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Abstract: We prove the “hot spots” conjecture on the Vicsek set. Specifically, we will show that every eigen-
function of the second smallest eigenvalue of the Neumann Laplacian on the Vicsek set attains its maximum
and minimum on the boundary.
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1 Introduction

The “hot spots” conjecture studies whether a flat piece of metal that is given an initial heat distribution will
achieve its highest temperatures on its boundary given enough time. That is, the conjecture claims that in a
two-dimensional, bounded, connected domain D, the heat at point x at time t, u(x, t), achieves its maximum
value on the boundary of D. The “hot spots” conjecture was first posed by Rauch in 1974. An equivalent
formulation of the conjecture is as follows: every eigenfunction of the second eigenvalue of the Neumann
Laplacian attains its maximum and minimum on the boundary. The conjecture has been shown to be true for
some Euclidean domains [1-4] including recently for thin curved strips [5], but it has also been shown to fail
in others [6, 7].

There is now a notion of a Laplacian on many fractals, and the theory of eigenfunctions of the Laplacian
is well developed in many cases. Therefore, one can formulate the “hot spot” conjecture on these fractals. We
are going to use the theory developed by Kigami [8], see also [9] that applies to the class of post critically finite
(p.c.f.) fractals. For many such fractals, eigenvalues and eigenfunctions of the Laplacian can be computed
explicitly via a method called spectral decimation [10-13]. The “hot spots” conjecture has been shown to
hold on the Sierpinski gasket and higher dimensional variants [14-16] but fail on the hexagasket fractal [17].
The hexagasket fractal is determined by an iterated function system consisting of six contractions. However,
the analytic boundary in the sense of Kigami studied in [17] consists of only three of the six fixed points of the
iterated function system. On the other hand, the boundary of the Sierpinski gasket and its higher dimensional
variants mentioned above consists of all of the fixed points of the iterated function system that determines
the gasket. Therefore, one might wonder whether the failure of the “hot spots” conjecture on the hexagasket
fractal might be due to the “smaller” boundary considered in [17]. The Vicsek set [18-20] is another type
of fractal that has been studied heavily. Zhou [21] described the spectral decimation on a family of Vicsek
sets, VSy, in terms of Chebyshev polynomials, and the authors of [22] used Zhou’s formulas to study the
Laplacian and spectral operators on the Vicsek set. We study in this paper the Vicsek set VS, that is generated
by five contractions; however, its analytic boundary consists of only four of the five fixed points of the iterated
function systems. Our main theorem states that, unlike the hexagasket, the “hot spots” conjecture on the
Vicsek set is true. The proof of the main theorem is inspired by proofs in [15, 16] and [14]. It is, however, more
involved and technical.
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The organization of the paper is as follows: the second part of the introduction contains a background on
the Vicsek set VS, and the energy and the Laplacian on the Vicsek set. In section 2, we review the Neumann
Laplacian on VS,, and show how to use the spectral decimation to determine the second smallest eigenvalue
of the Neumann Laplacian together with a basis of its eigenspace. Section 3 contains our main theorem. The
proof of the theorem follows relatively easily from Lemma 3.2 by an argument similar to the one in [15]. The
proof of the lemma, however, is very long and technical and occupies the entirety of Section 4. We placed the
statement and proof of some formulas used throughout the paper in the Appendix in order to help with the
readability of Section 4.

1.1 Background

We begin by reviewing several concepts in analysis on fractals as applied to the Vicsek set. First, an iterated
function system on a complete metric space X is a finite set of contraction mappings F; : X — X,i=1,...,n
[23, 24]. Given such an iterated function system there exists a unique compact invariant set K C X; that is, K
satisfies the following self-similar property,

K = F1(K) UFZ(K) U cos UF,,(K).

The main object of study in this paper is the second order Vicsek set, VS,, which is the unique invariant
subset of R? of the iterated function system defined by the following five similarities:

Fit) = 30c-p) + i o

Wherepl = (0’ 1)1 pZ = (1: 1)’ p3 = (17 O)’ p4 = (05 0)5 andps = (1/2, 1/2)-
A picture of the Vicsek set is provided in the following figure.
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Figure 1: Vicsek set.

The Vicsek set VS, is an example of what in the literature is called a p.c.f fractal and, thus, Kigami’s theory
[8] (see also [9]) applies to VS,. We describe next how this theory is applied to the Vicsek set in order to define
the standard energy and Laplacian on VS,. A useful feature of the Vicsek is that it can be approximated by an
increasing sequence of graphs, I'; as follows: the level zero graph approximation of the Vicsek set, I'y, shown
below, consists of the set of vertices Vy at g1 = (0, 1), g> = (1, 1), g3 = (1, 0), and g, = (0, 0) connected as
in a complete graph. Note that F;(g;) = g;, where i = 1, 2, 3, 4. The set Vj is also the boundary of the fractal
in the sense of [8, 21]. We call I'; the graph 0-cell. The level 1 graph approximation of the Vicsek set, I'y is
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vel 0 approximation of the Vicsek s

Figure 2: Level O approximation.

Figure 3: Level 1 approximation.

constructed as follows: each of the five scaled versions of the level 0 Vicsek set which comprise I'; can be
obtained by applying F,(I'p), F»(I'p), etc. Therefore

r,= Fl(FO)UFZ(FO)UFB(FO)UF4(FO)UF5(FO)

and, in particular, the set of vertices of I'y equals V; = F1 (Vo) | F2(Vo) U - + - | F5(Vo). We call the sets F;(Io)
graph 1-cells. We note that there are five graph 1-cells.

In the general case, for m = 1, the level m + 1 graph approximation I',,; is obtained from the level m graph
approximation I',; via

Tmsa = F1(Tm) | JF2(Tm) |-+ Fs(Tm).

The image under the maps F; of the graph m-cells form the graph (m+ 1)-cells. We note that each graph m-cell
contains five graph (m + 1)-cells. That is, when going from level m to level m + 1, a graph m-cell is going to
be replaced by five graph (m + 1)-cells. We write Vy, as the set of vertices at the level m graph approximation.
Inductively, it can be shown that Vin C Vin.1, and that | J;._, Vi is a dense subset of VS,. Thus, it suffices to
study continuous functions on  J;,_, Vin and extend them via continuity to VS,.

As detailed by [9], we can define graph energy at level m for the Vicsek set VS, as follows:

En@= > [u0)-u)?

{0Gy)|x~y}

where x ~ y means that x and y are neighboring vertices in I', (that is, there is an edge in ', joining x and y).
Energy generally requires renormalization with a given renormalization factor. For VS, the renormalization
factor is equal to 3 [21]. Thus, for VS,, the renormalized graph energy is £m(u) = 3 ™En(u). One can define
the fractal’s energy, &(u), via
&) = lim E&nm(w),
m-—roo
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with the domain of the energy, dom &, consisting of all continuous functions u on VS, such that £(u) < oo.
As detailed in [8, 9, 21], the choice of the renormalization constant in the definition of &, guarantees that
the domain of the energy is non-trivial. Now, knowing that the energy exists and can be written as above,
we know from [8, 9] that we can determine a fractal’s Laplacian. In domé&, € extends via the polarization
formula to the bilinear function &(u, v). We consider the standard invariant measure y on VS,; that is, the
unique measure that satisfies the following property (see [24] and [23] for details):

5
[ re0dueo =53~ [ £Fi00) duco.

