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ABSTRACT. The Kaczmarz algorithm is an iterative method for solving a system of linear
equations. It can be extended so as to reconstruct a vector z in a (separable) Hilbert space
from the inner-products {(z, ¢,)}. The Kaczmarz algorithm defines a sequence of approx-
imations from the sequence {(z, ¢»)}; these approximations only converge to x when {¢n, }
is effective. We dualize the Kaczmarz algorithm so that = can be obtained from {(z, ¢n)}
by using a second sequence {1,} in the reconstruction. This allows for the recovery of z
even when the sequence {¢,} is not effective; in particular, our dualization yields a recon-
struction when the sequence {¢,} is almost effective. We also obtain some partial results
characterizing when the sequence of approximations from {{z, ¢,)} using {1} converges to
z, in which case {(¢n,¥n)} is called an effective pair.

1. INTRODUCTION

A question of consistent interest in recent years is the conditions under which one can recon-
struct a vector in a Hilbert space H given its inner products with some sequence of vectors
{en}s2 - Sequences of vectors {e,} >, which yield non-uniqueness of representations and
robustness to perturbations have motivated advances in the area of frame theory [2, 3, 5].
There is now renewed interest in iterative reconstructions, e.g. phase retrieval [8, 15], opti-
mization [12], learning theory [10], and computerized tomography [11], to name a few. All
of these areas make use of the reconstruction method which we now introduce.

In 1937, Stefan Kaczmarz introduced an iterative process of solving linear systems which we
now call the Kaczmarz algorithm. Given a linearly dense sequence of unit vectors {e,}22,

in H and = € H, we define a sequence of approximations {zy}22, by
(1 1) To = <.Z',€0>€0,
' Ty = Tn-1+ (T —Tn_1,€n)en, n>1

We say that {e,} 2, is effective if ||z, — x| — O for every x € H. Kaczmarz showed in
[9] that any periodic, linearly dense sequence of unit vectors {e, }°2, in a finite-dimensional
Hilbert space is effective.

In [10], Kwapien and Mycielski made progress in the infinite-dimensional Hilbert space setting
by utilizing the auxiliary sequence {hy}32, defined recursively as
ho = eo,

(1.2) B i
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They showed that {e,}22, is effective if and only if {h,}7°, is a Parseval frame, namely
that, for every x € H,

00
] =) [, hn) [
n=0

In [7], Haller and Szwarc approached the characterization from a different perspective, using
the matrix of inner products

1 0 0
<€1,60> 1 0
(1.3) I+ M= |(e2e0) (e2€1) 1

(e3,e0) (es,;e1) (es,e2)

They showed that {e, }°°, is effective if and only if the matrix U is a partial isometry where
I + U is the algebraic inverse of I + M.

In the more general setting of a Banach space X, Kwapieri and Mycielski in [10] reinterpreted
the Kaczmarz algorithm as the iterative process associated to {(en, fn)}neg C X x X* with
fn(en) =1 and

To = 07

Ty = Tp-1 + fo(® —Tp_1)en, n>1
In this context, the sequence {(en, fn)}o2, is said to be effective if ||z — ||y — 0 for every
x € X. Although Kwapien and Mycielski did not produce a characterization of effective

sequences in Banach spaces, they did attain approximation results by thresholding the linear
functionals.

With this extension to Banach spaces, we find applications of the Kaczmarz algorithm in
learning theory. In [10], Kwapieri and Mycielski describe a model concerning the space

X={zeCR):z(t+7T)=ux(t)}.

They ask when there exists some h € X with ~2(0) = 1 and some sequence {t,}7°, such
that every z € X can be recognized (uniformly approximated) from the sequence {z,}22,
generated by the learning process

zo(t) =0,
Tn(t) = op_1(t) + (2(tn) — xp_1(tn))h(t — t,), n>1.

By letting e, = h(t — t,,) and f,(x) = z(t,), the question is resolved by determining when
the sequence {(en, fn)}52, is effective.

(1.4)

1.1. Introduction to frame theory. The results in this paper implement tools and con-
cepts from frame theory. We will introduce needed terminology and definitions, referring the
reader to [4] for a more thorough discussion.

In a Hilbert space H, a frame is a sequence of vectors {f,,}°°, for which there exist positive
constants A and B such that

(1.5) Allz))® <>, fu)? < Bllz|® for all z € H.
n=0
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A frame is tight if A = B and Parseval if A = B = 1. The sequence {f,}"2, (not necessarily
a frame) is Bessel if the positive constant B exists in Equation (1.5). A Riesz basis is a frame
which ceases to be a frame if any of its vectors are removed.

