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Abstract: The classic double bubble theorem says that the least-perimeter way to enclose and separate two
prescribed volumes in RN is the standard double bubble. We seek the optimal double bubble in RN with
density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two
contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the so-
lution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small
and the other large).
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1 Introduction
The double bubble theorem (see [6, Chapt. 14]) says that inRN the standard double bubble of Figure 1, consist-
ing of three spherical caps meeting at 120 degrees, provides the least-perimeter way to enclose and separate
two given volumes. We want to put density on RN . We focus on strictly log-convex, C1 radial densities, for
which the sphere about the origin is stable and indeed, for C3 densities, uniquely the best single bubble
by Chambers’ [5] recent proof of the log-convex density conjecture. In R2, McGillivray [9] recently extended
Chambers’ results to arbitrary (not necessarily smooth) radial log-convex densities.

For the case of R1 (N = 1), we show that there are two types of optimal double bubbles, as illustrated in
Figure 2.

Proposition 1.1 (Prop. 4.10). On R with a symmetric, strictly log-convex, C1 density, for equal prescribed vol-
umes, the perimeter-minimizing double bubble is a connected double interval, symmetric about the origin.

Proposition 1.2 (Prop. 4.11). On R with symmetric, strictly log-convex, C1 density f such that (log f )′ is un-
bounded, for given V1 > 0, for su�ciently large V2, the least-perimeter double bubble is a symmetric interval of
volume V1 �anked by two contiguous intervals of volume V2/2.
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Figure 1: The standard double bubble provides the least-perimeter way to enclose and separate two given volumes in R3 with
density 1. We consider more general densities. Image from John M. Sullivan, http://www.math.uiuc.edu/~jms/Images.

Figure 2: Perimeter-minimizing double bubbles in R with strictly log-convex C1 symmetric density can consist of two or three
contiguous intervals.

Our main result characterizes when the optimal double bubble transitions from a double interval to a triple
interval, for a strictly log-convex density such that the derivative of the log of the density is unbounded:

Theorem 1.3 (Thm. 4.15). On R with a symmetric, strictly log-convex, C1 density f such that (log f )′ is un-
bounded, for given V1 > 0, there is a unique V2 = λ(V1) such that the double interval in equilibrium and the
triple interval tie. For V2 > λ(V1), the perimeter-minimizing double bubble is uniquely the triple interval. For
V2 < λ(V1), the perimeter-minimizing double bubble is uniquely the double interval in equilibrium. Moreover, λ
is a strictly increasing C1 function that tends to a positive limit as V1 → 0.

Section 6 studies the growth rate of the tie curve λ(V1). Our results imply for example that for Borell density
ex

2
, for V1 large,

V1(logV1)1/2−ε < λ(V1) < V4+ε
1

(Cors. 6.9, 6.12).
Our numerics indicated to our astonishment that sometimes as the volumes are scaled up, theminimizer

changes from a double interval to a triple interval and then back to a double interval, as in Figure 4.
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Figure 3:We conjecture that a perimeter-minimizing double bubble in RN with density er2 is sometimes a standard double
bubble and sometimes a much smaller bubble inside a bubble. Computed with Brakke’s Surface Evolver [3] and Mathematica.

Figure 4: This numerically generated plot shows the tie points of the double and triple interval in the curve with solid red points
for density ex2 and the curve with the empty green points for density ex4 . The solid blue line is V2 = 10V1 and the dashed blue
line is V2 = 2V1. Note that the solid blue line intersects the red curve twice.
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InRN , we conjecture and provide some numerical evidence that the solution is a standard double bubble
(the analog of the double interval) when the sizes are comparable and a bubble inside a bubble (the analog
of the triple interval) when one bubble is much larger, as in Figure 3. For equal volumes in 2D, as the volumes
increase, the solution tends to a circle centered at the origin plus diameter (Fig. 5).

Figure 5: For increasing equal volumes (0.01, 0.1, 10 and 1000) the double bubble approaches a circle plus diameter. Computed
with Brakke’s Surface Evolver.

We conjecture that the smoothness assumption of Theorem 4.15 can be omitted. By smoothing, any sym-
metric strictly log-convex density onR is a limit of smooth densities. It follows that Proposition 4.10 holds for
any symmetric strictly log-convex density. But this argument does not work in general: in Proposition 4.11,
the threshold for the “su�ciently large V2” condition could go to in�nity in the limit. Nevertheless, we think
that one may be able to obtain the same results by directly working with non-smooth densities via one-sided
derivatives.

The triple bubble problem on the real line can be studied with techniques similar to those used in this
paper. In fact, we have made some progress, showing that for a symmetric, strictly log-convex density, there
are four possible combinatorial types of perimeter-minimizing triple bubbles. Our results on this problem can
be found in our report [11]. However, the triple bubble problem is much more complicated than the double
one. The transition boundary is likelymany surfaces inR3 stitched together, making it more di�cult to study.
Moreover, in the double bubble problem, it happens that there is a single kind of transition (from double to
triple intervals) that occurs for every density.We suspect that, in the triple bubble case, theremay be di�erent
kinds of transitions depending on the density. In particular, we conjecture that only three types of perimeter
minimizers occur for some densities and four for others.
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The single bubble problem with density was previously studied by Bobkov and Houdré [4] and Bayle [1].
There are results in the literature on double bubbles in the sphere SN , hyperbolic space HN , �at tori T2 and
T3, and Gauss space (Euclidean space with density e−r

2
); see [6, Chapt. 19]. Recently, Milman and Neeman

[7] proved the Gaussian double bubble conjecture, which states that the solution is three halfspaces meeting
at 120 degrees.

Outline of proofs

First we show that a perimeter-minimizing double bubble consists of two or three contiguous intervals, by
sliding and rearrangement arguments (Prop. 4.6). Moreover, for �xed V1, as V2 increases from V1, it transi-
tions from double to triple (Thm. 4.15). Our most di�cult analysis describes how the transition point λ(V1)
increases as V1 increases (Props. 6.5 and 6.11).

Outline of paper

Section 2 de�nes bubbles and densities. Section 3 provides our results on n-bubbles on the real line. Section
4 provides our main results on the double bubbles on the real line with strictly log-convex densities. Section
5 examines some non-strict log-convex densities on the real line. Section 6 gives lower and upper bounds
on the tie curve given in Theorem 4.15. Section 7 uses numerical techniques to compute the surface areas of
conjectured double bubbles in R2 and R3 with Borell density er

2
.

2 Densities and Bubbles
De�nition 2.1. A density on RN is just a positive function, used to weight volume and perimeter. A bubble
in RN is a region of prescribed (weighted) volume and perhaps many components. An n-bubble consists of n
bubbles with disjoint interiors, which may or may not share boundaries. A 2-bubble is also called a double
bubble. Each shared boundary is counted only once in the perimeter. An n-bubble that minimizes perimeter
for its enclosed volumes is called perimeter minimizing or isoperimetric.

3 n-Bubbles on the Real Line
We considerRwith density f . If f is bounded below and an n-bubble has �nite weighted perimeter, then each
region consists of �nitely many intervals. The boundary points divide R into closed intervals (which may be
in�nite on one side) called blocks. A block may be a component of a bubble, or its interior may not intersect
any bubble.

This section contains results on existence (Prop. 3.1), equilibrium (Cor. 3.3), and regularity (Prop. 3.5) for
n-bubbles on the real line with density. Proposition 3.6 identi�es the optimal single bubble as a symmetric
interval. Proposition 3.8 proves that a perimeter-minimizing n-bubble has at most 2n − 1 components.

