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ABSTRACT

Rehabilitation robotics and functional electrical stimulation
(FES) are two promising methods of rehabilitation for people
with neurological disorders. In motorized FES cycling, both
the rider and the motorized cycle must be controlled for coop-
erative human-machine interaction. While rehabilitation goals
vary widely, FES cycling traditionally rejects rider disturbances
to accomplish cadence and power tracking; however, this pa-
per ensures that the cycle accommodates the rider without re-
jecting rider disturbances as a means to promote function and
strength recovery while ensuring rider safety. A cadence and ad-
mittance controller are developed to activate the cycle’s electric
motor and the rider’s leg muscles through FES when kinemat-
ically efficient. Using a single set of combined cycle-rider dy-
namics, a Lyapunov-like switched systems analysis is conducted
to conclude global exponential cadence tracking. A subsequent
passivity analysis is conducted to show the admittance controller
is passive with respect to the rider. For a desired cadence of 50
RPM, preliminary experiments on one able-bodied participant
and one participant with spina bifida demonstrate tracking errors
of -0.07±2.59 RPM and -0.20±3.86 RPM, respectively.

∗Address all correspondence to this author.

INTRODUCTION1

Lower-limb functional electrical stimulation (FES) cycling
is a promising rehabilitation strategy for people with neurologi-
cal disorders (e.g., spinal cord injury, stroke, traumatic brain in-
jury, Parkinson’s, etc.). FES cycling can be accomplished with or
without an electric motor (cf. [1] and [2], respectively). In motor-
ized FES cycling, a rider’s muscles are artificially contracted us-
ing neuromuscular electrical stimulation to pedal the cycle in co-
ordination with an electric motor, combining the benefits of FES
(increased muscle mass, bone mineral density, etc. [3,4]) and re-
habilitation robots (increased somatosensory stimulation, motor
function, etc. [5]). By adding the motor to the cycle, additional
control authority is granted to the system and unique objectives
can be investigated, such as cadence and power tracking [6], in-
stead of cadence tracking alone [2]. However, motorized FES
cycling has numerous challenges such as lower metabolic effi-
ciency compared to volitional cycling, nonphysiological muscle
recruitment, and poor coordination of the muscle groups [7–9].
Furthermore, motorized FES cycling requires a controller to be
designed for both the muscles and motor, and depending on the
cycling objective (i.e., cadence or cadence and power tracking),
human-machine interactions must be considered since actuators
may be applying torques against each other.

Despite these challenges, FES cycling is often achieved
through open-loop methods in practice (cf. [10, 11]); however,
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numerous studies exist where closed-loop control is applied with
adaptive [2, 12] or robust methods [1, 13] for guaranteed perfor-
mance and improved responsiveness. Additional investigation
is warranted for the human-machine interaction that arises dur-
ing closed-loop motorized FES, particularly when the motor and
muscles are stimultaneously activated, because undesirable in-
teractions may result. Therefore, the objectives must be prior-
itized. Admittance control, pioneered by Hogan in [14], offers
an intuitive solution to this problem; instead of explicitly regu-
lating position or force, it regulates dynamic behavior. Admit-
tance control has been used in numerous applications involving
human-machine interaction, particularly with rehabilitation [15],
where the robots modify their behavior based on the interac-
tion forces with the human. Human-machine interaction must
be thoroughly examined because individuals with neurological
conditions often have weakened, unreliable, and/or unpredictable
movements [16].

In traditional nonlinear position/cadence control, stability
in the sense of Lyapunov is often employed to show regulation
of the tracking errors [17]. When two controllers are applying
torques in opposite directions, an analysis tool known as passiv-
ity is employed to prove stability; passive systems are systems
which are dissipative in nature and do not self-excite (i.e., they
do not generate more energy than injected) [17]. Previous FES
cycling approaches without admittance have utilized Lyapunov-
like switched systems analyses to ensure stabililty of both the hu-
man and machine [1, 2, 6, 12, 13, 18–20], since their tracking ob-
jectives compliment each other (e.g., cadence and power) as op-
posed to conflict (e.g., different desired cadences). Other studies
have been conducted on the upper body to show stable interac-
tions can be obtained with differing trajectories when combined
with passive controllers [21].

