
HISA: Hardware Isolation-based Secure Architecture for
CPU-FPGA Embedded Systems

Mengmei Ye, Xianglong Feng, Sheng Wei
Department of Computer Science and Engineering

University of Nebraska-Lincoln

Lincoln, NE, USA

{mye,xfeng,swei}@cse.unl.edu

ABSTRACT

Heterogeneous CPU-FPGA systems have been shown to achieve

significant performance gains in domain-specific computing. How-

ever, contrary to the huge efforts invested on the performance

acceleration, the community has not yet investigated the security

consequences due to incorporating FPGA into the traditional CPU-

based architecture. In fact, the interplay between CPU and FPGA

in such a heterogeneous system may introduce brand new attack

surfaces if not well controlled. We propose a hardware isolation-

based secure architecture, namely HISA, to mitigate the identified

new threats. HISA extends the CPU-based hardware isolation prim-

itive to the heterogeneous FPGA components and achieves security

guarantees by enforcing two types of security policies in the iso-

lated secure environment, namely the access control policy and the

output verification policy. We evaluate HISA using four reference

FPGA IP cores together with a variety of reference security policies

targeting representative CPU-FPGA attacks. Our implementation

and experiments on real hardware prove that HISA is an effec-

tive security complement to the existing CPU-only and FPGA-only

secure architectures.

1 INTRODUCTION

Reconfigurable computing architecture, which combines both the

general purpose application processor (i.e., CPU) and high perfor-

mance programmable logic (i.e., field-programmable gate array, or

FPGA), have gained rapid advancements recently and demonstrated

superior performance and power gains [16][17][19][22]. In partic-

ular, the CPU-FPGA architecture has been recently deployed in

two types of computing systems: (1) CPU-FPGA based system on

chips (SoCs), such as Xilinx Zynq [33], leverage the low power, high

performance, and high flexibility brought by FPGAs to speed up the

embedded computing tasks; and (2) CPU-FPGA based cluster and

cloud systems, such as the recent commercial deployments in Ama-

zon AWS [5] and Microsoft Azure [7], leverage FPGAs to accelerate

computation-intensive and domain specific tasks. Without loss of

generality, we primarily focus on the CPU-FPGA embedded SoC in
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this work, given the similarity between the hardware architectures

and the security properties of the two systems.

Despite its strong potential in performance acceleration and the

commercial deployment, the adoption of the CPU-FPGA architec-

ture still faces significant challenges. One obvious obstacle is the

burden of developing hardware oriented computation modules on

FPGAs. Even though the problem is partially solved by the emerg-

ing high level synthesis tools, the community still heavily relies on

third-party FPGA IP cores that are delivered as black box designs.

Under this context, the security of the IP cores becomes the top

concern due to the following reasons. (1) The hardware IP cores are

developed by third parties that are not fully trusted; (2) The service

providers typically have limited resources to deploy separate hard-

ware for the sensitive applications; and (3) Despite the traditional

belief that hardware is more secure, the reconfigurable nature of

the CPU-FPGA system may introduce new vulnerabilities exposed

to potential remote attacks on hardware without the need of physi-

cal access. For example, the CPU-FPGA system could enable live

deployments of hardware Trojans (on the FPGA part) and malware

(on the CPU part), which complicate the security measures and

elevate the system security requirement to a new level.

The community has mostly focused on the performance acceler-

ation and optimization of CPU-FPGA systems, where security has

not been fully studied [16][22]. In the security community, the prior

works have intensively studied the security around CPU and FPGA

systems, but they have been targeting the CPU and FPGA systems

separately, e.g., the former in the software security community

[15][18][32] and the latter in the hardware security community

[21][23][25][37]. In this paper, we focus on the following unsolved

threat models between the CPU and FPGA systems, as outlined in

Figure 1.

• CPU to FPGA attack, in which the software applications on the

CPU side attempt to compromise the FPGA system, such as leak-

ing confidential information; and

• FPGA to CPU attack, in which the third party IP cores on the

FPGA side attempt to compromise the software applications on

the CPU side, such as interrupting the software execution or

falsifying the data.

Our key insight is to address the root cause of the vulnerabilities

that the heterogeneous system components, namely CPU and FPGA,

share the same system domain with direct access to each other. Our

solution is two-fold. First, we adopt a CPU-driven hardware iso-

lation mechanism to physically separate the system components,

including the processes and data in the CPU domain and the third

party IP cores in the FPGA domain, into a secure world and a nor-

mal world. The hardware isolation is accomplished at the physical















interface [29] require a trusted OS to manage and enforce the secu-

rity. HISA is orthogonal to these related works in that (1) it targets

the security of the CPU-FPGA systems at runtime instead of the

boot-up stage; and (2) it provides a hardware-level solution other

than at the OS level, which does not require the OS or upper-level

software to be in the trusted computing base (TCB) and thus pro-

vides an additional and strong layer of security to the CPU-FPGA

systems.

Hardware IsolationPrimitives. Isolation or sandboxing has been

an important security principle adopted in many security sensi-

tive systems, such as hypervisor-based virtual machines [12] for

secure cloud computing. Recently, hardware-based isolation mech-

anisms, such as Intel SGX [20] and ARM TrustZone [1], have been

developed to provide lower level, more resilient isolation primitives.

Intel SGX is based on memory encryption and does not support

peripheral devices like FPGAs. ARM TrustZone functions at the

physical bus level, which could be adopted to protect on-chip periph-

eral devices. Recently, there have been related works that employ

ARM TrustZone to secure software applications [15][18][30][36]

and hardware components [21][34][35]. The existing ARM Trusted

Firmware [2] implements the generic functionality of TrustZone

without customized security policies. HISA differentiates from these

existing research efforts by providing a universal CPU-FPGA secu-

rity framework with well-defined security policies, which support

a wide range of applications.

7 CONCLUSION

We have developed HISA, a hardware isolation-based secure archi-

tectural extension to mitigate the new threats in emerging CPU-

FPGA heterogeneous systems. HISA provides an isolated secure

execution environment for both the CPU and FPGA cores in the sys-

tem, which enforces access control and output verification policies

to ensure the security and integrity of the heterogeneous system.

We have implemented HISA on a Xilinx Zynq-7000 SoC and evalu-

ated its security and performance using four reference IP cores. Our

experiments demonstrate that HISA is able to fill the security gap

in the CPU-FPGA systems and introduce minimum performance

and power/energy overhead. For the readers’ reference, we released

the source code of HISA, the reference IPs, and the code and demo

of the case study via a Github repository [6].
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