VS, i=lyg,

Define the weak formulation of the Laplacian as follows [8, 9]: we say that a function u € dom & belongs to
the domain dom A of the Laplacian if there is a continuous function f on VS, such that

&(u,v) = —/fvdy

forall v € domo€ := {v € dom& : v|y, = 0}. In this case we write Au = f. As proven in [21], there exists
an equivalent pointwise formula for the Laplacian on the Vicsek set. This formula is given as the normalized
limit of a series of graph approximations and is written as follows for VS,:

Au(x) = lim 15™Anu(x)
m—roo
for all x not in the boundary V. Here the graph Laplacian of the graph I',, denoted by An, is defined by

Ant() = oo > (w0 = uC0) @
y~X

forall x € Vin \ Vo, where degx represents the number of neighbors of x in I',. The degree of a vertex x in I'n,
is either 3 or 6 forall m > 1.

2 Neumann Laplacian and spectral decimation

We study the Neumann Laplacian in this paper. That is, the Laplacian as defined with Neumann boundary
conditions. Neumann boundary conditions behave such that Equation (2) holds for all x € Vy,, including the
boundary V.
The Neumann Laplacian of the level O graph approximation Iy for VS, is then given by the following

matrix:

1 -1/3 -1/3 -1/3
-1/3 1 -1/3 -1/3
-1/3 -1/3 1 -1/3
-1/3 -1/3 -1/3 1

Ap =

The 1/3 scaling factor outside of the matrix is derived from the 1/degx that appears in front of the summation
in the equation for Apu(x).

In order to study eigenvalues and eigenfunctions on VS,, we use the process of spectral decimation as
described in [9, 21] that we review next. First, there is a local extension algorithm which shows a unique way
to extend a function u that satisfies the eigenvalue equation -Anu = Anu on Vi \ Vy to a function that we
still denote by u that satisfies the eigenvalue equation —A,;,;1u = A1 u on Vi1 \ V. Moreover there exists a
rational function R(A) such that Am = R(Ay.1) if A is not a forbidden eigenvalue. That is, a singularity of the
function R. It is "forbidden" to decimate to such eigenvalues. Because forbidden eigenvalues do not have a
predecessor, i.e. there is no A,,_; corresponding to Am, we say that forbidden eigenvalues are "born" at a level
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of approximation m. Spectral decimation for VS, is performed as follows. First, define

f2(A) =T,(3A-1)-3T1(3A-1), (3)
82N =U1681-1)-Uo(BA-1),
h,(A) =U,(BA-1)-3Up(BA-1),

where T, and U, represent the Chebyshev polynomials of the 1st and 2nd kind, i.e. T1(A) = A, T,(A) = 2A% -1,

Uo(A) = 1, and U;(x) = 2A. Therefore, f,(A) = 1842 - 214 + 4, g5(A) = 6A - 3, and h,(A) = 61 - 5. Zhou proved
in [21] (see also [9, 22]) that the spectral decimation function R is

R(A) = Ag2(Mhy(A) = 364° - 4817 + 15A. ()

Additionally, the forbidden eigenvalues of VS, are 4/3 and the zeroes of f> and g, 0, 1/2, and (7 + 17°-°)/12.
The extension of eigenfunctions of VS, from one level to the next is given by [22]:

-X+AM) Y =~

a0 0
[SWRESVRE SRS o
o 0 0
o 0 0
o 0 Q0
QU QAU T
QU S QU
o 0 n
o 00
Q00N
S S VRSV SW
Q00N

where

1

_o._ 2 _ 3 2 _ _ 5 _
a=9-421+36A°, b=6(1-4A+31%), c=1, d=2-3A, ~ 304~ 297+ 6012 —3610)"

Note that a, b, ¢, d and ~ are functions of A. Hereafter A is any number that is not a forbidden eigenvalue of
VS,.In Ty, J is equal to the Vo x (V1 \ V) adjacency matrix, X is the adjacency matrix of (V7 \ V) with the
degrees of every vertex as its diagonal entries, and M is a diagonal matrix such that M;; = -X;;. Going from I'n
to I';41, this matrix is applied to the vertices of one graph m-cell to obtain the values on the five new graph
(m + 1)-subcells.

We follow the convention from [22, Figure 4] when it comes to the labeling of the columns of the matrix
(5). That is, the first column corresponds to the point g5 = F1(q;), the second column corresponds to the
point q¢ = F1(q3) = F5(q1), the third column corresponds to g; = F1(q4), the fourth column corresponds to
gs = F»(q1) and so on. To better understand the meaning of the matrix (5), let Ay be an eigenvalue of Aq, and
let u be a A eigenvector on V. To simplify the notation, write u(q;) = u;, i = 1, 2, 3, 4. Let A1 be a solution
of R(A) = Ao. Then u is extended to a A; eigenvector on V; using (5) as described next. First, u|y, does not
change. The extension of u to g5 = F1(q,) is computed using the first column of (5) as follows:

u(qs) = yauy +ycuy +~ycuz +yCuy,

where v, a, and c are evaluated at A;. The extension of u to g is computed using the second column of (5) as
follows:
u(ge) = ybuy +~ydus +~ydus +~yduy,

where v, b, and d are evaluated at A;. The computation of the extension of u to the remaining vertices in V;
is computed based on the corresponding columns in (5).

The eigenvalue extension function R(A) = 36A% — 4812 + 15A has three local inverses [22]. Let ¢1, ¢»,
¢3 denote the inverse functions of R in increasing order; that is, ¢ is the inverse of R(A) on the interval
(o, 8’%30‘5 ), ¢, is the inverse of R(A) on (8’%20‘5 , 8*%20'5 ), and ¢ is the inverse of R(A) on %, 1). Observe
¢1(x) < p2(y) < ¢3(2) for all x, y, z in the corresponding domain, and ¢, is decreasing while ¢; and ¢3 are
increasing. Let p; = 15 be the renormalization factor for the Laplacian. The Neumann eigenvalues are non-
negative and they accumulate at oo. Then the rules for spectral decimation in the case of VS, are summarized
as follows [22]:
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66 =—— Marius lonescu and Thomas L. Savage DE GRUYTER

1. For each Neumann eigenvalue A, there is an infinite word {w; }}-’;’1, where w; € {1, 2,3} forallj > 1, such
that A equals

n}i_I>nw 15" P w, © Pwpy © vvn 0 P, (0)
or

lim 15m+k¢wm O Pupy © .. 0 Do, (4/3).

m-—oo

The existence of the limit is proven in [21]. In the first case, the eigenvalue is in the 0-series, and in the
second series the eigenvalue is in the 4/3 series born on level k.

2. All but a finite number of the wy, are equal to 1.

3. For the O-series, the first w; with w; # 1 must be an odd number, and for the 4/3 series, w1 must be an
odd number but wq # 3.

4. The multiplicity of each eigenvalue in the O-series is 1, while the multiplicity of each 4/3-series eigenvalue
on level kis 2(5)% + 1.