In this paper, an admittance and cadence controller are de-
veloped for an FES cycle. Because the admittance controller uses
an inner-loop position-based controller, if the admitted trajectory
differs from the desired trajectory, unstable behavior may result
as the two controllers will attempt to minimize two different error
systems. Hence, the admittance control is designed to be passive
with respect to the cadence controller such that it yields to the
interaction torques. When the cadence controller is used to stim-
ulate the rider’s muscles, the admittance controller is employed
on the cycle’s motor to ensure safe human-machine interaction
while still providing guidance toward the control objective. A
single set of nonlinear, uncertain combined cycle-rider dynamics
are utilized in conjunction with a Lyapunov-like switched sys-
tems stability analysis to conclude global exponential tracking
of the cadence objective and a passivity analysis is conducted to
conclude passivity of the admittance controller with respect to
the rider. Preliminary experiments on one able-bodied partici-
pant and one participant with spina bifida demonstrate tracking
errors of -0.07±2.59 RPM and -0.20±3.86 RPM, respectively.

DYNAMICS
The combined cycle-rider dynamics can be modeled as [13]

τm (q, q̇, t)+ τe (q, q̇, t) =

M (q) q̈+V (q, q̇) q̇+G(q)+P(q, q̇)+bq̇+d (t) , (1)

where q : R≥0 → Q , q̇ : R≥0 → R, and q̈ : R≥0 → R denote
the measurable crank angle, calculable velocity, and accelera-
tion, respectively, and Q ⊆ R denotes the set of possible crank
angles. The torque inputs consist of the contribution from the
rider’s leg muscles, denoted by τm : Q ×R×R≥0 → R, and
the cycle’s electric motor, denoted by τr : Q ×R×R≥0 → R.
The combined inertial, centripetal-Coriolis, and gravitational ef-
fects of the rider’s legs and cycle are denoted by M : Q → R,
V : Q ×R→ R, and G : Q → R, respectively. The torque con-
tribution from the rider’s passive viscoelastic tissue forces and
cycle’s friction are denoted by P : Q ×R→R and b : R>0→R,
respectively. System disturbances are denoted by d : R≥0→ R.
The rider’s muscle torque contribution can be written as the sum
of the large muscle groups of the legs (quadriceps, hamstrings,
gluteals), given by 2

τm , BMuM, (2)
BM , ∑

m∈M
bmkmσm, (3)

∀m ∈ M , where bm, BM : Q × R → R>0 denote the indi-
vidual and lumped muscle control effectiveness, respectively,
σm : Q → {0, 1} denotes the individual switching signal for
each muscle group, km ∈ R>0 denotes the constant control gain
for each muscle group, uM : Q ×R×R≥0 → R is the subse-
quently designed muscle stimulation current, and the subscript
m ∈ M = {RQ, RG, RH, LQ, LG, LH} indicates the right (R)
and left (L) quadriceps femoris (Q), gluteal (G), and ham-
string (H) muscle groups, respectively. As in results such as
[1, 13, 18, 19, 22], FES cycling is accomplished through alter-
nating activation of the rider’s muscles and/or the cycle’s elec-
tric motor with continuously evolving state dynamics. Hence,
FES cycling is an example of a state-dependent switched sys-
tem. However, the rider’s muscles can not be arbitrarily activated
or back-pedaling, stalling, or early onset fatigue may occur. As
such, the rider’s muscles are coordinated (i.e., activated) using
the piecewise right-continuous switching signal defined as

σm ,

{
1 q ∈ Qm

0 q /∈ Qm
, (4)

∀m ∈M , where Qm ⊂ Q denotes the kinematically efficient re-
gion for each muscle group to transfer positive torque to the

2For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.



crank, designed as in [13]. The union of all muscle regions es-
tablishes the FES region of the crank cycle, defined as QM ,
∪

m∈M
Qm, with the kinematic deadzone (KDZ) region as the re-

mainder. The electric motor’s torque contribution in (1) can be
modeled as

τe , Be (σMu1 +(1−σM)u2) , (5)
Be , beke, (6)

where the known motor control constant, be ∈ R>0, relates the
motor’s input current to output torque, ke ∈ R>0 denotes a con-
stant control gain, and u1, u2 : Q ×R×R≥0 → R, denote the
subsequently designed admittance and cadence control inputs,
respectively. Although the motor is active in both regions, when
the crank is in the FES region, the cycle’s motor behaves as an
admittance whose control input is activated via the switching sig-
nal σM : Q→ {0, 1}; else, the electric motor is utilized to track
cadence and advance the crank until it returns to the FES region
where the rider’s muscles can be stimulated again. The motor’s
switching signal is dictated through the following relation

σM ,

{
1 q ∈ QM

0 q /∈ QM
. (7)

Substituting (2) and (5) into (1) yields the switched system dy-
namics

BMuM +Be (σMu1 +(1−σM)u2) =

Mq̈+V q̇+G+P+bq̇+d. (8)

The combined system in (8) has the following properties [18].

