach is a step function

which drops abruptly at the expert range boundary. However,

the spatial resolution of expert maps is typically much

coarser (Hurlbert & Jetz, 2007) than the modelling resolution

of a SDM. Thus, in most cases, a smooth decay is more rep-

resentative of the continuously decreasing probability of find-

ing the species at locations further from the expert range. As

a generic option that probably covers the spectrum of flexi-

bility that one might need, we suggest that a five-parameter

generalized logistic curve can be used to describe smoothing

as a function of distance (x) from expert range edge

(Richards, 1959):

C. Merow et al.
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QðxÞ5 u2
u2l

ð11e2rðx2kÞÞ1=s

 !
C21: (2)

The five-parameter logistic is appealing because parameters

can be readily interpreted biologically to helps to define use-

ful offsets (Fig. 1). The rate (r) affects the overall decay rate

and allows flexibility ranging from a step function (large val-

ues) to a flat surface (0). The skew (s) adjusts the symmetry

of the decay and ranges from a symmetrical logistic curve to

shifting most of the decay outside the expert range (so the

probability remains high to the boundary and before decay-

ing). Unlike r, which is rather fundamental for characterizing

smoothing, it is reasonable to set s 5 0 to obtain a simpler

model if there is no reason to doubt the expert accuracy

inside the map boundary. The shift (k) slides the curve in or

out of the expert range to adjust the location but not the

shape of the decay. Such a shift can be useful for incorporat-

ing a prescribed buffer around the expert map, although in

this study we do not adjust this term and effectively consider

a four-parameter logistic function. C is a normalization

constant ensuring that the ROR sums to unity across the

landscape. After specifying the shape of the curve (r, s and

k), the final two parameters, the upper (u) and lower (l)

asymptotes, are selected via numerical optimization to

achieve the desired Pin (and relative ‘strength’ of the prior)

for a particular expert range map and modelling domain.

These parameters can have considerable effects on predictions

(e.g. Figs 2 & 3) and must be estimated based on inferred

attributes of the expert maps. That is, they are necessary

parameters to adjust to accommodate biologically justified

values of r, s and k but are not intrinsically of any biological

interest in this application. By using a ‘target group’ of

related species described by the same source of expert maps,

it is possible to fit these parameters; however, we anticipate

that these parameters will often be set a priori based on an

understanding of the expert maps, as in the following exam-

ples. While we recommend the five-parameter logistic for its

flexibility, we note that a the most minimalistic model to

consider would be the three-parameter logistic (setting

s50; k50); further options are considered in the Discussion.

Figure 1 (a) Illustration of various decay curves across the transect shown in panel (b), showing the effects of varying the rate (r), skew (s)

and Pin. The horizontal axis has an inverse hyperbolic sine transformation and the vertical axis is log-transformed. Letters in labels identify the

points shown in panel (c). (b) A subset of the ‘expert’ range map for the montane woodcreeper (Lepidocolaptes lacrymiger) with colours

indicating the normalized logistic distance–decay (Pin 5 0.54, r 5 0.1, s 5 0.2) with the upper and lower values estimated to achieve 54%

probability inside the expert range. The thick black line shows the transect illustrated in panel (a). (c) Illustration of feasible decay parameters

given the range and domain geometry for this species. That is, some parameter combinations (e.g. high Pin and slow decay rate r) are

mutually exclusive. Colours indicate the difference between the desired Pin and the maximum possible Pin given the specified curve (deeper

reds indicate larger diferences). Blue contour lines show the distance buffer (km) needed around the expert range to include the desired Pin.

Letters indicate the location of the parameters shown as transects in panel (a).
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Range and domain geometries impose critical constraints

on reasonable combinations of the parameters in equation 2.

We denote the smoothing parameter combinations that

achieve the desired value of Pin as the feasible set (grey region

in Fig. 1b). That is, certain parameter combinations are not

possible because they have mutually exclusive implications

for the expert offset. Feasible curves can be evaluated by

assessing whether it is possible to achieve the specified accu-

racy inside the expert range (Pin) given a particular decay

curve. Figure 1(b) shows allowable combinations of Pin and

decay rate r for Lepidocolaptes lacrymiger in grey. The red

scale indicates deviations from the desired value of Pin

obtained when optimizing the values for the lower and upper

asymptotes. The allowable parameter combinations follow

intuition – it is paradoxical to select both a high probability

inside the expert range (Pin) and a very slow decay (r) that

puts significant probability outside the range (i.e. upper left

corner of Fig. 1b). Conceptually, it is unreasonable to expect

that the expert is extremely accurate while at the same time

there is high probability outside the range, while numerically

it may not possible to assign a large value to (Pin) and still

distribute the remaining probability over cells outside the

expert map without assigning them values so small that they

result in numerical underflow.

The combination of parameters in the feasible set depends

critically on the modelling domain and spatial resolution.

