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ABSTRACT

A self-adaptive system (SAS) can reconfigure at run time in re-

sponse to uncertainty and/or adversity to continually deliver an

acceptable level of service. An SAS can experience uncertainty dur-

ing execution in terms of environmental conditions for which it

was not explicitly designed as well as unanticipated combinations

of system parameters that result from a self-reconfiguration or mis-

understood requirements. Run-time testing provides assurance that

an SAS continually behaves as it was designed even as the system

reconfigures and the environment changes. Moreover, introducing

adaptive capabilities via lightweight evolutionary algorithms into a

run-time testing framework can enable an SAS to effectively update

its test cases in response to uncertainty alongside the SAS’s adapta-

tion engine while still maintaining assurance that requirements are

being satisfied. However, the impact of the evolutionary parameters

that configure the search process for run-time testing may have a

significant impact on test results. Therefore, this paper provides an

empirical study that focuses on the mutation parameter that guides

online evolution as applied to a run-time testing framework, in the

context of an SAS.
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1 INTRODUCTION

Self-adaptive systems (SAS) can self-reconfigure at run time to en-

sure continuing requirements satisficement (i.e. satisfied to some

degree) [7, 31, 33] in response to uncertainty. Uncertainty can man-

ifest in many different forms, including aleatory and epistemic [1],

as well as known-unknowns and emergent behaviors [14, 15]. Such

uncertainties can cause an SAS to react in possibly incorrect or

unforeseen manners, therefore, providing assurance at run time

is paramount to a system’s success. An SAS must ensure that not

only its high-level requirements are continually satisfied, but that

any test cases performing fine-grained validation also are continu-

ally passing. In the context of an SAS, test cases must be adaptive

in that they can reconfigure alongside the SAS [18, 19], possibly

using lightweight evolutionary techniques [4, 9]. However, the pa-

rameters that guide such a search procedure, specifically the σ

parameter that guides the mutation operator of an online evolu-

tionary algorithm (EA), can significantly impact the outcome of

the search procedure. This paper presents an empirical study that

focuses on the impact that this key configurable value can have on

run-time evolutionary adaptation of test cases in an SAS.

The number of possible states and configurations that an SAS

may experience is generally impossible to fully enumerate by an

engineer [7, 8, 33, 41], leading to techniques for automatically val-

idating and verifying an SAS at design time [6, 16, 17, 36, 37, 39]

and run time [22, 23, 36, 38, 43, 47]. Additionally, techniques have

been developed for anticipating unexpected SAS and environmen-

tal configurations [39], however such techniques still may not fully

examine the entire solution space of all possible configurations.

Validating a system’s behavior at run time, then, relies on a well-

developed set of requirements and test cases that specify a sys-

tem’s behavior to the extent possible at design time. Previously,

the MAPE-T framework [20] was proposed to align testing with an

SAS’s ability to self-reconfigure by applying adaptive principles to

a run-time testing framework. Given that not all test cases may be

optimized for all environments at design time, the (1+1)-ONLINE

EA (a lightweight EA intended for run time) [4] can be used to

provide search capabilities for new combinations of test case pa-

rameters. The (1+1)-ONLINE EA sacrifices search power for speed

as it only considers two individuals per generation, in comparison

to a more powerful genetic algorithm that may consider several

hundreds of individuals per generation [27].

Given that a single parameter, σ , is responsible for the search

procedure within the (1+1)-ONLINE EA, we examine how varying

this parameter impacts the run-time testing process. Specifically,

we present a sensitivity analysis on the search procedure in (1+1)-

ONLINE EA, where σ dictates the relative difference between a

parent and a child genome via mutation. To this end, we vary the
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value of σ for two case studies in distinct application domains, se-

lecting multiple values of σ both manually and automatically, using

domain knowledge for manual selection and the stepwise adap-

tation of weights (SAW) heuristic [45] to more intelligently vary

the mutation operator automatically. Each aspect of the sensitivity

analysis will be used to demonstrate the effects of the σ parameter

on run-time testing in terms of test case fitness.