Supposing {fn}>2 and {gn}22, are frames, if for every z € ‘H

oo
T = Z<x7f'ﬂ>gn7
n=0
then we say that {g,}72 is a dual frame for {f,}7°,. The dual frame condition is always
symmetric, that is, if {gn}n o is a dual frame for { fn}n o, then {f,}5° is a dual frame for
{gn}n:0

The frame condition in Equation (1.5) guarantees the existence of dual frames. In fact, given
that {f,,}22 is a frame, the operator S : H — H defined by Sz =Y ° (z, fn) fn is bounded,
positive, and invertible. One can check that {S™!f,}%° ; is a dual frame for { fn}22,; indeed,
it is referred to as the canonical dual frame. In general dual frames are not unique. However,
the canonical dual frame is the unique dual frame that is related by an invertible operator
to the given frame [1]:

Lemma 1.1. If {f,}°2, is a frame and {gn}32 is a dual frame, then {gn }°2, is the canonical
dual frame if and only if there exists an invertible operator T such that T f, = gn. In this
case, T = S~1.

If the frame {f,}22, is a Riesz basis, then its dual frame {g, }5°, is unique, and the dual is
also a Riesz basis. Moreover, it can be shown that (fi,, gn) = dmn for all m,n € Ny, leading
us to refer to {f,}°°, and {gn}ffzo as biorthogonal Riesz bases.

A frame provides reconstruction of any x € H from inner products with the frame elements
while also allowing for redundancy among those elements. This procedure is captured by
the analysis and synthesis operators. The analysis operator associated with the sequence
{fn}ey is the map Of : H — ¢(Np) given by

(1.6) O5(x) = {{z, fu) }nZo,

where ¢(Np) is the space of sequences on Ng. When {f,}72 is Bessel, the operator O is
bounded from H into ¢2(Ng). However, this condition is not always assumed. Let I(Np)

denote the subspace of sequences {cn} ° o € ¢(Ng) for which Y >° ¢ fn converges. The
synthesis operator associated with {f,,}72 is the map ©% : {(Nog) — H given by

o0

(1.7) Oj({entno) = D _enfa-

n=0

When {f,}%, is Bessel, we may replace [(Ng) by ¢2(Np) and then, as the notation suggests,
the synthesis operator is the Hilbert space adjoint of the analysis operator. The frame
operator is @}@ 7 and is the identity operator if and only if {f,}52 is a Parseval frame.

We will consider the mixed Grammian matrix ©40;, for sequences {¢,};2, and {¢n};2
given by

(1'8) (@qﬁgfp)m,n = <wm7¢n>

This matrix in general does not define a bounded operator on ¢2(Ny), so we need to take
care when referring to its positivity. For our purposes, we say that an infinite matrix 7" is
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positive if every principle submatrix is positive. That is, for all n € Ny, the operator

too tor .- ton O
tio t11 ... tin 0
Tn="|tw tm ... tan O
0 o ... 0 0

satisfies (Tj,u,u) > 0 for every u € £?(Np).

Throughout this paper, we adopt the convention that indexing starts at 0, unless otherwise
stated, so indexing notation will be dropped when understood.

2. THE DUAL KACZMARZ ALGORITHM

While effective sequences are useful in vector recovery, they need not retain their efficacy
when subject to perturbation. This was shown by Czaja and Tanis in [6] when they proved
that a Riesz basis which is not an orthonormal basis cannot be effective (see Remark 2.5).
The counterexample then follows directly from a classic result of Paley and Wiener (see [13]),
namely that a sufficiently small perturbation of an orthonormal basis, which is necessarily
effective, may produce a Riesz basis which is not an orthonormal basis—and hence no longer
effective. With the intention of obtaining a better tolerance to perturbation, we introduce a
variation on the Kaczmarz algorithm where two sequences work together to achieve recon-
struction, in analogy to dual frames.

Let {¢,} and {1,} be two linearly dense sequences in H such that (¢,,1,) = 1. Given
x € H, we define the dual Kaczmarz algorithm applied to x by

w0 = (z, ¢o) Vo,
Tp = Tp-1+ <(E — Tn—1, ¢n>¢n7 n > 1.

