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Abstract: Motorized Functional Electrical Stimulation (FES)-cycling is a promising rehabili-
tative strategy for people possessing movement disorders as a result of neurological conditions.
Cadence and torque (power) tracking objectives have been previously prescribed in FES-cycling
to exploit the functional benefits of neuromuscular electric stimulation and produce intensive
active therapy with motorized assistance. However, predetermined desired trajectories for either
objective may yield sub-optimal training performance since the movement capacity of a person
recovering from injury is unknown and time-varying. Hence, online adaptation is well-motivated
to determine optimal cadence and torque trajectories. In this paper, an extremum seeking
control (ESC) algorithm is implemented in real-time to compute the optimal cadence and torque
trajectory (i.e., the peak torque demand) to maximize power output in an FES-cycling protocol.
The uncertain, nonlinear FES-cycle system is an autonomous, state-dependent switched system
to activate lower-limb muscles and an electric motor. Torque tracking is achieved by electrically
stimulating the muscles via a learning controller and cadence tracking by engaging an electric
motor. A passivity-based approach is utilized to analyze the stability of both tracking objectives.
Experimental testing was performed on one able-bodied individual to demonstrate the feasibility
of the control development.

Keywords: Extremum Seeking Control (ESC), Functional Electrical Stimulation (FES)
Cycling, Repetitive Learning Control (RLC), Passivity-Based Control

1. INTRODUCTION

Rehabilitative technologies based on functional electrical
stimulation (FES) allow people with movement disorders
to engage in activities that promote motor learning and
functional improvements Nataraj et al. (2017). Lower-limb
FES-cycling has been recommended as a rehabilitative
strategy for cardiovascular training of post-stroke partici-
pants and individuals with spinal cord injuries Sadowsky
et al. (2013); Ferrante et al. (2008); Bo et al. (2017). Re-
habilitation protocols that involve motorized cycles with
FES have provided means to exercise lower-limb muscles
and achieve consistent, repetitive movements with the
assistance of an electric motor. Closed-loop control strate-
gies have been implemented for cadence tracking, utilizing
feedback control with identification procedures Hunt et al.
(2004), robust methods to compensate for the nonlinear,
time-varying rider-cycle dynamics Bellman et al. (2016,
2017), repetitive learning control (RLC) to exploit the
inherent periodic nature of cycling Duenas et al. (2016, to
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appear), and the activation of biarticular muscles Kawai
et al. (to appear). Simultaneous control of cadence and
torque is another common task specific to FES-cycling.
Power (i.e., torque) tracking protocols seek to enhance car-
diopulmonary and muscular gains (i.e., metabolic demand)
and accelerate movement recovery Szecsi et al. (2014).
Previous results have addressed the objective of power
tracking in FES-cycling, utilizing robust control meth-
ods and switched control strategies Farhoud and Erfanian
(2014); Cousin et al. (2017); Bellman (2015).

Motorized FES-cycles have the capability to regulate ca-
dence and vary the resistive load to evoke torque from
the rider. The design of high-level controllers to determine
the desired kinematic and torque trajectories for lower-
limb tasks have been based on time, joint angles, and elec-
tromyographic measurements Zhang et al. (2015). How-
ever, the use of arbitrary cadence and torque trajectories
usually demonstrate limited effectiveness due to the lack
of sufficient knowledge about the human’s motor capabil-
ity during rehabilitation. Hence, there is a growing need
for cyber-physical-human-oriented rehabilitation protocols
Beckerle et al. (2017) such as motorized FES-cycling.
Moreover, since people with movement disorders possess
different levels of residual neurological motor control, the
use of predetermined desired trajectories in cycling has
the potential to yield suboptimal exercise training per-
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formance (e.g., requiring iterative manual adjustments of
the desired cadence or torque trajectories to match the
participant’s motor capacity). Hence, an online adaptation
strategy is well-motivated to determine optimal cadence
and torque trajectories during FES-cycling to accommo-
date for the rider’s unique characteristics.

