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ABSTRACT

Heterogeneous CPU-FPGA systems have been shown to achieve
significant performance gains in domain-specific computing. How-
ever, contrary to the huge efforts invested on the performance
acceleration, the community has not yet investigated the security
consequences due to incorporating FPGA into the traditional CPU-
based architecture. In fact, the interplay between CPU and FPGA
in such a heterogeneous system may introduce brand new attack
surfaces if not well controlled. We propose a hardware isolation-
based secure architecture, namely HISA, to mitigate the identified
new threats. HISA extends the CPU-based hardware isolation prim-
itive to the heterogeneous FPGA components and achieves security
guarantees by enforcing two types of security policies in the iso-
lated secure environment, namely the access control policy and the
output verification policy. We evaluate HISA using four reference
FPGA IP cores together with a variety of reference security policies
targeting representative CPU-FPGA attacks. Our implementation
and experiments on real hardware prove that HISA is an effec-
tive security complement to the existing CPU-only and FPGA-only
secure architectures.

1 INTRODUCTION

Reconfigurable computing architecture, which combines both the
general purpose application processor (i.e., CPU) and high perfor-
mance programmable logic (i.e., field-programmable gate array, or
FPGA), have gained rapid advancements recently and demonstrated
superior performance and power gains [16][17][19][22]. In partic-
ular, the CPU-FPGA architecture has been recently deployed in
two types of computing systems: (1) CPU-FPGA based system on
chips (SoCs), such as Xilinx Zynq [33], leverage the low power, high
performance, and high flexibility brought by FPGAs to speed up the
embedded computing tasks; and (2) CPU-FPGA based cluster and
cloud systems, such as the recent commercial deployments in Ama-
zon AWS [5] and Microsoft Azure [7], leverage FPGAs to accelerate
computation-intensive and domain specific tasks. Without loss of
generality, we primarily focus on the CPU-FPGA embedded SoC in
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this work, given the similarity between the hardware architectures
and the security properties of the two systems.

Despite its strong potential in performance acceleration and the
commercial deployment, the adoption of the CPU-FPGA architec-
ture still faces significant challenges. One obvious obstacle is the
burden of developing hardware oriented computation modules on
FPGAs. Even though the problem is partially solved by the emerg-
ing high level synthesis tools, the community still heavily relies on
third-party FPGA IP cores that are delivered as black box designs.
Under this context, the security of the IP cores becomes the top
concern due to the following reasons. (1) The hardware IP cores are
developed by third parties that are not fully trusted; (2) The service
providers typically have limited resources to deploy separate hard-
ware for the sensitive applications; and (3) Despite the traditional
belief that hardware is more secure, the reconfigurable nature of
the CPU-FPGA system may introduce new vulnerabilities exposed
to potential remote attacks on hardware without the need of physi-
cal access. For example, the CPU-FPGA system could enable live
deployments of hardware Trojans (on the FPGA part) and malware
(on the CPU part), which complicate the security measures and
elevate the system security requirement to a new level.

The community has mostly focused on the performance acceler-
ation and optimization of CPU-FPGA systems, where security has
not been fully studied [16][22]. In the security community, the prior
works have intensively studied the security around CPU and FPGA
systems, but they have been targeting the CPU and FPGA systems
separately, e.g., the former in the software security community
[15][18][32] and the latter in the hardware security community
[21][23][25][37]. In this paper, we focus on the following unsolved
threat models between the CPU and FPGA systems, as outlined in
Figure 1.

e CPU to FPGA attack, in which the software applications on the
CPU side attempt to compromise the FPGA system, such as leak-
ing confidential information; and

e FPGA to CPU attack, in which the third party IP cores on the
FPGA side attempt to compromise the software applications on
the CPU side, such as interrupting the software execution or
falsifying the data.