There exists a critical tradeoff between expert accuracy (Pin)

and spatial decay rate (r): the higher the value of Pin, the

lower the value of r must be to be part of the feasible set.

This derives in part from the normalization constraint that

must be imposed on the offset [the normalization constraint

derives from the limitation of using presence-only data and

predicting ROR (Merow et al., 2013), not from the design of

our approach]. For example, if the domain contains an

extremely large number of cells outside the expert map

(either the domain is very large relative to the expert map or

the spatial resolution is very high), it may be impossible to

assign high expert accuracy (e.g. 95%) without assigning

Figure 2 Comparison of various offsets and the resulting predicted relative occurrence rates. Top row: maps of predictions for four

offsets ranging from flat (rate, r 5 0) to a step function (r 5 10). Bottom row: offset and predictions along the transect (along the dark

line in (a)). An illustration of the importance of smoothing the expert maps. If a step function is used (a), equal prior probability is

assigned to cells adjacent to the expert boundary and cells many thousands of kilometres away. This assumption is unrealistic because

expert errors or dispersal are most likely closer to the expert boundary. By smoothing expert boundaries, we can remove spurious

predictions far from the known distribution (based on the critical assumption that the expert maps are already reasonably accurate).

Note that the skew parameter s is not varied in this example.
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values outside the expert map values so small that they result

in numerical underflow. If the problem derives from a large

domain, it is probably appropriate to reduce its size as it is

rarely important to employ an expert map while simultane-

ously inquiring about locations very far from the expert map

(the assumption of our modelling method is that the expert

map provides useful spatial information). Tips for an appro-

priate choice of the domain are provided in the Discussion.

The combinations of parameters in the feasible set also

depend critically on range geometry. For example, a range

with a large perimeter/area ratio (e.g. L. lacrymiger in Figs 1

& 3), when spatially smoothed with equation 2, will assign a

relatively larger amount of probability immediately outside

the expert map, compared with a range with equal area but

smaller perimeter/area ratio (e.g. roughly circular). Assigning

high expert accuracy to a range with a large perimeter/area

ratio may be impossible if the spatial decay rate is slow,

because a large amount of cumulative probability would

reside immediately outside the expert range, leading to

numerical underflow from cells assigned extremely small val-

ues far from the expert range. Again, this is a sensible result;

one cannot simultaneously suggest that an expert map is

highly accurate but that a significant amount of probability

resides just outside the expert map. One solution is to simply

lower the expected expert accuracy (Pin; which must, of

course, be justified by data). An alternative is to calculate the

cumulative probability as some fixed distance from the expert

range boundary; that is, Pin 5 0.95 might be inappropriate

but 95% of the cumulative probability might lie within

100 km of the expert range boundary. By considering loca-

tions within this distance as ‘inside’ the expert range, it is

feasible to assign higher Pin than would otherwise be possi-

ble. As a final solution, if data are available for a large num-

ber of species, one could estimate how the decay rate varies

as a function of expert map area, perimeter/area ratio or

area/domain area ratio.

In summary, it is possible to transform a binary expert

range map polygon into a continuous quantitative raster that

accounts for the known spatial ‘fuzziness’ of a typical expert

maps at range boundaries. While some parameters are diffi-

cult to identify with precision, we note that this process is

analogous to ‘prior elucidation’ in Bayesian approaches,

where prior belief is translated into a statistical distribution

(Dey & Liu, 2007).

ASSESSING THE METHOD

Data

We provide an intensive assessment for two example bird

species, the montane woodcreeper (L. lacrymiger, LELA), a

bird occupying Andean montane forest, and the solitary tina-

mou (Tinamus solitarius, TISO), a forest species from low-

land Brazil. These examples illustrate how predictions are

affected by different modelling decisions and attributes of the

data. The LELA data consist of: (1) 374 presence observa-

tions, (2) 5441 non-detections from the eBird database

Figure 3 Mapped predictions (left column) and coefficient of

variation (right column) to explore the implications of different levels

of expert accuracy (Pin), rate (r; larger 5 steeper), and skew (s;

larger 5 softer edge inside the expert boundary). The top row shows a

model with no offset for comparison. Rows 2–4 show how predictions

change with decay rate r (note s 5 0.6 is needed when r 5 1 in row 4

to achieve the desired Pin; see Fig. 1b). Rows 5 and 6 show how

increasing expert accuracy leads to tighter predictions around the

expert range. Notably, a model with an offset in (b) has better AIC and

AUC than a model without an offset (a); this model has the ’correct’

expert accuracy (Pin 5 0.54) based on the 374 presence observations

available. Notably, reducing the bias by including the expert map does

not increase the coefficient of variation, and in some cases, even

reduces it. See Fig. D for examples of further parameter combinations.