In the remainder of the paper, we use the spectral decimation as applied to the following setup. Let Ag =
4/3 be the second smallest eigenvalue of Ag. Then Ay = 4/3 has multiplicity 3 and a basis for its eigenspace
on Vj is given by the following eigenvectors:

1 0 0
0 1 0
U, = , Uy = , Uz = . 6
e P EE S P IR ®)
-1 -1 -1

Extend A at all levels along ¢;. That is, define

Am = ¢p1(Ay-1) forall m=1 7)
and define
A9 = lim 15™n. ®)
m-—oo

Extension of u (Level 2)

Figure 4: Extension of u; to V/;.

We extend uy, u, and us to eigenvectors of A¥) on the Vicsek set via the spectral decimation. Figure 4
presents the extension of u; from Vj to V, using the spectral decimation described above.
The following important fact follows from [22, Theorem 2.2].
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Proposition 2.1. A? is the 2nd smallest eigenvalue of the Neumann Laplacian on the Vicsek set.

An important fact later in the paper is that A; = ¢1(4/3) = 1/6. One can easily check that R(1/6) = 4/3.
The fact that 1/6 is the smallest preimage of 4/3 under R(A) follows from numerically solving the equation
R(A) = 4/3. For future reference, using Maxima approximation, we find that A) is roughly

2.601813889315113780749839.

3 The "hot spots" conjecture for the Vicsek set

We are now able to state the main theorem. The proof of the theorem follows from the main lemma 3.2. The
proof of this lemma is long and technical, and it will occupy the entirety of the next section. Our main result
states that every eigenfunction of the second smallest eigenvalue of the Neumann Laplacian on the Vicsek
set attains its maximum and minimum on the boundary. Our approach is based on techniques from [15] and
[16]. Our computations, however, are much more involved due to the complexity of the spectral decimation
matrix (5).

Theorem 3.1 (Main Theorem). Let VS, be the Vicsek set and A be the Neumann Laplacian as described in the
previous section. Then every eigenfunction of the second smallest eigenvalue A? of A attains its minimum and
maximum value on the boundary V.

In order to prove this theorem, we begin by recalling the space of finite words that the five iterated func-
tions (1) of the Vicsek set generate. Let ¥ = {1, 2,3, 4,5} be the corresponding alphabet and let 2™ =
{wi...wj...0om|j€{1,2,3,4,5}} be the set of words of length m. Note that in order to simplify the nota-
tion we do not separate the letters in a word by commas. So, for example, we write 14 for the word of length 2
that is formed with the letters 1 and 4. Define 2" = U‘,’nc’:o 2™ as the set of all finite words. For every w € 2™, we
write |w| := m for the length of w. Let () denote the empty word and 0| = 0. Furthermore, 3° = {§}. If w, v € ="
then we write wv for the word obtained by concatenating the two words w and v together. In particular, we
will create words by adding just one letter. For example, wi is the word that adds the letter i at the end of w. If
all the letters of w are the same, say equaltoi € {1, 2, 3, 4, 5}, then we write w as [i]™, where m is the length
of w.

Recall that Vo = {q1, 92, 43, 94} Where Fi(q;) = q;,1 = 1,2,3,4. Welet 2* = X" x {1,2,3,4}. Forw €
™ we write Fy = Fy, 0 Fo, o ... o Fy, and for (w, i) € * we write q,, ; = Fu(g;). Notice that {qw,i}(w,i)ef =
Um-o Vm forms a dense subset of VS,.

Recall from (8) that A2 = limy_,e0 A is the second smallest eigenvalue of the Neumann Laplacian where
Am are defined in (7). Recall also that Ag = 4/3, A; = 1/6, and they are related via Ay = R(Ap1) forall m > 0,
where R(A) is the eigenvalue extension function (4). We let EF; be the the eigenspace of A2, Then EF is a
three-dimensional vector space by the spectral decimation and we pick the bases given by u1, u,, us € EF,
with u1(q1) = 1, u1(q2) = 0, u1(g3) = 0, u1(qs) = -1, u2(q1) = 0, u2(q2) = 1, up(q3) = 0, us(q4) = -1,
u3(qq1) = 0, us(gz) = 0, us(q3) = 1, uz(qs) = —1. That is, we pick uy, u,, us to be the extensions via the
spectral decimation of the 4/3-eigenvectors on Vj defined in (6).

Following some ideas from [15], we use the bases that we picked to define a partition of unity on =*.
Specifically, we define the functions f, g, h, and k with domain >* via:

F@, D= Jur(@) - 712G - 715G * 7 ©)
8@, ) = 7118, ) + S 102G - 740+ 7 (10)
M, D = ~7101(80,) - 702(d0,) + SU5(@0) + 7 ()
K, D=~ 31 (q0,) - 42() - 71500 * - (1)
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68 —— Marius lonescu and Thomas L. Savage DE GRUYTER

Then they satisfy the following crucial lemma.

Lemma 3.2. We have O < f(w, i), g(w, i), h(w, i), k(w, i) < 1 and f(w, i) + g(w, i) + h(w, i) + k(w, i) = 1 for
every w € X" and foreveryi € {1, 2,3, 4}. Additionally, f(0, 1) = 61;, g0, ) = 65, h(0, 1) = 834, k(D, i) = 84;
where 8;; is the Kronecker-Delta function.

As mentioned at the beginning of the section, the proof of the lemma is long, technical, and will occupy the
next section of this paper. From the lemma, the theorem is proven as follows.

Proof of Theorem 3.1. Notice that the functions f, g, h, and k are related as follows:

flw,D)-klw,) = ui(q,),
g(a)’ l) - k(a)’ 1) = u2(‘1w,i);
h(w7 l) - k(a)’ l) = u3(‘]w,i)-

Let u € EF,. Then there exist constants c1, ¢, c3 such that u(x) = ciu1(x) + cour(x) + csus(x) forall x € VS,
because u1, u,, us form a basis for EF,. It follows that

u(gy,i) = c1f(w, ) + c2g(qw, i) + csh(w, 1) + (-c1 - c2 - c3)k(w, 1).

Lemma 3.2 implies that the maximum/minimum value of u on | J;,_, Vi is given by the maximum/minimum
of the values c1, ¢», c3 and (-c1 — ¢, — ¢3), which are the values of u on the boundary V. Since U::O Vm is
dense in VS, and u is continuous the theorem follows. O

4 Proof of Lemma 3.2

The proof of Lemma 3.2 will occupy the rest of this paper. We provide first a short summary of the proof in order
to help the reader navigate through the many lemmas that follow. First, an easy proof shows that f(@, i) = 64;
(Lemma 4.1). We observe that it suffices to prove the statement for f for the words w that begin only with the
letters 1, 2, and 5, because f restricted to words that begin with 3 and 4 equals a “rotation” of f restricted to
words that begin with 2 (see Remark 4.4). The crucial Lemma 4.2 proves recursive formulas for f(w, j) when
one increases the length of w by 1. Using these formulas we are able to compute explicitly f(w, j) for words
of the form w = [1]™ (Lemma 4.5), w = [2]™ (Lemma 4.6), and w = [5]™ (Lemma 4.7). Recall that we write
[i{]™ for the word of length m consisting only on the letter i, i.e. [i]™ = ii...i (m-times). Using these explicit
formulas, we prove in Proposition 4.8 that the minimum of f is 0 and the maximum of f is 1. We finish the
proof of Lemma 3.2 by describing how to recover the same results for g, h, and k from the results proved for f.
To improve the readability of this section, we leave the statements and proofs of some useful formulas until
the Appendix (see Lemma A.1).