Property 1. cm ≤M ≤ cM, where cm, cM ∈R>0 are known con-
stants.

Property 2. |V | ≤ cV |q̇|, where cV ∈ R>0 is a known constant.

Property 3. |G| ≤ cG, where cG ∈ R>0 is a known constant.

Property 4. |P| ≤ cP1+cP2 |q̇|, where cP1, cP2 ∈R>0 are known
constants.

Property 5. b≤ cb, where cb ∈ R>0 is a known constant.

Property 6. |d| ≤ cd , where cd ∈ R>0 is a known constant.

Property 7. Ṁ−2V = 0, by skew-symmetry.

Property 8. The unknown function relating stimulation current
to torque is lower bounded by BM ≤ BM , where BM ∈ R>0 is a
known constant.

CONTROL DEVELOPMENT
Cadence Controller

Cadence tracking will be accomplished by using the rider’s
muscles in the FES region and the cycle’s electric motor in the
KDZ regions. The cadence tracking objective is quantified by
e : R≥0→ R, and r : R≥0→ R, each defined as

e , qd−q, (9)
r , ė+αe, (10)

where qd : R≥0→Q denotes the desired position, q̇d : R≥0→R
denotes the desired cadence, designed to be sufficiently smooth
(i.e., qd(t), q̇d(t), q̈d(t) ∈ L∞), and α ∈ R>0 a constant control
gain. The open-loop dynamics are obtained by taking the deriva-
tive of (10), premultiplying by M, adding and subtracting e, then
substituting (8) and (10) to yield

Mṙ =

{
χ1−BMuM−Beu1−V r− e q ∈ QM

χ1−Beu2−V r− e q /∈ QM
, (11)

where the switching relations in (4) and (7) were used to sim-
plify control inputs based on the crank angle. The lumped
auxiliary signal χ1 : Q × R× R≥0 → R is defined as χ1 ,
M
(
q̈d +αr−α2e

)
+V (q̇d +αe)+G+P+b(q̇d− r+αe)+d+

e. From Properties 1-6, χ1 is bounded as

|χ1| ≤ c1 + c2 ‖z‖+ c3 ‖z‖2 ,

where c1, c2, c3 ∈ R>0 are known constants, ‖·‖ denotes the
standard Euclidean norm, and the error vector z ∈ R2 is defined
as z, [e, r]T . Based on (11), the region of the crank, and the sub-
sequent stability analysis, the cadence controllers are designed as

uM ,
1

BM

[
k1r+

(
k2 + k3 ‖z‖+ k4 ‖z‖2 + k5 |u1|

)
sgn(r)

]
,(12)

u2 ,
1
Be

[
k1r+

(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
sgn(r)

]
, (13)

where ki ∈ R>0 ∀i = 1, 2, ...,5 denote constant control gains,
sgn(·) denotes the signum function, and BM is developed in Prop-
erty 8. Substituting (12) and (13) into (11) yields the closed-loop
cadence error system

Mṙ =



χ1−Beu1−V r− e− BM
BM

[
k1r

+
(

k2 + k3 ‖z‖+ k4 ‖z‖2

+k5 |u1|
)

sgn(r)
]

q ∈ QM

χ1−V r− e−
[
k1r+

(
k2 + k3 ‖z‖

+k4 ‖z‖2
)

sgn(r)
]

q /∈ QM

. (14)



Admittance Controller
While in the FES regions, the rider’s muscles are respon-

sible for tracking cadence, and the motor for tracking a desired
admittance. The cycle’s admittance behavior is generated by the
desired interaction dynamics, given by

τint , Md q̈a +Bd q̇a, (15)

where τint : R≥0 → R is the measurable interaction torque be-
tween the rider and cycle, qa : R≥0 → R, q̇a : R≥0 → R, and
q̈a : R≥0→ R denote the admitted position, velocity, and accel-
eration, respectively, and Md , Bd ∈ R>0 denote the desired iner-
tia and damping parameters, respectively, selected such that the
transfer function of (15) is strictly positive real, i.e., passive [17,
Lemma 6.4]. The following assumption is made with regard to
the interaction torque.