If |x —zn]| — 0 for all z € H, then we say that {¢,} and {¢,} form an effective pair.
As will be demonstrated in Example 3.2, efficacy need not be preserved when ¢, and ),
are interchanged in the algorithm. Hence, we will call the first sequence {¢,} the analysis
sequence and the second sequence {1, } the synthesis sequence, representing the ordering by
{(¢n,¥n)}. If both {(¢n,¥n)} and {(¢n, pn)} are effective pairs, we say that the sequences
form a symmetric effective pair. We note that this is distinct from the dual frame condition
which is always symmetric.

(2.1)

Similarly to Kwapieni and Mycielski in [10], we recursively define the auxiliary sequence {gy }
for a pair {(¢n, )} as follows:

90 = ¢o,
(2.2) nl
In = On — Z<¢m¢k>gk7 n > 1.
k=0
It is an inductive argument to show
n
(2'3) Ip = Z<~’Cagk>¢k, n > 0.

k=0
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Consequently, if {(¢n, 1)} is an effective pair, then we have the reconstruction
o0

(2.4) z =Y (z,9K) %

k=0
We likewise form an auxiliary sequence {g,} for {(¢n, ¢n)} by
9o = o
(2.5) . = N
Gn = n — Z<¢n7¢k>gka n > 1.

k=0

Remark 2.1. Our notation g,, g, suggests duality in the context of frames. Although this
is sometimes the case, we also have examples where {(¢y, 1)} is an effective pair and one
or both of {g,} and {g,} fail to be frames. This is shown in Example 3.4.

Remark 2.2. As an effective sequence forms an effective pair with itself, it is natural to
ask whether the two sequences in an effective pair are independently effective. Appealing
to Schauder bases which are not Riesz bases, we find many examples for which this is not
necessarily the case. See Example 3.4 for more details.

Remark 2.3. There are many more effective pairs than there are effective sequences. In-
deed, Corollary 2.7 will demonstrate that any effective sequence and invertible operator can
generate an effective pair.

Remark 2.4. The concept of an effective pair translates more naturally to the context of
a Banach space than that of an effective sequence. Although Kwapien and Mycielski in
[10] defined an effective sequence in a Banach space, X, their definition (1.4) relies upon
two different sequences—one in X and one in X*—which is equivalent to our effective pair
definition from (2.1). As observed in Example 3.4, a Schauder basis and its biorthogonal
dual are an effective pair.

Remark 2.5. Suppose {e,} is a Riesz basis. Let {h,} be the auxiliary sequence for {e,}
as defined in Equation (1.2). Then, the pair {e,} and {h,} form a biorthogonal Riesz basis
only when {e,} is an orthonormal basis since (e, €,,) = (ho, €m,) and for 1 <n <m

n—1

<€na em> = <hn7 €m> + Z<€na ek><hk7 em>'
k=0

Therefore the sequence {e,} is effective if and only if it is an orthonormal basis.

Theorem 2.6. Let T € B(H) be invertible. Then {(¢n,n)} is an effective pair if and only
if {(Tgbn, (T_l)*wn)} is an effective pair.

Proof. Suppose that {(¢,,1,)} is an effective pair. Let x € H, and attain the sequence of
approximations {y,} using Equation (2.1) applied to T*x. Since {(¢n, %)} is an effective
pair, we know || 7%z —y,| — 0. Next, define the sequence {z,} via the dual Kaczmarz
algorithm applied to z using {(T ¢, (T~1)* )}, i.e.

o = (z, Too)(T ") 4o,
Ty = Tp—1+ (T — :En,l,Tgbn}(T_l)*wn, n > 1.
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Observe that
zo = (2, Teo)(T~) o = (T7)" (T, $o)t0) = (T~")"wo.
Assume inductively that 2, 1 = (T~")*y,,_1. Then
Tn = (T yn1 + (T = T wp1,¢0) (T~ ¢

= (T (yn-1 + (T"% = yn—1, bn)n)

= (") yn-
Therefore, x, = (T~1)*y, for all n € Ng. As T~! is bounded, we have

o = anll = |(T71)"T"(z = 2a)]|
< @Y IT*2 — Tl = (T 1Tz = yull = 0,

so that {(T'¢n, (T~1)*,)} is an effective pair. Conversely, suppose that {(T'¢y, (T1)* 1)}
is an effective pair. Let S = T~!. From the above argument, it follows that

{(ST¢n, (S_l)*(T_l)*d)n)} = {(¢n, wn)}

is an effective pair. O

Corollary 2.7. Let T € B(H) be invertible. A linearly dense sequence {en} of unit vectors
is effective if and only if {(Ten, (T™Y)*e,)} is a symmetric effective pair.