Expert maps & point process models

Global Ecology and Biogeography, 26, 243–258, VC 2016 John Wiley & Sons Ltd 249



(Sullivan et al., 2009), and (3) an expert map based on the

International Union for Conservation of Nature (2011) one

as used in Jetz & Fine (2012). Point records included in the

analysis come from the years 1946 to 2014 and the expert

range map is expected to be representative of the c. 1980–

2010 time frame. The LELA data exhibit some helpful

attributes for exploring model construction. Only 54% of

presences fall within the expert range, but many are just

outside. The range geometry presents some challenges, being

relatively small compared with the study domain (the north-

ern portion of South America) and with a high perimeter/

area ratio. The LELA data provide a good example of an

expert map that can be considerably improved with addi-

tional presence data.

The TISO data consist of: (1) 171 presence observations

from GBIF (http://gbif.org/) and eBird (Sullivan et al., 2009)

accessed through the Map Of Life (https://mol.org) and (2)

an expert map from Jetz et al. (2012b). The TISO data

exhibit some helpful attributes for exploring model construc-

tion. Unlike LELA, 92.4% of presences fall within the expert

range and the range geometry exhibits a much lower perime-

ter/area ratio (Fig. 2).

The distribution models were built using 1 km mean

annual temperature (MAT; Hijmans et al., 2005) and three

satellite-derived cloud-related metrics associated with precipi-

tation (Wilson & Jetz, 2016), mean January and July cloud

frequency (CLDJAN and CLDJUL) and cloud seasonality

(CLDSEAS).

Model construction

For all tests, we used generalized linear models (glm() in R;

R Core Team, 2015) and/or the Maxent software package

(Phillips et al., 2006) with settings chosen to fit equivalent

models [see the appendices in Renner et al. (2015) for

options]. Supporting Information Appendix B illustrates our

code. We allowed only linear, quadratic and product features/

predictor transformations. When fitting models in the Max-

ent software package, we turned off regularization, removed

duplicate presences in the same cell and turned off clamping

during model projections. When fitting models with glm()

we used downweighted Poisson regression as recommended

by Renner et al. (2015). All other settings were left at default

values. Continuous predictions were assessed with both the

presence/absence data and presence/background data using

the area under the curve (AUC) and the point biserial corre-

lation. The point biserial correlation showed no qualitative

differences from the AUC, so we do not report it. We chose

to evaluate against both absence and background data

because the absences are inferred from checklist locations

very near presence locations and seem more likely to repre-

sent non-detections than true absences. Binary predictions

were assessed using the true positive rate (TPR; % presences

correct), true negative rate (TNR; % absences correct) and

correct classification rate (CCR; % presences and absences

correctly classified as such). Notably the number of absences

(5441) dominates the presences (374) in the calculation of

the CCR for LELA. For all tests, we built models both with-

out and with expert offsets with different expert omission

rates to examine the effects of different levels of expert accu-

racy. We also evaluated the predictive performance (based on

AUC) of the offset alone to disentangle how improvements

derive from the offset versus the presence points.

The effect of offsets

To illustrate how predictions depend on decisions made

about the offset, we explored variation in predictions for the

different choices of parameters for TISO (Fig. 2) and LELA

(Fig. 3). We compared predictions that exclude the expert

map with those that incorporate an expert map with differ-

ent levels of expert accuracy, using all presence data. The

TISO models (Fig. 2) focus on varying only Pin and r and

illustrate an important point about the spatial smoothing

enforced by the expert map. Naturally, higher values of Pin

lead to tighter predictions around the expert range. One

might expect that since the expert map only directly contains

binary information, an abrupt transition in the offset is

appropriate; however, Fig. 2 illustrates the importance of the

spatial smoothing that we introduced in equation 2. When

an offset is not used, inaccurate predictions for TISO’s real-

ized distribution far from the expert map are apparent (Fig.

2a). When an offset is used with an abrupt transition (Fig. 2,

last three columns) predictions outside the expert map have

relatively lower probabilities; however, many suitable areas

are still predicted far from the expert map. This pattern

occurs because cells immediately outside the expert map (e.g.

50 km) are assigned the same prior probability as cells 500

or 1000 km from the expert map because the spatial smooth-

ing occurs so abruptly. A more realistic prior expectation is

that the probability of observing a presence should continue

to decrease with distance from the expert map edge; Fig. 2

(second column) illustrates this smoother spatial decay and it

impact on concentrating more probability near the expert

map.

For LELA, the presence data suggest that the expert accu-

racy is 54%; however, to explore the effect of different hypo-

thetical expert accuracy on predictions, we also considered

cases where the expert accuracy was assumed to be 70% and

87%. Figure 3 shows predictions for the range of spatial

smoothing curves shown in Fig. 1, while Fig. A3 shows a

range of other parameter combinations. A number of gener-

alities across the TISO and LELA explorations are apparent:

1. In general, predictions without offsets (Fig. 3, top row)

are clearly more diffuse than predictions with offsets. Intui-

tively, as more confidence is given to the expert map by

increasing Pin, predictions become more tightly constrained

around the expert map.