Our key insight is to address the root cause of the vulnerabilities
that the heterogeneous system components, namely CPU and FPGA,
share the same system domain with direct access to each other. Our
solution is two-fold. First, we adopt a CPU-driven hardware iso-
lation mechanism to physically separate the system components,
including the processes and data in the CPU domain and the third
party IP cores in the FPGA domain, into a secure world and a nor-
mal world. The hardware isolation is accomplished at the physical
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Figure 1: Scope of the work compared to the prior work.

bus level of the system, which ensures that normal world cannot
directly access secure world, so that the sensitive components can
be deployed in the secure world and become immune to the attack
flows from the normal world. Second, we deploy a secure agent in
the secure world, which enforces a set of security policies to block
the illegal access from the attack flow (i.e., access control policies)
and prevent sensitive information from being leaked (i.e., output ver-
ification policies). The security policies ensure that the secure world
resources and services are accessible only by legitimate processes or
IP cores, while the attack flows in both directions between CPU and
FPGA are blocked. We deploy the hardware isolation-based security
mechanism as a new architectural framework, namely HISA.

2 CPU-FPGA THREAT MODELS

2.1 Overview of CPU-FPGA Threats

Given that both the CPU and the third party FPGA IP cores often
process critical data, it is not surprising that the attackers have the
incentive to break into either system for the purpose of stealing
certain confidential data or compromising the security sensitive
operations. There are two types of attack flows that are of interest
to the security community:

CPU to FPGA Attack. In a CPU to FPGA attack, the attacker at-
tempts to access the memory blocks (e.g., BRAMs) on the FPGA
side, which store secret data, from a compromised software applica-
tion on the CPU side. Typically the attacker would issue a two-step
threat flow: (1) infer the memory address of the secret data in BRAM
using data scan pattern analysis; and (2) access the inferred memory
blocks by directly conducting memory access (DMA) or monitoring
the data transfer on the bus line.

FPGA to CPU Attack. In an FPGA to CPU attack, the attacker first
compromises the FPGA design flow by embedding a maliciously
modified IP core, namely hardware Trojan [31], into the FPGA.
Once triggered, such a hardware Trojan could proactively access
the secret data on the CPU side to either leak or falsify the data,
both of which cause security consequences concerning secret data
or security sensitive operations. In order to hide the Trojan from
being detected, attackers typically employ extremely rare triggering
conditions that are only known by themselves and difficult to be
covered by regular functional test cases.

2.2 Case Study

To better illustrate the two CPU-FPGA threat models, we implement
a prototype system of a security sensitive surveillance camera,
which has an on-device motion detection module to detect the
objects in motion in the captured video in real time, as demonstrated
in Figure 2 (video sample courtesy of [10]). Figure 2(a) shows the
hardware system setup using Xilinx Zynq-7000 ZC702 SoC. The
SoC has a CPU component that contains two ARM cores and an
FPGA component that contains a Xilinx FPGA board. We employ
the CPU part on the board to provide basic interface to receive
the video frames from the HDMI card, and we deploy a motion
detection IP core based on the Gaussian Mixture Model (GMM)
[9][28] in the FPGA part to conduct real time motion detection
based on the received video frames. As shown in Figures 2(a) and
2(b), there is a remarkable white area to indicate the moving objects
on the road.

We further implement a threat model based on the prototype
system. The outcome caused by the threat model is shown in Fig-
ure 2(c), where the moving object is hidden in the background if
there is no motion detected. The attack scenario is a “replay attack"
triggered by either of the two CPU-FPGA attack flows shown in
Figure 3: (1) CPU to FPGA attack, where a malware in the CPU
system accesses BRAM via DMA, scans the memory blocks for the
output video frame location, and replaces the target frame with
one of the pre-recorded motion-free frames; and (2) FPGA to CPU
attack, where a hardware Trojan embedded in the motion detection
IP maliciously replaces the video output frames. Both of the attacks
compromise the shared data holder (i.e., the BRAM) between the
CPU and FPGA, which poses significant security challenges. Exist-
ing countermeasures based on encrypting the data in the memory
[3][32] or isolating different software applications, information
flow, or IP cores [15][18][23][25] do not suffice to prevent such
attacks, as the former poses overwhelming overhead for this real-
time video processing application, and the latter does not prevent
attacks across CPU and FPGA boundaries.