To this end, we apply our sensitivity analysis to two case studies.

The first case study is a remote data mirroring (RDM) application

that has been provided by industrial collaborators [29, 30]. RDM is

a technique for ensuring that data is always protected and available

within a distributed network of servers and has been modeled as an

SAS. The second case study models a smart vacuum system (SVS)

that is tasked with cleaning a simulated room while maintaining

safety and failsafe concerns. Each case study is subjected to multi-

ple forms of uncertainty that can induce requirements violations

and run-time test case failures. Moreover, each case study is in-

strumented with an adaptive testing framework that leverages the

SAS’s adaptation engine.

Experimental results suggest that, for both case studies, the

value of σ does not significantly impact the results of run-time

testing, even as the SAS reconfigures as a result of uncertainty. The

remainder of this paper is structured as follows. Section 2 presents

background information on each case study, run-time software

testing, and run-time evolutionary algorithms. Section 3 details our

approach for performing the analysis on σ . Section 4 presents our

experimental setup and results. Finally, Section 5 summarizes this

paper and outlines future work.

2 BACKGROUND

This section presents relevant background information on the RDM

and SVS applications, run-time software testing, and run-time evo-

lutionary algorithms. Note that, for presentation purposes, we do

not provide a dedicated related work section and opt to include

relevant related works in this section and throughout the paper.

2.1 Remote Data Mirroring

RDM is a network-based application that ensures data is made avail-

able and prevents data loss by disseminating copies (i.e., replicates)

of messages to all servers (i.e., data mirrors) connected to the net-

work [29, 30]. In this fashion, a user could access the nearest server

when requesting data to provide faster response times, or when

requesting data from an unavailable server, the RDM network can

failover to a different server that is relatively close to the user. More-

over, data is protected from loss or damage in the RDM application

as data recovery techniques can be triggered upon determination

of data loss by reconstructing data from a different server.

The RDM application has been modeled as an SAS and can re-

configure in response to uncertainty [40]. Uncertainty can manifest

in terms of dropped, delayed, or corrupted messages, network link

failures, server failures, and sensor fuzz applied to server and link

sensors. The RDM self-reconfigures in terms of changes to its net-

work overlay to facilitate link recovery (e.g., changing from a grid

topology to a completely-connected topology), changes to its data

propagation protocols (e.g., changing from asynchronous to syn-

chronous message transmission), and updates to server state (i.e.,

updating from actively to passively servicing message transactions).

2.2 Smart Vacuum System

An SVS is an autonomous robotic vacuum (similar to an iRobot

Roomba1) that is tasked with cleaning a desired space, facilitated

by monitoring sensors to select an appropriate path planning algo-

rithm, manage power consumption, and mitigate safety concerns.

Available sensors can include distance sensors to measure the dis-

tance between the SVS and other objects in the room, bumper

sensors to detect collisions, cliff sensors to detect steps, and sen-

sors embedded within the wheel and suction motors to accurately

monitor SVS velocity and suction power, respectively. A central

controller unit aggregates all incoming sensor data and performs

an analysis to ensure that the SVS is operating safely and efficiently

by selecting appropriate path and power moding strategies towards

its goal of maximally cleaning the room.

The SVS ismodeled as an adaptive system and can self-reconfigure

via mode changes [2, 35], where a mode change is a common strat-

egy for performing adaptations within embedded systems. A sample

mode change can be a reduced power mode where the SVS limits

power consumption from the wheel motors, effectively slowing the

SVS. Such a strategymay enable the robot to łlimp homež to a charg-

ing station in the event that battery levels are critically low. The

SVS can experience uncertainty in terms of randomly instantiated

obstacles (e.g., pets, liquid spills, downward steps, etc.), occluded or

failing sensors, unexpected power drains, and the amount, location,

and distribution of dirt within the room. To mitigate such uncer-

tainties, the SVS can self-reconfigure, via mode changes, in terms of

reduced power consumption modes, different types of pathfinding

algorithms, and various measures for quickly and safely avoiding

unexpected obstacles.