2. Rate and skew smoothing parameters primarily affected

predictions in the immediate vicinity of the expert map (Figs

3, A3), whereas varying Pin has a much stronger effect across

the domain.
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3. When accuracy of the expert map is relatively poor (e.g.

LELA; only 54% presences correctly predicted by the expert

map) PPPMs with offsets with Pin 5 0.54 perform best based

on the Akaike information criterion (AIC) and AUC (Fig. 3).

4. Including presence data identifies a number of ‘holes’ in

the expert map where habitat is less suitable for this species.

5. A considerable amount of variation in ROR exists inside

the expert map.

6. The coefficient of variation is similar in models with and

without offsets. Hence reducing bias by including the expert

map does not reduce precision. In the case of the large

region of low probability in the Amazon for LELA, the abso-

lute value of the prediction standard error is considerably

reduced, but since the mean prediction there is also reduced,

the coefficient of variation changes minimally. Reducing pre-

diction uncertainty in relatively unsuitable areas is particu-

larly useful for SDM applications.

7. In all cases, the offset alone (i.e. the smoothed expert

map) generally predicted far too many absences within the

boundaries of the expert map and consequently had much

lower AUC (compare Figs 3 & A4). Consequently AUC eval-

uated against either absences or background points was

reduced by c. 0.1 compared with models that used presence

points. Notably, we do not expect the expert maps to be par-

ticularly accurate on their own because their inaccuracies are

not due to imprecise boundaries (improved by our smooth-

ing) but rather due to the prediction of false presences.

Handling potential data biases

In order to assess the usefulness of combining expert maps

with presence data, we explored scenarios in which different

types of bias might exist in either data set. We considered a

variety of scenarios by subsampling the full data to explore

whether including an offset in PPPMs makes predictions

more robust in the face of problematic data. In particular, we

wanted to ensure that it was possible to balance the informa-

tion content of both presences and expert maps such that

neither would inappropriately dominate the other if they

exhibit considerable bias. We explored extreme cases of

biased presences, biased expert maps and the dependence of

predictions on presence sample size.

Biased presences

Background. Presence data sets may exhibit considerable

bias in records or sampling when they are not the result of

systematic surveys (Phillips et al., 2009). Biased samples are

particularly problematic for rare or poorly studied species

where available records may miss a large geographical and

environmental portion of the actual distribution. In such

cases, an expert map including these range parts would natu-

rally be useful information for many applications – yet it

would preclude benefitting from the information that the

small presence point sample may also provide in identifying

nearby suitable habitat. Hence, we sought to determine

whether bias in presences could persist in PPPM predictions

if expert maps were used as offsets.

Methods. We simulated extreme bias by omitting from model

fitting presences from large portions of the range to explore

whether including expert offsets could improve predictions in

portions of the range where the species is not detected. We con-

sidered four cases and removed all presences from (1) the south-

ern portion of the range (< 58 S), (2) northern portion of the

range (> 58 N), (3) middle portions of the range (< 58 S

and< 58 N), and (4) northern and southern portion of the range

(< 58 S or> 58 N) from the fitting data. PPPMs were built with-

out offsets and with offsets built with Pin50:54; 0:70; 0:87 (the

same as those shown in Fig. 3) to explore how variation in

expected expert accuracy affects predictions (even though we

know that the expert accuracy is much lower in this simulation,

we expect that one would elect not to use expert maps with only

30% accuracy). AIC and AUC (calculated with either non-

detection or background data) were used to compare predictions.

Results. Representative results from omitting presences from

the southern portion of the range are shown in Fig. 4; quali-

tatively similar patterns are seen in other scenarios in Fig. 5.

If the expert map is poor (i.e. where only 54% of presences

are assumed inside) predictions are more diffuse as in earlier

examples. In all cases, predictions were improved based on

AIC and AUC when the expert map was given less weight

(lower Pin). In all cases predictions with Pin 5 0.54 were

superior to models without offsets based on AIC and AUC.

Hence, it is apparent that even when presences are com-

pletely absent from large portions of the range, the influence

of the expert map is sufficient (under a range of offsets) to

improve prediction in portions of the range where presences

are lacking.

Erroneous expert map

Background. In some understudied systems, expert range

maps may also have significant flaws. While we expect that

using biased expert maps will have a significant negative

impact on predictions, we sought to determine whether

PPPMs could still at least correctly highlight areas outside a

biased expert map. If models can correctly identify suitable

areas outside the expert map, then we would have confidence

in both detecting expert map errors and in using offsets in

spite of such errors (e.g. with large biodiversity databases,

where manual checking of each model is prohibitive).