Extremum Seeking Control (ESC) is an adaptive control
technique that exploits the existence of an unknown steady
state input-to-output mapping with a local (or global)
extremum to achieve online optimization for nonlinear
dynamical systems. A common ESC method includes the
use of a periodic perturbation (i.e., a dither signal) injected
in the feedback loop, similar to the persistence of excita-
tion condition, to explore the neighborhood around the
setpoint to find the extremum. The first stability proof for
the perturbation-based scheme was introduced in Krstic
and Wang (2000) and has been extensively used in different
applications, such as to tune the gains of a PID controller
Killingsworth and Krstic (2006), maximize the human’s
power output in an upper-arm exercise machine Zhang
et al. (2006), control the end effector of a robotic system
Koropouli et al. (2016), and design an adaptive cruise
control system Rahnama et al. (2016). More recently,
novel contributions have been developed for the design
and analysis of ESC for hybrid systems Poveda and Teel
(2017); Poveda et al. (2017), in combination with iterative
learning control Cao et al. (2017), using switching-based
strategies Chen et al. (2017); Moura and Chang (2010),
and using a distributed approach for optimization among
networked agents Ye and Hu (2016).

In the context of FES, few studies have implemented
extremum seeking methods Stegath et al. (2007); Oliveira
et al. (2016). In Stegath et al. (2007), a numerical ex-
tremum seeking method is implemented to find optimal
stimulation parameters (e.g., frequency and voltage am-
plitude) for a leg extension task. In Oliveira et al. (2016),
extremum seeking is applied to tune the gains of a PID
controller for elbow movements via electrical stimulation of
the biceps and triceps brachii. The current paper leverages
ESC as an online adaptive method to determine optimal
cadence and torque trajectories to maximize power output
in FES-cycling.

In this paper, an ESC algorithm inspired by the
perturbation-based method Ariyur and Krstic (2003);
Krstic and Wang (2000); Zhang et al. (2006) and by the
recent contribution of proportional-integral ESC devel-
oped in Guay (2016) is developed for a motorized FES-
cycling protocol. The objective is to maximize the cycling
power output of the rider by modifying the desired power
and accommodate for the unique movement capabilities
of the rider. Since the maximum power (based on the
cadence and the peak torque demand) is unknown and
user-dependent, ESC is well-motivated for power tracking
in cycling. The extremum seeking adaptation saturates the
rider’s measured power output to ensure boundedness of
the desired trajectories. A switched FES controller with a
feedforward learning input is designed to track the desired
state-dependent torque trajectory. The shape of the de-
sired torque trajectory is designed based on the knee kine-
matic effectiveness of the rider (i.e., varies as a function of
the crank angle) and the peak torque demand is computed
by the ESC. In parallel, a robust sliding-mode cadence

controller is designed for the electric motor. The cycle-
rider model includes the switching effects of activating
multiple muscle groups based on a state-dependent acti-
vation pattern that exploits the kinematic effectiveness of
the rider. A passivity-based analysis is developed to ensure
stability of the torque (muscle control) and cadence (motor
control) subsystems. Experimental testing was conducted
on a single able-bodied individual for control validation
and additional experiments are on-going.

2. STATIONARY CYCLE-RIDER DYNAMIC MODEL
WITH SWITCHED INPUTS

The dynamic model of the rider and the cycle with lower-
limb muscle and electric motor inputs is given as Bellman
et al. (2016)

M(q)q̈ + V (q, q̇)q̇ +G(q)

+P (q, q̇) + cdq̇ + d(t) =Beue +Bσum, (1)

where q : R≥t0 → Q denotes the measurable crank angle,
Q ⊆ R denotes the set of crank angles, and t0 ∈ R is the
initial time. The combined inertial effects of the rider and
the cycle are denoted by M : Q → R>0; V : Q× R → R
and G : Q → R denote the centripetal-Coriolis and
gravitational effects, respectively; P : Q×R→ R denotes
the effects of passive viscoelastic tissue forces in the rider’s
joints; cd ∈ R>0 denotes the unknown coefficient of viscous
damping in the cycle; d : R≥t0 → R denotes the uncertain
disturbances in the system; Be ∈ R>0 is a positive torque
constant, which satisfies Be ≥ ce ∈ R>0, ue : R≥t0 → R
is the motor current control input, and um : R≥t0 → R
denotes the stimulation intensity applied to each muscle
group. The lumped switched control effectiveness, denoted
by Bσ ∈ R≥0, is defined as