Proposition 3.1. On R with continuous density f going to in�nity in both directions, given n �nite volumes
Vi > 0, a perimeter-minimizing n-bubble exists and consists of �nitely many intervals.

Proof. Since f has a positive lower bound, candidates consist of a bounded number of intervals. Since f goes
to in�nity in both directions, candidates lie in a bounded region. By compactness, there is a sequence of
candidates whose perimeters tend to the in�mum and whose endpoints converge. Because f is continuous,
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the limit of these candidates is an n-bubble enclosing the desired volumes and the perimeter is the in�mum.
So a perimeter-minimizing n-bubble exists (and consists of �nitely many intervals).

Proposition 3.2. (First Variation Formula). Let f be a C1 density on R. Then the �rst derivative of perimeter
moving a point x to the right at rate 1/f to alter volume at unit speed is given by

dP
dt = (log f )′(x).

Proof.
dP
dt = dPdx

dx
dt = f

′ 1
f = (log f )′.

Corollary 3.3. Let f be a C1 density on R. If an n-bubble with boundary points x1 < x2 < · · · < xk is perimeter
minimizing, then

k∑
i=1

(log f )′(xi) = 0.

More generally, if 1 ≤ a < b ≤ k are such that the blocks to the left of xa and to the right of xb both belong to the
same bubble or to no bubble, then

b∑
i=a

(log f )′(xi) = 0.

Proof. Sincemoving the points at rate 1/f preserves volumes and the n-bubbleminimizes perimeter for �xed
volumes, the derivative dP/dt must vanish. Now the result follows from the First Variation Formula (Prop.
3.2).

Remark 3.4. In Corollary 3.3, if the condition on f is relaxed from C1 to one-sided derivatives (for example if
f is convex or log-convex), then similarly the sum of the right derivatives is nonnegative and the sum of the
left derivatives nonpositive.

Proposition 3.5. OnRwith a continuous density that is nonincreasing on (−∞, 0]andnondecreasing on [0,∞),
a perimeter-minimizing n-bubble consists of �nitely many contiguous intervals.

Proof. Because the density is nonincreasing on (−∞, 0] and nondecreasing on [0,∞), it has a positive lower
bound. Hence a perimeter-minimizing n-bubble consists of �nitely many intervals, or it would have in�nite
perimeter.

Suppose that these intervals are not contiguous. Then there exist two components [a, b] and [c, d] with
a < b < c < d, where (b, c) does not intersect any bubble. We may assume that b < 0 by symmetry. But then
[a, b] can be moved to the right until it reaches [c, d] or the origin so that the volume is preserved and the
perimeter does not increase. If [a, b] meets [c, d], two boundary points become one and the total perimeter
is less than the original con�guration’s, contradiction. If [a, b]meets the origin, then [c, d] can be moved to
the left while maintaining the volume and reducing the perimeter as before, contradiction.

For completeness we include a proof of the 1D log-convex density theorem [10, Cor. 4.12]:

Proposition 3.6 (Single bubble). On R with symmetric, strictly log-convex, continuous density, every interval
symmetric about the origin is uniquely isoperimetric.

Proof. By Proposition 3.1, a perimeter minimizer exists for a given volume. By Proposition 3.5, it is a single
interval [x1, x2]. Corollary 3.3 implies that

(log f )′(x1) + (log f )′(x2) = 0

for the C1 case. Since (log f )′ is a strictly increasing odd function, we have x2 = −x1 and the interval is sym-
metric about the origin.
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By Remark 3.4, for the non-C1 case

(log f )′L(x1) + (log f )′L(x2) ≤ 0 (3.1)
(log f )′R(x1) + (log f )′R(x2) ≥ 0 (3.2)

where (log f )′L and (log f )′R denote the left and right derivatives. Since f is symmetric and strictly log-convex,
(3.1) gives that x1 + x2 ≤ 0, while (3.2) gives that x1 + x2 ≥ 0. Therefore x1 = −x2 and the interval is symmetric
about the origin. Furthermore, for every given volume there is a unique symmetric interval.

Lemma 3.7. Consider R with a continuous density that is nonincreasing on (−∞, 0] and nondecreasing on
[0,∞). Let M be the density minimum set where f (x) = f (0). Consider two components of the same bubble
in a perimeter-minimizing n-bubble. Then the component on the right contains no points to the left of M and
some to the right of M. Similarly the component on the left contains no points right of M and some left of M.

Proof. Let M = [m1,m2] and the two components be [a, b] and [c, d] with a < b < c < d. For the right
component,weneed to show that c ≥ m1 and d > m2. Slide everythingbetween b and c to the right, preserving
volumes while decreasing the volume of [c, d]. If d ≤ m2, then the perimeter would not increase before c
reaches d, and it would decrease at thatmoment, a contradiction. Hence d > m2. If c < m1, thenwhile sliding
c up to m1, the density never increases and decreases near m1. So perimeter decreases, a contradiction. A
similar argument applies to the left component.

Proposition 3.8. OnRwitha continuousdensity that is nonincreasing on (−∞, 0]andnondecreasing on [0,∞),
a perimeter-minimizing n-bubble has at most 2n − 1 components.

Proof. By Proposition 3.5, all the components are contiguous. By Lemma 3.7, each bubble has at most two
components, so the n-bubble has at most 2n components. Moreover, if it has exactly 2n components, then
the left component of any bubble lies to the left of the right component of every bubble. The right-most left
component L and the left-most right component R meet at a point of minimum density. Denote the second
components of the same bubbles by L′ and R′. They appear in the order R′, L, R, L′. Now slide everything
between R′ and L to the right and everything between R and L′ to the left, preserving volumes and not in-
creasing perimeter, until either L or R disappears (all volume is contained in L′ or R′, respectively), reducing
perimeter, a contradiction. Therefore the n-bubble has at most 2n − 1 components.

Remark 3.9. We suspect that the restriction to at most 2n − 1 components is sharp. In particular, we think
that for some densities a perimeter-minimizing n-bubble for volumes V1 � V2 � · · · � Vn has 2n − 1
components: V1 is centered on the origin �anked by V2/2 on either side, which is �anked by V3/2 on either
side, and so on. Proposition 4.11 proves this for n = 2.

4 Double Bubbles on the Real Line
We now focus on the double bubble and prove that perimeter minimizers are sometimes double intervals and
sometimes triple intervals (Props. 4.10 and 4.11). This is consistent with Proposition 3.8, which states that a
perimeter-minimizing double bubble has nomore than 3 components. Theorem4.15 analyzeswhen each type
occurs (see Fig. 9).

De�nition 4.1. A double interval (x1, x2, x3) for prescribed volumes V1 ≤ V2 consists of two contiguous
intervals [x1, x2], [x2, x3] of volumes V1 and V2, respectively, as in Figure 6. For a C1 density f , a double
bubble is in equilibrium if it satis�es the consequence of perimeter minimization of Corollary 3.3:

(log f )′(x1) + (log f )′(x2) + (log f )′(x3) = 0.

The term also applies to the generalization to one-sided derivatives of Remark 3.4.
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The triple interval (y1, y2) for prescribed volumes V1 ≤ V2 consists of three contiguous intervals, two of
which �ank the middle interval and enclose an equal volume, as in Figure 7. The middle interval is [−y1, y1]
and encloses volume V1. The left interval is [−y2, −y1] and the right interval is [y1, y2], and each encloses
volume V2/2.