2.3 Run-Time Software Testing

While software testing is a relatively well-understood field [3, 25,

34] and is generally performed at design time, performing testing at

run time introduces significant problems in terms of overhead to the

running system and concerns that testing a live system may impact

or influence its behavior. However, testing at run time can also

ensure that the system is satisfying its goals during execution [3, 11].

To combat performance concerns, techniques such as record-and-

replay [44] and multi-agent testing [36] have been introduced to

offload testing activities to either a sandboxed environment or an

additional agent with spare computing power.

As with software requirements [46], test cases can be defined as

invariant or non-invariant. An invariant test case describes a critical

concern, such as safety, that cannot fail at run time. If a failure

occurs in an invariant test case, the system has experienced a severe

fault that prohibits recovery. Conversely, a non-invariant test case

can temporarily be considered as failing, however such a failure can

be transient in nature and be mitigated by an SAS reconfiguration.

For this paper, only non-invariant test cases can be adapted, as

invariant test cases generally focus on some safety-critical task.

This paper also uses the IEEE definition of test cases, where a test

1iRobot Roomba: http://www.irobot.com
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case comprises an expected value and the conditions for which

a pass/fail determination can be applied [28]. We focus mainly

on functional testing (i.e., validation against a test specification)

and regression testing (i.e. validation against a test specification

following a system update/change) [3, 26].

Veritas. Veritas is a technique for adapting test cases at run time

using the (1+1)-ONLINE EA in SASs [19]. Specifically, Veritas lever-

ages the SAS’s MAPE-K loop [31] to determine if a reconfiguration

is necessary in response to changing operating contexts and then

adapts test cases to better fit the new context while ensuring that

safety/failsafe concerns are not violated. We describe the Veritas

technique in greater detail in Section 3.1.

2.4 Run-Time Evolutionary Algorithms

Evolutionary algorithms (EA) are commonly used to efficiently

navigate a prohibitively-large search space for solving optimization

problems, with a common example being the genetic algorithm [27].

However, such algorithms often suffer from enormous overhead

in terms of processing time and memory required to evaluate each

candidate solution, as each solution must not only be encoded

but also simulated/executed to determine the overall fitness for

each candidate. To combat these difficulties, run-time EAs have

been developed to provide lightweight search capabilities as the

system executes. One such example is the (1+1)-ONLINE EA [4],

an algorithm based on the (1+λ)-EA [12, 42]. The (1+1)-ONLINE

EA sacrifies searching power for speed by only maintaining two

genomes at any given time, one parent and one child. Search is

facilitated by a mutation value σ that can be adapted to search

locally or globally, resulting from analysis of each candidate’s fitness

value. If fitness has been determined to be in a state of stagnation

(i.e., little to no change in fitness over a specified interval), then

σ is updated to search more broadly. In this case, stagnation can

indicate the presence of a local optima.

Each candidate solution is instantiated to measure its fitness

value, with the better-performing candidate surviving and the

worse-performing candidate being discarded. In this technique,

a new candidate is created by mutating the genome of the winner

according to σ . In terms of run-time testing, Table 2 presents an

example of (1+1)-ONLINE EA’s mutation as applied to an RDM test

case that measures the expected diffusion time of a message across

the network. In this table, the upper bound and lower bound are

mutated by σ , where σ = 2.0 in this case. Note that σ mutates the

boundaries within a pre-defined tolerance to ensure that the failure

of this test case does not impact safety concerns. We discuss this

table in greater detail in Section 3.1.

The (1+1)-ONLINE EA cannot exhaustively search the entire

solution space as could a normal EA, however the ability to search at

run time, in parallel to a system’s normal execution tasks, facilitates

online solving of optimization problems.