Bσ(q, q̇) ,
∑
m∈M

Bm(q, q̇)kmσm(q), (2)

where the subscript σ ∈ P , {1, 2, 3, ...N}, P ⊂ N, N ∈ N
indicates the index of Bσ and switches according to the
crank position and N represents the total number possible
permutations of active muscles. The uncertain control
effectiveness of each muscle is denoted by Bm : Q× R→
R>0 with subscript m indicating an element in the muscle
setM (i.e., the stimulated muscle groups), and km ∈ R>0,
∀m ∈ M are the selectable positive control gains. The
stimulation intensities um, ∀m ∈ M are applied to the
muscle groups in regions of the crank cycle when the torque
transfer efficiencies are above a predefined threshold εm ∈
[0, 1], ∀m ∈M. Switching occurs between different muscle
groups yielding an autonomous, state-dependent, switched
control system. The portion of the crank cycle over which a
particular muscle group is stimulated is denoted by Qm ⊂
Q, ∀m ∈ M, where the muscle groups are activated as
described in Bellman et al. (2016) so that QM , ∪

m∈M
Qm.

A piecewise constant switching signal can be developed for
each muscle group, σm ∈ {0, 1} , ∀m ∈M as

σm(q) ,

{
1 if q ∈ Qm
0 if q /∈ Qm

. (3)

The known sequence of switching states, which are the
limit points of Qm, ∀m ∈ M, is defined as

{
qn
}
,n ∈

{0, 1, 2, ...}, and the corresponding sequence of unknown
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switching times
{
tn
}

is defined such that each tn denotes
the instant when q reaches the corresponding switching
state qn. The switching signal σm is designed to produce
forward pedaling only. The following assumption and
properties of the switched system in (1) will be exploited
in the subsequent control design and stability analysis
Bellman et al. (2016)

Assumption 1. The disturbance term d is bounded as
|d| ≤ ξd, where ξd ∈ R>0 is a known constant.

Property 1. cm ≤ M ≤ cM , where cm, cM ∈ R>0

are known constants. Property 2. |V | ≤ cV |q̇|, where
cV ∈ R>0 is a known constant. Property 3. |G| ≤ cG,
where cG ∈ R>0 is a known constant. Property 4.
|P | ≤ cP1 + cP2 |q̇|, where cP1, cP2 ∈ R>0 are known

constants. Property 5. 1
2Ṁ = V by skew symmetry.

Property 6. The lumped switching control effectiveness
is bounded as cb ≤ Bσ ≤ cB , ∀σ ∈ P, where cb, cB ∈ R>0

are known constants.

3. EXTREMUM SEEKING FOR DESIRED
TRAJECTORY GENERATION

The desired cadence q̇d : R≥t0 → R and the desired torque
τd : R≥t0 → R can be generated using ESC such that q̇d,
τd ∈ L∞ and q̇d(t) → q̇∗d and τd → τ∗d , where q̇∗d and τ∗d
are unknown optimal constants that maximize the rider’s
power output. In practice, the generated desired cadence
q̇d and desired torque τd approach a neighborhood of the
unknown optimal values. The rider’s power output can be
expressed as

Pa(t) = τa(q, q̇, t)q̇, (4)

where τa : Q× R × R≥t0 → R is the torque produced by

the muscle contractions and is defined as τa , Bσum, and
q̇ : R≥t0 → R is the computable velocity of the system.

The objective is to develop an adaptive feedback mecha-
nism which maximizes the steady state value of Pa without
requiring the explicit knowledge of q̇∗d or τ∗d . It is assumed
that there exists an unknown maximum power (i.e., P ∗a )
evoked by the rider during a cycling protocol. The proof
of convergence of the adaptive ESC mechanism is omitted
here, but follows from standard singular perturbation anal-
ysis Khalil (2002) and averaging techniques as extensively
discussed in literature Krstic and Wang (2000); Ariyur
and Krstic (2003). Inspired by the perturbation-based
approach in Krstic and Wang (2000) and leveraging the
recent development in proportional-integral (PI)-ESC in
Guay (2016), a saturated extremum-seeking algorithm is
developed for generating q̇d as

q̇d = θ̂ +

(
αp −

kd
αp
w

)
sin(ωt),

˙̂
θ=−kθwsin(ωt),

ν̇ =− (khν + sat(Pa)) ,

w=−
(
k2hν + khsat(Pa)