For a symmetric continuous, piecewise C1 density, the triple interval is in equilibrium.

Figure 6: A double interval on the real line.

Figure 7: A triple interval on the real line.

Figure 8: Double and triple intervals in equilibrium on the real line.

Proposition 4.6 will characterize perimeter-minimizing double bubbles. First we show that a log-convex
density can be considered as a convex density in volume coordinate.
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Lemma 4.2 (Volume coordinate). On R with density f, let

V =
x∫

0

f .

Then f is a log-convex function of x if and only if f is a convex function of V .

Proof. The result follows from the fact that the one-sided derivatives satisfy

df
dV = df /dx

dV/dx = df /dxf = d(log f )dx .

The next lemma shows how to convert the volume coordinate back to the positional coordinate.

Lemma 4.3. On R with density f, let

V =
x∫

0

f .

Then

x(V) =
V∫
0

1
f ,

where f is a function of V .

Proof. We have
V∫
0

1
f dV =

x∫
0

1
f
dV
dx dx =

x∫
0

1
f f dx = x.

Lemma 4.4. On R with symmetric, strictly log-convex density, for prescribed volumes V1 ≤ V2, if a perimeter-
minimizing double bubble has two components, then it is the unique double interval in equilibrium (up to re�ec-
tion).

Proof. Let f be the density. By Proposition 3.5, the intervals are contiguous, so the double bubble must be a
double interval (x1, x2, x3). If f is C1, Corollary 3.3 implies that the equilibrium condition

(log f )′(x1) + (log f )′(x2) + (log f )′(x3) = 0.

holds. Moreover, assuming that the region on the left has volume V1, this equation uniquely determines the
double interval: as x1 moves, x2 and x3 also move as strictly increasing functions of x1. Hence the left-hand
side is a strictly increasing function of x1 which tends to a negative value as x1 → −∞ and tends to a positive
value as x1 →∞. The double interval satisfying the equation must therefore be unique.

If f is not C1, a similar argument applies using one-sided derivatives and Remark 3.4.

Proposition 5.4 shows that the strict log-convexity hypothesis in Lemma 4.4 is necessary.

Lemma 4.5. On R with symmetric, strictly log-convex density, for prescribed volumes V1 ≤ V2, if a perimeter-
minimizing double bubble has three components, then it is the triple interval.

Proof. Let V1 ≤ V2 be the prescribed volumes. By Corollary 3.5, the intervals are contiguous. By applying
Corollary 3.3 or Remark 3.4 to the middle interval we �nd that the middle interval is symmetric about the
origin, and similarly the whole double bubble is also symmetric about the origin.

Finally, it is optimal to place V1 in themiddle: since the total volume enclosed in the double bubble is the
same regardless of which bubble is in the middle, we only need to examine the two inner boundary points.
Since the perimeter is minimized when these points are nearest to the origin, the optimal choice is for the
middle bubble to enclose volume V1. Thus the perimeter-minimizing con�guration is the triple interval.
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We can summarize the results of Proposition 3.8 and Lemmas 4.4 and 4.5 in the following proposition.

Proposition 4.6. On R with symmetric, strictly log-convex density f , for prescribed volumes V1 ≤ V2, a
perimeter-minimizing double bubble is one of the following:

(a) the unique double interval (x1, x2, x3) in equilibrium (up to re�ection) or
(b) the triple interval (y1, y2).

See Figure 8.

Volume and perimeter relationships

To understand better the transition from double to triple intervals, we examine volumes and perimeters more
carefully. Let f be a symmetric, strictly log-convex, and C1 density. For prescribed volumes V1 ≤ V2, let P2
be the perimeter of the double interval in equilibrium and P3 the perimeter of the triple interval. In volume
coordinates (Lemma 4.2), we have

P2 = f (Ṽ) + f (Ṽ + V1) + f (Ṽ + V1 + V2),

P3 = 2
[
f
(
V1
2

)
+ f
(
V1 + V2

2

)]
,

where Ṽ is the unique volume satisfying the equilibrium condition for the double interval

f ′(Ṽ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0. (4.1)

Notice that the derivatives are in volume coordinates:

f ′(V) = (log f )′(x) where V =
x∫

0

f .

Taking derivatives of P2 and P3 yields

P′2 = f ′(Ṽ + V1 + V2)V ′
2 − f ′(Ṽ)V ′

1, (4.2)

P′3 = f ′
(
V1
2

)
V ′
1 + f ′

(
V1 + V2

2

)
(V ′

1 + V ′
2), (4.3)

where we used the equilibrium condition from (4.1) for simpli�cation.

Characterizations of when the double or triple interval is perimeter minimizing

De�nition 4.7. For prescribed volumes V1 ≤ V2, let

µ(V1, V2) = P3 − P2

be the di�erence between the perimeter P3 of the triple interval and the perimeter P2 of the double interval
in equilibrium.

By Proposition 4.6, we obtain the following characterization.

(a) If µ(V1, V2) < 0, then the perimeter-minimizing double bubble is uniquely the triple interval.
(b) If µ(V1, V2) > 0, then the perimeter-minimizing double bubble is uniquely the double interval in equi-

librium.
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Figure 9: The �gure above is a numerical computation which represents the value of the perimeter di�erence µ(V1 , V2) for
Borell density f (x) = ex2 . The orange color marks the region in which the double interval has lesser perimeter, the blue color
represents the region in which the triple interval has lesser perimeter, and the white curve marks the tie point between the
double and triple intervals. Computed in Mathematica.

(c) If µ(V1, V2) = 0, then the perimeter-minimizing double bubble is either the triple interval or the double
interval in equilibrium.

Let f be a C1 density. Observe that by equations (4.2) and (4.3), µ is a C1 function with partial derivatives
∂µ
∂V1

= f ′
(
V1
2

)
+ f ′

(
V1 + V2

2

)
+ f ′(Ṽ),

∂µ
∂V2

= f ′
(
V1 + V2

2

)
− f ′(Ṽ + V1 + V2).

The remainder of this section investigates the behavior of µ.

Lemma 4.8. On R with symmetric, strictly log-convex, C1 density, for prescribed volumes V1 < V2,

−V1 + V22 < Ṽ < −V1.

Proof. Let f be the density. Consider the equilibrium condition

f ′(Ṽ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0.

By Lemma 4.2, f is convex in volume coordinate, so the left-hand side is strictly increasing in Ṽ. At Ṽ =
−(V1 + V2)/2, the left-hand side is negative, while at Ṽ = −V1, the left-hand side is positive. Hence the value
of Ṽ that makes the left-hand side vanish must lie inside the desired range.

Lemma 4.9. ConsiderR with symmetric, strictly log-convex, C1 density. Given V2 > 0, µ is a strictly increasing
function of V1 ≤ V2. Given V1 > 0, µ is a strictly decreasing function of V2 ≥ V1.

Proof. Fix V2. For V1 < V2, we have
∂µ
∂V1

= f ′
(
V1
2

)
+ f ′

(
V1 + V2

2

)
+ f ′(Ṽ) > f ′

(
V1
2

)
> 0

due to Lemma 4.8. Now �x V1. For V2 > V1, we have
∂µ
∂V2

= f ′
(
V1 + V2

2

)
− f ′(Ṽ + V1 + V2) < 0
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due to Lemma 4.8.