Methods. To explore the influence of expert map bias, we

simulated bias in the LELA expert map by sequentially omit-

ting different portions of the range from model fitting and

examining predictions in the omitted portion of the range.

More generally, these tests help us to explore how presence

points beyond expert boundaries influence predictions. We

tested four scenarios: (1) removing the large southern por-

tion of the range; (2) including only the southern portion of

the range (i.e. omitting the four northern-most polygons);

(3) omitting the large central polygon (leaving only the large
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Figure 4 Predictions based on different potential data limitations. Row 1: we simulated bias in the presences by sequentially

omitting portions of the presence data from model fitting. Panels (a)–(c) show an example where the southern-most presences

(triangles) are omitted from fitting (using only the circles). Suitable habitat was predicted in the south, driven by the expert map

offset (see other examples in Fig. A5). Row 2: we simulated bias in the LELA expert map by sequentially omitting portions of the

range from model fitting. Panels (d) and (e) show an example where the southern-most portion of the expert range (transparent

grey) was omitted from fitting (outlined in black). In spite of expert map bias, suitable habitat was still detected outside the expert

map (see other examples in Fig. A6). Row 3: performance comparison of models with and without expert offsets as a function of

presence sample size. While diminishing returns were apparent with increasing sample size, it was rare that the expert map did not

improve AUC.
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southern polygons and the three small northern ones); (4)

and omitting the three small northern-most polygons. For

each case, we compared predictions for different levels of

expert accuracy Pin; that is, we sought to determine how the

ability to predict the true distribution depended upon how

much confidence was placed on the expert accuracy. We

compared three different offsets for each case, each using the

same rate (r 5 0.5) and skew (s 5 0.2) parameters, and using

Pin 5 0.7 (relatively high confidence for a poor expert map),

Pin 5 0.54 (the expert accuracy for the full data set, for refer-

ence), and the observed value of Pin for the portion of the

biased expert map used for fitting (0.20–0.34).

Results. In general, it is apparent that even when a large

portion of the expert map is omitted from model fitting, the

presence points are capable of driving the prediction. We

note that this will depend on the number and bias of

Figure 5 Predictions for

species with different range

geometries. The left column

shows predictions that ignore

the expert map (traditional

PPPM/Maxent) while the

right column shows a model

that includes the expert map.

The model including the

expert map was selected based

on having the best AIC

among a set of models built

with different offsets (the full

set of models is shown in

Supporting Information

Appendix D.2). Beside each

row, we indicate the number

of presences used for model

fitting (n), the percentage of

those observed inside the

expert map and the values of

Pin and r used with the expert

map. The colour scale is

adjusted such that values

below the 5% quantile of

predictions at presence

locations in the model

without an expert map are

shown on the grey scale while

values above this threshold

are shown on the colour

scale. In all cases, using the

expert map improved the

AIC.
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presence points and the weight assigned to the offset (via

Pin). Figure 4(d–f) illustrates this pattern for the case where

the southern-most expert polygon was omitted from fitting,

while Fig. A6 shows the remaining scenarios. In all cases

tested, the AIC and AUC were best for models that used the

lowest Pin, corresponding to the case where the expert map

has a smaller influence on predictions. All else being equal

(e.g. other smoothing parameters) it is thus preferable to

assign a low accuracy to the expert map when it may be

biased. However, in spite of the expert bias, the portions of

the range which were ‘missed’ by the expert were still high-

lighted as relatively more suitable habitat in all cases (i.e. yel-

low or red in Figs 4 & A6). This observation illustrates that

models with offsets can be informative even with imperfect

expert maps, so long as undue confidence is not assigned to

the expert accuracy.

Sample size

Background. We expected that including an expert map off-

set would be most helpful when few presence samples were

available. Poorly sampled species might be expected to have

both poor expert maps and presence samples with consider-

able bias, hence this is perhaps the most critical scenario for

combining data types. We hypothesize that if a large number

of presence points are available, the expert map may not add

much information unless the presences are spatially biased.

Methods. We randomly subsampled the LELA presence data

to obtain 50 replicates of 4, 8, 16, 32, 64 and 128 presences.

We built models without offsets and using the expert offsets

with Pin50:54 and 0.87 used in Fig. 3(b) and (e), respec-

tively. We evaluated all models with AIC and AUC (evaluated

with all presence data and either non-detections or back-

ground points).

Results. Results were similar across all evaluation measures

(Fig. A7), so we focus on the difference in AUC evaluated

against non-detection points between models with and with-

out expert offsets (Fig. 4g). Two general patterns are sugges-

tive in Fig. 4(g). Across all sample sizes, models with offsets

generally have higher performance than models without

(DAUC > 0) Second, the improvement in AUC for models

with offsets depends on the number of presences, with

greater improvement observed for smaller sample sizes. Simi-

lar patterns are observed for AIC, point biserial correlation

and AUC based on presence–background data (Fig. A7).