)
, (5)

where αp ∈ R>0 is the positive constant amplitude of
the perturbation signal (i.e., dither signal), ω ∈ R>0

is the frequency of the perturbation, kd, kθ, kh ∈ R>0

are constant design parameters, θ̂, ν, w : R≥t0 → R are
auxiliary signals, and sat(·) is a continuous saturation
function defined as

satβ(·) ,
{
· for | · | ≤ β
sgn(·)β for | · | > β

. (6)

The use of the saturation function is incorporated to
ensure that q̇d ∈ L∞. The tuning of the parameters αp, ω,
kd, kθ, and kh are selected sufficiently small compared to
the selectable controller gains introduced in the following
section to ensure that the designed controllers can track
the computed trajectories by the ESC algorithm in (5).
Moreover, the design of the cadence and torque controllers
have to exhibit faster response than the ESC algorithm in
(5) to ensure convergence of the tracking errors (i.e., time
scale separation between the ESC and closed-loop feedback
controllers) Ariyur and Krstic (2003); Zhang et al. (2006).
To achieve faster response by the feedback controllers
compared to the ESC requires particular attention to
the tuning of the ESC parameters in (5). First, the
perturbation frequency ω has to be slower than the closed-
loop error system decay. For the saturated PI-ESC in (5)
and based on Guay (2016, Theorem 2), the gain kh is
recommended to be larger than ω. In addition, the initial

condition of ν (i.e., ν(t0)) is defined as ν(t0) , sat(Pa)
kh

, to
avoid a sudden jump for the direct feedthrough term w
while computing q̇d in (5).

Remark 1. The ESC algorithm in (5) is also used to
compute the torque trajectory τd to maximize power
output from the rider.

Remark 2. Alternatively to the perturbation-based ESC
approach, several numerical optimization-based algo-
rithms have been implemented in practice as in Zhang and
nez (2009); Zhang et al. (2006), which may be suitable for
FES-cycling power tracking.

4. CONTROL DEVELOPMENT

4.1 Cadence Control

The first objective is to design a motor controller to
track the generated cadence trajectory. To quantify the
cadence objective, a cadence-tracking error denoted by
e : R≥t0 → R is defined as

e , q̇ − q̇d. (7)

The open-loop cadence error system is obtained by taking
the time derivative of (7), multiplying it by M , and
substituting (1) as

Mė = −V e+ χ+Bσum +Beue, (8)

where the auxiliary signal χ : Q×R×R≥t0 → R is defined
as

χ,−Mq̈d − V q̇d −Gq − P − cdq̇ − d. (9)

Using Properties 1-4, χ can be upper bounded as

|χ| ≤ c1 + c2|e|, (10)
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where c1, c2 ∈ R>0 are known positive constants. Given
the open-loop cadence error system in (8), the control
input to the motor is designed as

ue , −k1e− k2sgn(e), (11)

where k1, k2 ∈ R>0 are selectable positive gain constants
and sgn(·) is the signum function. By substituting (11)
into (8), the closed-loop cadence error system is obtained
as

Mė = −V e+ χ+Bσum −Be (k1e+ k2sgn(e)) . (12)

4.2 Torque Tracking Control

The rider’s muscle groups track the generated desired
torque trajectory via muscle stimulation within q ∈ QM .
The torque tracking error signal denoted by eτ : R≥t0 →
R is designed based on the integral of the difference
between the desired torque and the torque produced by
the stimulated muscle contractions as

eτ ,
ˆ t

t0

(τd(ϕ)− τa(ϕ)) dϕ, (13)

where the desired torque τd : R≥t0 → R is bounded and
periodic.