Proposition 4.10. OnRwith symmetric, strictly log-convex, C1 density, for equal prescribed volumes V1 = V2,
we have µ > 0 (so the double interval is better).

Proof. For V1 = V2, we have Ṽ = −V1. So

P2 = 2f (V1) + f (0) < 2f
(
V1
2

)
+ 2f (V1) = P3.

Proposition 4.11. OnRwith symmetric, strictly log-convex, C1 density f such that (log f )′ is unbounded, given
V1 > 0, we have µ < 0 for large V2 ≥ V1 (so the triple interval is better).

Proof. Fix V1. For V2 large, we need to show that

P2 = f (Ṽ) + f (Ṽ + V1) + f (Ṽ + V1 + V2) > 2
[
f
(
V1
2

)
+ f
(
V1 + V2

2

)]
= P3.

By convexity of f in volume coordinate (Lemma 4.2),

f (−Ṽ) + f (Ṽ + V1 + V2) ≥ 2f
(
V1 + V2

2

)
.

Notice that f (−Ṽ) = f (Ṽ) by symmetry of f . So we need to show that, for V2 large,

f (Ṽ + V1) > 2f
(
V1
2

)
.

It su�ces to show that Ṽ → −∞ as V2 →∞.
From the equilibrium condition

f ′(Ṽ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0,

as V2 →∞, if Ṽ does not become very small, then the leftmost two terms stay bounded, while the rightmost
term goes to in�nity because f ′(V) is unbounded, which is a contradiction. Hence Ṽ → −∞ as V2 →∞.

Remark 4.12. Propositions 5.4 and 5.5 show that the hypothesis of strict log-convexity in Proposition 4.11 is
necessary. Moreover, the following example shows that the hypothesis that (log f )′ is unbounded is needed.

Example 4.13. Consider the density in volume coordinate f (V) = |V| + e−|V|. Notice that f is C1 and f (V) is
strictly convex, but f ′(V) is bounded. For �xed V1, as V2 → ∞, it can be computed that Ṽ → − log(1 + eV1 ).
We can then check that

µ → 2V1 − log(1 + eV1 ) + 2e−V1/2 − 1 > 0

for all V1 > 0. Since µ is decreasing in V2 (Lemma 4.9), µ > 0 and so the double interval is better for all V1
and V2.

Lemma 4.14. On R with symmetric, strictly log-convex, C1 density, for small V2 > 0, µ > 0 for all V1 ≤ V2 (so
the double interval is better).

Proof. For V2 small, by Lemma4.8, Ṽ is also small inmagnitude. Hence every density term that contributes to
P2 and P3 is close to f (0). Thus for V2 small, P2 is close to 3f (0)while P3 is close to 4f (0), so that P2 < P3.

Theorem 4.15. On R with symmetric, strictly log-convex, C1 density f such that (log f )′ is unbounded, given
V1 > 0, there is a unique V2 = λ(V1) such that the double interval in equilibrium and the triple interval tie.
For V2 > λ(V1), the perimeter-minimizing double bubble is uniquely the triple interval. For V2 < λ(V1), the
perimeter-minimizing double bubble is uniquely the double interval in equilibrium. Moreover, λ is a strictly in-
creasing C1 function that tends to a positive limit as V1 → 0.
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Proof. Fix V1. By Lemma 4.9, µ is a strictly decreasing function of V2. By Lemma 4.10, µ > 0 for V2 = V1.
By Lemma 4.11, µ < 0 for large V2. These together imply that there is a unique V2 = λ(V1) such that µ = 0
and that µ > 0 for V2 < λ(V1) and µ < 0 for V2 > λ(V1). Thus λ determines the perimeter-minimizing double
bubbles as in the theorem statement.

Observe that µ is a C1 function with partial derivative ∂µ/∂V2 < 0 at points (V1, λ(V1)), by Lemma 4.9.
So by the implicit function theorem, λ is a C1 function.

We now show that λ is strictly increasing. Suppose not. Then there are V1 < V*1 with λ(V1) ≥ λ(V*1). By
Lemma 4.9,

0 = µ(V1, λ(V1)) < µ(V*1, λ(V1)) ≤ µ(V*1, λ(V*1)) = 0,

a contradiction. Note the term in the middle makes sense because V*1 ≤ λ(V1).
Finally we show that λ tends to a positive limit as V1 → 0. By Lemma 4.14, there is v > 0 such that µ > 0

for all V1 ≤ V2 ≤ v, so λ(V1) ≠ v for all V1. Thus because λ is strictly increasing, it tends to a limit which is at
least as big as v as V1 → 0.

It remains an open question what happens in the case where (log f )′ is bounded. We conjecture that the tie
function λ still exists but only for V1 ∈ (0, V0) for some “blowup time” 0 ≤ V0 ≤ ∞, and λ →∞ as V1 → V0.

5 Non-Strictly Log-Convex Densities
Section 5 considers some densities which are symmetric, piecewise C1, and log-convex, but not strictly log-
convex.

We investigate the following densities:

(i) The constant density f (x) = c (Prop. 5.4).
(ii) The exponential density f (x) = e|x| (Prop. 5.5).
(iii) The smoothed-out exponential density

f (x) =
{
ex

2
for |x| < a

ea(2|x|−a) for |x| ≥ a
(5.1)

with a > 2
√
log 2 (Prop. 5.9).

For the constant density, every double interval is perimeter minimizing. For the exponential density, a
perimeter-minimizing double bubble is a double interval with the middle point at the origin. For the
smoothed-out exponential density, the triple interval appears for V1 small and V2 large.

For non-strictly log-convex densities, there may be a continuum of double intervals (or triple intervals)
in equilibrium with the prescribed volumes. Lemma 5.1 shows that all such are perimeter minimizing among
double intervals (among triple intervals).

Lemma 5.1. OnRwith symmetric log-convex density f, among n-bubbles of prescribed volumes and �xed com-
binatorial type, every equilibrium is perimeter minimizing.

Proof. We may assume that f is not constant, since the result is easy in that case. If we switch to volume
coordinate (Lemma 4.2), then f is a convex function of volume V. Since f is symmetric, convex, and noncon-
stant, it goes to in�nity in both directions. Hence a minimizer exists. Since every minimizer is in equilibrium,
it remains to show that every equilibrium has equal perimeter.

Represent an n-bubble as a tuple of volume coordinates of endpoints of its components. Then given two
n-bubbles in equilibrium B1 and B2, on the straight line between them, the volume of each component varies
linearly. Since the volume of each bubble is equal at B1 and B2, the volume of each bubble must be constant
along this straight line. Hence all n-bubbles along this straight line have the prescribed volumes. Let P(t)
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denote the perimeter of the n-bubble (1− t)B1 + tB2, t ∈ [0, 1], on this straight line. Then P is convex because
f is convex, and the one-sided derivatives P′R(0) ≥ 0 and P′L(1) ≤ 0 because B1 and B2 are in equilibria. It
follows that P is constant, and so B1 and B2 have equal perimeter.

Remark 5.2. Lemma 5.1 reduces the search for a perimeter-minimizing double bubble to any double interval
or triple interval in equilibrium. We can pick a perimeter-minimizing triple interval to be the triple interval
symmetric about the origin.

The proof shows that the set of (perimeter-minimizing) equilibria is a �nite-dimensional cell, convex in
the V coordinates.