Proof. Tt is clear that {e,} is effective if and only if {(e,,e,)} is an effective pair. Applying
Theorem 2.6 with 7" and (T~1)*, we conclude that {(Ten, (T ')*en)} and {((T1)*en, Ten) }
are both effective pairs if and only if {(e,,e,)} is an effective pair. O

It would be very advantageous to achieve a characterization of all effective pairs. Most of
our results in this direction, however, depend upon the existence of a certain operator T
satisfying v, = T'¢,. With this in mind, we next present a string of lemmas that are tied to
this condition, each imposing increasingly stringent hypotheses on T'. It is assumed in every
lemma that {¢,} and {t¢,} are linearly dense in H and that {g,} and {g,} are constructed
according to Equations (2.2) and (2.5). In these lemmas, as well as in the rest of the paper,

we will reference T3 as the positive square root of T', when defined.
Lemma 2.8. If T € B(H) is such that Tg, = g, and

(2.6) (Pns k) = (Yn, d) for all n, k € Ny,
then T'¢,, = 1, for all n € Ng.

Proof. This is clear for n = 0,

T'gpo =Tgo = go = to.
For n > 1, observe that

n—1 n—1 n—1
Un = > (n,k)Gk = Gn = Tgn =Tn — > (S0, k)T 9k = Thn — >_(thn, Dk
k=0 k=0 k=0

so T'¢, = 1y, as desired. O
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Lemma 2.9. Suppose T' € B(H) is positive and such that T¢y,, = 1y, for all n € Ng. If we
define {en} by
(2'7) €n = Téﬁbm

then hy, = T%gn, where {h,} is the auxiliary sequence to {e,} as in Equation (1.2).

Proof. First note that
(2-8) <€maen> = <T%¢maT%¢n> = <¢m7T¢n> = <¢m7¢n>

for all m,n. Observe that
ho = eo = T2 ¢ = T go.
Assume inductively that hy =T 2 gr for all 0 < k < n. It follows that

n—1 n—1
I = en — > (o, V) e = T3 (qsn > (6n: wk>gk> =Tig,
k=0

= k=0
which concludes the induction. OJ

Remark 2.10. Note that in Lemma 2.9 and hereafter the sequence e, = T%(bn is not
necessarily a sequence of unit vectors.

Lemma 2.11. Let T' € B(H) be positive and invertible. If T¢,, = 1, for all n € Ny, then
Tgy, = gn for all n € Np.

Proof. This is clear for n = 0,
Tgo =T¢o = Yo = go-
Assume inductively that T'gr = gi for all 0 < k < n. Observe that

n—1 n—1 n—1
Tgn=Ton— Y (n,bk)Tgk = Yn — D (T, T k)G = Yn — >_(¥n, $k) Gk = dn
k=0 k=0 k=0
Thus, the statement holds for all n € Np. O

2.1. Towards a characterization of symmetric effective pairs. After the model of
Haller and Szwarc in [7], we seek necessary and sufficient conditions for a pair of sequences
to be an effective pair. As previously mentioned, most of our results in this area depend
upon a positive, invertible operator relating {¢,} and {¢,,}. In finite dimensions, we attain
such an operator by exploiting the analysis and synthesis operators associated with the given
sequences {¢,} and {i¢}, as seen in Equations (1.6) and (1.7). In infinite dimensions,
however, the situation becomes more complex as we are forced to impose various conditions
to ensure the existence of such an operator T' € B(H).

Corresponding to the pair {(¢n, ¥n)}, we define

1 0 0
(¢1,%0) 1 0
(2.9) T+ N = | (92,%0) (d2,91) 1

(#3,%0) (#3,%1) (¢3,%2)
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and I + V as the algebraic inverse of I + N. To be sure, this is equivalent to
(2.10) (I[+V)YI+N)=I+N)(I+V)=1.

Proposition 2.12. Suppose that {¢,} and {1, } are linearly dense sequences in H satisfying
(P, ¥n) =1 for all n € Ny. Furthermore, suppose that there exists a positive, invertible
T € B(H) such that ¥, = Ty, for all n € Ny and that V is a partial isometry. Then
{(¢n,Vn)} is a symmetric effective pair.

Proof. Define {e,} by Equation (2.7), so that ¢,, = T~3e, and Py = T3e,. From Equation
(2.8), we infer that the {e,} are unit vectors and that M = N, where M and N are as in
Equations (1.3) and (2.9), respectively. Consequently, U = V, and {e,} is effective by [7,
Theorem 1]. By Corollary 2.7, we conclude that {(¢n, 1)} is a symmetric effective pair. O

Proposition 2.13. Suppose that {¢,} and {1} are linearly dense sequences in H, whose
respective auxiliary sequences are {gn} and {gn}, as in Equations (2.2) and (2.5). Suppose
that (pn,¥n) =1 for all n € Ny, that (¢n, V) = (Un, ok) for all n,k € Ny, and that {g,} and

{gn} are canonical dual frames. Then {(¢n,¥n)} is a symmetric effective pair.