We continue to use the notation described in the previous section. In particular, f, g, h and k are the
functions defined in (9), (10), (11), and (12). Recall that we do not separate the letters in a word w € 2.
Therefore, 123 is the word of length 3 that consists of the letters 1, 2 and 3 (we read this word “one, two,
three”, as opposed to “one hundred twenty three”). This word will correspond to the composition F1 o F; o F3.

We break the proof of the main Lemma 3.2 into a series of lemmas. We begin with the easier part.

Lemma 4.1. f(0,i) = 61;, 8(0,1) = 62, h(0,1) = 834, k(0, i) = 844, where () is the empty word and §;; is the
Kronecker-Delta function.
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Proof. From the definition of the functions, it is clear that f(w, i) + g(w, i) + h(w, i) + k(w, i) = 1. Notice that

f®,1)= i111(611) - 1uz(fh) - 1113(41) +

13,1,

4 4 4 4 4 4 ’
£0,2) = Ju3(@2) - Jur(@n) - us(@) + = 7 - 7 =0,
£0,3) = 11(@3) - Jur(as) - 7u5(@3) + 4 = 7 - 7 =0,
f(0,4) = 3111(614)— 1M2(Q4) iua(Q4)+ % = % - % =0.

Hence, f(0, i) = 61 ;. Similar statements hold for g and h by symmetry, and similar computation shows that
the result also holds for k. O

The hard part that remains is to prove that each of these functions is between 0 and 1. First, we begin by
proving that f(wi, i) = f(w, i) and describe recursive relations satisfied by f.

f(wj, i) = *ul(le(‘L)) uZ(le(‘L)) *MB(le(%)) +
- iul(Fw(F (@) - 71 (FulFi(g)) - fug(Fw(F (@) +
= JunFula) - puFula)) - us(Fula) +

= f(w,l)

because F;(g;) = q;. So f(wi, i) = f(w, i) foralli € {1, 2, 3, 4}.
For the rest of the paper we write am, bm, cm, dm for the elements of the extension matrix (5) evaluated
at Ay forall m = 0 and

9 — 42Am + 361

— _ , 13
fm Tmam S 200 + 6002, — 3673, 13)
6(1 - 4Am + 312%)
= bm = s 14
Pm MM 34— 29Am + 6072, — 3613, (14)
1
- _ , 15
Xm T S S G 20 + 6072, — 3613, (15)
2-3A
6m = ’Ymdm = 3 m (16)

3(4 — 29Am + 6042, - 36A3)°

Lemma 4.2. The following formulas hold for all w € ="

1
Z(l —Am+1 — 3Xm+1), (17)

flw2,1) = flw2, 3) = xme1f (W, 1) + amerf (@, 2) + Ymerf (@, 3) + Ymarf(w, 4) + %(1 - Qms1 = 3Xm+1), (18)

f(wl,2) = flwl, 4) = amerf(w, 1) + Yme1f(W, 2) + Xmerf(@, 3) + Xmerf(w, 4) +

f((UBs 2) = f(w3’ 4) = Xm+1f(w, 1) +Xm+1f(wa 2) + am+1f(a), 3) +Xm+1f(w’ 4) + %(1 —Qm+1 — 3Xm+1)s (19)

flw4, 1) = flw4, 3) = xmerf (@, 1) + Ymsrf (@, 2) + Yma1f (@, 3) + Amar f(w, 4) + %(1 - Ams1 = 3Xm+1),  (20)

%(1 _ﬁm+l - 36m+1), (21)

10~ Bre1 =36m1), (22

f@5,3) = @3, 1) = 61 f(@, 1)+ Speaf (@, 2) + reaf (@, 3) + o f(@, 9+ 7 (L= o = 36ms1), (23)

f(a)S, 1) =f(w1, 3) = ﬁm+1f(wx 1) + 6m+1f(wy 2) + 6m+1f(wy 3) + 6m+1f(w’ 4) +

f(U)Sa 2) =f(w2’ 4) = 6m+1f(wa 1) +ﬁm+1f(w’ 2) + 5m+1f(w, 3) + 6m+1f(w; 4) +

f(w5, 4) = flw4, 2) = 6marf(w, 1) + S f(w, 2) + Smeaf(w, 3) + Bmaif(w, 4) + %(1 —Bm+1 —36ms1). (24)
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Proof. Let w € ™ for some m = 0. That is, |w| = m. We prove the case of f(w4, 3) as follows:

flw4, 3)

%M(sz;(%)) - %uz(le(Cb)) - %u3(Fw4(q3)) + %
= %[Xm+1u1(Fw(611)) + Xme1U1(Fo(g2)) + xmeru1(Fw(g3)) + am1ui (Fo(gs))]
_%[Xmﬂuz(Fa)((h)) + Xme1U2(Fw(q2)) + Xms1U2(Fw(g3)) + ams1uz(Fw(qs))]

_%[Xm+1u3(Fw(q1)) + Xm+1U3(Fw(g2)) + Xme1u3(Fu(g3)) + ame1us(Fou(ga))]
1
+7

4

Therefore,

F@h,3) = Xt f@, D)+ Xm1f(@, 2) + Xt f(@, 3) + @meaf (@, 9+ 7 (1= et = 3.

The fact that f(w4, 1) = f(w4, 3) follows from the fact that the corresponding columns in the extension matrix
(5) are identical. Therefore (20) holds. The remaining formulas follow by similar computation. The fact that
f(ws,1) = f(wl, 3), f(w5, 2) = f(w2, 4), f(w5, 3) = f(w3, 1), and f(w5, 4) = f(w4, 2) follows from the fact
that F5(q1) = F1(q3), Fs5(q2) = F2(q4), F5(q3) = F3(q1) and F5(q4) = F4(q>). O

As an immediate consequence of Lemma 4.2, we obtain the following.

Lemma 4.3. Letw € 2",
1 Iff(w,1) = f(w, 2) = f(w, 3) then

f(w1,2) = f(wl, 4) = f(w2,1) = f(w2, 3) = fw3, 2) = f(w3, 4)

and f(w1, 3) = f(w2, 4) = f(w3, 1).
2. Iffw, 1) = f(w, 2) = f(w, 4) then

f(w1,2) =f(wl, 4) = fw2,1) = f(w2,3) = flws, 1) = f(w4, 3)

and f(w1, 3) = f(w2, 4) = f(w4, 2).
3 Iff(w,2) =f(w,3) = flw, 4), then

fw2,1) = f(w2,3) = f(w3, 2) = f(w3, 4) = flw4, 1) = f(w4h, 3)

and f(w2, 4) = f(w3, 1) = f(w4, 2).