Thehypothesis that f be symmetric, used for the existenceof aminimizer, is not necessary. If f approaches
but never reaches a limit in either direction, equilibria do not exist (because the derivative of perimeter is
negative as you slide the n-bubble in that direction), and the result holds trivially. Otherwise minimizers
exist.

Remark 5.3. By Lemma 5.1, in volume coordinates (Lemma 4.2), the perimeters P2 of double and P3 of triple
intervals in equilibrium are still given by

P2 = f (Ṽ) + f (Ṽ + V1) + f (Ṽ + V1 + V2),

P3 = 2
[
f
(
V1
2

)
+ f
(
V1 + V2

2

)]
,

where Ṽ is any volume satisfying the equilibrium condition

f ′(Ṽ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0.

We now consider some speci�c non-strict log-convex densities.

Proposition 5.4. OnRwith density f (x) = c, any double interval enclosing the prescribed volumes is perimeter
minimizing.

Proof. A double interval has perimeter 3c. Any other con�guration has perimeter at least 4c. Therefore a
double interval is perimeter minimizing.

Proposition 5.5. On R with density f (x) = e|x|, the perimeter-minimizing double bubble is the double interval
with the middle perimeter point at the origin, unique up to re�ection across the origin.

Proof. The density in volume coordinate (Lemma 4.2) is

f (V) = 1 + |V| .

We �rst consider a double interval in equilibrium. The function f is C1 everywhere except at the origin with
f ′(V) = 1 or −1. So the equilibrium condition (Rem. 5.3) cannot be satis�ed unless one boundary point is at
the origin. By Remark 3.4, the leftmost boundary point cannot be at the origin because the sum of the left
derivatives ∑

f ′L = 1

wouldbepositive. Similarly the rightmost boundary point cannot be at the origin.Hence themiddle boundary
point is at the origin. So the double interval in equilibrium is unique up to re�ection across the origin.

Now we can compare the perimeters of double and triple intervals in equilibrium:

P2 = f (V1) + f (0) + f (V2) = V1 + V2 + 3 < 2V1 + V2 + 4 = P3.

Therefore the perimeter-minimizing double bubble is the double interval in equilibrium.

We now consider the smoothed-out exponential density (5.1).
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Lemma 5.6. Consider R with the smoothed-out exponential density (5.1). Let V1 ≤ V2 be prescribed volumes.
If

V1 + V2 ≤
a∫

0

ex
2
dx,

then the perimeter-minimizing double bubbles are the same double and triple intervals as for the Borell density
f (x) = ex

2
of Proposition 4.6.

Proof. By Proposition 3.5, a perimeter-minimizing double bubble consists of contiguous intervals. Observe
that one of these intervals must contain the origin, as otherwise the whole double bubble can be shifted
towards the origin and the perimeter will decrease. By the upper bound on V1 + V2, the whole bubble is con-
tained in [−a, a]. In this interval, the density is identical to the Borell density. By Proposition 4.6, a perimeter-
minimizing double bubble for the Borell density also lies in this interval for the prescribed volumes. So
perimeter-minimizing double bubbles for the two densities are identical.

Lemma 5.7. Consider R with the smoothed-out exponential density (5.1). Let V1 ≤ V2 be prescribed volumes,
with

V1 ≥
a∫

−a

ex
2
dx.

Then the double interval in equilibrium has the middle boundary point at the origin, and a triple interval in
equilibrium has boundary points

−y2 < −y1 ≤ −a < 0 < a ≤ y′1 < y′2,

free up to the volume constraints.

Proof. Observe that f is C1 and that

(log f )′(x) =


−2a for x ≤ −a
2x for |x| < a
2a for x ≥ a.

By Corollary 3.3, the sumof the derivatives of the log of the density at the boundary points of a double interval
in equilibrium must equal zero. We claim that the middle boundary point is 0. If the middle boundary point
were less than zero, then the sum of the derivatives of the log of the density would be negative. If the middle
boundary pointwere greater than0, then the sumof the derivatives of the log of the densitywould be positive.
Therefore the middle boundary point is 0, as asserted.

For a triple interval in equilibrium, let the boundary points be −y2 < −y1 < y′1 < y′2. If y′1 is less than a,
then the sum of the derivatives of the log of the density at the boundary points is negative. If −y1 is greater
than −a, then the sum of the derivatives of the log of the density at the boundary points is positive. Therefore
−y1 ≤ −a < a ≤ y′1, and the sum of the derivatives of the log of the density equals zero whenever this holds.
So the claim holds.

Lemma 5.8. Consider R with the smoothed-out exponential density (5.1). Let V1 ≤ V2 be prescribed volumes,
where

V1 <
a∫

0

ex
2
dx, V1 + V2 ≥

a∫
−a

ex
2
dx.

Then a double interval in equilibrium has perimeter points x1, x2, x3, where

−a ≤ x1 < x2 = −a − x1 ≤ 0 < a ≤ x3,

up to re�ection across the origin. A perimeter-minimizing triple interval has perimeter points

−y2 ≤ −a < −y1 < 0 < y1 < a ≤ y′2,
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where [−y1, y1] has volume V1 and y2 and y′2 are free up to the volume constraint.

Proof. Let a double interval in equilibrium have boundary points x1 < x2 < x3, and assume that the left
interval has volume V1. By Corollary 3.3,

(log f )′(x1) + (log f )′(x2) + (log f )′(x3) = 0. (5.2)

If x1 < −a, then x2 < 0, and so (5.2) implies that (log f )′(x3) > 2a, which is impossible. Hence x1 ≥ −a. Because
of the bound on V1 + V2, x3 ≥ a. Now by (5.2), (log f )′(x2) ≤ 0, so x2 ≤ 0. So (5.2) reduces to x1 + x2 + a = 0,
or x2 = −a − x1. Then the inequality stated in the proposition holds. The resulting double interval is unique
because there is only one x1 such that [x1, −a − x1] has volume V1, and x3 is determined from x1.

For a perimeter-minimizing triple interval, denote the boundary points by −y2 < −y1 < y′1 < y′2. By
Corollary 3.3,

(log f )′(−y1) + (log f )′(y′1) = 0 (5.3)
(log f )′(−y2) + (log f )′(y′2) = 0,

so either −y2, y′2 ∈ (−a, a) with y2 = y′2 or −y2 ≤ −a and y′2 ≥ a. By the bound on V1 + V2, the latter must be
the case. Similarly, either −y1, y′1 ∈ (−a, a) with y1 = y′1 or −y1 ≤ −a and y′1 ≥ a. To determine which is the
case, we must �rst determine whether [−y1, y′1] encloses volume V1 or V2.

We claim that [−y1, y′1] must enclose volume V1. By the volume restriction on V1 and (5.3), if [−y1, y′1]
has volume V1, then −y1, y′1 ∈ (−a, a) with y1 = y′1. If [−y1, y′1] encloses volume V2, then the magnitudes of
y1 and y′1—and hence the perimeter f (−y1) + f (y′1)—will be greater than when [−y1, y′1] encloses volume V1,
so in order for the triple interval to be perimeter minimizing, [−y1, y′1] must enclose volume V1. Then y′1 =
y1 ∈ (0, a), and therefore the boundary points satisfy the inequality in the statement of the proposition.

The following proposition is our most interesting example, which shows that the appearance of the triple
interval can depend on V1. The particular value 2

√
log 2 is just for our convenience.