Assumption 1. The measurable interaction torque is bounded
(i.e., τint ∈ L∞) [23].

Remark 1. When combining the rider and cycle dynamics,
the equal and opposite interaction torques, τint , cancel out. How-
ever, the interaction is still present and may be used in feedback.

Because the admittance manifests itself as a modified trajec-
tory, an inner loop position controller is required. This controller
tracks the admittance error system quantified by ξ : R→ R and
ψ : R→ R, defined as

ξ , qa +qd−q, (16)
ψ , ξ̇+βξ. (17)

The open-loop admittance error system is generated by taking
the time derivative of (17), premultiplying by M, adding and sub-
tracting ξ, and substituting (2), (7), (8), (16), and (17) to yield

Mψ̇ = χ2−Beu1− τm−V ψ−ξ, (18)

where the lumped auxiliary signal χ2 : Q ×R×R≥0→R is de-
fined as χ2 , M

(
q̈a + q̈d +βψ−β2ξ

)
+V (q̇d +βξ+ q̇a)+G+

P+ b(q̇d + q̇a−ψ+βξ)+ d + ξ and bounded by Properties 1-6
and Assumption 1 as

|χ2| ≤ c4 + c5||φ||+ c6||φ||2,

where c4, c5, c6∈ R>0 are known constants, and the error vectors
φ ∈ R4 and ζ ∈ R2 are defined as φ ,

[
ζT , q̇a, q̈a

]T and ζ ,

[ξ, ψ]T , respectively. Based on (18) and the subsequent stability
analysis, the admittance controller is designed as

u1 ,
1
Be

[
k6ψ+

(
k7 + k8 ‖φ‖+ k9 ‖φ‖2

)
sgn(ψ)

]
, (19)

where ki ∈ R>0 ∀i = 6, 7, 8 ,9 denote constant control gains.
Substituting (19) into (18) yields the closed-loop admittance er-
ror system

Mψ̇ = χ2− τm−V ψ−ξ

−
[
k6ψ+

(
k7 + k8 ‖φ‖+ k9 ‖φ‖2

)
sgn(ψ)

]
. (20)

STABILITY ANALYSIS
To conclude stability of the cadence error system, the

closed-loop error system must be evaluated within the FES and
KDZ regions, then examined for destabilizing switching effects.
Theorem 1 leverages a common Lyapunov function across both
regions of the crank cycle, which by [24] guarantees overall sys-
tem stability despite arbitrary switching. Theorem 2 leverages a
storage function to prove the admittance error system is passive
to the rider’s muscle torque in the FES regions. For the following
theorems, let λ, λ, Λ and Γ ∈ R>0 denote known constants de-
fined as λ , min

( cm
2 , 1

2

)
, λ , max

( cM
2 , 1

2

)
, Λ , 1

λ
min(k1, α) ,

and Γ , 1
λ

min(k6, β) . Additionally, let V1, V2 : R2 → R de-
note the continuously differentiable, positive definite Lyapunov
function candidate and storage function, respectively, defined as

V1 ,
1
2

Mr2 +
1
2

e2, (21)

V2 ,
1
2

Mψ
2 +

1
2

ξ
2, (22)

which satisfy the following inequalities, respectively:

λ‖z‖2 ≤V1 ≤ λ‖z‖2 . (23)

λ‖ζ‖2 ≤V2 ≤ λ‖ζ‖2 . (24)

Theorem 1. Given the closed-loop error systems in (14), global
exponential tracking is guaranteed in the sense that

‖z‖
a.e.
≤

√
λ

λ
‖z(t0)‖exp

[
−Λ

2
(t− t0)

]
, (25)

∀t ∈ [t0, ∞), provided the following constant gain conditions are
satisfied:

k2 ≥ c1, k3 ≥ c2, k4 ≥ c3, k5 ≥ Be. (26)

Proof. Let z(t) for t ∈ [t0, ∞) be a Filippov solution to the dif-
ferential inclusion ż ∈ K[h1](z), where K[·] is defined as in [25],
and where h1 : R2→ R2 is defined using (10) and (14), as

h1 ,

[
ė
ṙ

]
. (27)