Remark 4.4. Using Lemma 4.2 and Lemma 4.3, one can prove inductively the following symmetries (“rota-
tions™) of the function f:

1. Let Ry : £ — X be the permutation that flips 2 and 4, R; = (2, 4). We denote by R; its extension to 2* as
well. Then f(w, i) = f(R1(w), R1(i)) for all (w, i) € =*.

2. Let R, : ¥ — X be the permutation defined by R, = (1, 2, 3, 4). Then fQw, i) = f(3R,(w), R,(i)) for all
we X andie {1,2,3,4}.

We call R, and R, “rotations” since, if we view f defined on VS, via the projection m : 3* — VS, defined
by n(w, i) := q,.;, then Ry flips Upms0 Vmm around the diagonal going from g; to g3, and R, rotates the 2-cell
F>(Ums0Vm) by 90° and moves it into the 2-cell F3(Umso Vin).

There is a permutation that rotates F(UpsoVm) and moves it into the 2-cell F4(UpsoVm). As a conse-
quence, in the following we will only consider words w € " whose first letter is either 1, 2 or 5.

We begin by proving that 0 < f([1]™, j), f([2]™, j), f([5]™, ) < 1 for allj € {1, 2, 3, 4}. We have already shown
that f([1]™, 1) = 1 for all m = 0, so we now prove that 0 < f([1]™,]) < 1 forallj € {2, 3, 4}. We accomplish
this by determining explicit formulas for f([1]™, j) in the following lemma.

Brought to you by | lowa State University
Authenticated
Download Date | 3/22/19 5:18 PM



DE GRUYTER The "hot spots" conjecture on the Vicsek set = 71

Lemma 4.5. We have f([1]™, 2) = f([1]™, 4) = 1 and f([1]™, 3) = 1—9%’“forallm > 1. Therefore O < f([1]™, j) <
1forallj e {2,3,4} since0 < Ay < 1/6 forallm = 1, and limm—o f([1]™,j) = 1 forallj € {1, 2, 3, 4}.

Proof. We prove the lemma by induction. First, consider w = () in (17); that is, if m = 1 then:
1
f(1,2)=f1,4) = aif(®,1)+x1f(0,2)+x1f©, 3) + x1f(0, 4) + Z(l - a1 - 3x1)
1
= a1+ Z(1 - a1 —3x1)

= %(1 +3a; - 3x1)

_ 121-3
o422, -1
by Lemma A.1 and
f(1,3) = Bif(0,1)+81f(0,2) + 81f(0,3) + 61£(0, 4) + %(1 -B1-361)
1 120 -2
SRS R L S v s

by Lemma A.1. By plugging in A; = 1/6 we obtain that f(1, 2) = f(1, 4) = 1 and f(1, 3) = % =1- %Al. Assume
that the claims holds for m > 1. Then, using the induction hypothesis, (13), (15), (17) and Lemma A.1, we
obtain:

f([l]m+1’ 2) = am+1f([1]m’ 1) +Xm+1f([1]m, 2) +Xm+1f([1]m, 3) +Xm+1f([1]ma 4) + %(1 —Qm+1 — 3Xm+1)

9 1
=(9- 4241 + 36A$n+1))(m+1 +Xm+1 + Xm+1 <1 - ZAm> +Xm+1 — Z(3R(Am+1)))(m+1

which, by factoring out .1 and using the fact that R(A;y+1) = Am, equals
Xms1 (12 = 42441 + 364541 — 3Am)
which by replacing A, with R(A,,,1) equals

Xm+1 (12 = 87 a1 + 180A741 — 108A341) = Xime1 + 3 (4 = 29Ams1 + 60471 — 3645,,) = 1.

Hence f([1]™1, 2) = f([1]™*1), 4) = 1. Now, by using the induction hypothesis, (14), (16), (21) and Lemma A.1,
we obtain

FA™,3) = Brea S, 1) + Bia f(U)™, 2) + Bpnia f((U]™, 3) + Spmia f((AI™, 4) + %(1 = B1-361)

_ _ 2 1 18- 3)\m+1(/1m+1 - 1)(1 - 2/1m+1)
= Bm+1 +Oms1 + Ot (1 4/1m> +0me1 + 4 3(1 - 20 )faomed) .

Next, by using the fact that 3,41 (1 = 2Ap41) = R(Ams1)/(5 = 6Am41), We observe that f([1]™1, 3) equals

Xm+1 <6(1 —4Amig + 3A$n+1) +2 -3 +(2- 3/\m+1)(1 - %Am) +2 -3 + M)

1
47 5-6Ann

9 2Apms1 - 1
= Xme1 <18A$n+1 ~33Ape1 + 12 - ZA’" (2 -3 + é_’"g/llmﬁ))) .

We simplify next the last parenthesis in the above expression:

9 20 me1 = 1)y _ 9, 12-29Ap1 + 1812,
ZAm(2-3A Somil ” 2y 2 2 m+
2" M T ey 4T 5 — 6Amr1
— 2/1 8_8/1m+1 +2/\ fz(/lmﬂ)
45 —6Ams1 45— 6Amer
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Replacing A with R(A;41) = 3Ams1(1 = 2A1041)(5 — 6A141), We obtain

2(A -1 9
e )) =27 Am1(1 = 2Am41)(1 = A1) + Z/Im+13(1 = 2Ame1)f2 (A1)

9
G2 3 A+ TG

Hence, since 3(1 - 2A,3+1)f2(Am+1) = 1/Xm+1, and after multiplying through the remaining terms and simpli-
fying, we obtain

. 9
U™, 3) = Xme1 (12 = 87 Aer + 180A2,1 — 108A3,,1) = ZApmer = 1 — 7 Amit

The induction is now complete and the lemma is proved. O

Next, we consider f([2]™, j), where j € {1, 2, 3, 4}. We have already shown that f([2]™, 2) = 0 forall m = 0,
so we now prove that O < f([2]™,)) < 1 forallj € {1, 3, 4}.

Lemma 4.6. We have f([2]™, 1) = f([2]™, 3) = 0and f([2]™, 4) = %/\mforallm > 1. Therefore 0 < f([2]™,j) < 1
forallj € {1, 3, 4} since 0 < Ay < 1/6 for all m = 1. Moreover, limpy oo f([2]™,1) = 0 foralli € {1, 2, 3, 4}.