Proposition 5.9. Consider R with the smoothed-out exponential density (5.1):

f (x) =
{
ex

2
for |x| < a

ea(2|x|−a) for |x| ≥ a

with a > 2
√
log 2. Let V1 ≤ V2 be prescribed volumes. If

V1 ≥
a∫

−a

ex
2
dx, (5.4)

then the perimeter-minimizing double bubble is the double interval in equilibrium for all V2 (up to re�ection). If
V1 is small, then for V2 close to V1 the perimeter-minimizing double bubble is the double interval in equilibrium
and for V2 large a perimeter-minimizing double bubble is a triple interval.

See Figure 10.

Proof. By Proposition 3.5, a perimeter-minimizing double bubble consists of �nitely many contiguous inter-
vals. By Proposition 3.8, a perimeter-minimizing double bubble consists of two or three such intervals.

First consider the case when V1 is small V2 is close to V1. We assume that

V1 + V2 ≤
a∫

0

ex
2
dx.

By Lemma 5.6, a perimeter-minimizing double bubble is identical to the one for the Borell density f (x) = ex
2

with the same prescribed volumes. By Lemma 4.10, it is the double interval in equilibrium for V2 close to V1.
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Figure 10: The �gure above is a numerical computation which represents the value of the perimeter di�erence µ(V1 , V2) for the
smoothed out exponential density (5.1). The orange color marks the region in which the double interval has less perimeter, the
blue color represents the region in which the triple interval has less perimeter, and the white curve marks the tie point between
the double and triple intervals. The plot indicates that the tie curve asymptotes to �xed value of V1. Computed in Mathematica.

Now suppose (5.4) holds. By Lemma 5.7, the boundary points of the double interval in equilibrium
are x1, 0, x3, where x1 ≤ −a and x3 ≥ a, and the boundary points of a triple interval in equilibrium are
−y2, −y1, y′1, y′2, where we may choose −y2 = x1 and hence y′2 = x3. Thus we only need to compare the inner
boundary points. Because f (−y1) + f (y′1) > f (0) = 1, a double interval in equilibrium has less perimeter than
a triple interval in equilibrium. Therefore the perimeter-minimizing double bubble is the double interval in
equilibrium for all V2.

Finally, suppose that V1 is small and V2 is large. By Lemma 5.8, a double interval in equilibrium has
boundary points x1, x2, x3, where x2 is close to −a/2, and a perimeter-minimizing triple interval has bound-
ary points −y2, −y1, y1, y′2, where y1 is close to zero, −y2 ≤ −a, and y′2 ≥ a. Observe that the single bubbles
[−y2, y′2] and [x1, x3] have volume V1 + V2 and that by Corollary 3.3 the �rst single bubble is in equilibrium.
Thus the perimeter of the outer boundary points of a perimeter-minimizing triple interval is less than or equal
to the perimeter of the outer boundary points of a double interval in equilibrium. So it remains to examine
the perimeter from the inner boundary points. Observe that

f
(
−a2

)
= ea

2/4 > e(2
√
log 2)2/4 = 2 = 2f (0),

since a > 2
√
log 2. Because x2 is close to −a/2 and y1 is close to 0, the perimeter from the inner boundary

points of a perimeter-minimizing triple interval is less than the perimeter from the inner boundary points
of a double interval in equilibrium. Then the total perimeter for a perimeter-minimizing triple interval is less
than the total perimeter for a double interval in equilibrium. Therefore for V1 small and V2 large, a perimeter-
minimizing double bubble is a triple interval.

Conjecture 5.10. Consider R with the smoothed-out exponential density (5.1). Let V1 ≤ V2 be prescribed vol-
umes. Then there exists V0 > 0 such that for V1 ≥ V0, a perimeter-minimizing double bubble is always a double
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interval. For 0 < V1 < V0, there is a unique V2 = λ(V1) such that double intervals and triple intervals tie. For
V2 > λ(V1), a perimeter-minimizing double bubble is a triple interval. For V2 < λ(V1), a perimeter-minimizing
double bubble is a double interval. Moreover, λ is a strictly increasing C1 function that tends to a positive limit
as V1 → 0 and tends to in�nity as V1 → V0.

6 Bounds on the Tie Points
We put some bounds on the growth of the function V2 = λ(V1), where the double and triple intervals tie, as
de�ned in Theorem 4.15. From this point onwards we assume that f is a symmetric, strictly log-convex, C1

density such that (log f )′ is unbounded.
One of the main results of this section is that λ(V1)/V1 → ∞ as V1 → ∞ for densities f = eψ such that

ψxx/ψx is bounded for x large (Cor. 6.7). As in Remark 6.8, this implies that a line through the origin can
intersect the tie curve (V1, λ(V1))more than once. For the Borell density, this is illustrated in Figure 4 of the
Introduction.

Lemma 6.1. For prescribed volumes V1 ≤ V2, let (x1, x2, x3) be the double interval in equilibrium (with the left
interval enclosing volume V1) and (y1, y2) be the triple interval. Fix V1. As V2 increases, y2 and x3 increase,
while x1 and x2 decrease.

Proof. It is easy to see that y2 increases. As V2 increases, x3 can be moved to the right to accommodate the
increased volume. The double interval is no longer in equilibrium, with

3∑
i=1

ψx(xi) > 0.

In order to be in equilibrium, the double intervalmust shift left. This implies that x1 and x2 decrease. To show
that x3 increases, note that in equilibrium,

3∑
i=1

ψx(xi) = 0.

So because x1 and x2 decrease, x3 must increase so that the sum remains zero.

The next lemma shows that the density in volume coordinate grows at least linearly but is approximately
linear.

Lemma 6.2. Let f be a symmetric, strictly log-convex, C1 density on R. In volume coordinate, there is c > 0
such that for large V,

f (V) ≥ cV .

Moreover,
∞∫
0

1
f (V)

diverges.

In particular, this implies that although f grows asymptotically at least as fast as V, it cannot grow asymptot-
ically faster than Vc for any c > 1.

Proof. Because f ′ is strictly increasing (Lemma 4.2), there is ε > 0 such that for large V, f ′ > ε. Hence for large
V, f (V) ≥ (ε/2)V.

The integral diverges because as we take V → ∞ in the formula in Lemma 4.3, it must be the case that
x(V)→∞.
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The next lemma shows that the rate of growth of the volume of the interval [0, x] is on the order of f (x)/ψx
for typical densities. Notice that the hypothesis ψ2

x ≥ Mψxx for large x is mild and holds for all densities we
are interested in, namely ex

n
and ee

x
. In fact, it holds if the sign of ψ2

x − Mψxx changes only a �nite number
of times, because we can easily check that a function satisfying ψ2

x < Mψxx blows up in �nite time.

Lemma 6.3 (Fundamental Bounding Lemma). Let f = eψ be a symmetric, strictly log-convex, C1 density on
R. For x > 0, de�ne

V =
x∫

0

f .

Then
lim inf
x→∞

V
f /ψx

≥ 1.

Furthermore, if f is C2 and M > 1 is such that ψ2
x ≥ Mψxx for x large, then

lim sup
x→∞

V
f /ψx

≤ M
M − 1 .

In particular, if ψ2
x /ψxx →∞ as x →∞, then

lim
x→∞

V
f /ψx

= 1.

Proof. In volume coordinate, we can rewrite the quatity in question via Lemma 4.2 as

V
f /ψx

= V
f (V)/f ′(V) =

Vf ′(V)
f (V) .