The time derivative of (21) exists almost everywhere (a.e.)
(i.e., for almost all t ∈ [t0, ∞)), and V̇1(z)

a.e.
∈ ˙̃V1(z), where ˙̃V1

is the generalized time derivative of (21) along the Filippov
trajectories of ż = h1(z) and is defined as in [26] as ˙̃V1 ,

∩
ξ∈∂V1(z)

ξT K
[

h1 (z) 1
]T

, where ∂V1 is the Clarke generalized

gradient of V1. Since V1 is continuously differentiable in z,
∂V1 = {∇V1} and ˙̃V1 ⊆

[
e Mr 1

2 rṀr
]

K
[

h1 (z) 1
]T

. Using the
calculus of K [·] from [26], and substituting (10), (11), and (27)
into the result, and using Property 7, yields

˙̃V1 ⊆ r
(

χ1−K [BMuM]−Be

(
K [σMu1]

+K
[(

1−σM

)
u2

])
− e
)
+ e(r−αe) . (28)

Performing cancellations and using Property 7 allows (28) to be
evaluated in the FES regions as

˙̃V1 ⊆ −αe2 + r (χ1−K [BMuM]−BeK [u1]) . (29)

After using (12), (29) can be rewritten as

˙̃V1 ⊆ −αe2 + rχ1−
K [BM]

BM

(
k1r2 +

(
k2 + k3 ‖z‖

+k4 ‖z‖2 + k5K [|u1|]
)
|r|
)
− rBeK [u1] , (30)

where K [sgn(·)] = SGN(·) such that SGN(·) = {1} if (·) > 0,
[−1,1] if (·) = 0, and {−1} if (·)< 0. Using Properties 1-6 and

8 and since V̇1(z)
a.e.
∈ ˙̃V1(z), (30) can be upper bounded as

V̇1
a.e.
≤ −αe2− k1r2−|r|

(
λ1 +λ2 ‖z‖

+λ3 ‖z‖2 +λ4K [|u1|]
)
, (31)

where λ1, λ2, λ3, λ4 ∈R are defined as λ1 , k2−c1, λ2 , k3−
c2, λ3 , k4−c3, and λ4 , k5−Be. Provided the gain conditions
in (26) are satisfied, λ1, λ2, λ3, λ4 ≥ 0 ; thus, (31) can be upper
bounded as

V̇1
a.e.
≤ −ΛV1, (32)

where Λ was defined previously. Similarly, for the KDZ region
(i.e, q /∈ QM), (28) is evaluated using (11) to yield

˙̃V1 ⊆ −αe2 + r (χ1−BeK [u2]) . (33)

By using (13), (33) can be rewritten as

˙̃V1 ⊆ −αe2 + rχ1− k1r2−
(

k2 + k3 ‖z‖+ k4 ‖z‖2
)
|r| . (34)

Using Properties 1-6 allows (34) to be upper bounded as

V̇1
a.e.
≤ −αe2− k1r2−|r|

(
λ1 +λ2 ‖z‖+λ3 ‖z‖2

)
, (35)

where λ1, λ2, λ3 maintain their previous definition. Provided the
gain conditions in (26) are satisfied, (35) can be upper bounded
as (32). Based on (23) and (32) the result in (25) can be obtained,
and from the closed-loop error systems and Assumption 1, the
cadence controllers in (12) and (13) are bounded.

For the following theorem, let tM
n ∈ R≥0 denote the time the

crank enters QM of cycle n, and tK
n ∈ R≥0 as the time the crank

exits QM of cycle n.

Theorem 2. Given the closed-loop error system in (20) and the
admittance relation in (15), when q ∈ QM the robot is passive
from input |τm| to output |ψ| and the robot error system is glob-
ally exponentially stable when in isolation (i.e., τm = 0) in the
sense that

‖z‖
a.e.
≤

√
λ

λ

∥∥z(tM
n )
∥∥exp

[
−Γ

2
(t− tM

n )

]
, (36)

∀t ∈
[
tM
n , tK

n
)
∀n, where λ, λ and Γ were defined previously, pro-

vided the following constant gain conditions are satisfied:

k7 ≥ c4, k8 ≥ c5, k9 ≥ c6. (37)