3 HISA FRAMEWORK

The CPU-FPGA hardware isolation primitive is inspired by the most
natural way of protecting valuable assets, which is to physically
isolate them from the potential malicious attacks. As shown in Fig-
ure 4(a), with hardware isolation we split the runtime environment
of a CPU core into two isolated “worlds", namely the secure world
and the normal world. Under the context of the CPU-FPGA het-
erogeneous system, each world contains both the CPU component
and the FPGA component. The hardware isolation primitive en-
sures that, while isolated from the secure world, the normal world
components do not have access to the secure world resources. How-
ever, the secure world applications can still access normal world
resources, leading to a secure one-way communication between
the two isolated environments. Figure 4(a) demonstrates the four
communication flows between the CPU and FPGA components in
the secure and normal worlds, where only the two communica-
tions originated from the secure world will pass through, and those
from the normal world will be blocked by the hardware isolation
primitive.
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Figure 2: Case study of CPU-FPGA threat models in a smart camera IoT system conducting motion detection in real time
surveillance video (video sample courtesy of [10]): (a) Hardware system setup using a Xilinx SoC with both CPU and FPGA;
(b) Normal motion detection scenario without attacks; and (c) Motion detection results under CPU to FPGA or FPGA to CPU
attacks, in which the moving objects are hidden in the background instead of being detected.
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Figure 3: CPU-FPGA threat model design for the motion de-
tection system.

With the recent advancement in CPU security features, such as
ARM TrustZone [1], the hardware isolation can be realized at the
physical bus level and enforced via strictly controlled CPU context
switch, which is secure against software-level attacks [15]. However,
the prior research and practice on CPU-enabled hardware isolation
technologies involve only the protection of software data/code [18]
or OS kernels [15], while the isolation of hardware (e.g., FPGA)
components in a CPU-FPGA heterogeneous system has not been
fully studied.

Figure 4(b) illustrates our realization of extending the CPU-based
hardware isolation to the FPGA system using ARM TrustZone [1].
The ARM-based CPU-FPGA system, such as that in Xilinx Zynq
SoC [33], involves a CPU system and an FPGA system connected
via an AXI Interconnect. We enable the security checking feature
at the AMBA bus port on the AXI interconnect using the Xilinx
Vivado tool, which ensures that the AMBA bus port will enforce
the security property set by its non-secure (NS) bit while granting
accesses. Since the NS bit of the AMBA bus port (i.e., AWPROT[1]
for writing and ARPROT([1] for reading) is set to 0 by default (i.e.,
the property is “secure"), it will only grant accesses to the secure
world applications (with NS bit being 0), which technically achieves
the secure physical isolation.

3.1 Secure Data Flow

Based on the CPU-FPGA hardware isolation primitive, we deploy
the FPGA IP cores into the secure world, as shown in Figure 4(c), so

that it is isolated from the potentially malicious normal world ap-
plications.! The separation of the two worlds causes the system to
execute in two independent modes with completely isolated logical
and physical components and resources. At runtime, the CPU deter-
mines the schedule of switching between the two execution modes,
and it employs a secure monitor, running in the secure world, to exe-
cute the switching upon receiving a secure monitor call (SMC) from
either world. To enable the communication between the two worlds,
we deploy two blocks of shared memory in the normal world for
storing the inputs and outputs to and from the secure world. This
is required as the system must support the regular functionality
of computation using the IP core under protection, as long as the
service request is legitimate and the output does not leak confiden-
tial information. To support the security verification, we deploy a
secure agent in the secure world, which is in charge of invoking the
IP core services on behalf of the normal world application.

With the completion of the data flow as shown in Figure 4(c), the
normal agent successfully invokes the IP service and obtains the
response. However, during this process, both the IP core and the
data it processes are never exposed to potential malicious access
from the normal world, and all the interactions related to the pro-
tected hardware and data are conducted by the secure agent that
is trustworthy. In addition, the secure agent serves as a security
gateway to examine and filter the data requests from the normal
world applications, to further improve the security of the IP core.

3.1.1 Secure Monitor. The secure monitor plays an essential role
in the entire secure data flow, as it controls the context switching
between secure and normal worlds, where completely different
and isolated memory blocks and registers are used. During each
world switch, the monitor detects the source and destination worlds,
saves the states of the source world, and restores the states of the
destination world.