Proof. We prove the lemma by induction. First, consider w = () in (18) and (22), and, hence, m = 1. We obtain

f(zy 1) :f(za 3) le(@r 1) + alf(®9 2) +X1f(®’ 3) +X1f(®’ 4) + %(1 - - 3Xl)

1
= X1+Z(1—0(1-3X1)

1
= Z(l_a1+X1)
1 1-6M
43(1-2A1)

and
f@2,4) = 61f0,1)+B1f(0,2) + 61f(0,3) + 6.0, 4) + %(1 -B1-361)

= %(1—/31 +61)

1 2-6M\
43(1-2A1)°

Since A; = 1/6 it follows that

1 - 6A4

F2.1)=£2,3) = 35915

=0

and 1 2-6A 3 3
_1 2-6A44 _
f(2,4) = 43(1-21) 24 4A

Assume now that f([2]™,1) = f([2]™,3) = 0 and that f([2]™, 4) = 3/1m. We prove that f([2]™1,1) =
f([2]™1, 3) = 0 and that f([2]™}, 4) = 2 A1 Using (22) we have

f([21m, 4) Smraf(12]", 1) + Brar f(21™, 2) + Emea f([2]™, 3) + Smar f([2]™, 4) + %(1 = Bm+1 = 36m41)

3 1 18/1m+1(/1m+1 - 1)3(1 - 2/'lm+1)

ZAmd +
4/ memel Ty 3(1 - 2Ams1)f2(Ame1)

Recall from (16) and A.1 that
2 - 3/‘lm+1

3(1 - 2Am+1)f2(/‘m+1) ’

5m+1 =
Then notice from Lemma A.1 that

R(/\mﬂ) _ Am

3/1m+1(1 - 2Am+1) = 5 _ 6Am+1 = 5 _ 6Am+1 .
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Therefore,

3 2-31 1 18(As1 — DAm
2 m+1’ 4 =22 m+1 + = m+1 .
f([ ] ) 4 " 3(1 - 2Am+1)f2(Am+1) 4 3(1 - 2Am+1)f2(/1m+1)(5 - 6Am+1)

Factoring out %)lm and the denominator we obtain

m+1 — g !
f@RIT54 = s S h

We now use the following relationship

<2 - 3/1m+1 +

6(}lm+1 - 1)
5- 6/1m+1 '

6(/(m+1 - 1) _ fZ(Am+1)
5- 6/1m+1 5- 6/1m+1 )

2-3Ame1 +

Therefore,

. 3 1 foAma) _ 3 1
2™ 4y =22 == )
f([ ] ) 4 " 3(1 - 2Am+1)f2(Am+1) 5- 6/1m+1 4 " 3(1 - 2Am+1)(5 - 6Am+1)

Finally, notice that
Am = R(Am+1) = 3}lm+1(1 - 2Am+l)(5 - 6/1m+1)-

Therefore,

FQI™,4) = 2 Ao,

The proof that f([2]™1, 1) = f([2]™!, 3) = 0 follows as below:

f21™, 1)

Xmatf(2]", 1) + @1 f([2]7, 2) + Ymat f(2]7, 3) + man f(2]™, 4) + %(1 = @me1 — 3Xm+1)

_ EX A — 1 3R(/\m+1)
G 431 = 2Ans) (o (Aimen))

1 3Am - 3R(Am+1)

4 3(1 - 2Am+1f2(/1m+1)

1 3Am — 3Am

B Z 3(1 - 2Am+1)f2(/1m+1) =0

The induction is now complete and the lemma is proved. O

We turn now to prove 0 < f([5]™,j) < 1forallj € {1,2,3, 4}. Recall from Lemmas 4.2, 4.5 and 4.6 that
f(5,1)=f(1,3)=1-3A1and f(5,2) = f(5,3) = f(5, 4) = f(2,4) = 3 ;.

Lemma 4.7. We have

moay 1.1 1 7 1
fUSI™ D = 4+ 4 3w E T (25)
and .
m _ m _ m - 1 _li 1
f(51",2) = f([51™, 3) = f([5]", 4) = Z- i3 E 1294, (26)

forallm = 2. Therefore, {f([5]™, 1) }ms1 is a decreasing sequence and {f([5]™, 2)} ms1 iS an increasing sequence.
The limit of both of these sequences equals 1/4.
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Proof. We begin with m = 2. Using (21) we have
f(55,1) = f(51, 3) = Bof(5, 1) + 62f(5, 2) + 62 (5, 3) + 83f(5, 4) + %(1 -B2-36,)
- B> (1 - %/\1> #3800+ 7 (1- B> - 35))
= 2 (Ba=82) - 2 Mi(Br - 8)
+ Z(/32 - 8)(1-34)

1
W(l -3MA1)

11 1 1
431-2011-2A;°

-J-\M—‘ -J-\\w-l-\\'—‘

+

where in the last step we used Lemma A.1 and the fact that 1 - 31; = 3 = 2 o since A; = 1/6.
Using equation (22) we obtain

f(55,2) = (52, 4) = 6:f(5, 1) + Bof (5, 2) + 62f (5, 3) + 62f (5, 4) + %(1 - B2 -36,)

5 (1 - %/11) +Ba i+ 28050+ 7 (1- B> -36))

1 11 1 1
4 4321

1
- 3B =830 = 4 - 4 T T

1
4
Since f(5, 2) = f(5, 3) = f(5, 4), the equations (22), (23), and (24) imply that f(55, 2) = (55, 3) = f(55, 4).
Assume now that (25) and (26) hold for m > 2. We prove the induction step:

FA5I™, 1) = £51™1, 3) =Bmea f(USI™, 1) + Bmia f(U5I™, 2) + Bmea f(I5I™, 3) + Bmea f(151™, 4)

1
+ Z(l _Bm+1 - 36m+1)

m m
1 1 1 1 1
P (4 fazerll 12/1k> *30ma < ZWkI_I

1

+ Z(l _Bm+1 - 36m+1)

W)

which, after we cancel out % Bm+1 and %6m+1, and factor out the products (notice that the 3 in front of 8,1
reduces the power of 3 in the second product), equals

m

m+1 4

J_\\
.L\
-L\\

1 m+
5 H
k=1
where we used Lemma A.1 in the last equality.

Using now equation (22) we obtain

FU51™, 1) = £([51™1, 3) =8mea f(I5]™, 1) + Bmaa f(5I™, 2) + Bmar f([5]™, 3) + +6mia f(5]™, 4)
1

+ Z(l = Bme1 — 35m+1)
111 v 1 1 1147 1
~Oms1 <4+43m—1 L 1—2/1k> + Pt (‘*”‘”E 1—2/1k>
+26 l—liﬁ ! (1-B 36me1)
m+1 4 43m o 1- 2}lk 4 m+1 m+1
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which, after canceling % Bm+1 and %6,,”1, and simplifying the remaining two expressions involving 6,1 (no-
tice that the expression with a + in front of the big product needs to be multiplied by a 3 for the common
denominator) equals

m m m
1 11 1 11 1 1 11 1
ALV E S | Cer il S e 10 § S G RR)

k=1 k=1 k=1
B l_l 1 m+1 1
4 43m1 1l g 92
k=1

by using Lemma A.1 again. The induction is complete. The last part of the lemma follows from the fact that
{Am} is a decreasing sequence whose limit is 0 and A; = 1/6. In particular, limmeo 5 [ [f2; 1%2/1]( is decreas-
ing to 0. O

Thus, 0= f([i]™, j) < 1 foralli € {1, 2,3, 4,5}andj € {1, 2, 3, 4}. The next step is to prove that O < f(w, j) < 1
forall (w, j) € Z*. We accomplish this by showing that, for a fixed i € X, we have max g, j) f (iw, j) = max; f(i, j)
and min,, ; f(iw, j) = min; f(i, j) (where iw is the word formed by the letter i followed by the word w). By
Remark 4.4 we only need to prove the statement fori = 1,i=2andi = 5.