Proof. Let ζ(t) for t ∈
[
tM
n , tK

n
)

be a Filippov solution to the dif-
ferential inclusion ζ̇ ∈ K[h2](ζ), where K[·] is defined as previ-
ously, and where h2 : R2→ R2 is defined as

h2 ,

[
ξ̇

ψ̇

]
. (38)

Using a similar argument to that made in Theorem 1, leveraging
(22), substituting (17), (18), and (38) into the result, and using
Property 7, yields

˙̃V2 ⊆ ψ(χ2− τm−BeK [u1]−ξ)+ξ(ψ−βξ) . (39)

After using (19), (39) can be expressed as

˙̃V2 ⊆ −βξ
2 +ψχ2− k6ψ

2−ψτm

−
(

k7 + k8 ‖φ‖+ k9 ‖φ‖2
)
|ψ| . (40)



Using Properties 1-6 and the fact that V̇2(ζ)
a.e.
∈ ˙̃V2(ζ), (40) can be

upper bounded as

V̇2
a.e.
≤ |ψ| |τm|−βξ

2− k6ψ
2

−|ψ|
(

λ4 +λ5 ‖φ‖+λ6 ‖φ‖2
)
, (41)

where λ4, λ5, λ6 ∈ R are defined as λ4 , k7− c4, λ5 , k8−
c5, λ6 , k9− c6. Provided the gain conditions in (37) are satis-
fied, λ4, λ5, λ6 ≥ 0 ; thus, (41) can be upper bounded as

V̇2
a.e.
≤ |ψ| |τm|−δ‖ζ‖ 2, (42)

where δ , min(k6, β). Hence, by [17, Definition 6.3] the robot
system is output strictly passive with input |τm|, output |ψ|, and
storage function V2. When the robot acts in isolation (i.e., the
human is decoupled from the robot), τm = 0, and (42) can be
rewritten as

V̇2
a.e.
≤ −ΓV2, (43)

where Γ was defined previously. Hence, the storage function
qualifies as a radially unbounded positive definite Lyapunov
function per the zero-state observability condition [17, Defini-
tion 6.5] and results in global exponential stability when τm = 0
and q∈QM . With no human interaction, the admitted trajectories
will remain at zero and ξ≡ e, ψ≡ r, and ζ≡ z. These relations,
along with (23) and (43), can be used to obtain the result in (36).
From the closed-loop error system in (20), the admittance rela-
tion in (15), and Assumption 1, the robot admittance controller
in (19) is bounded.

EXPERIMENTS
Experimental Testbed

Experiments were conducted on a stationary TerraTrike
Rover recumbent tricycle with an electric motor coupled to the
drive chain. The testbed used an ADVANCED Motion Controls3

(AMC) power supply, motor driver, and filter card; additional
details are available in [2]. Biphasic, symmetric, rectangular
pulses were delivered to the rider’s muscle groups via bipolar,
self-adhesive, PALSr electrodes 4 and a Hasomed Rehastim 1
current-controlled stimulator. Stimulation amplitudes were fixed
at 90, 80, and 70 mA for the quadriceps, hamstrings, and gluteals,
respectively, with the current determined by the controller in
(12). A stop button was available to the rider at all times.

3ADVANCED Motion Controls supported the development of this testbed by
providing discounts on their branded items.

4Surface electrodes for this study were provided compliments of Axelgaard
Manufacturing Co., Ltd.

Experimental Methods

The experimental protocol was approved by the Institutional
Review Board at the University of Florida. The protocol du-
ration was 180 seconds with the first 30 seconds consisting of
a motor-only ramp to the desired cadence of 50 RPM. Two 25
year old males participated in the experiment to demonstrate the
efficacy of the controller. Participant 1 was an able-bodied in-
dividual; Participant 2 had spina bifida (L5-S1) with an Arnold
Chiari Malformation and uses ankle-foot orthoses on both feet
along with a wheelchair. Participant 2 actively participates in
both physical and occupational therapy and has had previous ex-
posure to FES cycling. Both participants were instructed to re-
main passive, contribute no volitional torque, and were blind to
the desired trajectory; only the quadriceps femoris muscles were
used for feasibility purposes.