Stepwise Adaptation of Weights. SAW is a hyper-heuristic [5]

for updating a weighting scheme in a linear-weighted sum, gen-

erally of a fitness function, to determine if different weighting

schemes can better reflect operating conditions to yield an optimal

fitness value [13, 45]. For instance, definition of a fitness function

often relies on the domain knowledge of an engineer or is based

on observed/calculated metrics, and as such, may not accurately

reflect the ideal composition of the function.

SAW can be implemented either offline or online, where an offline

SAW implementation adjusts fitness function weights following

execution of an EA. An online SAW implementation, as used in this

paper, dynamically adjusts fitness function weights at run time. For

the purposes of this paper, we update the value of σ at run time

using SAW in an online fashion [45]. In this case, the value of σ is

selected to be as diverse as possible as we are optimizing a single

value.

For example, a fitness function may comprise three objectives

that are each measured using separate functions, each of which is

weighted to reflect its individual importance to the aggregate fitness

function. As such, the weights initially selected by the engineer

may not be optimal in all situations, and as a result, an automated

technique such as SAW can examine fitness results over time and

then automatically update weights at run time. SAW can select one

objective to be considered as łmore importantž based on monitored

conditions, thereby increasing its weight. SAW would then normal-

ize the remaining weights such that the sum of all weights equals

1.0, thereby lessening the contribution of other objectives to the

fitness function while still maintaining their input. SAW follows

this heuristic until the fitness stagnates or program execution ends.

Sensitivity Analysis. A sensitivity analysis is a technique for de-

termining the relative impact of a parameter or set of parameters

on a system under test [32]. While many techniques exist for per-

forming sensitivity analyses [24], we opt to vary the values of the

parameter in question based on a range of values that a test engi-

neer would select resulting from domain knowledge. Additionally,

we include random value selection as well as a hyperheuristic (i.e.,

SAW) for selecting values to test.

3 APPROACH

This section describes our approach for examining the impact of

the mutation operator σ on the (1+1)-ONLINE EA as implemented

within the Veritas run-time adaptive testing framework.

3.1 Run-Time Adaptive Testing

Veritas [19] is a run-time technique for providing assurance in an

SAS via online, evolutionary testing. Specifically, Veritas leverages

the (1+1)-ONLINE EA [4] to explore how different configurations of

test case parameters (i.e., lower bound, upper bound, and expected

value) can represent the continually-changing space in which an

SAS resides. Figure 1 presents an overview of the Veritas technique.

Veritas is executed each timestep, or as often as the SAS engineer

desires. Veritas takes as input a set of utility functions that capture

the run-time performance of software requirements [10, 21] and

are used to validate test results. During each testing cycle, (1) Veri-

tas uses the SAS’s monitoring framework to determine in which

operating context the system is executing. Next, (2) Veritas selects

a set of test cases that are impacted by the operating context to

be adapted at run time. Following, (3) Veritas executes a testing

cycle and (4) monitors test results (i.e., which tests pass or fail).

Veritas will then (5) adapt the appropriate attributes of each failing

test case. Steps (1) ś (5) are supported by the (1+1)-ONLINE EA,

as denoted by the evolutionary loop. Upon completion, (6) Veritas
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Type Fitness subfunction

Invariant - Exact i f (valM == TCE ) : f fM = 1.0

else : f fM = 0.0

Invariant - Range i f (valM ∈ [vallb ,valub ]) : f fM = 1.0

else : f fM = 0.0

Non-invariant - Exact f fM = 1.0 − |valM−valE |
|valE |

Non-invariant - Range i f (valM ∈ [vallb ,valub ]) : f fM = 1.0

else : f fM = 1.0 − |valM−valO |
|valO |

Table 3: Test case fitness subfunctions.