Note that the number of presence points required before the

AUC asymptotes (around 16 presences here) will vary con-

siderably across species depending on range attributes, sam-

pling biases, etc.

GENERALIZING TO OTHER SPECIES

Background

To better explore the generality of using PPPMs with expert

maps we also built models for a set of additional species. For

this initial, non-exhaustive exploration, our selection aimed

to represent a variety of species groups, regions, unique range

geometries and levels of expert accuracy, each posing differ-

ent challenges for accurate predictions. We sought to deter-

mine generally whether including an expert map can

typically improve predictions over models that ignore them.

Furthermore, we wanted to ensure that parameters describing

a range of common patterns of expert accuracy fell within

feasible parameter space (cf. Fig. 1c) and that the feasible

space was not so small as to preclude useful comparison

among models with different spatial smoothing parameters.

Finally, we sought to explore whether such potential

improvements were readily obtained or required thorough

exploration of feasible parameter space. Our goal was to

determine if any idiosyncrasies might emerge related to these

questions when using expert maps with the following species.

1. Beamys hindei (lesser pouched rat) is a rodent with a

small, disjunct range with moderate expert accuracy (59%;

n 5 37), wherein many presences are just outside the expert

map (http://species.mol.org/species/map/Beamys_hindei).

2. Litoria freycineti (wallum rocket frog) is an amphibian

species endemic to Australia with a long narrow range with

high expert accuracy (93%; n 5 318) (http://species.mol.org/

species/map/Litoria_freycineti).

3. Podocarpus brasiliensis is a conifer species from the ancient

radiation of podocarps with a small range that is disjunct

range across parts of Brazil and Venezuela a large region with

apparently high expert accuracy (93%; n 5 15) (http://spe-

cies.mol.org/species/map/Podocarpus_brasiliensis).

4. Reithrodontomys sumichrasti (Sumichrast’s harvest mouse)

is a rodent with a relatively large but disjunct distribution

that is well characterized by the expert map (93% expert

accuracy; n 5 551) and a large number of presences (http://

species.mol.org/species/map/Reithrodontomys_sumichrasti).

5. Protea repens is relatively widespread overstorey shrub in

the South African mediterranean shrublands with a large

range within the shrubland biome. Both the expert map

(90% accuracy; n 5 3998) and the extensive occurrence data

set are expected to accurately describe the distribution.

Methods

For each species, we built expert map offsets by varying Pin

at the observed expert accuracy and values slightly above or

below (60.06–0.08 as appropriate for allowable parameter

combinations for each species, cf. Fig. 1c). We also varied

values of r to explore different feasible spatial decay parame-

ters of 0.1, 1 and 10. Values for the skew, s, were kept at 0.2

for all models. Our goal was to explore whether improve-

ments over models that ignore expert maps were readily

obtained rather than to find the best performing model in

the feasible set. Note that the full modelling domain and set

of models compared is shown for each species in Supporting

Information Appendix D.2, while Fig. 5 shows cropped ver-

sions to highlight differences between traditional models that

omit the expert map and the best-fitting model (based on

AIC) using an expert map.
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Results

In general, models including expert maps almost always per-

formed better than those without (Fig. 5), with smoother spa-

tial decay typically leading to better AIC values (Supporting

Information Appendix D.2). Importantly, while the offset has a

considerable influence on predictions, it does not simply domi-

nate them; unsuitable regions inside the expert map are readily

identified by the covariates in all examples and suitable areas

outside the expert range are often identified (Fig. 5). Without

exhaustively exploring the feasible set of smoothing parameters

(cf. Fig. 1c), we readily obtained models with a range of spatial

smoothing scenarios that were improvements over models

without expert maps. This is encouraging; it may be difficult

to precisely estimate expert accuracy for many species, but a

comparison of models in Supporting Information Appendix

D.2 illustrates that even an approximate estimate typically leads

to improvements compared with ignoring expert maps.

Increasing Pin limited the allowable combinations of smoothing

parameters, similar to that observed in Fig. 1c (Supporting

Information Appendix E); however, this primarily limited the

feasible decay rates (r) when Pin was high (>0.90). If the expert

map is fairly accurate, it does not seem problematic to avoid

strong smoothing to the edges of the expert map (as the impli-

cation of using the expert map is that we do not expect pre-

sences very far from its boundaries).

Including the expert map was generally useful for excluding

large patches of habitat that were otherwise predicted as poten-

tially suitable based on environmental conditions, but where

no presences have been observed (Fig. 5, right column). Con-

versely, the maps shown in Fig. 5 are not particularly good at

predicting presences further from the expert boundaries (many

occur in grey regions of the maps). This reveals a fundamental

tradeoff between reducing false absences and false presences

simultaneously, and each may be important in studies with dif-

ferent objectives. Notably, Supporting Information Appendix

D.2 shows many examples where smoother offsets better pre-

dict points far from expert boundaries; while these models do

not have the best AIC values among the models we explored,

they were typically still better than models that ignore expert

maps. Hence, this framework is flexible enough to accommo-

date a range of smoothing assumptions to minimize Type I or

II errors compared with models that ignore expert maps.