Remark 3. In (13), the desired torque trajectory τd is an
explicit function of time. However, in the experiments in
Section 6, the desired torque trajectory τd is a periodic
function of the wrapped crank angle q ∈ [0, 2π). Hence, a
mapping between time and space is required. This map-
ping is feasible since there exists a relationship between
time and the crank position. The angular speed of the
system is defined as q̇ , dq/dt, which can be integrated to

yield q =
´ t
0
q̇(ϕ)dϕ , f(t). This relationship between

temporal and spatial coordinates is common for rotary
machine systems as explained in Xu and Huang (2008).
For the cycle-rider system, only forward pedaling is al-
lowed and the desired cadence q̇d is positive. Moreover,
the cadence controller in (11) is designed and proven to
achieve q̇ > 0 (i.e., the actual cadence is nonzero) based
on the stability proof in Section 5. Hence, q is a strictly
increasing function of t, (i.e., the relationship between t
and q is bijective Xu and Huang (2008)). Thus the function
q = f(t) is analytic and the inverse function t = f−1(q)
exists globally. Therefore, any function of t can also be
expressed as a spatial function of q (e.g., τd(t) can be
expressed as τd(f

−1(q))).

The open-loop torque error system is obtained by taking
the time derivative of (13) as

ėτ = τd −Bσum. (14)

The muscle control input is designed as

um , Ŵd + k3eτ − νm, (15)

where k3 ∈ R>0 is a positive constant control gain, νm :
R≥t0 → R is a subsequently designed control input, and

Ŵd : R≥t0 → R is the subsequently designed repetitive
learning control law.

Remark 4. The repetitive learning control law Ŵd(t) is
typically designed based on the knowledge of the time
period T of a periodic process Dixon et al. (2002); Sun
et al. (2006). However, for the current development the
implementable repetitive learning control law is designed
based on the state-dependent desired torque trajectory
τd. According to the mapping between time and space
described in Remark 3, an implementable spatial repetitive
learning law is denoted as Ŵd(t) = Ŵd(f

−1(q)). By

defining the following map q − 2π , f(t − T ) and from

the fact that q and q̇ are measurable and positive, Ŵd(t−
T ) = Ŵd(f

−1(q − 2π) can be obtained from the fact
that t − T = f−1(q − 2π). Knowledge of the period T
(i.e., the time to complete a revolution) is not necessary

for the later implementation of Ŵd, nevertheless it can
be computed from T =

´ q
q−2π dt = 1

q̇

´ q
q−2π dq. The time

period T depends on the cadence tracking performance
and is expected to vary across crank cycles.

Based on the subsequent stability analysis and leveraging
Remark 4, the repetitive learning control law in (15) is
defined as

Ŵd , Γsatβr

(
Ŵd(t− T )

)
+ kLeτ ,

= Γsatβr

(
Ŵd(f

−1(q − 2π))
)

+ kLeτ . (16)

where Γ ∈ (0, 1] is a selectable constant, kL ∈ R>0 is a
positive constant learning control gain, and satβr

(·) was
previously defined in (6), and βr ∈ R>0 is a selectable
constant. The closed-loop error system is obtained by
substituting (15) into (14) as

ėτ = W̃d + Ŵd −Bσ(Ŵd + k3eτ − νm), (17)

where W̃d : R≥t0 → R is the learning estimation error

defined as W̃d , τd − Ŵd. Based on the periodicity and
boundedness of τd, τd(t) = satβr

(τd(t)) = satβr
(τd(t−T )).

Hence, by exploiting (16), the following expression can be
developed

W̃d = satβr
(τd(t−T ))−Γsatβr

(Ŵd(t−T ))−kLeτ (t). (18)

5. STABILITY ANALYSIS

The stability of the learning controller for torque tracking
and robust sliding-mode controller for cadence tracking
can be examined independently through the following two
theorems. Theorem 1 shows that the closed-loop torque
error system is output strictly passive and asymptotic
tracking is achieved. Theorem 2 shows that the closed-
loop cadence error system is output strictly passive and
exponential tracking is achieved. In addition, Lemma 1 is
included to prove that the time derivative of the torque
tracking error in (13) is uniformly bounded.