3.1.2  Secure Agent. The secure agent resides in the secure world,
and it is the only entity that has direct access to the IP core under

1For the ease of discussion, here we describe the communication flow using the CPU
to FPGA attack as an example (i.e., FPGA IP under protection). The same framework
and flow can be applied to the FPGA to CPU attack as well.
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Figure 4: Overall framework and data flow of the HISA framework.

protection, which is activated immediately after the secure monitor
completes the world switching operation, as shown in Figure 4(c).
The secure agent is in charge of the following three tasks: (1) receiv-
ing the original IP service request with inputs and passing it over
to the target IP core; (2) delivering the output of the IP service call
to the shared memory in the normal world; and (3) issuing SMC to
request the switching from the secure world to the normal world.

3.1.3  Normal Agent. The normal agent serves as the access point
of the hardware isolation framework to the end users. It coordinates
the service call and data communications between the normal world
and the secure world. Due to the fact that the normal agent resides in
the normal world, it does not have direct access to the secure world
data/services. Instead, the normal agent invokes the service call
indirectly via an SMC to the secure monitor that in turn switches
the CPU mode to the secure world.

3.1.4 Shared Memory. The shared memory is the medium that en-
ables the secure communications between the normal world and the
secure world. The hardware isolation ensures that there is no direct
communication channel between the two worlds. However, since
both the secure world and normal world have access to the normal
world resources, it is possible to convert a memory block in the
normal world as the shared memory and thus the communication
channel.

3.2 CPU-FPGA Security Policies

The CPU-FPGA hardware isolation framework only provides the
fundamental support for creating the isolated environment without
the enforcement of security. Obviously, it is not practical to disable
all accesses to the secure world, as the IP core must allow normal
accesses issued by non-malicious users and applications. Therefore,
we deploy access control policies at the secure agent to check the
legitimacy of the service request, for both the CPU to FPGA and
FPGA to CPU flows, to block only the malicious or suspicious re-
quests. Furthermore, for attacks that leak or falsify security/privacy
sensitive data or operations and that are not possible to identify at
the incoming access control phase, we conduct output verification
at the secure agent prior to delivering the results from the secure
world to the normal world.

3.2.1  Access Control Policy. Upon receiving a request from the nor-
mal world, the secure agent first examines whether the requesting
agent has the privilege for the service request using a pre-defined,
application-specific access control policy. The access control serves
two purposes: (1) It eliminates unauthorized service requests to
the IP core, possibly issued by a malicious attacker attempting to
gain access to the secret data/service hosted by the IP core; (2) For
legitimate service accesses, it keeps track of the frequency of such
requests and schedules them according to the resource and com-
putation capability of the secure service, which not only ensures
efficient resource usage but also prevents potential denial of service
attacks. In summary, the access control policy ensures the security
and integrity of the protected IP core at the entry point of the secure
world.

3.2.2  Output Verification Policy. Upon completing the service re-
quest, the secure agent examines the correctness of the results be-
fore delivering them to the shared memory. There are two reasons
why we enforce this policy. First, the hardware isolation technology
only ensures isolation but lacks security and integrity verification
for the data and service deployed in the secure world, which may
cause security concerns under the events that malicious software
and hardware services have been deployed in the secure world, such
as a malware or hardware Trojan. Second, for data and services that
are subject to reliability issues due to random or environmental
effects, the additional verification ensures the correctness of the
results.

4 CASE STUDY: SECURING IOT SMART
CAMERA

In this section, we close the loop in the case study presented in
Section 2 by leveraging HISA to counter the replay attack in the IoT
security camera targeting the FPGA to CPU attack flow. To employ
HISA, we first place the motion detection IP and the corresponding
frame buffers into the secure world of HISA. Then, our focus is on
the design of application-specific output verification policies for
the secure agent to enforce. In particular, we develop both passive
and proactive output verification policies to prevent the replay
attack. The former monitors representative signals from the system



in a non-intrusive manner and captures suspicious behavior; The
latter employs a “design for trust” paradigm to facilitate the security
verification.