DISCUSSION

Overview

Expert maps and presence-only (PO) data have complemen-

tary strengths and weaknesses that make it valuable to com-

bine them in PPPMs and Maxent models. Typically, expert

maps have relatively coarse spatial resolution, blurring local

habitat variation, and are most informative about where a

species is unlikely to be found (Jetz et al., 2012a). In con-

trast, PO data can help to identify variation in occurrence

patterns at high spatial resolution but are less useful in iden-

tifying areas where the species does not occur, due to an

inability to distinguish absences from non-detection/non-

searched areas. Expert maps are typically very good at defin-

ing absences beyond range boundaries, which complements

PO data. By combining expert maps and PO data, we have

shown that: (1) expert maps can improve occurrence predic-

tions when PO data are sparse or biased; (2) presence data

can refine expert maps and identify the ‘holes’ of unsuitable

habitat within the range; (3) presence data can identify varia-

tion in occurrence patterns in otherwise binary expert maps;

(4) improvements from including expert maps are apparent

for a range of assumptions about how to characterize the

expert map. Hence, combining expert maps with presence

data takes advantage of the strengths of different data types

to improve predictions of species distributions in a statisti-

cally straightforward framework using intuitive, biologically

motivated specification of offsets.

Of course, the use of expert maps comes with some cav-

eats that users must recognize. For example, expert maps

typically have areas of unsuitable habitat within the range

boundaries. These are assigned the same relative probability

as suitable areas in the offset, so bias in expert maps carries

forward to all subsequent predictions if these patterns are

not overcome by sufficient presence data (e.g. Fig. 5b shows

considerable variation within the expert map, driven by pre-

sences, whereas Fig. 5f does not). Another challenge with

using expert maps is determining the appropriate a priori

accuracy (Pin) to assign to an expert map. This accuracy can

be fitted directly from data from a target group of similar

species to evaluate the expert’s typical accuracy (see ‘Outlook

and extensions’ below); however, the solution for studying a

handful of species is less straightforward. If large presence

samples are available, expert accuracy can again be estimated

from data, with the caveat that any bias in the presence sam-

ple will be translated to the expert map.

The predictions provided by our methods should be interpreted

as a way to update expert maps. That is, they represent a realized

distribution, describing locations that are likely to be currently

occupied. While the spatial smoothing imposed by the expert map

is valuable for predicting a realized distribution, it is not appropri-

ate for predicting a potential distribution. Spatial smoothing con-

strains predictions to be ‘nearby’ the expert map boundary, hence

limiting the ability to predict disjunct portions of suitable habitat

far from expert boundaries. Consequently, the coefficients of the

fitted model do not describe the species’ environmental niche (as

is commonly inferred in occurrence models) but rather how the

species’ niche differs from the expert map. This disconnect

between geographical distribution and environmental niche means

that this modelling framework incorporating expert maps is not

suitable for transfer to other locations or times (Merow et al.,

2016). Thus the motivation for applying this method is in the

refinement of existing expert range maps using point observations.

R package

We have developed an R package (R Core Team, 2015),

bossMaps, to facilitate building offsets from expert maps.
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The package features tools to explore the shapes of different

assumptions about spatial decay (e.g. Fig. 1b) and under-

stand the feasible set of smoothing parameters for a given

range geometry (e.g. Fig. 1c) and functions to compute the

offset for a given suite of parameters (e.g. Fig. 1a). A tutorial

illustrating the full workflow from downloading data to com-

paring models is provided in Supporting Information Appen-

dix D. bossMaps can be used with any suitable model-fitting

software (glm(), Maxent, other options in the appendix of

Renner et al., 2015) and includes efficient code to expedite a

number of potentially slow computations. All models dis-

cussed here were fitted with glm(), choosing appropriate

weights to reflect a PPPM as recommended in the appendix

of Renner et al. (2015). Finally, a number of functions are

included to process model output. Model-fitting tips are

included in the package documentation, as well as Support-

ing Information Appendix C, including choosing a domain,

exploring the feasible set of smoothing parameters and trou-

bleshooting fitting smoothing parameters for different data

scenarios.