Because f ′ is nondecreasing,

f (V) − f (0) =
V∫
0

f ′ ≤ Vf ′(V),

so that
Vf ′(V)
f (V) ≥ f (V) − f (0)f (V) → 1

as V →∞, implying the desired lower bound.
Now suppose ψ2

x ≥ Mψxx for x large. In volume coordinate, ψx = f ′(V) and

ψxx =
df ′(V)
dx = df

′(V)
dV

dV
dx = f ′′(V)f (V).

So f ′2/(� ′′) ≥ M for large V. Now for V large(
f
f ′

)′
= f

′2 − � ′′

f ′2 ≥ 1 − 1
M ,

so that, for constants c and c1,

f
f ′ = c +

V∫
1

(
f
f ′

)′
≥ c1 +

M − 1
M V .

Therefore
lim sup
V→∞

Vf ′
f ≤ M

M − 1 ,

as desired.

For lower bounds, we start by showing that, although V*2 ≥ V1 by de�nition, it never approaches the line
V2 = V1.

Unauthenticated
Download Date | 3/12/19 3:31 PM



Double Bubbles on the Real Line with Log-Convex Density | 83

Proposition 6.4. OnRwith a symmetric, strictly log-convex, C1 density f such that (log f )′ is unbounded, given
V1 > 0, let V*2 be the unique value of V2 such that the double interval in equilibrium and the triple interval tie.
Then V*2 > 2V1 for all V1 > 0.

Proof. In volume coordinate (Lemma 4.2), we have

P2 = f (Ṽ) + f (Ṽ + V1) + f (Ṽ + V1 + V*2) = 2f
(
V1
2

)
+ 2f

(
V1 + V*2

2

)
= P3,

where Ṽ is the unique value such that the double interval is in equilibrium. If we use −(V1 + V*2)/2 in place
of Ṽ, then the resulting double interval has perimeter greater than or equal to the original perimeter:

P2 ≤ 2f
(
V1 + V*2

2

)
+ f
(
V*2 − V1

2

)
.

Therefore
f
(
V*2 − V1

2

)
≥ 2f

(
V1
2

)
> f
(
V1
2

)
,

so that, because f is increasing, V*2 > 2V1.

We now show that for slow-growing density f , speci�cally where Vf ′′(V) is bounded in volume coordinate,
the function λ grows superlinearly. We do not know whether this hypothesis is sharp.

Proposition 6.5. Let f be a symmetric, strictly log-convex, C2 density onR. Suppose that, in volume coordinate,
f ′(V) is unbounded and Vf ′′(V) is bounded. Given V1 > 0, let V*2 be the unique value of V2 such that the double
interval in equilibrium and the triple interval tie. Then V*2/V1 →∞ as V1 →∞.

Proof. By Lemma 6.2, there is c > 0 such that for large V1, 2f (V1/2) > 2cV1 > cV1 + f (0). So

cV1 ≤ 2f
(
V1
2

)
− f (0) = µ(V1, V1) − µ(V1, V*2)

= −
V*2∫
V1

∂µ
∂V2

dV2 =
V*2∫
V1

f ′(Ṽ + V1 + V2) − f ′
(
V1 + V2

2

)
dV2

≤
V*2∫
V1

f ′(V2) − f ′(V1) dV2 ≤
V*2∫
V1

f ′(V*2) − f ′(V1) dV2

= (V*2 − V1)(f ′(V*2) − f ′(V1)) ≤ V*2(f ′(V*2) − f ′(V1)),

where the third line follows because f ′ is nondecreasing and Ṽ < −V1 due to Lemma 4.8. Therefore, for V1
large,

f ′(V*2) − f ′(V1) ≥
c

V*2/V1
. (6.1)

Because f ′ is unbounded, f (V)/V →∞ as V →∞, and so the constant c in (6.1) can be taken arbitrarily
large. By hypothesis on the growth of f , there is c1 > 0 such that f ′′(V) ≤ c1/V. So

f ′(V*2) − f ′(V1) =
V*2∫
V1

f ′′ ≤ c1

V*2∫
V1

1
V = c1 log

V*2
V1

.

Hence by (6.1)
V*2
V1

log V
*
2
V1
≥ c
c1

.

As V1 →∞, c can be taken arbitrarily large, and so V*2/V1 →∞, as desired.
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Remark 6.6. Instead of f being C2, it su�ces to assume that f is C1 and that there is c > 0 such that f ′(V) −
c logV is eventually nonincreasing.

The following corollary translates the hypothesis of Proposition 6.5 to the positional coordinate. It says that
the conclusion of Proposition 6.5 holds for well-behaved densities that can grow as fast as exp(ecx), because
this is the density where ψxx/ψx is constant. We do not know whether this condition is sharp.

Corollary 6.7. Let f = eψ be a symmetric, strictly log-convex, C2 density on R, where ψx is unbounded and
ψxx/ψx is bounded for x large. Given V1 > 0, let V*2 be the unique value of V2 such that the double interval in
equilibrium and the triple interval tie. Then V*2/V1 →∞ as V1 →∞.

Moreover, there is c > 0 such that for any ε > 0, for V1 large,

V*2 ≥ V1(ψx f −1(cV1))1−ε ,

where f −1 is the inverse function of the density in the positional coordinate.

Proof. Because ψx is unbounded and ψxx/ψx is bounded for x large, ψ2
x /ψxx → ∞ as x → ∞, so the Funda-

mental Bounding Lemma 6.3 applies. We have

Vf ′′(V) = V df
′(V)
dV = V dψxdx

dx
dV = Vψxxf .

By Lemma 6.3, V is on the same order as f /ψx for x large, so Vf ′′(V) is on the same order as ψxx/ψx, which is
bounded. Therefore the conclusion of the �rst part follows from Proposition 6.5.

For the second part, we use the method of Proposition 6.5 to arrive at

V*2
V1

log V
*
2
V1
≥ c f (V1/2)V1

(6.2)

for some constant c > 0. By Lemma 6.3, the quantity on the right-hand side is on the same order as
ψx(x(V1/2)), where x is the function that converts from volume to positional coordinate. By Lemma 6.2,
there is a constant c1 > 0 such that

f (x(V)) ≥ c1V

for V large. Because f is strictly increasing,

x(V) ≥ f −1(c1V).

So (6.2) becomes
V*2
V1

log V
*
2
V1
≥ cψx f −1(c1V/2),

which implies the conclusion.

Remark 6.8. Along a line V2 = rV1, the perimeter minimizer may change from a triple interval to a double
interval and back to a triple interval, as numerically plotted for the Borell density f (r) = exp

(
r2
)
in Figure 4 of

the introduction, where the line V2 = 10V1 intersects the curve of tie points in two places. Indeed, whenever
ψx is unbounded and ψxx/ψx is bounded for x large, Corollary 6.7 implies that λ(V1)/V1 → ∞ as V1 → ∞,
while by Theorem 4.15, λ tends to a positive limit as V1 → 0, so λ(V1)/V1 → ∞ as V1 → 0. Thus λ(V1)/V1
must assume some value twice in the interval (0,∞).

The next two corollaries follow immediately from Corollary 6.7. Corollary 6.9 gives a lower bound on the tie
function λ for the Borell density. Numerics suggest that the bound is not sharp: Figure 4 of the introduction
suggests that λ grows approximately quadratically for the Borell density.