Proof. Since {gn} and {g,} are canonical dual frames, we write g, = T'g, where T~! is the
frame operator for {g,}. By Lemma 2.8, we know that T'¢,, = 1, for all n € Ny. Again
define {e,} and {h,,} by Equation (2.7) and Equation (1.2), respectively. By Lemma 2.9, we
know that hy, = T2 gy, = T~ 2§y, for all n € No.

Since {g,} and {g,} are dual frames, we know that {T' 2 gn} and {Tfé Jn} are also dual
frames. For x € H, observe that

= (e, T 23)T2g, = > (2, hn)hn
n=0 n=0
from which it follows that
2| = (2, ) = (@, b (e, ) = (2, ).
n=0 n=0

Therefore, {h,} is a Parseval frame, so {e,} is effective by [10]. Noting that ¢,, = T~ ze, and
V=T %en, we conclude that {(¢n, 1)} is a symmetric effective pair by Corollary 2.7. O

Theorem 2.14. Suppose that {pn} and {1} are linearly dense sequences in H, whose
respective auxiliary sequences are {gn} and {gn} as in Equations (2.2) and (2.5). Assume
(Pn, ¥n) =1 for allm € Ny and suppose there exists a positive, invertible T € B(H) such that
Ty =1, for all n € Ng. The following are then equivalent:

(1) V is a partial isometry, where V is given by Equation (2.10).
(13) {gn} and {gn} are canonical dual frames.
(731) {(Pn,¥n)} is a symmetric effective pair.

Moreover, if any of these conditions hold, then T' is the frame operator for {g,}.

Proof. We will show
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Suppose (i) holds. It is immediate from Proposition 2.12 that {(¢,,%,)} is a symmetric
effective pair.

Suppose (i7i) holds. Define the sequences {e,} and {h,} by Equations (2.7) and (1.2),
respectively. From Equation (2.8), we infer that the {e,} are unit vectors. As e, = T%@L

and e, = T_%wn, we have that {e,} is an effective sequence by Corollary 2.7, implying that
{h,} is a Parsevel frame by [10]. By Lemmas 2.11 and 2.9, we know that g, = Tg, and
hy, = T%gn. As g, = T_%hn, Jn = T%hn, and {hy} is a Parseval frame, we know that {g,}
and {g,} are dual frames. Moreover, since g, = T'g,, for invertible T', we conclude by Lemma
1.1 that {g,} and {g,} must be canonical dual frames, with frame operator 7.

Suppose (ii) holds. Since T is self-adjoint, it is straightforward to verify Equation (2.6), so
by Proposition 2.13, we infer that {(¢n, 1)} is a symmetric effective pair. Defining {e,} by
Equation (2.7) and applying Corollary 2.7, we see that {e,} is an effective sequence. Ap-
pealing to [7, Theorem 1], we conclude that the associated matrix U, as defined by Equation
(1.3), is a partial isometry. By Equation (2.8), U =V, and we have the desired result.  [J

For the remainder of this section, we will confine ourselves to finite-dimensional Hilbert
spaces, where our characterization effort is aided by the existence of a positive, invertible T" €
B(H) relating the sequences {¢,} and {1, }. We present necessary and sufficient conditions
for the existence of such a 7" and then use this result to present a partial characterization of
effective pairs in finite dimensions.

Lemma 2.15. Suppose {¢,} and {1} are linearly dense sequences in a finite dimensional
Hilbert space Hy. Then there exists a positive, invertible T € B(Hy) such that To, = ¥y, if
and only if ®¢@¢> s positive.

Proof. Suppose that there exists a positive, invertible T' € B(H ) such that T'¢,, = v,,. First,
we show that ©,07 is self-adjoint. Let {d,} be the canonical orthonormal basis of ?%(Np).
Observe

©40y0n = {{¢n; Or) }iZo = {(TPn, k) Yizo = {{Dn, TOk) }iZo = {{dn, Yr) FiZo = OuO0n.