Theorem 1. Given the closed-loop torque error system in
(17), the system is output strictly passive (OSP) from

input v1 , (1 + cB) Ŵd+ cbνm to output eτ when q ∈ QM
and the controller designed in (15) and repetitive learning
law in (16) ensures asymptotic tracking 1 in the sense that

lim
t→∞

eτ (t) = 0. (19)

1 For q /∈ QM the torque controller in (15) and desired torque
trajectory τd are zero.
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Proof. Let V1 : R2 × R≥t0 → R be a nonnegative,
continuously differentiable storage function defined as

V1 ,
1

2
e2τ +

1

2kL

tˆ

t−T

(satβr
(τd(ϕ))− Γsatβr

(Ŵd(ϕ)))2dϕ.

(20)
The storage function in (20) satisfies the following inequal-
ities

λ1‖y‖2 ≤ V1(y, t) ≤ λ2‖y‖2,
where λ1 , min( 1

2 ,
1

2kL
), λ2 , max( 1

2 ,
1

2kL
) and

y , [eτ
√
QL]T where QL ,

´ t
t−T (satβr (τd(ϕ)) −

satβr
(Ŵd(ϕ)))2dϕ. Let y(t) be a Filippov solution to the

differential inclusion ẏ ∈ K[h](y), where K[·] is defined

as Filippov (1964) and h is defined by using (17) as h ,
[h1 h2], where h1 , W̃d+Ŵd−Bσ(Ŵd+k3eτ −νm), h2 ,

1

2
√
QL

{(satβr
(τd(t))− satβr

(Ŵd(t)))
2− (satβr

(τd(t−T ))−

satβr
(Ŵd(t−T )))2}. The control input in (15) has the dis-

continuous lumped control effectiveness Bσ; hence the time
derivative of (20) exists almost everywhere (a.e.), i.e., for

almost all t. Based on Fischer et al. (2013, Lemma 1), V̇1(y,

t)
a.e.
∈ ˙̃V1(y, t), where ˙̃V1 is the generalized time deriva-

tive of (20) along the Filippov trajectories of ẏ = h(y)

and is defined as ˙̃V1 ,
⋂
ξ∈∂V1

ξTK

[
ėτ

Q̇L
2
√
QL

1

]T
(eτ ,

2
√
QL, t). Since V1(y, t) is continuously differentiable in y,

∂V1 = {∇V1}, thus

˙̃V1
a.e.
⊂ [eτ ,

(
1

2kL

)
2
√
QL]K

[
ėτ

Q̇L
2
√
QL

]T
. (21)

Therefore, after substituting for (17), the generalized time
derivative of (20) can be expressed as

˙̃V1
a.e.
⊂ eτ

(
W̃d + Ŵd −K[Bσ](k3eτ + Ŵd − νm)

)
− 1

2kL
(satβr (τd(t− T ))− satβr (Ŵd(t− T )))2

+
1

2kL
(satβr

(τd(t))− satβr
(Ŵd(t)))

2. (22)

By employing the following property Dixon et al. (2002)(
τd(t)− Ŵd(t)

)2
≥
(

satβr (τd(t))− Γsatβr (Ŵd(t))
)2
,

using a similar proof as developed in Dixon et al. (2002,
Appendix I), and using Property 6 to lower and upper
bound K[Bσ], using (18), and canceling terms, an upper
bound for (22) can be developed as

˙̃V1
a.e.
≤ −δ1e2τ + v1eτ , (23)

where v1 = (1 + cB) Ŵd+cbνm, δ1 , cbk3+ kL
2 , and δ1 > 0.

Integrating (23) yieldsˆ t

t0

v1(ϕ)eτ (ϕ)dϕ
a.e.
≥
(
Ṽ1(t)− Ṽ1(t0) +

ˆ t

t0

δ1e
2
τ (ϕ)dϕ

)
.

(24)

Hence, the system is output strictly passive (OSP) from
the input v1 to the output eτ . Therefore, the closed-
loop system in (17) is passive with a radially unbounded
positive definite storage function. From Sepulchre et al.
(1997, Theorem 2.28), to prove asymptotic tracking, the
zero-state observability condition has to be satisfied 2 . By
designing νm in (15) as νm , −k4Ŵd, where k4 , γ1

cb
,

and substituting it into (23), ˙̃V1
a.e.
≤ −δ1e2τ ≤ 0. By

invoking Fischer et al. (2013, Corollary 2) and since ˙̃V1(y,

t)
a.e.
≤ −W (y), where W is a continuous positive semi-

definite function, |eτ | → 0 as t → ∞. Since V1 ≥ 0 and

V̇1
a.e.
≤ 0, V1 ∈ L∞, hence, eτ , QL ∈ L∞. From (16),

Ŵd ∈ L∞, which along with the fact that τd ∈ L∞, implies
that W̃d ∈ L∞. From (15), um ∈ L∞. Hence the closed-
loop system in (17) is passive and asymptotic tracking is
achieved.