Proposition 4.8. With the notation as above, we have

fliw,j)= max f(i,))
je{1,2,3,4}

max
{(iw,)) : wez",je{1,2,3,4}}

and
min iw,j)= min i,j
{(iw,j):weZ“,je{l,Z,BA}}f( ) ie{1,2,3,4}f( 2

foralli € {1, 2, 3, 4, 5}. Therefore, max(w’j)eff(w,j) =1and min(w’j)eff(w,j) =0.

Proof. We begin by proving the proposition for the case |w| = 1. As noted above, it suffices to consider the
cases i = 1,2 and 5. We begin with i = 1. Lemma 4.5 implies that minjc ;5 541 f(1,)) = 1 - 9A1/4 and
MaXje(1,2,3,4) f(1, j) = 1. Moreover, the minimum is attained at j = 3, and the maximum is attained atj = 1, 2
and 4. The second part of Lemma 4.3 with w = 1 and Lemma 4.5 implies that

f(11,2) = f(11,4) = f(12,1) = f(12,3) = f(14,1) = f(14,3) =1

and f(11, 3) = f(12, 4) = f(14,2) = 1 - 9A,/4. Recall also that f(11,1) = f(1,1) = 1, f(12,2) = f(1,2) = 1,

f(13! 3) :f(l’ 3) = 1!f(149 4) :f(ly 4) =1- %Al)f(lsy 1) =f(11’ 3)’f(15! 2) =f(12, 4)rf(15) 3) :f(13’ 1)’
and f(15, 4) = f(14, 2). Therefore we only need to check that 1 — 9/4A; < f(13,2) = f(13, 4), f(13, 1) < 1.
Using equation (19) we have

f(13,2) =x2f (1, 1) + x2f (1, 2) + aaf (1, 3) + x2f (1, 4) + %(1 -y - 3x2)
=x2+x2+a(1- %/\1) +X2 - %R(AZ)XL

Using (13) we have
ay = (9 - 4245 + 36432 = x2 + (8 — 422, + 36A3)x>.

Therefore,

ax(1- %Al) =x2(1- 7A1) + (8- 424, +36A9)x2(1 - %/\1)

<x2(1-217) + (8- 424, +36A3)x2

IRV}
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since 1 — 9A1/4 < 1. Therefore,
9 3
f(13,2) < xa +x2 +x2(1 - Z/h) +(8 =420, +36A3)x2 + X2 - Zh)(z

9 3
=x2+x2+x2(1- ZM) tar - 2Aixe
-1,

where we grouped a y, with (8 - 421, + 3643)x. to obtain a,, and we used the proof of Lemma 4.5 to get the
last equality. A similar computation shows that

3
f(13,4) =x2+x2+x2(1- %Al) +ay — (8424 +36A3)x2(1 - %Al) - ZAlXZ
=1- (8 - 42/\2 + 36A%)}(2 %Al
9
- Z/\1.
For the last remaining vertex, we use (21). We have
1
f(13,1) = 6,f(1, 1) + 6,f(1, 2) + Bof(1, 3) + 62f(1, 4) + Z(l -B2-362)

9 1
= 62+52 +ﬁ2(1—ZA1) +62+ Z(l—ﬁ2—352).

Since 8, - 8, = 3_2/1 , wehave 8, = 6, + = 6/1 . Therefore,
f(13,1) =6, +6,+6,(1 - gitl) + L(l— 2/(1) +65 + 1(1—[32 -36)
’ 4 3-6A; 4
<52+52+62(1—Z/11) R L8ty (1 B> - 36,)
which, by combining a §, with ﬁ, equals

9 1 9
ﬁ2+62+52+52(1—z/\1) +Z(1—ﬁ2—352)= 1—§A2 <1,
by the proof of Lemma 4.5. To prove that f(13, 1) > f(1, 3) we modify the above proof as follows:
9 1
f(13,1)-f(1,3) =6, + 82+ (1 - Zﬁl)(ﬁz -1)+6+ Z(l -B2-36,)

which using that 8, = 8, + 3_—(1% equals

1

9 1
M Goer, -

3-6A;

(1——A1)62+( 1) +(6, + )— + 65+ 6, +%(1—ﬁ2—362).

1
3-6A;

Since B, = 6, + by the proof of Lemma 4.5, and by factoring out 5 6 65 , f(13,1) - f(1, 3) equals

1
3-6A;°

9 9
Th)+ (1= 24 -1)

1

9 9 6
_ZAZ_(l_ 3_ 6A2>— A2+ Al— Al——ZA2+Z/11>O,

1 and the fact that the inequality A; > 3/\2 is clearly true. Therefore

where we used the fact that 3_2 v
f(13,1)>f(1,3) =1- ;.

We move now to the case i = 2 and |w| = 1. We note that by Lemma 4.6, min;c ¢4 5 3,43 f(2,j) = 0 and
maX;c (1, 3,4} f(2,j) = 3A1/4. Moreover, the minimum is attained at j = 1, 2 and 3, and the maximum is

attained at j = 4. Therefore Lemma 4.6 and the first part of Lemma 4.3 applied to w = 2 imply that

f(22,1) = f(22,3) = f(23,2) = f(23,4) = f(21,2) = f(21,4) =0
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and f(21,3) = f(22,4) = f(23,1) = 3A,/4 < 3A1/4. Also, f(22,2) = f(2,2) = 0, f(23,3) = f(2,3) = 0,
f(24,4) = f(2,4) = 3A1/4, f(25,1) = f(21, 3), f(25, 2) = f(22, 4), f(25, 3) = f(23, 1), and f(25, 4) = f(24, 2).
Therefore, we only need to check that 0 < f(24, 1) = f(24, 3), f(24, 2) < 3/4A,. We have

£24,1) = Xof 2 D) + 1o (2, 2) 4 X0 2, 3) + 02, 9+ 7 (1- 6 - 3x:)
= arf(2,4) + %(1 -ay -3x2).

It follows that 1
f(249 1) _f(za 4) =f(23 4)(“2 - 1) + Z(l -0 — 3)(2) <0

since ay -1 < 0 and %(1 - a; - 3)2) < 0 (see Lemma A.1). Hence f(24, 1) < f(2, 4) = 31 /4. Moreover, since
@, > X2 (see Lemma A.1), we have f(24, 2) > f(21, 3) = 3A,/4 > 0 by comparing (20) against (21).
Using now equation (24), we obtain

£(24,2) = Bof (2, 4) + 7 (1~ > - 362).

Hence 1
f(24,2) - f(2,4) = f(2,4)(B2 - 1) + Z(l -B2-362)<0

since B, < 1and 1 - 8, - 36, < 0 (see Lemma A.1). Hence f(24, 2) < f(2, 4) = 311 /4. Moreover, since 8, > 6,
it follows that f(24, 2) > f(21, 3) = 3A,/4 > 0 by comparing (24) against (21). So we are done with i = 2 and
|lw| = 1.