Results and Discussion

In Participants 1 and 2, the controllers achieved an aver-
age cadence of 49.93± 2.59 RPM and 49.80± 3.86 RPM, re-
spectively, which is equivalent to an average percent error of
0.14% and 0.40%, respectively. The average admitted cadence
for Participants 1 and 2 was−0.10±0.40 RPM and−0.20±0.60
RPM, respectively, with cadence tracking results displayed in
Figs. 1 and 2. To facilitate gain selection, k1-k4 were sepa-
rated into muscle and motor counterparts; therefore let ki,m ∈
R>0 ∀i = 1, 2, ...,4 refer to the muscle gains in (12) and let
ki,e ∈R>0 ∀i refer to the motor gains in (13). For Participant 1, a
feedforward term of 40 µs was added to (12) with k1,m , 90, and
for Participant 2, a feedforward term of 20 µs was added with
k1,m , 40. The remaining gains were consistent across partici-
pants and selected as k2,m = k3,m , 0.01, k4,m , 0.005, k5 , 1,
k1,e , 1.8, k2,e = k3,e , 0.01, k4,e = 0.005, k6 , 2, k7 = k8 , 0.01,
k9 , 0.005, α = β , 1. The admittance parameters for Partici-
pant 1 were selected as Md = 0.1 Nm

rad·s2 and Bd = 10 Nm
rad·s and for

Participant 2 as Md = 0.1 Nm
rad·s2 and Bd = 5 Nm

rad·s . For both par-
ticipants, the stimulation was saturated at 120 µs for comfort.
In the FES regions, the admittance controller tracked a modified
admitted trajectory based on the interaction torque measured be-
tween the cycle and participant. Because the control objective of
the experiment is quantified in terms of cadence, the admittance
damping parameter notably affects the performance of the cy-
cle. For example, a low Bd value allows the admitted cadence to
deviate from the desired and result in a compliant cycle; a high
value of Bd would result in a stiff cycle and hold the admitted
cadence close to the desired. This effect is seen in the experi-
mental admitted trajectories between the participants; by halv-
ing the damping in Participant 2 compared to Participant 1 (i.e.,
5 Nm

rad·s from 10 Nm
rad·s ), the admitted cadence doubled (i.e., -0.20

RPM from -0.10 RPM); a more compliant cycle admits more to
the rider and will reduce the interaction torque.



FIGURE 1: PARTICIPANT 1’S CADENCE TRACKING PERFORMANCE.
(TOP) THE DESIRED CADENCE COMPARED TO THE ADMITTED AND
ACTUAL CADENCE. (MIDDLE) THE PULSEWIDTH (PW) CONTROL IN-
PUTS TO THE PARTICIPANT’S RIGHT AND LEFT QUADRICEPS. (BOT-
TOM) THE CURRENT CONTROL INPUT TO THE ELECTRIC MOTOR.

FIGURE 2: PARTICIPANT 2’S CADENCE TRACKING PERFORMANCE.
(TOP) THE DESIRED CADENCE COMPARED TO THE ADMITTED AND
ACTUAL CADENCE. (MIDDLE) THE PULSEWIDTH (PW) CONTROL IN-
PUTS TO THE PARTICIPANT’S RIGHT AND LEFT QUADRICEPS. (BOT-
TOM) THE CURRENT CONTROL INPUT TO THE ELECTRIC MOTOR.

CONCLUSION
Robots utilizing admittance control allow for safe, compli-

ant human-robot interaction. Based on the interaction with the
human, the robot modifies its own behavior, as dictated by the
desired admittance dynamics. This is extremely important in the
field of rehabilitation because humans are often in a weakened,
unreliable, or unpredictable state. A compliant robot is capa-
ble of providing guidance toward control objectives while yield-

ing to human interaction. By modifying the admittance parame-
ters, behaviors such as high frequency tremor can be suppressed
while still allowing for slow deliberate movements. In this pa-
per, a rider and an FES cycle were successfully controlled using
a combination of three separate controllers across two interact-
ing systems. A Lyapunov-like switched systems stability analy-
sis proved global exponential cadence tracking and passivity of
the cycle with respect to the rider. Experiments demonstrated
the efficacy of the developed controller and verified the compli-
ance of the cycle. Future works will include developing an adap-
tive admittance controller to change admittance parameters on-
line to better accommodate for the rider. Additional experiments
will be performed on both able-bodied individuals and individ-
uals possessing neurological/movement disorders. The admit-
tance parameters affect the performance of the cycle, however,
they are were selected such that favorable cycling performance
was achieved; additional investigation will add a desirable in-
teraction torque such that the muscles are performing a useful
amount of work for purposes of strength training.
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