Lemma 1. The torque tracking error ėτ in (17) is uni-
formly bounded for q ∈ QM in the sense that

|ėτ | ≤
(

2 + cB

(
1 +

k3
kL

+ k4

))
kL|eτ |

+

(
2 +

1

Γ
+ cB (1 + k4)

)
Γβr. (25)

Proof. The expression in (25) is a direct result of Theo-

rem 1 obtained by analyzing (17); since eτ , Ŵd, W̃d ∈ L∞,
ėτ ∈ L∞.

Theorem 2. Given the closed loop error system in (12), the

system is output strictly passive (OSP) from input v2 ,
Bσum to output e and achieves exponential tracking when
um = 0, provided the following sufficient gain conditions
are satisfied

k1 >
c2
ce
, k2 >

c1
ce
. (26)

Proof. Let V2 : R × R≥t0 → R be a nonnegative,
continuously differentiable, storage function defined as

V2 =
1

2
Me2. (27)

The storage function in (27) satisfies the following inequal-
ities

λ3|e|2 ≤ V2(e, t) ≤ λ4|e|2,
where λ3 , cm

2 , λ4 , cM
2 . Let e(t) be a Filippov solution

to the differential inclusion ė ∈ K[h3](e), where K[·] is
defined as in Fischer et al. (2013), and h3 is defined using

(7) as h3 ,M−1{−V e+χ+Bσum−Be(k1e−k2sgn(e))}.
Using similar arguments as in the proof of Theorem 1, and
using (10), (12), and Properties 5 and 6, the generalized
time derivative of (27) can be upper bounded as

˙̃V2
a.e.
≤ − (k1ce − c2) e2 − (k2ce − c1) |e|+ (Bσum) e. (28)

Integrating and upper bounding (28) yieldsˆ t

t0

v2(ϕ)e(ϕ)dϕ
a.e.
≥ (Ṽ2(t)− Ṽ2(t0) +

ˆ t

t0

δ2‖e(ϕ)‖2dϕ),

(29)

2 In Sadikhov and Haddad (2014), the definition of zero-state
observability is described for Filippov solutions.
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where δ2 = k1ce−c2, and v2 = Bσum, which can be used to
prove that the closed-loop system in (12) is output strictly
passive (OSP) from input v2 to output e, provided the gain

conditions in (26) are satisfied. Moreover, V̇2
a.e.
≤ −δ2V2

when q /∈ QM since σm = 0 =⇒ Bσ = 0, ∀m ∈ M,
provided the gain conditions in (26) are satisfied. Hence,
exponential cadence tracking is obtained in the sense that

‖e(t)‖ ≤
√
λ4
λ3
‖e(tn)‖exp

(
−δ2

2
(t− tn)

)
, ∀q /∈ QM .

6. EXPERIMENTS

The cadence controller designed in (11) and torque con-
troller in (15) with the learning-based feedforward control
term in (16) were tested in an experiment on one healthy
female (aged 24). The switched muscle control input was
commanded as stimulation intensities um to activate the
right and left quadriceps used for torque tracking, and
as current input ue to the electric motor for cadence
tracking. Prior to participation, written informed consent
was obtained from the participant, as approved by the In-
stitutional Review Board at the University of Florida. The
participant was instructed to avoid voluntarily contribut-
ing to pedaling and no feedback was provided regarding
the tracking performance during the experiment.

6.1 Experimental Setup

The motorized recumbent tricycle described in Bellman
et al. (2017); Duenas et al. (to appear) with crank position
(using an US Digital optical encoder) and torque (using
a SRM Science Road Wireless Power Meter) feedback
was used for the FES cycling experiments.The stimulation
current amplitudes and frequency were selected as 90
mA and 60 Hz, respectively. Initial measurements of the
participant’s lower extremities were recorded as in Bellman
et al. (2016) to determine the stimulation pattern (i.e., the
crank positions where the muscle groups were electrically
stimulated).