Next we consider i = 5 and |w| = 1. We have minjc (1 5 3,4 f(5,)) = 32 and
MaXje(1,2,3,4} f(5,))=1- %Al. Moreover, the maximum is attained at j = 1 and the minimum is attained at
j =2, 3 and 4. Therefore, using the last part of Lemma 4.3 we obtain

f(52,1) = f(52,3) = f(53,2) = f(53, 4) = f(54, 1) = f(54, 3)

and f(52, 4) = f(53, 1) = f(54, 2). Moreover, f(52, 4) = f(55, 2), f(53, 1) = f(55, 3), and f(54, 2) = f(55, 4);
all of these values are given by (26) with m = 2. We also know the value of f(55, 1) = f(51, 3) from (25).
Therefore, we only need to check that the value of f(52, 1) is between 3A;/4 and 1 — 91 /4. Using (18) we
have

f(52,1) = x2f (5, 1) + a2f (5, 2) + x2f (5, 3) + x2f (5, 4) + %(1 - a-3x2).

Therefore,
1
f(52,1) - f(5,2) = x2f (5, 1) + (a2 = 1)f (5, 2) + x2f (5, 3) + x2f (5, 4) + Z(l - a - 3X2)
which, since a; — 1 = 3(R(A;) — 1)y (see Lemma A.1), equals
9 3 3 3 3 15 9
x2(1- ZAl) +3(A1 - 1))(22/11 +Xzz/11 +Xzz/\1 - ZAIXZ =X2 <1 - 7/11 + ZA%> >0

by Lemma A.1. Hence f(52, 1) > f(5, 2). To prove that f(52, 1) is smaller than f(5, 1) we proceed as follows
using (18):

1
f(52, 1)—f(5,1)=(Xz—1)f(5,1)+azf(5,2)+X2f(5,3)+X2f(5,4)+Z(l—a2—3)(z)
9 3 3 3 3
=(2-D(1- ZAl) + tsz/\l +XZZA1 +XZZ)[1 - Z)ll)(z
15 9 9
=X2 (1_7A1+ZA%)_1+ZA1<O

since, by Lemma A.1, x> (1- L22; + §A}) < 0.22and 1 - A; = 0.625 (for n > 3 we have 1 - §A, > 0.625).
Therefore f(52, 1) < f(5, 1), and so we proved the statement of the Proposition for |w| = 1.
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Moving to |w| > 1, we see that we can repeat the above arguments inductively when increasing
the length of |w| from m to m + 1. This is because, by Lemma 4.2, f(iwk, j) depends only on the values
fliw, 1), fliw, 2), f(iw, 3) and f(iw, 4). If i = 1, then the possible combinations of these values are (see the
computations above): three of them are equal to 1 and the fourth equals 1 - %}lm (by Lemma 4.5); one value
is1- %/\m_l, one valueis 1 - %/\m, and the other two values are between 1 — %/\m_l and 1; and three values
equal %Am and one value equals 1 - %/\m. Then the proof given fori = 1 and |w| = 1 can be easily adapted to
prove the inductive step.

If i = 2, the possible values of f2w, 1), fQw, 2), f2w, 3) and f(2w, 4) are: three of them equal 0, and
one equals 3An/4; three of them equal 3A,,/4 and the fourth one is between 3A,,/4 and 3A,,.1/4; and one of
the valuesis 3A;/4 for some 2 < i < m-1, and the other three values are between 3A,»/4 and 3A;/4. Therefore,
the arguments given above for i = 2 and |w| = 1 can be easily adapted to these cases to prove the inductive
step.

If i = 5 then the possible values of f(5w, 1), f(5w, 2), f(5w, 3) and f(5w, 4): all four are given by Lemma
4.7 and, in particular, three of them are equal; and three of them are equal and all of them are in between the
values provided by Lemma 4.7. Then the above argument for i = 5 and |w| = 1 can also be adapted for the
induction step on the length of w.

The last statement of Proposition 4.8 follows immediately since

max max f(i,j)=1
i€{1,2,3,4,5} je{1,2,3,4}
and
ie{lr,rzl,lgz',S}fe{rlr,lzlg,a}f(l’]) -0
O

Proof of Lemma 3.2. The statement of Proposition 4.8 is true for g, h and k because g(w, i), h(w, i) and k(w, i)
can be obtained from f by shifting the letters. For example, g(w, i) = f(R,(w), R»(i)), where R, is the “rotation”
defined in Remark 4.4, and similar formulas hold for h and k. Therefore O < f(w, i), g(w, 1), h(w, i), k(w, i) < 1
for every w e and foreveryi € {1, 2, 3, 4}. O

Appendix: A few facts used in the proofs

We now collect several relationships and formulas satisfied by a, 8, x and § that we used throughout the
paper. The proofs of the following statements are straight computations and/or easy calculus problems.

Lemma A.1. 1. The map R(A) can be factored out as
R(A) = 364% - 48A% + 151 = 3A(1 - 2A)(5 - 6A),

and it satisfies the relation
3R(A) - 4 = (6A - 1)f,(A).

2. The following identities are true for all A that are not forbidden values:

1 1
7T 3G 290+ 6002 =368~ 3(1 - 20f()
21-3
Lr3a=3x=3-1
20-2
L#3p=38= 1
1-B-36-= 18AA-1)3(1-2A4) _ 18(A - 1)R(A)

3(1-20L0) 3(1-20LA)(5 - 64)°
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L 3M5-6M03(1-20) _ 3R()
Lma=3=""50- M - 30 - 2060
1
F-0=3gp

a-1=3RA) - y,.

3.0<a<land0< B <1forall0 <A< A,and0 < § < 1forall0 < A< 1/6 = A;.In particular,
0 < an,Bn,6n <1forallnz=2.

4. 1-a-3xy<0and1--36<0.

5 B>6anda > xforall 0 < A < 1/6. Therefore 3n > 6n and an > xn foralln = 2.

6. 0.08 <y(1- 221+ 2A%) <0.22 forall 0 < A <= 1/6.

Proof. 1. The formula for f is proved in [22] and follows immediately from its definition.
2. These formulas were also discussed and used in [22].
3. These formulas follow by direct computations. We also used the Maxima CAS [25] to double check our
computations. The Maxima code that we used is provided on our website.
4. This can be shown using standard methods of calculus. We provide next pictures that illustrate our claim:

£ s
3 ol i
8 om| £ osef %
% & §
& o osp i
§ g o :
g om  ome 5
3 3 o} .
g orms S oso g
8 T os2 8
2 S
- ‘ ‘ ‘ . 0 ‘ ‘ ‘ o R L
& BT om  omm  owe  oom oo o ow oo o ooe oo o om om o om o1 om ow o
(@ awith0<A<A,. (b) awith0 <A <A,. (c) Swith0 < A < Aq.

5. Once again we provide a picture instead of presenting the computation of the derivative of each expres-

sion:
0 T 0o T T T T T
0.05 - -
01 =
01 B
015 + - 02 4
02 1 a3k i
025 1
oal i 04 -
035 B o5k |
04 -
06
045 | i
s e o e
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
X X
(@) (1 -a-3pwith0 <A< A;. (b) 1(1-B-36)with0 <A< A;.

6. One more picture to illustrate the last statement:
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0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

(0.3333333333333333%(2.25*2-3. 75%+1))/((-36°x ) +60*x2-20*x +.

Figure 7: (1 - 24+ 2A%) with 0 < A < A;.
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