In the case of non-invariant ranged test cases, an optimal test

case value is specified to be the nearest acceptable range boundary

to the measured value. Consider TC7 as defined in Equation 1. If

the measured value (i.e., valM ) is 6.2sec , then the optimal test case

value (i.e., valO ) will be its nearest boundary lb, or 6.0sec .
3

Lastly, the overall fitness value is calculated for each test case,

comprising a weighted linear sum as defined in Equation 2:

f ftest_case = αM ∗ f fM + αV ∗ValidResult (2)

where:

ValidResult =




1.0 i f valM ∈ [vallsb ,valusb ],

0.0 else .
(3)

3.2 Stepwise Adaptation of Weights

In addition to static values of α that will be evaluated, we introduce

the hyper-heuristic SAW into Veritas to intelligently adapt σ at run

time. Specifically, our implementation of the online variation of

SAW [45] is as follows in Algorithm 1:

Algorithm 1 Online SAW implementation for RDM application.

1: timesteps ← 300

2: test_cases ← instantiateTestCases ()

3: for (i = 0; i < timesteps; ++i) do

4: Execute RDM at ith timestep

5: Execute SAS adaptation engine

6: Execute Veritas

7: ts ← i mod 10

8: if ts = 0 then % Execute SAW

9: Retrieve all prior values of σ

10: Calculate mean of σ prior values

11: Generate random set of candidate σ values

12: Select σ with maximum distance from mean

13: Apply new σ to Veritas-selected test cases

14: end if

15: end for

Algorithm 1 demonstrates that SAW is triggered every 10th

timestep to update the value of σ used by Veritas in the following

execution cycles. Here, SAW retrieves all prior values of σ up to

the current timestep and calculates the mean of these values. Next,

3Note that this is considering the non-mutated form of TC7 .

SAW generates a random pool of σ candidates, bounded within

a safety range specified by the test engineer, and then selects the

candidate value that maximizes the distance from the mean of all

prior σ values. In this regard, SAW is maximizing the explored

search space governed by σ . The SAW implementation for the SVS

application follows the same algorithm, however the number of

timesteps is configured to be 120.

4 EXPERIMENTAL RESULTS

This section describes our experimental setup and results from in-

vesting how σ impacts the run-time evolutionary search process on

two separate application domains: the RDM and SVS applications.

4.1 Experimental Setup

For this paper, we focus on the impact of the mutation parameter

σ within the (1+1)-ONLINE EA as applied to run-time adaptive

testing for SASs. We have implemented Veritas [19] on top of the

MAPE-K loop [31] that guides adaptation of the RDM and SVS ap-

plications, respectively, where Veritas leverages the (1+1)-ONLINE

EA as previously introduced by Bredeche et al. [4].

The RDM application was simulated as a completely-connected

graph, where each node in the graph represents a server (i.e., data

mirror) and each edge represents a network link between servers.

Uncertainty was simulated to manifest via randomly inserted mes-

sages for dissemination at any point during execution, unexpected

network link failures, random noise applied to both server sen-

sors and network traffic, and randomly dropped and/or delayed

messages. To mitigate uncertainty, the RDM application can self-

reconfigure in terms of its network topology, methods of prop-

agating messages, and server state (e.g., from actively servicing

transactions to refusing to service transactions). The RDM applica-

tion was executed for 300 timesteps during which all servers must

receive a copy of all messages inserted into the network.

The SVS application was simulated as an autonomous robotic

vacuum that comprises a set of sensors, each of which interact with

the environment or SVS itself. Available sensors include bumper

sensors that detect collisions, an object sensor to measure the dis-

tance between the SVS and nearby objects (either stationary or

in motion), cliff sensors to detect stairs, and sensors instrumented

within the wheel and suction motors. Each sensor has a probabil-

ity of fuzz and failure, where fuzz occludes the sensor’s readings,

and failure causes the sensor to cease function for the remainder

of execution. The SVS also has a central controller for handling

sensor input and making decisions based on its understanding of

the environment. Moreover, the controller is also responsible for

providing MAPE-K capabilities in terms of self-reconfiguration,

where a reconfiguration may be triggered by unsafe conditions

(e.g., a detected step or pool of water) or objects (e.g., a pet or child)