4.1 Passive Output Verification

Given the difficulty in detecting the FPGA to CPU hardware Trojan
via normal tests, our solution is to adopt a timing side channel-based
approach to differentiate the attack and normal scenarios. Our in-
tuition is that there is a clear difference in execution time between
the normal motion detection operation and the one infected with
hardware Trojans. The normal motion detection module involves
loading video frames from the memory, executing the motion de-
tection algorithm, and delivering the results to the output video
buffer. Suppose Tc; represents the time duration of copying the ith
frame, and Tp; represents the time duration of processing the i*"
frame, the normal motion detection time Tn; for the i’ h frame can
be calculated as Equation (1).

Tn; =Tc;i + Tpi (1)

In the FPGA to CPU attack, once the output frame without motion
has been recorded, the hardware Trojan just needs to copy the
recorded frame to the output frame buffer and, therefore, the total
time duration under attack, Ta;, can be represented in Equation (2).

Ta,- = Tci (2)

We assume that Tp; is significantly high as it is consumed by so-
phisticated computer vision algorithms for motion detection [28]
and, therefore, the FPGA to CPU attack can be captured by compar-
ing the Tn; and Ta; values. In our system design, we place a timer
in the surveillance video system to measure the system execution
time for the normal case (i.e., motion detection) and the attack case
(i.e., frame copy) as shown in Figure 5. We start/stop the timer
once the motion detection module begins/ends with the processing
of the corresponding video frames. By monitoring the measured
timing values, we are able to observe the difference in time when
the hardware Trojan is activated.
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Figure 5: Passive verification via side channel analysis.

4.2 Proactive Output Verification

In proactive output verification, we leverage the fact that the re-
play attack outputs the same pre-recorded video frames for all the
different input frames. As shown in Figure 6, our proactive coun-
termeasure is to insert artificial motion patterns in a sampled set of
input frames and check the corresponding output frames periodi-
cally for the inserted motion. In our video pipeline, the secure agent

generates motion patterns and adds them into the input frames
every k seconds. The inserted patterns will be captured by the mo-
tion detection module and labeled with white spots in the output
frame, which can be as small as invisible to human. Then, the out-
put verification in HISA can check the pixel values in the specific
motion-inserted region to determine if they have been labeled in
white. Under a replay attack, the output frame will not contain any
motion including the intentionally inserted ones, which serves as
an indicator for the presence of FPGA to CPU attack.

Trojan
Detection

Figure 6: Proactive verification via motion frame insertion.

4.3 Effectiveness of Security Policies

Figure 7 shows the distribution of timing results with time mea-
surements of 1245 frames in the attack case and 1000 frames in
the normal case. We observe a large gap between the timing in the
two cases (a more than 100% difference). The results indicate that
the side channel-based output verification can achieve zero false
positives/negatives in detecting the replay attack. Furthermore, we
demonstrate the effectiveness of the proactive verification in Figure
8, which shows that, in the non-attack scenario, the output frame
contains additional motion objects that are inserted by the defense
mechanism. Note that we intentionally design large-size motion
objects only for the demonstration purpose, which can be made as
small as invisible in a real setting.
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Figure 7: Demonstration of timing side channel analysis.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

5.1.1  HISA Implementation. We implement HISA on a Xilinx Zyng-
7000 all programmable SoC [33], namely the ZC702 board. It is



Table 1: Description of reference IP cores, threat models, and security policy designs for security analysis.

Custom IP Description Threat Model Access Control Output Verification
. . - . Denial of Service* Caller Identification

Multiplier 16-bit multiplier following [4] Sampled Redundancy Check
Information Leakage' Caller Access Control
Denial of Service* Caller Identification

RSA 32-bit RSA IP following [8] . Information Flow
Information Leakage' Caller Access Control
Denial of Service® Caller Identification

XADC XADC sensor IP following [14] . N/A
Information Leakage' Caller Access Control

Motion detection for surveillance video

Motion Detection following [9]

Data Falsifying Attack*"

Secure Isolation Side Channel Inspection

Information Leakage*

* CPU to FPGA attack;

Figure 8: Demonstration of proactive output verification for
the motion detection IP (video sample courtesy of [10]).

equipped with an ARMv7-A CPU in the Zynq processing system
(PS) and a programmable logic (PL) subsystem (i.e., FPGA), which
are connected by the AMBA Interconnect. The ARMv7-A proces-
sor has dual 667MHz ARM Cortex-A9 cores, which supports the
ARM TrustZone feature for hardware isolation. Since HISA is a
CPU-based security framework, it does not introduce additional
hardware area and resource overhead to the SoC. Also, the security
of the secure agent and the secure monitor is ensured by the secure
boot process supported by ARM TrustZone [1].