Corollary 6.9. OnR with the Borell density f (x) = ex
2
, given V1 > 0, let V*2 be the unique value of V2 such that

the double interval in equilibrium and the triple interval tie. Then for all ε > 0,

V*2 ≥ V1(logV1)1/2−ε

for V1 large.
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Corollary 6.10. On R with the density f (x) = ee
x
, given V1 > 0, let V*2 be the unique value of V2 such that the

double interval in equilibrium and the triple interval tie. Then for all ε > 0,

V*2 ≥ V1(logV1)1−ε

for V1 large.

The following proposition gives an upper bound for the tie points. Note that the hypothesis ψ2 ≥ Mψx for x
large is mild. In fact, ψ2 < Mψx cannot hold for all x large, since this inequality implies that the ψ blows up
in �nite time.

Proposition 6.11. Let f = eψ be a symmetric, strictly log-convex, C1 density onR, where ψx is unbounded and
ψ2 ≥ Mψx for x large. Given V1 > 0, let V*2 be the unique value of V2 such that the double interval in equilibrium
and the triple interval tie. Then, for constants c1 > 0 and c2,

V*2 ≤ c1 exp
(
ψψ−1x (2ψxA)

)
for V1 large, where

A = ψ−1(logV1 + 2 log logV1 + c2).

Proof. Let V2 = V*2. Let the double interval in equilibrium be (x1, x2, x3) and the triple interval be (y1, y2).
We have

f (x1) + f (x2) + f (x3) = P3 = P2 = 2f (y1) + 2f (y2).

By Proposition 3.6, the interval [−y2, y2] is the best single bubble for volume V1 + V2, so

f (x1) + f (x3) ≥ 2f (y2).

Thus
f (x2) ≤ 2f (y1),

which is equivalent to
ψ(x2) ≤ ψ(y1) + log 2. (6.3)

By the Fundamental Bounding Lemma 6.3, for x large,

f (x) ≤ 2V(x)ψx(x) ≤
2
MV(x)ψ(x)

2 = 2
MV(x)(log f )

2, (6.4)

because ψ2 ≥ Mψx for x large. For x large, log f ≤ f 1/4, so (6.4) implies that f ≤ cV2 for a constant c. Using
this on the right-hand side of (6.4) gives f ≤ cV(logV)2 for a new constant c (we allow c to change from line
to line). Hence (6.3) becomes

ψ(x2) ≤ log f (y1) + log 2 ≤ logV(y1) + 2 log logV(y1) + c
≤ logV1 + 2 log logV1 + c, (6.5)

because V(y1) = V1/2. So |x2| ≤ A, where A is de�ned as in the proposition statement.
We now estimate x1. We have

V1 =
|x1|∫

|x2|

f ≥ 1
ψx(|x1|)

|x1|∫
|x2|

ψx f =
f (x1) − f (x2)
ψx(|x1|)

.

So

f (x1) ≤ f (x2) + ψx(|x1|)V1 ≤ f (x2) +
1
Mψ(x1)

2V1

= f (x2) +
1
M (log f (x1))2V1

≤ cV1(logV1)2 +
1
M (log f (x1))2V1, (6.6)
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by (6.5). For x large, log f ≤ f 1/4, so by (6.6),

f (x1) ≤ cV1(logV1)2 +
1
M f (x1)

1/2V1.

Solving gives f (x1) ≤ cV2
1 . Applying this to the right-hand side of (6.6) yields

f (x1) ≤ cV1(logV1)2.

Hence
ψ(x1) = log f (x1) ≤ logV1 + 2 log logV1 + c, (6.7)

which implies that |x1| ≤ A where A is de�ned as in the proposition statement.
Therefore, for V1 large,

V*2 ≤ 2
x3∫
0

f ≤ 2
x3∫
1

f ≤ 2
ψx(1)

x3∫
1

ψx f

= 2(f (x3) − f (1))
ψx(1)

≤ cf (x3) = c expψ(x3)

= expψψ−1x (ψx(x3)) = expψψ−1x
(
ψx(|x1|) + ψx(|x2|)

)
≤ expψψ−1x (2ψxA),

by (6.5) and (6.7), because f ′ = fψx and ψx(x3) = ψx(|x1|) + ψx(|x2|) due to the equilibrium.

The following corollaries compute the upper bounds explicitly for the densities ex
2
and ee

x
.

Corollary 6.12. OnRwith the Borell density f (x) = ex
2
, given V1 > 0, let V*2 be the unique value of V2 such that

the double interval in equilibrium and the triple interval tie. Then for all ε > 0,

V*2 ≤ V4+ε
1

for V1 large.

Proof. Since ψ = x2 and ψx = 2x, ψ2 ≥ ψx for x large, so Proposition 6.11 applies. Therefore

V*2 ≤ c1 exp4(logV1 + 2 log logV1 + c2)
= cV4

1 (logV1)8 ≤ V4+ε
1

for any ε > 0 and V1 large, where c1, c2 and c are constants.

Corollary 6.13. On R with the density f (x) = ee
x
, given V1 > 0, let V*2 be the unique value of V2 such that the

double interval in equilibrium and the triple interval tie. Then for all ε > 0,

V*2 ≤ V2+ε
1

for V1 large.

Proof. Since ψ = ψx = ex, ψ2 ≥ ψx for x large, so Proposition 6.11 applies. Therefore

V*2 ≤ c1 exp2(logV1 + 2 log logV1 + c2)
= cV2

1 (logV1)4 ≤ cV2+ε
1

for any ε > 0 and V1 large, where c1, c2 and c are constants.
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7 Higher Dimensions
In RN with radial density going to in�nity, for any n given volumes, a perimeter-minimizing n-bubble exists
by an argument ([2], Rmk. 3.3) after Morgan and Pratelli ([8], Thm. 3.3).

In this section we use numerical techniques to determine the shape and surface area of potentially
perimeter-minimizing double bubbles in higher dimensions with Borell density er

2
as in Figure 3 of the

Introduction. The code used for these computations can be found at https://github.com/arjunkakkar8/
doublebubble.

To do so, we use the software Brakke’s Surface Evolver [3]. Starting with an initial shape, the surface
evolver iteratively minimizes the energy associated with that con�guration by moving its pieces while main-
taining the values of constraints de�ned on the con�guration.

To examine the double bubble in space with Borell density, we de�ne the initial con�guration of two
adjacent cubes (squares in the plane). Then the energy of the system is de�ned as the weighted perimeter
of the cubes. Next the weighted volume of the cubes is calculated by using the divergence theorem. With
boundary B, the weighted volume is

VB =
∮
B

F · n, where∇ · F = er
2
.

Note that the choice of F for which∇ · F = er
2
is not unique. We used ?

F =
(
ey

2+z2
∫
ex

2
dx, 0, 0

)
.

Since there is no closed form for the integral, the vector �eld is evaluated by using a series expansion. Care
is taken to use su�ciently many terms so that within the relevant radius, the error from the approximation
is negligible compared to the 4-digit precision of the Evolver. Then the system is evolved down the energy
gradient while �xing the weighted volumes. The �nal state that the system converges to for the case of 2D and
of 3D is depicted in Figure 3.

In closing, we conjecture that some of the behavior on R1 will recur in higher dimensions.

Conjecture 7.1. InRN with a smooth, radial, log-convex density, a perimeter-minimizing double bubble is either

(i) the bubble inside a bubble (e.g. for V1 small and V2 large), or
(ii) the standard double bubble (e.g. for V2 close to V1).
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