From this it immediately follows that (0,0%)" = 0,0}, = ©,07. Next, we show that 0,0}
is positive. Observe for any finite sequence {c,} that

<@¢,@¢ch5],ch51€> = ZZCJCk 9¢@¢ Zchck Q,Z)J,qzbk
k=0 =0 k=0 =0 k=0
<ZCJ¢J,ZCk¢k> = <TZCj¢j,ZCk¢>k> > 0.
k=0 7=0 k=0

Therefore G)d)@;?}, and thus ©,07, is positive.

Conversely, suppose that @d,(%* is positive. As H is finite dimensional, there is some M € N

such that {(Z)n L and {wn} ! both span Hy. It follows that {¢, fy: ! and {¢, nM: ! are
frames for Hy, Wthh ensures that the operators

09,0y : Hy = C(Zar),  Opr = {(z,6n) 100", Oy = {{z, ¥n) }al'
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M-1 M-1
05,07 - *(Zag) = Hy,  O3{cn} = > cndn, O5{cal =D cnthn
n=0 n=0

are well defined, and that 9:; and 91’2 are surjective. We know that 9¢0:; is positive, as it
is a principal submatrix of @wG)z). We note that 91/,0:; = 9¢91*p and thus ranf, = ranf,.
Let B = ranfy = ranf,. Then 9;; and 01’2 are invertible when restricted to B since B =

(l~1:er9(”];)L = (ker&;’;})L. Let T': Hy — Hn be given by T' = QZ‘B(G(’;’B)_I.

Let P be the orthogonal projection of £2(Zy;) onto the closed subspace B. Then the operator
04 := PO, from H onto B is invertible, and we may write 1" = HZ‘B(% o 9;‘3)*1%.

Let {3, } be the canonical basis for £2(Z,s). Note that &, — Pd,, € B+ = ker 0. Thus
bn = 0500 = 05P0, + 07(6, — Pby,) = 05| ,Pb,

Pé,,. We then have

and similarly 1, = 0;2 ’ B

Tén = TO)| ,Pon = 0] 5 (050 05| )7 (0 0 05| ) PSn = 07,] 5 PO = .

Note that, for such an operator 7' constructed on a larger collection M > M, T must agree
with T on a spanning set and, hence, T'=T.

Lastly, for any « € Hy, there is some {c,} € B such that §3({c,}) = z. Then

(T2, x) = ((T705) ({en}), 05({en})) = (05({en}), O ({en})) = ((0405) ({en}), {en}) = 0

from which we conclude that 7%, and thus 7', is positive. O

Corollary 2.16. If {¢,} and {1, } are linearly dense sequences in a finite dimensional Hilbert
space Hy such that (¢p,1n) =1 for all n € Ny and @¢@2 is positive, then the following are
equivalent:

(i) V is a partial isometry.
(17) {gn} and {gn} are canonical dual frames.
(731) {(Pn,¥n)} is a symmetric effective pair.

Proof. This is an immediate consequence of Lemma 2.15 and Theorem 2.14. ([l

2.2. Almost effective sequences and the augmented dual Kaczmarz algorithm.
Although the Kaczmarz algorithm provides many computational advantages, the class of
effective sequences is too rigid to tolerate general perturbation. Earlier in the paper, we
addressed this rigidity issue by introducing effective pairs. In [6], Czaja and Tanis also
sought to relax the concept of an effective sequence. Specifically, they defined a new class of
sequences by calling {e,} in H almost effective if there exists some 0 < B < 1 such that the
sequence {z,} in Equation (1.1) satisfies

(2.11) lim ||z, — z||* < B|jz||*> for all 2 € H.

n—00

In [6], Czaja and Tanis proved that a sequence is almost effective with bound 0 < (1—A) if and
only if its corresponding auxiliary sequence defined by (1.2) is a frame with bounds 0 < A < 1.
This characterization provides another succinct connection between the Kaczmarz algorithm
and frame theory.



THE DUAL KACZMARZ ALGORITHM 11

Although almost effective sequences provide more flexibility, they are accompanied by non-
trivial disadvantages. Recall the original impetus for our investigation into effective sequences—
to reconstruct a vector given its inner products with some linearly dense sequence of unit
vectors. While an effective sequence yields such a reconstruction directly via the Kaczmarz
algorithm, an almost effective sequence does not necessarily retain this property. By com-
bining the idea of an almost effective sequence with that of an effective pair, however, we are
able to attain approximations based upon the desired inner products.

Similar to Szwarc in [14], who showed that a certain type of Bessel sequence generates an
effective sequence, we start with a lemma showing that canonical dual frames satisfying the
appropriate orthogonality condition generate a symmetric effective pair. This will be an
essential tool for our results involving almost effective sequences.