that must be quickly avoided by the SVS. The SVS was executed for

120 simulated timesteps and was required to vacuum at minimum

50% of the dirt particles within the room. The SVS experiences envi-

ronmental uncertainty in terms of the amount, location, and size of

dirt particles; the width and height of the room; the appearance and

location of a downward step; and instantiated objects (e.g., circular

liquid spill, columns, pets) that must be navigated safely around by

the SVS. System uncertainty was represented by occluded and/or
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failing sensors that could be triggered at each timestep, based on

the defined probability of occlusion/failure for each sensor. For

each experimental treatment, the SVS was placed in 15 unique con-

figurations of system and environmental parameters as generated

by Loki [39], a technique for generating diverse combinations of

system and environmental parameters.

The RDM test specification comprises 36 test cases, where 7 are

invariant and 29 are non-invariant [18]. The SVS test specification

comprises 72 test cases, 17 of which are invariant and 55 of which

are non-invariant. As defined by Veritas, only non-invariant test

cases can be adapted at run time to ensure that safety/failsafe con-

cerns are continually satisfied. The fitness function weights (αM
and αvalid ) for both the RDM and SVS were set to 0.4 and 0.6,

respectively [19].

For both the RDM and SVS applications, the online version of

SAW has been implemented for varying σ , as shown in Algorithm 1.

SAW was triggered every 10 timesteps, where SAW examines the

previous states of σ up to the current time and selects a new value

of σ to maximize its distance from all prior instantiations of σ .4

Table 4 presents the different values of σ that were selected

for study. Specifically, the value of σ dictates the upper and lower

bounds that can be randomly selected for mutating a test case’s

acceptable range of values, where the expected value of the test

case is then modified to be randomly generated between the new

bounds. Each mutation introduced is constrained to not violate any

defined safety thresholds as previously specified by a test engineer.

For each case study, we examine seven σ values, where σ1−5 use a

varying static value, σ6 introduces randomness to achieve diversity

at each timestep of execution, and σ7 uses the SAW heuristic to in-

telligently update this value. A control in which no adaptation (i.e.,

Veritas was disabled) was also performed to provide a basis for com-

parison. For both the RDM and SVS applications, 50 experimental

replicates were performed for each value of σ to achieve statistical

significance. In addition to randomly varying the configuration of

system and environmental parameters, a random distribution was

also selected for each replicate to seed the random number gen-

erator. Possible distributions include [Beta, Binomial , ChiSquare ,

Exponential , Gamma, Geometric , Gaussian, Poisson, Trianдular ,

Uni f orm].

σID Value

σ1 1.0

σ2 2.0

σ3 4.0

σ4 8.0

σ5 12.0

σ6 randFloat ([1.0, 12.0]) per timestep

σ7 SAW

Table 4: Tested values of σ .

4As there is only a single instance of σ at any given point, we opted to examine
diversity over performance in terms of the SAW algorithm.