5.1.2  Reference IP Implementation. For a comprehensive security
and performance evaluation, we adopt four different custom IP
cores, as shown in Table 1, which cover a variety of application
domains, such as computing (i.e., Multiplier), cryptography (i.e.,
RSA), signal processing (i.e., XADC), and video processing (i.e.,
Motion Detection). For each IP core, we develop a set of threat
models that involves both CPU to FPGA and FPGA to CPU attacks.
Among them, Denial of Service (DoS) is a representative CPU to
FPGA attack, in which a malicious CPU application attempts to
issue an excessive amount of requests to the IP core to block its
service to the legitimate users. The information leakage attack is
a representative FPGA to CPU attack, in which an information
leakage hardware Trojan [21] is embedded in the IP core that may
leak sensitive data via a covert channel without being identified by
the software applications. In addition, we consider several special
threat models targeting on certain IP cores, such as replay attack
for the motion detection IP discussed in Section 2.

 FPGA to CPU attack.

5.1.3  Reference Security Policy Implementation. For our evaluation
purpose, we implement two access control policies:

o Caller Identification, where the secure agent examines the identity
of the caller that is requesting the IP core service and filters out
unauthorized accesses via either a “blacklist” (i.e., blocks pre-
recorded malicious applications) or a “whitelist" (i.e., only allows
for the pre-recorded trusted applications).

o Caller Access Control, where the secure agent records the caller
access history (e.g., number of access times and access patterns)
and blocks the access upon capturing suspicious patterns (e.g.,
excessive number of accesses) [35].

Furthermore, we implement the following output verification poli-
cies:

o Sampled Redundancy Check, in which we partially repeat the
computation by the IP core at the software level. For example,
for a multiplier IP, we sample and re-compute certain bits of the
multiplication and check for correctness.

o Information Flow Verification, in which the hardware isolation
framework tracks the information flow by inserting certain check
points in the IP core. Then, it checks the correctness of the infor-
mation flow instead of that of the end results to detect informa-
tion leakage.

Then, we deploy the access control and/or the output verification
policies for each custom IP. For example, the XADC IP adopts the
caller identification and access control policies. The multiplier IP
adopts sampled redundancy check for the last digit of the multipli-
cation results. The RSA IP employs information flow verification
to check whether it has been indeed invoked to differentiate the
normal request from the malicious information leakage attack.

5.2 Performance Overhead Evaluation

We first measure the world switching delay for three of the IP
cores, as shown in Figure 9. For each IP, we collect a group of delay
values while increasing the number of times to invoke the IP service.
In these experiments, HISA conducts one world switch from the
normal world to the secure world, executes the computation tasks,
and switches back to the normal with output to the shared memory.
We observe that the hardware isolation delays per 10 IP service
calls are below 10 s, which indicates a very low overhead.
Furthermore, to evaluate the timing overhead introduced by the
output verification policies in the motion detection IP, we measure
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Figure 9: Evaluation of HISA isolation delay on the reference IP cores with access control and output verification.

the execution time of the passive verification for each frame with
a total number of 871 frames. The distribution of timing results is
shown in the first column of Table 2. We observe that the side chan-
nel analysis takes sub-micro second, which is negligible compared
to the motion detection time that is hundreds of milliseconds. Also,
Table 2 shows the timing overhead of the proactive verification
method, which is at hundreds of milliseconds, similar to motion
detection time for each frame. Considering that this process will
be carried out every k seconds (e.g., k=2), the overhead is in an
acceptable range to meet the real time requirement.

Table 2: Timing evaluation of output verifications.