Lemma 2.17. Suppose that {gn} and {gn} are canonical dual frames in a Hilbert space H
such that

go L gn for allm € N.

Then there exists a symmetric effective pair {(¢n,¥n)} with auziliary sequences {gn} and
{Gn}, as in Equations (2.2) and (2.5).

Proof. As {g,} and {§,} are canonical dual frames, we have that S~'g, = g, where S is the

frame operator for {g,}. Define a sequence {f,} by f, = S ~3 gn. Observe that {f,} is a
Parseval frame and that fy L f, for all n € N as

(fos fu) = (57260, 572 gn) = (90,5~ gn) = {90+ Gn) = 0.

From [14, Theorem 1], we know {f,} is the auxiliary sequence for some effective sequence,
say {b,}, in H. Define the sequences {¢,,} and {¢,,} by ¢, = S2b, and Uy = S=2b,. By
Theorem 2.6, Lemma 2.9, and Lemma 2.11, it follows that {(¢y,, 1)} is a symmetric effective
pair with auxiliary sequences {S 3 o} ={gn} and {g.}. O

Now that we have a method for generating an effective pair corresponding to certain auxiliary
sequences, we use it to produce an effective pair with the same auxiliary sequence {h,} as a
given almost effective sequence {e,}.

Theorem 2.18. Suppose that {e,} is an almost effective sequence in a Hilbert space H
with auziliary sequence {hy,}. Then there exists a symmetric effective pair {(¢n,v¥n)} with
auziliary sequences {gn} and {gn}, as in Equations (2.2) and (2.5), such that

(i) hp = gy for all n € Ny.

(1i) {gn} and {gn} are canonical dual frames.

Moreover, x can be reconstructed from {{x,h,)} by

o

x = Z(m, R ).

n=0

Proof. As {e,} is almost effective, its auxiliary sequence {h,} is a frame with Bessel bound
0 < B <1 [6, Theorem 3.1]. Since ||ho||* = |leo||* = 1, it follows from the Bessel inequality
that (hg, hy) =0 for all n € N.
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Let S be the frame operator of {h,,}. Define the canonical dual frames {g,} and {g,}, where
9n = h, Gn = S_lhn-

As hg L h, for n € N, we infer that
Sho =Y (ho, hn)hn = ho.
n=0

For n € N, we then have
(90, Gn) = (ho, S™ hn) = (S ho, b)) = (ho, hy) =0

and
(§05 gn) = (S™ ho, hp) = (ho, hyn) = 0.

By Lemma 2.17, there are sequences {¢,} and {¢,} in H such that {(¢n, 1)} is a symmetric
effective pair with auxiliary sequences {g,} and {g,}.

Furthermore, as hy, = gn, by the reconstruction in Equation (2.4) we know that
oo o
x = Z(w,gk>wk = Z(m, hi)y  for all x € H.
k=0 k=0
O

We now have a sequence of approximations to x generated by inner products with the auxil-
iary sequence of an almost effective sequence. In the following corollary, we introduce another
variation on the Kaczmarz algorithm which will allow us to achieve reconstruction based upon
the inner products with the almost effective sequence itself.

Corollary 2.19. Suppose that {e,} is an almost effective sequence in a Hilbert space H with
auziliary sequence {hy,}. Let {1} be as in the conclusion of Theorem 2.18. For any x € H,
let {xy} be the sequence generated from {e,} as in Equation (1.1). Furthermore, define the

sequence {yn} by

0 = \T,€0,)%o,
(2.12) yo = (@, e0)¥

Yn :yn—1+<x_xn—1aen>7/]nv n > 1.
Then, lim,,_,c ||yn — z|| = 0.

We call the new formulation in (2.12) the augmented dual Kaczmarz algorithm. Note that,
as {e,} is merely almost effective, we do not make any assumptions about the convergence
of {z,}. Indeed, even if lim,,_,~ z, exists, it need not be equal to x. However, we use the
sequence {x,} as a state variable to gain the sequence of approximations {y,} generated in
(2.12).

Proof. From Theorem 2.18, we know that

T = Z(:r,hk>z/zk for all v € H,
k=0
so it suffices to show that
(2.13) Yn = Z(az, hi)  for all x € H,n € Ny.

k=0
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This is clear for n = 0 as eg = hg. Assume inductively that the claim holds for 0 < k < n
and note that

n—1 n—1
(x — xp_1,en) = (T, €n) — <Z<$, hk>ek,en> = <a:,en - Z(en,ek>hk> = (x, hy).

k=0 k=0
We then have

n—1 n
Yn = Yn—1 + <$ — Tn-1, €n>¢n = Z<$7 hk>7/}k + <37 - Tn-1, €n>¢n = Z<x7 hk>¢k
k=0 k=0
and thus Equation (2.13) holds. O

3. EXAMPLES

In this section, we list examples which illuminate some of the interesting characteristics of
effective pairs.