4.2 Experimental Results

We now present the results of each case study. For presentation pur-

poses, results for both case studies will be demonstrated together. To

determine statistical significance, we performed a one-way ANOVA

test (p < 0.05) to determine if a significant difference exists between

data sets, as well as Wilcoxon-Mann-Whitney u-tests in a pairwise

fashion (p < 0.05) to analyze the data more closely. While Veritas

has been previously presented to significantly increase adaptive test

case fitness over non-adaptive test case fitness [19], we also include

non-adaptive test case fitness values as a control. To this end, we

define the following null hypothesis H0 to state that łthere exists

no significant difference between different values of σ for adaptive

testing with the (1+1)-ONLINE EAž and the alternate hypothesis

H1 to state that łthere is a significant difference between different

values of σ for adaptive testing with the (1+1)-ONLINE EA.ž

Figure 2 presents the average test case fitness values from a

sensitivity analysis of σ on Veritas in the RDM and SVS applications,

with RDM values on the left of the separator and SVS values on the

right. As this figure indicates, there exists a significant difference

between the Control and Veritas experiments for both the RDM

and SVS applications (p < 0.05, ANOVA and pairwise Wilcoxon-

Mann-Whitney u-tests), confirming prior results that performing

adaptation on run-time testing provides a positive impact on test

case fitness [19]. However, no significant difference exists between

each experiment where σ is varied (p < 0.05, ANOVA and pairwise

Wilcoxon-Mann-Whitney u-tests). This result is surprising, as σ

provides the only means of search within the (1+1)-ONLINE EA

and was expected to influence fitness results. Furthermore, the SVS

fitness values are significantly lower than those of the RDM overall,

however that is related to the performance of the SVS, with test case

values indicating that the SVS is performing relatively poorly. At

minimum, Veritas still significantly enhances test case performance.

While these results suggest that we can accept the null hypothe-

sisH0 in that varying σ has no impact on run-time adaptive testing,

the implication that varying a mutation parameter has minimal im-

pact is concerning. As previously shown by Bredeche et al., varying

σ can have a significant impact on a robot controller, where the

EA searches for configurations of a neural network [4]. Therefore,

the remaining conclusion to draw is that the impact of σ in Veritas

specifically is limited. While performing adaptive testing signifi-

cantly improves test case fitness [19], there must be little variation

in the test case parameter values discovered for each operating

context. Therefore, the important aspect of Veritas must be adapt-

ing to the new context, rather than minutely examining the search

space of test case parameters. Moreover, test cases are extremely

fine-grained by nature, and as a result the search space for a valid

test case will also be fine-grained.

In terms of contributions and novelty, this paper demonstrates

the effect that a relatively small search space imparts onto an SAS.

Specifically for this context, each test case has a limited range of

possible values that can be selected at run time as valid, resulting

from safety constraints that are necessary to ensure that no invari-

ant goals are violated. While there is little variation in discovery

of łoptimalž test case parameters, the fact that Veritas significantly

performs better than the Control indicates that an online search
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Figure 2: Comparison of average test case fitness values for RDM and SVS applications.

process is useful. This result suggests that, for an SAS, perform-

ing a lightweight search process at run time can enhance overall

assurance that the system is behaving as intended. In terms of

the non-significance between Veritas results, future work can ex-

plore more heavy-processing techniques such as multi-objective

optimization or model-based testing, where processing tasks are

offloaded to external agents.

Threats to validity.The research presented in this paper examined

the importance of themutation operatorσ on the (1+1)-ONLINE EA,

as implemented within Veritas. As such, we’ve identified the follow-

ing threats to validity. One threat to validity lies in the derivation

and validity of test cases for each case study. Another threat lies in

the configuration and implementation of both the RDM and SVS ap-

plications. The test cases may also be too fine-grained/constrained

for evolution to successfully discover global optima (i.e, a more

diverse set of test cases may provide different results), resulting in

a limited search space where test case parameters converge to simi-

lar values. Finally, the online version of SAW technically updates

the fitness function at run time, leading to the possibility that the

fitness function becomes too flexible, leading to solutions that stray

from the original intent of each respective test case.

5 DISCUSSION

This paper has presented an empirical study on the impact that

the mutation operator σ imparts onto a run-time EA that has been

implemented within a run-time testing framework, where the run-

time EA guides test case adaptation as uncertainty manifests within

an SAS and its environment. Specifically, we examined σ in the

context of the Veritas technique as applied to two case studies in

different application domains: the RDM and SVS applications. The

RDM application ensures that data is replicated across a network of

physically-remote servers to ensure data availability and reliability,

and the SVS application simulates an autonomous robotic vacuum

that must clean a room while mitigating uncertainty and safety

concerns. Veritas implements the (1+1)-ONLINE EA to search for

combinations of test case parameters that more accurately reflect

changing operating contexts. Experimental results suggest that, for

each application domain, the role of σ has no significant impact

on both the search process and test results. Future work includes

further examination of σ in other application domains, including

those that are not specifically test-oriented. Moreover, we intend

to apply other types of run-time evolutionary techniques to the

Veritas testing framework to determine the feasibility and result of

other techniques.
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