Outlook and extensions

A useful option for developing offsets, which alleviates many

of the challenges discussed above related to choosing parame-

ters for the offset, is to estimate those parameters based

entirely on data. When expert maps come from a common

source, one can use the presence data from a large number

of species to fit the relative likelihood of finding suitable hab-

itat as a function of distance from the expert range. We

expect that there would a general pattern to this relationship

that could then be used to estimate a decay curve (described

by rate, skew and shift parameters) that could then be used

for all the species in that group (or perhaps account for vari-

ation in these parameters based on taxonomic or functional

subgroups if appropriate). Statistically fitting smoothing

functions also provides the opportunity for formal model

comparison of different smoothing functions, e.g. three- or

four-parameter logistic functions, a Gompertz function or

any other sigmoid functions. Exploring other curve shapes

that best capture the decay in expert accuracy may be useful,

but as the smoothing model is unlikely to be of any intrinsic

interest in most studies, we do not view model complexity as

a major problem. Hence, we recommend that the flexibility

offered by the 5-parameter logistic, with the clear interpreta-

tion of r, s, and k (note that set k 5 0 in this study), appears

sufficiently general and suitable to match the amount of

information one might expect to extract from a typically

coarse resolution expert map.

Extending this framework to use a complete Bayesian for-

mulation would also offer some advantages. In particular,

one could incorporate uncertainty in the offset into predic-

tions. Offset uncertainty could be useful to characterize (1)

uncertainty in the accuracy of the expert map, which

increases in importance for smaller sample sizes, and (2)

uncertainty in an appropriate smoothing rate, which is

important when expert accuracy may vary by species. To

incorporate uncertainty in the offset, one must simply sam-

ple from the distribution of values for the offset in each cell,

though this may be computationally demanding because it

requires estimating a large number of offsets. It is advisable

to sample values for all cells simultaneously to ensure that

the offset is normalized.

Biased sampling can result from variable search effort,

detection probability or both and is particularly worrisome

when the sample size is relatively small. The incorporation of

expert maps using the approach outlined in this paper is

most useful in this situation. Accounting for sampling bias is

conceptually straightforward and common in Poisson regres-

sion to account for variation in exposure; for example, twice

as many presences are expected in environments that have

received twice as much sampling effort. This effectively con-

verts a model of intensity (counts) to a model for the rate

per unit sampling effort. The model can then project the

expected intensity for a given (constant) sampling effort.

Merow et al. (2016) provide worked examples of how sam-

pling bias can be incorporated with other offsets.

While we have focused on expert maps as important sour-

ces of spatial information, other similarly coarse spatial mod-

els could also be used. For example, known habitat

limitations (e.g. elevation, vegetation, ecoregion or land

cover) could serve a similar role to expert maps. This infor-

mation is commonly available in field guides or other species

descriptions based on expert knowledge. For example, a spe-

cies known to occur primarily in forests is probably best

interpreted to only rarely be found outside forests (but more

common in locations near forests). A spatially smoothed

map of forest cover may reasonably describe this distribution

in ways that a sparse presence sample cannot. To be fair, we

note that objectively choosing the spatial smoothing parame-

ters in such cases may be challenging. Of course, it is prefera-

ble to include such information more directly as model

covariates if sufficient presence data are available to fit the

associated coefficients. When presence samples are sparse,

however, it may be advisable to incorporate expert informa-

tion on such habitat characteristics via the offset, so that the

presence data can rather inform climatic (or edaphic, etc.)

relationships. Furthermore, combining multiple sources of

spatial information in a model simultaneously is as simple as

multiplying the offsets together and normalizing the result

(details in Merow et al., 2016).

Conclusions

Combining expert maps and point occurrence data in models

that predict species distributions offers a number of advan-

tages over models that rely on just one data type. Point

occurrences, annotated with environmental characteristics,

can identify unsuitable locations within the expert-delineated

range, and compared with expert maps provide significantly

enhanced spatial detail. In turn, the inclusion of expert maps

can significantly improve predictions of species distributions

C. Merow et al.
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based on occurrence points due to their ability to help over-

come (1) small or (2) biased presence samples and (3) their

ability to account for spatial factors (historical distribution

constraints, dispersal limits, biotic factors) not readily

described by available covariates. Our approach to using

expert maps offers the flexibility to reflect different assump-

tions (accuracy, smoothing) about expert maps, which can

often improve range predictions even when the assumptions

are imperfect. Future extension of the method is likely to

enable an extension to other types of species distribution

data (sensu Jetz et al., 2012a), such as expert habitat or eleva-

tion restrictions, in a similar statistical framework. While the

magnitude of improvements in range prediction will vary

and advances gained will often be incremental, the presented

approach lends itself ideally to an iterative process where

both expert knowledge and occurrence data are updated peri-

odically or even continuously. For example, we envision a

scaled-up implementation of the method in the spatial biodi-

versity infrastructure Map of Life with the potential for

ongoing updates to expert-defined limits informed by new

data advances and iteratively advanced integrated estimates

of distribution. This combination of integrative modelling

approaches combining data types, ongoing data flows and

infrastructure bringing together data and expert curation

charts the path toward a more general and continued

advance toward the best-possible knowledge of species distri-

bution for research and application.
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