Example 3.1. Suppose that {¢,} and {1} are effective. It is not necessarily true that
{(¢n,¥n)} is an effective pair.

The most straightforward example would be to consider an orthonormal basis {¢,} and take
by, = —¢y. Clearly {¢,} and {¢,,} are effective sequences. However, the corresponding dual
Kaczmarz algorithm applied to x reproduces —z, i.e. ||z, — (—z)|| — 0, so that {(¢n, )} is
not an effective pair. This is immediate from

n

Tn = Z<_xv ¢k>¢k

k=0
which follows from Equation (2.3).

Example 3.2. There are effective pairs {(¢n,n)} satisfying (¢pn,¥n) = 1 for all n € Ny
which are not symmetric effective pairs.

In R?, consider the periodic sequences {¢,} and {¢,} with

1 (1] 05 |1]1] 15
[¢0¢1¢2¢0¢1¢2]:[_11—0.500 —0.5}

and én = O(n mod 3), ¥Yn = Y(n mod 3)- Consider the error sequence {e,|en = = — zn}
corresponding to the dual Kaczmarz algorithm for {(¢,,,)} associated to x where

g0 = x — (7, ¢0) %o
E€n = En—1 — <5n—1a ¢n>¢na n > 1.

Then {(¢n,n)} is an effective pair if and only if £, — 0. It is simple to show by induction
that the error sequence {e,} associated to x = (a, b) satisfies

b (1 b (-1 b (1
53k_2k<1>7 €3k+1—2k(1), 53k+2_2k+1<1>7 k=>0.

Therefore, {(¢n, 1)} is an effective pair. However, {(¢y, ¢y)} is not an effective pair for the
following reason: Let {e,} be the error sequence associated to z = (0,4). Then, by induction,

we find
0 0 1
€3k = <4> ) E3k+1 = (4) 5 E3k+2 = (3> ) k 2 0.
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The sequence {e,,} fails to converge.

Example 3.3. There are symmetric effective pairs {(¢n, ¥n)} for which the mized Grammian
operator ®¢@:§) is not positive. Furthermore, there are symmetric effective pairs which are
not related by an invertible operator, i.e. there does not exist an invertible T € B(H) such

that T'¢,, = 1y, for all n.

In R?, consider the periodic sequences {¢,} and {¢,} with
1(1j0]|1|1]0
[¢0¢1¢2¢0¢1¢2]=[011001]
and ¢n = 9(; mod3)s ¥Yn = Y(n mod 3)- As in the previous example, consider the error
sequence {e,} for the pair {(¢n,¥n)}. Since ey is the projection of €1 onto the orthogonal
complement of ¢o, €3 is the projection of g2 onto the orthogonal complement of ¢g, and
{0, P2} form an orthonormal basis, it follows that e, = (0,0) for k > 3, so {(¢n,¥n)} is

an effective pair. Likewise, by the same argument, we observe that {(in, ¢,)} is an effective
pair. The matrix ®¢@;Z is not positive since its 3 x 3 principle submatrix,

O = =
O =
— = O

is not positive. Note that an invertible 7' € B(?) can not possibly map ¢,, to 1, for all
n € Ny since ¢g = 91 yet ¢o # ¢1.

Example 3.4. There are symmetric effective pairs {(¢p,¥n)} where neither {¢n} nor {1, }
1s effective. Moreover, there are symmetric effective pairs for which their auziliary sequences
do not form (dual) frames.

Let {¢,} be a Schauder basis which is not a Riesz basis, and let {¢,} be its biorthogonal
dual basis. We then have the reconstruction property

o= 3 e bultbn = >0, U
n=0 n=0

Since the auxiliary sequence of {(¢n,1¥,)} is {¢n} and the auxiliary sequence of {(¢n, ¢n)}
is {¢n}, it follows that {(¢n, )} is a symmetric effective pair where the auxiliary sequences
are not (dual) frames.

Moreover, if {¢,} C X and {¢,} C X* for a Banach space X, then these sequences form an
effective pair as in definition (2.1), while also satisfying Kwapieri and Mycielski’s definition
of an effective sequence from (1.4).
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