Passive Verification (us)  Proactive Verification (us)

Minimum 0.20 207,785
First Quartile 0.396 207,798
Median 0.411 207,802
Third Quartile 0.438 207,806
Maximum 0.816 207,822

5.3 Power and Energy Overhead Evaluation

We further evaluate the power/energy consumption of HISA consid-
ering that power/energy is a limited resource in embedded systems.
We run the TI fusion power measuring tool [11][27] while invoking
the reference IP cores for power measurements on both the PS
(CPU) and PL (FPGA) components on the SoC. Figure 10 shows the
detailed power/energy evaluation results of the XADC IP. Similar
to the performance evaluation reported in [34], we compare three
cases: (1) Regular XADC, which is the baseline IP core without
any security protection; (2) Isolated XADC, which is the HISA pro-
tected XADC IP; and (3) Encrypted XADC, which protects the IP
by encrypting the sensor data using AES-CBC.

In the power results for both PS and PL (i.e., the left two fig-
ures), we observe that HISA reaches the peak power with a higher
frequency than the baseline (i.e., regular XADC). However, the in-
creased frequency is noticeably lower than the encrypted XADC.
Also, for the same workload assigned, HISA finishes the execution
earlier than the encrypted XADC, which further saves the energy

consumption. These observations are reflected into the energy re-
sults (i.e., the right two figures).
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Figure 10: Power and energy evaluation for the XADC IP.

6 RELATED WORK

Intra-CPU and Intra-FPGA Security. The software security com-
munity focuses on protecting sensitive data and services from po-
tential attacks within the CPU system, using a variety of security
mechanisms, such as encryption-based [3][32] and isolation-based
approaches [15][18]. The hardware security community effectively
addressed the trust and integrity issues within the FPGA system,
such as hardware Trojan detection [31], information flow track-
ing/isolation [25][37], and isolation between multiple IP cores [23].
However, neither threads of research have considered the inter-
play between CPU and FPGA and thus the new security challenges
brought by the emerging heterogeneous system.

Inter-CPU/FPGA Security. More recently, there have been sev-
eral research efforts related to the Inter-CPU/FPGA security issues.
Jacob et al. employed a malicious IP core to break the secure boot
process of a CPU-FPGA SoC [24]. Olson et al. developed “Border
Control" [26], an OS-level solution to ensure that the accelerators
are respecting the access permissions enforced by the page table.
Similarly, MMU or IO-MMU based techniques [13] and the CAPI



interface [29] require a trusted OS to manage and enforce the secu-
rity. HISA is orthogonal to these related works in that (1) it targets
the security of the CPU-FPGA systems at runtime instead of the
boot-up stage; and (2) it provides a hardware-level solution other
than at the OS level, which does not require the OS or upper-level
software to be in the trusted computing base (TCB) and thus pro-
vides an additional and strong layer of security to the CPU-FPGA
systems.

Hardware Isolation Primitives. Isolation or sandboxing has been
an important security principle adopted in many security sensi-
tive systems, such as hypervisor-based virtual machines [12] for
secure cloud computing. Recently, hardware-based isolation mech-
anisms, such as Intel SGX [20] and ARM TrustZone [1], have been
developed to provide lower level, more resilient isolation primitives.
Intel SGX is based on memory encryption and does not support
peripheral devices like FPGAs. ARM TrustZone functions at the
physical bus level, which could be adopted to protect on-chip periph-
eral devices. Recently, there have been related works that employ
ARM TrustZone to secure software applications [15][18][30][36]
and hardware components [21][34][35]. The existing ARM Trusted
Firmware [2] implements the generic functionality of TrustZone
without customized security policies. HISA differentiates from these
existing research efforts by providing a universal CPU-FPGA secu-
rity framework with well-defined security policies, which support
a wide range of applications.

7 CONCLUSION

We have developed HISA, a hardware isolation-based secure archi-
tectural extension to mitigate the new threats in emerging CPU-
FPGA heterogeneous systems. HISA provides an isolated secure
execution environment for both the CPU and FPGA cores in the sys-
tem, which enforces access control and output verification policies
to ensure the security and integrity of the heterogeneous system.
We have implemented HISA on a Xilinx Zyng-7000 SoC and evalu-
ated its security and performance using four reference IP cores. Our
experiments demonstrate that HISA is able to fill the security gap
in the CPU-FPGA systems and introduce minimum performance
and power/energy overhead. For the readers’ reference, we released
the source code of HISA, the reference IPs, and the code and demo
of the case study via a Github repository [6].
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