The FES cycling trial had a duration of td = 120 seconds.
The experiment started with the electric motor tracking
a steady state cadence of 45 RPM. When the experiment
duration reached t1 = 20 seconds, the ESC algorithm in
(5) began modifying the desired cadence q̇d and desired
torque τd (by modulating the peak torque demand). Also
at t1, the torque controller in (15) was activated (i.e.,
the lower-limb muscles were stimulated). Due to the im-
portance of the knee joint torque for torque generation
to the crank Fregly and Zajac (1996), the desired torque
trajectory was designed to be a modified function of the
knee joint torque transfer ratio, (which can be computed
as a function of the crank angle and anatomical lengths of
the rider). Hence, the desired torque trajectory is periodic
based on the crank angle and nonzero during the stimula-
tion regions (i.e., for q ∈ QM ) and is defined in (30), where
q1, q2, q3, q4 ∈ R>0 are constant predefined crank angles
within q ∈ QM representing the starting and ending crank
positions of the stimulation regions of the rider, and the
peak torque amplitude Ad ∈ R≥0 was computed by the
ESC algorithm in (5). The ESC parameters introduced in

(5) were selected for generating q̇d as ω , 0.5, αp , 0.1,

kd , 0.1, kθ , 0.25, and kh , 0.08 and for generating τd
(i.e., for the peak torque demand Ad) as ω , 0.01, αp , 1,

kd , 01, kθ , 0.65, and kh , 0.25. The control gains
introduced in (11), (15), and (16) were selected as follows:

km , 1, k1 , 9, k2 , 0.2, k3 , 55, k4 , 0.1, Γ , 0.9, and
kL , 5. The initial conditions of the ESC parameters in

(5) for generating q̇d were selected as θ̂ , 45 RPM (initial
cadence that the motor tracked during the first 20 seconds

of the experiments), ν = sat(Pa)
kh

, and w , 0; and for τd

the parameters were selected as θ̂ = 1 N·m, ν = sat(Pa)
kh

,

and w , 0.

6.2 Results

Figure 1 illustrates the computed desired cadence trajec-
tory and the peak torque demand by the ESC algorithm
in (5). Figure 2 shows the cadence tracking error ė and the
torque tracking error ėτ . Figure 3 depicts the stimulation
intensities delivered to the muscle groups um, the electric
motor current input ue, and the learning control input
Ŵd. The stimulation intensities were saturated at 100µs
as seen in Figure 3 for subject comfort. The peak torque
demand in Figure 1 increases to make the rider evoke a
higher torque output, which results in an increase in the
stimulation intensities delivered to the quadriceps muscle
groups in Figure 3. Cadence tracking is regulated within a
range of ±5 RPM from the desired cadence computed by
the ESC algorithm.
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Fig. 1. Desired cadence trajectory q̇d (A) and maximum
torque demand Ad (B) computed by the ESC algo-
rithm.

7. CONCLUSION

An ESC algorithm was implemented to determine opti-
mal cadence and torque tracking trajectories during an
FES-cycling protocol. The ESC algorithm calculated the
desired cadence trajectory and the peak torque demand.
A cadence controller was designed to command current to
the electric motor and a torque controller to command
stimulation intensities to the quadriceps muscle groups
to achieve power tracking. The switched muscle torque
controller included a feedforward learning input that com-
pensated for the periodic dynamics of the desired torque
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Fig. 2. Tracking performance quantified the cadence track-
ing error ė (A) and the torque tracking error ėτ (B).
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Fig. 3. Stimulation intensities delivered to the quadriceps
muscle groups denoted by um for each muscle (A), the
electric motor current input ue (B) and the learning

control input Ŵd in (C).

trajectory. A passivity-based analysis was developed to
ensure stability of the torque and cadence closed-loop
systems. Future work includes extended FES-cycling ex-
periments with people with movement disorders, where
tracking comparisons can be made based on the selection
of different parameters of the ESC algorithm.
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